

**IBM Software Group** 

# **CICS Web Services Support**

## GSE/CICS working group Brussels, 26.10.2006

ibm.com/software/ts/cics

K-H Marquardt
IBM Deutschland SWG
MarquKH@de.ibm.com



© 2006 IBM Corporation



## Acknowledgements

- The following are trademarks of International Business Machines Corporation in the United States, other countries, or both: IBM, CICS, CICS TS, CICS Transaction Server, DB2, MQ, OS/390, S/390, WebSphere, z/OS, zSeries, Parallel Sysplex.
- Java, and all Java-based trademarks and logos, are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
- Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
- Other company, product, and service names and logos may be trademarks or service marks of others.



## Agenda

- Short introduction to SOA (Service Oriented Architecture)
- Overview of CICS WebServices Support
- Development approaches for CICS WebServices
- The sample application
- WS Security introduction
- WS Atomic Transaction (WS-AT) introduction
- Some hints
- Summary



#### CICS in an On-Demand IT solution





#### Web Services Architecture

- flexible business processes require flexible applications
  - Business orientation, not technically oriented
  - ✓ 'adhoc' re-configurable components
  - de-coupled & platform neutral communication
- > Requires application modernisation
  - ✓ cost savings by integration / reuse
- SOA is a foundation for flexible applications to support an ON Demand Business

prerequisite: **Standards!** 



**UDDI - Universal Description, Discovery and Integration WSDL-web services description language** 





## WSDL – Web Service Description Language

# Standardized XML constructs to describe a Web Service

**WSDL Structure** 

**Type** —data type definitions

Message —input/ output message definition

**Binding** —binds operations to network

protocol(s)

**Service** —service name and location

endpoint





#### New Components for CICS WebServices

#### Resource definitions

? Transport definition: -TCPIPSERVICE (in CICS, HTTP/HTTPS)

-QLOCAL (in WebSphere MQ)

? URIMAP - maps URI to corresponding service

- points to pipeline and webservice resource definitions

? **PIPELINE** - points to pipeline configuration file (XML file)

- defines the QoS for a webservice (security, atomic trx....)

? **WEBSERVICE** - points to bind file and WSDL file, defines service programm

- bind file is used for data mapping between XML doc and language structure

#### Message handlers

- implement requested SOAP protocol and QoS
  - can include private handlers
  - defined in the pipeline configuration file

#### Web services assistant (utility):

- ⇒ generates language copybooks from a given WSDL (DFHWS2LS)
- ⇒ generates WSDL from a language copybook (DFHLS2WS)
- ⇒ generates the web service binding file (WSBIND)



## CICS as web service provider





#### How the Resource Definitions Relate

different pipeline for different QoS **Provider** requirements Pipeline "S1" URI Map "U3" (e.g. secure service) CICS as requester needs a separate /x/y/Service 3 requester pipeline s1 config WebService "W3" file URI Map "U2" ServPqm 3 /x/y/Service\_2 URI Map "U1" **Provider** /x/y/Service\_1 Pipeline "P1" wsbind VebService "W2" wsdl ServPgm\_2 p1 config WebService "W1" file ServPgm 1 wsdl and wsbind file are tightly related => if wsdl changed wsbind wsbind wsbind wsdl wsdl must be re-generated



## CICS as web service requester





## Web Service Development Approaches

#### "Top down" approach

- create a (new) service program from an existing WSDL (create new CICS Web service application)
  - +better interfaces for the requester
  - -development cost

#### "Bottom up" approach

- create a WSDL from an existing application
- expose the application as a Web service
  - +quicker implementation of the service
  - -more complex interface for the requester

#### "Meet in the middle" approach

- You have existing WSDL and existing application
- -create a WSDL from an existing application
- modify the WSDL and create a wrapper program from the modified WSDL
- -indirectly exposes the application as a Web service
  - +more suitable interface for the requester
  - -development cost, but tools can help





## Tools to assist development

- Web Service Assistant (WSA) Batch Tool (DFHLS2WS + WS2LS)
  - generates WSDL or language structure and WSBIND
    - supports Cobol, PLI, C, C++
  - good for proof of technology
  - redefines not supported
  - generated WSDL may need modifications (e.g. nillable data elements)
- Websphere Developer for zSeries (WDz)
  - XML Services for the Enterprise (XSE)
    - generates WSDL and WSBIND files
    - provides better granularity, userfriendly element names etc...
  - can generate sceleton pgm for "meet in the middle" approach
  - can generate a test client for immediate tests
  - best suited for real projects
  - Service Flow Modeler (SFM)
    - provides flow modeling and mapping
      - flow can include all types of CICS backends (DPL-Pgm, 3270 Trx...)
      - backends "packaged" as one web service
    - generates all artifacts for deployment in SF runtime (CICS or HATS)



