Implementing CICS
Web Services

Configuring and securing Web services
in CICS Transaction Server

Connecting CICS to a service
integration bus

~ Enabling atomic Web
services

Nigel Williams

Robert Herman
Luis Aused Lopez
Mike Ebbers

ibm.com/redbooks Red h OOkS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Implementing CICS Web Services
December 2006

SG24-7206-01

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Second Edition (December 2006)

This edition applies to CICS Transaction Server Version 3.1.

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Notices Xi
Trademarks e Xii
Preface Xiii
The team that wrote thisredbook. Xiv
Become a publishedauthor XVii
Comments welcome. it XVii
Summaryofchanges. XiX
December 2006, Second Edition Xix
Part 1. Introduction e 1
Chapter 1. Overview of Web services 3
1.1 Introduction e 4
1.2 Service-oriented architecture 4
1.2.1 Characteristics 5
1.2.2 Web services versus service-oriented architectures. 6
1.3 Web services. 7
1.3.1 Propertiesof aWebservice 7
1.83.2 Corestandards e 8
1.3.3 Web Service Interoperability Basic Profile 1.0 10
1.8.4 Additional standards e 11
1.4 SOAP . 12
1.4.1 Theenvelope e 12
1.4.2 Communicationstyles. i 17
1.4.3 Encodings oot e 17
1.4.4 Messaging modes.ottt e 17
1.5 WD ..o 18
1.5.1 WSDL Document i 19
1.5.2 WSDL documentanatomy 19
1.5.3 WSDL definition 24
1.5.4 WSDLDINAINGS oo e 30
1.6 SUMMaANY e e 31
Chapter 2. CICS support for Web services. 33
2.1 OVeIVIBW . .o 34
2.2 ClCSasaservice provider oot 37
2.2.1 Preparing to run a CICS application as a service provider. 38

© Copyright IBM Corp. 2006. All rights reserved. iii

2.2.2 Processing the inbound servicerequest. 40

23 ClCSasaservicerequester., 41
2.3.1 Preparing to run a CICS application as a service requester. 42
2.3.2 Processing the outbound service request. 44
2.3.3 Localoptimization 45

2.4 CICSresources forWebservices., 47
241 URIMAP ... 47
242 PIPELINE e 49
243 WEBSERVICE e 53
244 TCPIPSERVICE e e 55
2.45 Resourceschecklist 55

25 Message handlers. i 57
2.5.1 SOAPmessagehandlers 57
2.5.2 Channelsandcontainers, 59

2.6 Tools for developing CICS Web services, 61
2.6.1 CICS Web services assistant, 62
2.6.2 Web services assistant utility programs 63
2.6.3 WebSphere Developer forzSeries 65

2.7 Catalog manager example application 67
2.7.1 Thebaseapplication. i 67
2.7.2 Web services support for the catalog example application. 69

Part 2. Web service configuration. 71

Chapter 3. Web servicesusingHTTP 73

3.1 Preparation 74
3.1.1 Softwarechecklist. 75
3.1.2 Definitionchecklist 75
3.1.3 The sample application. 76

3.2 Configuring CICS as a service provider 76
3.2.1 Configuring code page support. i 77
3.2.2 Configuring CICS 77
3.2.3 Configuring WebSphere Application Server on Windows. 87
3.2.4 Testing the configuration. 90

3.3 Configuring CICS as a servicerequester 94
3.3.1 Configuring CICS 95
3.3.2 Configuring WebSphere Application Server forz/OS............ 98
3.3.3 Testing the configuration. 100

3.4 Configuring for high availability 101
3.4.1 TCP/IPloadbalancing 102
3.4.2 High availability configuration 102
3.4.3 Routing inbound Web servicerequests 102

3.5 Problem determination 104

iv Implementing CICS Web Services

3.5.1 Error calling dispatch service - INVREQ. 104

Chapter 4. Web services using WebSphereMQ. 111
4.1 Preparation 112
4.1.1 Softwarechecklist. 113
4.1.2 Definitionchecklist 113
4.2 WebSphere MQ configuration. i, 114
4.2.1 Adding WebSphere MQ supporttoCICS 114
4.2.2 Definingthequeues i 115
4.2.3 Defining the triggerprocess 116
4.3 Configuring CICS as a service provider using WMQ 116
4.3.1 Configuring the service provider pipeline 117
4.4 Configuring CICS as service requesterusingWMQ................ 121
4.4.1 Configuring the Catalog application 122
4.4.2 Configuring WebSphere Application Server on Windows. 124
4.5 Testing the WMQ configuration. 124
4.6 High availability with WMQ 126
Chapter 5. Connecting CICS to the service integrationbus.......... 129
5.1 Overview of the service integrationbus 130
5.1.1 Why you would connect CICStoabus...................... 131
5.2 Preparation 132
5.2.1 Softwarechecklist. 134
5.2.2 Definitionchecklist 134
5.3 Configuring CICS for a gateway service 135
5.3.1 Updating the CICS-supplied sample WSDL file 135
5.3.2 Creating a URIMAP forthe WSDLfile 135
5.3.3 Testing the retrieval of the WSDL file from a Web browser 137
5.4 Creating a gateway serviceonthebus............ 139
5.4.1 Identifyingthebustobeused........... 139
5.4.2 Creating a Web services gateway instance 140
5.4.3 Creatinga gatewayservice. 141
5.5 Testing the CICS gateway service, 145
5.5.1 Publish the bus-generated WSDL. 145
5.5.2 Configuring the catalog manager J2EE application 146
5.5.3 Invoking the gateway service 147
Part 3. Security management. 149
Chapter 6. Elements of cryptography 151
6.1 Therole of cryptography 152
6.2 Secret key (or symmetric) cryptographyo L. 153
6.2.1 DES. ... 155
6.2.2 Triple DES (TDEA)ot 158

Contents v

Vi

6.2.3 AES. 159

6.3 Public key (or asymmetric) cryptography 160
B.3.1 RSOA. . 161
6.4 Hashfunctions. 164
6.5 Message authenticationcodes 166
6.6 Digital signatures. e 168
6.6.1 Using RSA for digital signatures 171
6.6.2 Using DSA for digital signatures 171
6.6.3 Using ECDSA for digital signatures 173
6.6.4 Comparing RSA with DSA for digital signatures. 173
6.7 Public key digital certificates 173
6.7.1 tbsCertificate 175
6.7.2 Standard extensions for X.509 V3 digital certificates 180
6.7.3 Certificationpaths i 182
6.8 Certificate revocation lists i 184
6.8.1 Extensions forentriesinaCRL. 186
6.8.2 ExtensionsforaCRL 187
6.8.3 Security considerations when using digital certificates 188
6.9 Diffie-Hellman key agreement protocol 189
6.10 Transport Layer Security (TLS) 1.0 protocol 191
6.10.1 TLS OVeIVIeWo e e 192
6.10.2 Ciphersuites. i e 193
6.10.3 Alertprotocol. 197
6.10.4 Handshake protocol i 198
6.11 Cryptographichardware 209
6.11.1 CP Assist for Cryptographic Functions (CPACF) 209
6.11.2 Crypto Express2 Feature (CEX2) 209
6.12 Integrated Cryptographic Service Facility 210
6.12.1 Cryptographic hardware requirements for CICS WS-Security ... 211
Chapter 7. Securing Web services. 213
7.1 Traditional CICS security.ot e 214
711 CICSUSErIDS . ..o e e 214
7.2 SECUrity EXPOSUIES . . . vttt it e et e e e e e e e et 215
7.3 Transport SecuUrityot ti 217
7.3.1 HTTPtransport e 217
7.3.2 WebSphere MQtransport. i 224
7.4 SOAP Message SeCUNtyo ittt e e 226
7.4.1 CICS and SOAP message security. 229
7.4.2 WebSphere and SOAP message security 239
7.5 Comparison of transport versus SOAP message security 241
7.6 Securing CICS Web services using the service integrationbus 242
7.7 ldentity assertion. 244