## Service Flow Modeler and WS Deployment to SFR





## The Sample Application



CICS functions → Web Services → The CICS catalog manager example application



## The Base Application





## CICS Comarea Pgm exposed as Web service





#### Generate Web Service Components with WSA

**DFHLS2WS Batch Utility** 

//INPUT.SYSUT1 DD \*

LOGFILE=/u/exampleapp/wsbind/inquireSingle.log

PDSLIB=CICSHLQ.SDFHSAMP

REQMEM=DFH0XCP4

RESPMEM=DFH0XCP4

LANG=COBOL

PGMNAME=DFH0XCMN

**PGMINT=COMMAREA** 

URI=exampleApp/inquireSingle

WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind

WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl

\*/

#### Input:

- -Log file (HFS)
- -Library containing copybooks
- -(CA) copybook for request from client
- -(CA) copybook for reponse to client
- -language
- -CICS Server Pgm name
- -Interface type (commarea or container)
- -universal request identifier
- -location and name of WSBIND file (HFS)
- -location and name of WSDL file (HFS)



#### Generated WSBIND and WSDL files

#### inquireSingle.wsbind

/u/exampleapp/wsbind/inquireSingle.wsbind

WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl DFH0XCMN

**DFHLS2WS Batch Utility** 

```
<Wrapper>
  <CA-REQUEST-ID>&CA-REQUEST-ID;</CA-R
  <CA-RETURN-CODE>&CA-RETURN-CODE;</
  <CA-RESPONSE-MESSAGE>&CA-RESPONSE
  &CA-INQUIRE-SINGLE;
</Wrapper>
<DFH0XCMN xmIns="http://www.DFH0XCMN.DFI</pre>
  &Wrapper;
</DFH0XCMN>
<SOAP-ENV:Body>&DFH0XCMN;</SOAP-ENV:Body>
```

#### inquireSingle.wsdl

```
<?xml version="1.0" ?>
<xsd:schema attributeFormDefault="qualified"</p>
elementFormDefault="qualified"
      targetNamespace="http://www.DFH0XCMN.DFH0XCP4.Request.com"
      xmlns:tns="http://www.DFH0XCMN.DFH0XCP4.Request.com"
      xmlns:xsd="http://www.w3.org/2001/XMLSchema">
      <xsd:complexType name="ProgramInterface">
        <xsd:sequence>
          <xsd:element name="CA-REQUEST-ID" nillable="false">
            <xsd:simpleType>
              <xsd:restriction base="xsd:string">
                 <xsd:length value="6"/>
                 <xsd:whiteSpace value="preserve"/>
              </xsd·restriction>
            </xsd:simpleType>
          </xsd:element>
            ....more ....
```



## Testing the WebService enabled Application





## Testing the WebService enabled Application





#### TCPIPSERVICE Definition

- for HTTP transport
- listens on port (03102) for incoming Web Service requests
- default web alias transaction is CWXN

```
TCPIPSERVICE (SOAPTCP)
RESULT - OVERTYPE TO MODIFY
  Tcpipservice(SOAPTCP)
  Openstatus (Open )
  Port (03102)
  Protocol (Http)
  Ssltype (Nossl)
  Transid (CWXN)
  Authenticate (Noauthentic)
  Connections (00000)
  Backlog( 00005 )
  Maxdatalen (000032)
  Urm ( NONE
  Privacy (Notsupported)
  Ciphers()
  Ipaddress (9.100.195.47)
  Socketclose(Wait)
  Closetimeout (000000)
  Dnsgroup()
  Dnsstatus (
```