Implementing CICS Web Services

7.7.1 Trusttokenmodel i 245

7.7.2 Presumedtrustmodel........ 245
Chapter 8. Securityscenarios i 247
8.1 Preparation 248

8.1.1 Softwarechecklist. 248

8.1.2 Definitionchecklist 249
8.2 Basic security configuration. 250

8.2.1 Setting up basic security configuration 251

8.2.2 Testing the basic security configuration 251
8.3 Setting the user ID on a URIMAP definition 252

8.3.1 Definingthe URIMAP 253

8.3.2 Permitting accesstouser IDCICSNW 256

8.3.3 Testing user ID on URIMAP resource definition 256
8.4 Enabling SOAP message security with HTTP. 257

8.4.1 Configuring the servicerequester.......................... 258

8.4.2 Configuring CICS 265

8.4.3 Testing SOAP message securitycooviuen .. 270

8.4.4 SOAPfaultmessages., 271
8.5 Enabling SSL/TLS. 273

8.5.1 Creating a key ring and certificates on z/ OS for CICS 274

8.5.2 Enabling an SSL/TLS connection from WebSphere 276

8.5.3 Configuring CICS support for SSL/TLS. 281

8.5.4 Testing SSL/TLS. 282
8.6 Enabling SOAP message security with WMQ. 284

8.6.1 Configuring CICStouse WMQ 285

8.6.2 Configuring the servicerequester.......................... 287

8.6.3 Header processing programt 287

8.6.4 Configuring the service provider........................... 288

8.6.5 Configuring WebSphere MQ for security 290

8.6.6 Testing security withWMQ 291
Chapter 9. Security scenarios using CICS WS-Security support. 295
9.1 Preparation 296

9.1.1 Softwarechecklist. 296

9.1.2 Definitionchecklist 297
9.2 Basic security configuration. 299

9.2.1 Creatinga RACF keyring........ ... i, 299

9.2.2 Specifying the security SIT parameters 300

9.2.3 Testing the basic security configuration 300

9.2.4 Configuring the pipeline 301

9.2.5 Setting a user ID on a URIMAP definition. 302
9.3 Basic authentication 302

Contents vii

9.3.1 Configuring the service requester for basic authentication. 304

9.3.2 Configuring CICS 311
9.3.3 Testing basic authentication 313
9.4 Certificate and key pairgeneration 319
9.5 Signing a SOAP MESSage. . . .« v o v it 330
9.5.1 Configuring the service requester for signature processing 332
9.5.2 Configuring CICS for signature processing. 347
9.5.3 Testing the signature scenario 350
9.6 Encryptinga SOAP Messaget 357
9.6.1 Configuring the service requester for encryption 359
9.6.2 Configuring CICS forencryption 370
9.6.3 Testing the encryptionscenario 372
Part 4. Transaction management. 379
Chapter 10. Introduction to Web services: Atomic transactions 381
10.1 Beginner’s guide to atomic transactions 382
10.1.1 Whatis aclassictransaction. 383
10.1.2 Mapping from classic transactions to WS-Atomic Transaction . . . 387
10.2 WS-AdAresSiNg . . . o oottt e 390
10.2.1 Endpointreferencesciii i 391
10.2.2 Message informationheaders. 394
10.2.3 SOAP binding for endpoint references 396
10.3 WS-Coordination.t 397
10.3.1 Coordination serviceot 398
10.3.2 CreateCoordinationContext., 399
10.3.3 CreateCoordinationContextResponse 401
10.3.4 Register. 404
10.3.5 Register response. e 406
10.3.6 Two applications with their own coordinators 406
10.3.7 Addressing requirements for WS-Coordination message types . . 408
10.4 WS-Atomic Transaction. i 408
10.4.1 Completionprotocol 410
10.4.2 Two-Phase Commitprotocol. 411
10.4.3 Two applications with their own coordinators (continued). 413
10.4.4 Addressing requirements for WS-AT message types. 414
10.4.5 CICS TS V3.1 and resynchronization processing. 415
Chapter 11. Enabling atomic transactions 419
11.1 Enabling atomic transactionsinCICS. 420
11.1.1 CICSto CICS configuration 420
11.1.2 More elaborate CICS to CICS configuration. 430
11.2 Enabling atomic transactions in WebSphere. 432

viii Implementing CICS Web Services

Chapter 12. Transactionscenarios 435

12.1 Introductionto ourscenarios. 436
12.1.1 Softwarechecklist. 437
12.1.2 Definition checklist 437

12.2 The simple atomic transaction scenario 439
12.2.1 Setting up CICS for the simple scenario. 441
12.2.2 Creating the AtomicClient and ITSO.ORDER table 445
12.2.3 Testing the simple scenario 461

12.3 The daisy chain atomic transaction scenario 482
12.3.1 Setting up CICS for the daisy chainscenario 484
12.3.2 Creating DispatchOrderAtomic and the ITSO.DISPATCH table. . 486
12.3.3 Testing the daisy chain scenario. 489

12.4 Transaction scenario summaryueennninnnnne... 496

Part 5. AppendiXes e e 497

Appendix A. Sample handler programs 499

A.1 Sample message handler program - CIWSMSGH 500

A.2 Sample header processing program - CIWSSECH 505

A.3 Sample handler program - SNIFFER 511

A.4 Sample XML parser program - MYPARSER 522

A.5 Sample header processing program - CIWSSECR 527

A.6 Sample header processing program - CIWSSECS 534

A.7 Sample header processing program - WSATHND 539

Appendix B. How the DES, AES, and HMAC algorithms work 545

B.1 HOWDES WOrKS e 546

B.2 HOW AES WOrKSo e e e 549

B.3 How the HMAC algorithm of FIPS PUB 198 works. 554

Abbreviations and acronyms oo 557

Related publications 559

IBM Redbooks e 559

Other publications e 559

ONliNE rESOUICES . . . o it 560

HowtogetIBM Redbooks 560

Help from IBM e 560

Index e 561

Contents ix

X Implementing CICS Web Services

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2006. All rights reserved. Xi

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

@server® CICS® Rational®
@server® CICSPlex® Redbooks™
Redbooks (logo) (@@ ™ DB2® RACF®
developerWorks® IBM® System z™
ibm.com® IMS™ System z9™
z/OS® MQSeries® Tivoli®
zSeries® MVS™ VTAM®

z9™ 0OS/390® WebSphere®
Candle® Parallel Sysplex®

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

NOW, and the Network Appliance logo are trademarks or registered trademarks of Network Appliance, Inc.
in the U.S. and other countries.

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, JavaBeans, JavaServer, JDBC,
JDK, JSP, JVM, J2EE, Sun, Sun Microsystems, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Internet Explorer, Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Xii Implementing CICS Web Services

Preface

Today more and more companies are embracing the principles of on demand
business by integrating business processes end-to-end across the company and
with key partners, enabling them to respond flexibly and rapidly to new
circumstances. The move to an on demand business environment requires
technical transformation, moving the focus from discrete applications to
connected, interdependent information technology components.

Open standards such as Web services enable these components to be hosted in
the environments most appropriate to their requirements, while still being able to
interact easily — independent of hardware, run-time environment, and
programming language.

The Web services support in CICS® Transaction Server Version 3.1 enables
your CICS programs to be Web service providers and requesters. CICS supports
a number of specifications including SOAP Version 1.1 and Version 1.2, and
Web services distributed transactions (WS-Atomic Transaction).

This IBM® Redbook describes how to configure CICS Web services support for
HTTP-based and WebSphere® MQ-based solutions, and demonstrates how
Web services can be used to integrate J2EE™ applications running in
WebSphere Application Server with COBOL programs running in CICS.

It begins with an overview of Web services standards and the Web services
support provided by CICS TS V3.1. Complete details for configuring CICS Web
services using both HTTP and WebSphere MQ are provided next, along with the
steps for using Web services to connect to CICS from a service integration bus.
The book then shows how CICS Web services can be secured using a
combination of Web Services Security (WS-Security) and transport-level security
mechanisms such as SSL/TLS. Finally, it demonstrates how atomic Web
services transactions can be configured to allow WebSphere and CICS resource
updates to be synchronized.

This book concentrates on implementation specifics such as security,
transactions, and availability. The companion redbook Developing CICS Web
Services (SG24-7126) presents detailed information on developing CICS Web
services.