## URIMAP maps Request to the WebService in CICS





#### **URIMAP**

- maps URI (/exampleAPP/inquireSingle)
   to desired processing
   Pipeline (SOAPIPE1) and
   Webservice (inquireSingle)
   resource definitions
- default pipeline trx is CPIH
  - now invoked to process pipeline
- URIMAP can be generated automatically and installed via pipeline scan comnd

```
RESULT - OVERTYPE TO MODIFY
 Urimap ($923470)
 Usage (Pipe)
 Enablestatus (Enabled)
  Analyzerstat (Noanalyzer)
 Scheme (Http)
 Redirecttype (None)
  Tcpipservice()
 Host(*)
 Path(/exampleApp/inquireSingle)
  Transaction (CPIH)
 Converter()
  Program()
 Pipeline (SOAPIPE1)
 Webservice (inquireSingle)
 Userid()
 Certificate()
 Ciphers()
  Templatename()
```



## CPIH processes pipeline





## The Pipeline definition

```
I PIPELINE
RESULT - OVERTYPE TO MODIFY
  Pipeline(SOAPIPE1)
  Enablestatus( Enabled )
  Configfile(/u/eric/exampleapp/pipelines/configurations/basicsoap11provid)
  Configfile(er.xml)
  Shelf(/u/eric/exampleapp/pipelines/shelf/)
  Wsdir(/u/eric/exampleapp/pipelines/wsdir/)
```

- pipeline configuration file specifies the pipeline attributes
  - defines Qualities of Service (WS-Security ect.)
  - specifies msg handler chain to process Web Service Request
- Wsdir: pickup directory for wsbind files
- Shelf: runtime copies from wsdir



## The message handler chain





#### The WEBSERVICE definition

```
I WEBSERVICES
RESULT - OVERTYPE TO MODIFY
 Webservice(inquireSingle)
 Pipeline (SOAPIPE1)
  Validationst( Novalidation )
 State (Inservice)
 Urimap($923470)
  Program (DFH0XCMN)
 Pqminterface(Commarea)
  Container()
 Datestamp (20041207)
  Timestamp (09:23:47)
 Wsdlfile()
 Wsbind(/u/eric/exampleapp/pipelines/wsdir/inquireSingle.wsbind)
  Endpoint()
  Binding(DFH0XCMNHTTPSoapBinding)
```

- defines the target CICS program (DFH0XCMN)
- defines the interface to the target program (Comarea or Container)
- defines location and name of wsbind file ( ....wsdir/inquireSingle.wsbind)
- can be generated automatically and installed via pipeline scan cmnd



## Security considerations with SOAP messaging

- https is not always sufficient for secure webservices processing
  - encryption on transport level, "all or nothing", point-to-point
- demand for security on the message level
- how to include security credentials in the message?
- how to implement element-wise encryption, i.e. expose some parts for routing, hide critical data from unauthorized parties
- how to use digital signatures
- security must persist from originator to processing end-point, for the life of the transaction
- security must survive calls to external business partner
- use with, or instead of, protocol-level security
  - defined and standardized in the WS-Security Standard





## CICS Support for WS-Security

- CICS WS-Security Message handler, DFHWSSE1
  - -shipped via APAR 22736
- Signature validation of inbound message signatures
  - -RSA-SHA1 & DSA-SHA1
- Signature generation for the SOAP body on outbound messages
  - -RSA-SHA1
- Decryption of encrypted data in inbound messages
  - -AES 128,192, 256 or tripledes, with key wrap RSA 1\_5 and AES 128,192, 256 or tripledes.
- Encryption of the SOAP body content with the above algorithms
- various mechanisms to derive a User ID from an inbound message
- see redbook SG24-7206



## Configuring CICS to Support WS-Security

# In the pipeline configuration file add a security handler to the service handler list



## Transactional Support for Web Services

#### Web Services Standard focusses on 3 topics

#### WS-Coordination – WS-C

- how to establish a coordinator that creates and submits a trx.context
- WS-C defines a framework for deploying coordination protocol sets
  - Activation Service begin / end of transaction
  - Registration Service register "participation" in a transaction
  - Coordination Context create and maintain a trx. context

#### WS-AtomicTransaction – WS-AT

- the well known trx. model based on Atomicity, Consistency, Isolation, Durability / 2PC
- short lived trx. where results are not made visible until commit or rollback.