© Copyright IBM Corp. 2006. All rights reserved. Xiii

The team that wrote this redbook

Xiv

This International Technical Support Organization (ITSO) redbook (second
edition) was produced by a team of specialists from around the world working at
the Product Solutions and Support Center in IBM Endicott, USA.

Nigel Williams was the project leader for this redbook. He is a Certified IT
Specialist working in the IBM Design Center for On Demand Business in
Montpellier. He specializes in core business transformation, connectors, and
service-oriented architectures. He is the author of several papers and IBM
Redbooks and he speaks frequently on CICS and WebSphere topics. Previously,
Nigel worked at the Hursley software lab as a software developer, in systems
test, and as customer support for the CICS Early Support Program. He holds a
degree in Mathematics and Economics from Surrey University.

Luis Aused Lopez is an IT Specialist for IBM Global Services in Spain, working
in Business Consulting Services (BCS) in the travel and transportation sectors.
As an assignee he works in the zSeries Benchmark Center in IBM Montpellier.
He has worked for IBM for over ten years. During this time, Luis has developed
several J2EE applications for WebSphere running on different platforms
including zSeries, iSeries, Linux, and Windows. His areas of expertise include
application development, WebSphere, Java performance, DB2, and eTicketing.
He is an author of several IBM Redbooks and holds a degree in Physics from
Complutense University, Madrid, Spain.

Robert Herman is a Senior IT Specialist, Systems Management Integrator with
IBM Global Services in Endicott, New York. He has 27 years of experience
supporting CICS and related products for a variety of IBM internal and external
customer accounts. Bob has worked on several IBM Redbooks including
Enterprise JavaBeans for z/0OS and OS/390 CICS Transaction Server V2.2,
SG24-6284. He holds a Bachelor’s degree in mathematics from Grinnell College
and a Master’s degree in computer science from lowa State University.

Mike Ebbers is a certified Consulting IT Specialist in the ITSO Poughkeepsie
Center. He has spent 33 years with IBM doing technical support and education
for mainframe systems.

The first edition was produced by a team of specialists in IBM Montpellier,
France. A picture of the first edition team follows.

Implementing CICS Web Services

The team in the foyer at IBM Montpellier

Robert Herman (see biography on previous page).
Luis Aused Lopez (see biography on previous page).

Grant Ward Able is a Software Engineer working for IBM in Hursley, United
Kingdom. He has spent five years in the CICS Transaction Server team as a
developer and a tester and in the Solution Test team, working with CICS and
WebSphere. Previously, Grant worked for 15 years as a CICS systems
programmer. He currently works in the CICS Service Flow runtime team.

Nigel Williams, project leader (see biography on previous page).

Paolo Chieregatti is an IT specialist working for IBM Software Group in Italy. He
has 20 years of experience in IT working mainly on IBM mainframes. His areas of
expertise include CICS, WebSphere MQ, WebSphere Application Server, and
legacy application transformation and integration. He speaks frequently on CICS
and WebSphere topics. Before joining IBM, Paolo worked for the Candle

Preface Xxv

Corporation. He has worked as a CICS systems programmer and project
manager.

Tommy Joergensen is a Senior IT Specialist working for IBM Global Services in
IBM Denmark. He has more than 25 years of experience working in CICS
technical support, including three years at IBM Hursley. In recent years he has
delivered services at large accounts in Denmark for both the CICS and
WebSphere products. Tommy is the IBM representative in the CICS working
group of the Nordic Share Guide organization.

Steve Wall (missing from the photograph) is an IT specialist working in the
System z™ Benchmark Center. He worked for the CICS Transaction Server
Development organization at Hursley, United Kingdom, for over 20 years before
joining the PSSC. Steve has a degree in Linguistic and International Studies from
the University of Surrey. He has written and taught extensively about CICS
e-business enablement using CICS Web Support and the CICS Transaction
Gateway.

Thanks to the following people for their contributions to this project:
Phil Hanson and Mark Cocker of IBM Hursley for supporting this project.

Pascal Tillard for his support setting up the WebSphere Application Server for
z/OS® environment and for assisting with the setup of the service integration
bus.

Mike Brooks of IBM Hursley for explaining the CICS WS-AtomicTransaction
support and making direct contributions to Part 4 of this book.

Ken Ray of IBM UK for his support in setting up WebSphere MQ.
lan Noble and Oliver Fenton of IBM Hursley for supplying sample programs.

Mike Adams, Fraser Bohm, Ivan Hargreaves, Peter Havercan, lan Mitchell,
Daniel Would and William Yates of IBM Hursley, Derek Ho and Peter Birk from
IBM Austin, and Jeff Oestrich of IBM Raleigh for supplying technical advice
during the residencies.

The team that wrote the Redbook Developing for CICS Web Services,
SG24-7126: Chris Rayns, Jim Hollingsworth, Chris Backhouse, David Evans,
and Isabel Arnold.

The team that wrote the Redbook Web Services Handbook for WebSphere
Application Server 6.1, SG24-7257: Ueli Wahli, Owen Burroughs, Owen Cline,
Alex Go and Larry Tung.

XVi Implementing CICS Web Services

Tony Delmenico and Steve Webb from the team that worked on the Redbook
Securing access to CICS within an SOA (SG24-5756).

Philippe Richard of IBM Montpellier, and Rich Conway and Bob Haimowitz of the
ITSO Poughkeepsie, for providing excellent systems support.

Arnauld Desprets and Patrick Kappeler of IBM Montpellier for advice on the
security scenarios.

Ella Buslovich and Alison Chandler of the ITSO Poughkeepsie for help with the
graphics and editing respectively.

The following people for the significant amount of time that they have spent
reviewing and for their detailed review comments: Cheryll Clark of IBM Australia,
Alan Roessle of IBM Montpellier, Phil Wakelin and Robert Harris of IBM Hursley.

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!
We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:
» Use the online Contact us review redbook form found at:
ibm.com/redbooks
» Send your comments in an e-mail to:

redbook@us.ibm.com

Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

» Mail your comments to:
IBM Corporation, International Technical Support Organization
Dept. HYJ; HYJ Mail Station P099

2455 South Road
Poughkeepsie, NY 12601-5400

Xviii Implementing CICS Web Services

Summary of changes

This section describes the technical changes made in this edition of the book and in previous
editions. This edition may also include minor corrections and editorial changes that are not
identified.

Summary of Changes

for SG24-7206-01

Implementing CICS Web Services

as created or updated on January 29, 2007.

December 2006, Second Edition

This revision reflects the addition, deletion, or modification of new and changed information
described below.

Part 3, Security Management has been greatly enlarged. Two new chapters were added, and the
existing material was reorganized and expanded as well.

New Chapter 6, “Elements of cryptography” on page 151 provides a discussion of basic concepts
in cryptography; Chapter 9, “Security scenarios using CICS WS-Security support” on page 295
demonstrates how you can secure CICS Web services using the CICS-supplied message
handler DFHWSSEA1.

New Appendix B, “How the DES, AES, and HMAC algorithms work” on page 545 provides a
detailed explanation of how the algorithms work.

© Copyright IBM Corp. 2006 Xix

XX Implementing CICS Web Services

Part 1

Introduction

In this part we give a broad overview of different Web services technologies and
then explain how to use Web services in CICS Transaction Server V3.1.

© Copyright IBM Corp. 2006. All rights reserved. 1

2 Implementing CICS Web Services

Overview of Web services

This chapter focuses on some of the architectural concepts that must be
considered on a Web services project. We define and discuss service-oriented
architecture (SOA) and the relationship between SOAs and Web services. We
then take a closer look at Web services, a technology that enables you to invoke
applications using Internet protocols and standards. The technology is called
“Web services” because it integrates services (applications) using Web
technologies (the Internet and its standards).

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 Introduction

There is a strong trend for companies to integrate existing systems to implement
IT support for business processes that cover the entire business cycle. Today,
interactions already exist using a variety of schemes that range from very rigid
point-to-point electronic data interchange (EDI) interactions to open Web
auctions. Many companies have already made some of their IT systems
available to all of their divisions and departments, or even their customers or
partners on the Web. However, techniques for collaboration vary from one case
to another and are thus proprietary solutions; systems often collaborate without
any vision or architecture.