#### WS-BusinessActivity – WS-BA

- long lived business trx. where results of operations are made visible before completion of entire unit of work
- needs compensation logic rather than roll back to undo undesired work

#### more info available at

- IBM: Developer Works Web Services: Technical Library/Standards http://www.ibm.com/developerworks/webservices
- MSoft: Web Services Development Center http://msdn.microsoft.com/webservices
- BEA: Dev2Dev WebServices http://dev2dev.bea.com/technologies/webservices/index.jsp





## CICS Support for WS-AT – how it works





#### CICS Support for WS-AT - Resources

#### Resources in new group DFHWSAT

- ? Pipeline **DFHWSATP** registration service provider pipeline
  - ? provider pipeline that enables CICS to act as a WS-C coordinator and as a WS-AT 2PC protocol handler
- ? Pipeline **DFHWSATR registration service requester pipeline** 
  - ? requester pipeline that allows CICS to communicate with external coordinators and WS-AT 2PC protocol handlers
- ? URIMAP **DFHRSURI** (registration service URI)
  - ? associates inbound WS-C requests with provider pipeline DFHWSATP
- ? Program **DFHWSATH** (atomic trx. handler)
  - ? defined in pipeline config. file of WS-requester and WS-Provider ? must be included to enable WS-Atomic trx.
  - ? if CICS is the WS-Coordinator (in the role of WS requester)
    - : creates coordination context and adds it to SOAP request message
  - ? if CICS is the WS-Provider
    - : receives coordination context and invokes its local RS-requester pipeline to request registration with the coordinator
- ? Program **DFHPIRS** (pipeline registration service)
- ? Program **DFHWSATX** (2PC handler)
- ? Program **DFHWSATR** (registration service requester pgm)



## Updates to the pipeline config – WS Requester

```
causes CoordinationContext to be
                              created and added to the SOAP
<cics_soap_1.1_handler>
                                 message before it is sent
  <headerprogram>
   cprogram_name>DFHWSATH
   <namespace>
        http://schemas.xmlsoap.org/ws/2004/10/wscoor
   </namespace>
   <localname>CoordinationContext</localname>
   <mandatory>true</mandatory>
                                      Address of the Registration service
 </headerprogram>
                                      endpoint for the RS provider of this
</cics soap 1.1 handler>
                                      Region. Participants send Register
                                           requests to this address.
<service_parameter_list>
  <registration_service_endpoint>
        http://provider.example.com:3207/cicswsat/RegistrationService
  </registration_service_endpoint>
</service parameter list>
```

<cics\_soap\_1.1\_handler>



## Updates to the pipeline config. – WS Provider

extracts data from the

CoordinationContext header

```
and invokes registration request
  <headerprogram>
        cprogram_name>DFHWSATH/program_name>
        <namespace>
                 http://schemas.xmlsoap.org/ws/2004/10/wscoor
        </namespace>
        <localname>CoordinationContext</localname>
        <mandatory>false</mandatory>
  </headerprogram>
                                  address of the registration service endpoint
</ciss soap 1.1 handler>
                                 for RS provider of this region. Coordinator
                                  sends prepare and commit (or Abort)
<service_parameter_list>
                                  requests to this address
  <registration_service_endpoint>
        address: port/cicswsat/RegistrationService
  </registration_service_endpoint>
```

</service\_parameter\_list>



#### Some hints ...

#### WSA utilities have limitations

- see WSA documentation in web services guide
- wrapper pgm ("meet in the middle") most likely needed in real world projects
- for FSUM error messages from WSA see z/OS 1.x UNIX System Services Messages & Codes
  - → number is a reference to the line in script
- provide correct Java paths settings

#### Establish appropriate USS Authorizations

#### Invest time in webServices design

- compound services vs. very granular services
- complex vs. simple interface for web service requesters
- consider network traffic and XML parsing overhead
  - avoid deep XML nesting levels

#### Literature

- CICS TS 3.1 Web Services Guide SC34-6458
- Implementing Web Services in CICS SG24-7206 (redbook)
- Application Development for CICS Web Services SG24-7126 (redbook)

#### CICS Web Services Class in Montpellier





## Summary

# Web Services Support opens new opportunities to integrate CICS applications in an SOA and to interoperate with application components on different plattforms

- -"loose coupling", plattform and language neutral
- -flexible composition of services to support flexible business processes

#### CICS TS supports the key web services standards

-standard conformance is key to gain flexibility and it influences the speed for building an On Demand IT environment

#### **HTTP or MQ transport**

- -transparent for the application
- -MQ benefits may be for example "assured delivery" and usage of WBI

#### WebServices Support is an integrated CICS component

- -simple configuration and system management
- -monitoring, statistics and trace support



# Thanks for Your attention