Thus there is an increasing demand for technologies that support the connecting
or sharing of resources and data in a very flexible and standardized manner.
When technologies and implementations vary across companies and even within
divisions or departments, unified business processes cannot be smoothly
supported by technology. Integration has been developed only between units
that are already aware of each other and that use the same static applications.

Furthermore, there is a need to structure large applications into building blocks in
order to use well-defined components within different business processes. A shift
towards a service-oriented approach will not only standardize interaction, but
also allow for more flexibility in the process. The complete value chain within a
company is divided into small modular functional units, or services. A
service-oriented architecture thus has to focus on how services are described
and organized to support their dynamic, automated discovery and use.

Companies and their sub-units should be able to easily provide services. Other
business units can use these services to implement their business processes.
This integration can be ideally performed during the runtime of the system, not
just at the design time.

1.2 Service-oriented architecture

4

This section is a short introduction to the key concepts of a service-oriented
architecture. The architecture makes no statements about the infrastructure or
protocols it uses. Therefore, you can implement a service-oriented architecture
using technologies other than Web technologies.

Implementing CICS Web Services

As shown in Figure 1-1, a service-oriented architecture contains three basic

components:

» A service provider

The service provider creates a Web service and possibly publishes to the
service broker the information necessary to access and interface with the
Web service.

» A service broker

The service broker (also known as a service registry) makes the Web service
access and interface information available to any potential service requester.

» A service requester

The service requester binds to the service provider to invoke one of its Web

services, having optionally located entries in the broker registry using various
find operations.

Service

> Broker - |
Publish Discover
Service - » Service
Provider Request/Response Requestor

Figure 1-1 Service-oriented architecture components and operations

Each component can also act as one of the two other components. For instance,

if a service provider needs information that it can only acquire from some other
service, it acts as a service requester while still serving the original request.

1.2.1 Characteristics

A service-oriented architecture enables a loose coupling between the
participants. Such a loose coupling provides greater flexibility because of the

following characteristics:

» Old and new functional blocks are encapsulated into components that work
as services.

Chapter 1. Overview of Web services

5

» Functional components and their interfaces are separated. Therefore, new
interfaces can be plugged in more easily.

» Within complex applications, the control of business processes can be
isolated. A business rules engine can be incorporated to control the workflow
of a defined business process. Depending on the state of the workflow, the
engine calls the respective services.

1.2.2 Web services versus service-oriented architectures

6

A service-oriented architecture has been used under various guises for many
years. It can be (and has been) implemented using a number of different
distributed computing technologies, such as CORBA and messaging
middleware. The effectiveness of service-oriented architectures in the past has
always been limited by the ability of the underlying technology to interoperate
across the enterprise.

Web services technology is an ideal technology choice for implementing a
service-oriented architecture because:

» Web services are based on standards, and standards promote
interoperability. Interoperability is a key business advantage within the
enterprise and is crucial in B2B scenarios.

» Web services are widely supported across the industry. For the very first time,
all major vendors are recognizing and providing support for Web services.
The Web Services Interoperability Organization (WS-I) is an organization that
promotes open interoperability between Web services regardless of the
platforms, operating systems, or programming languages used.

» Web services are platform and language neutral. There is no bias for or
against a particular hardware or software platform. Web services can be
implemented in any programming language or toolset. This is important
because there will be continued industry support for the development of
standards and interoperability between vendor implementations.

» This technology provides a migration path to gradually enable existing
business functions as Web services.

» This technology supports synchronous and asynchronous, RPC-based, and
complex message-oriented exchange patterns.

Conversely, there are many Web services implementations that are not a
service-oriented architecture. For example, the use of Web services to connect
two heterogeneous systems directly together is not an SOA. These uses of Web
services solve real problems and provide significant value on their own. They
may form the starting point of an SOA.

Implementing CICS Web Services

In general, an SOA has to be implemented at an enterprise or organizational
level in order to achieve many of the benefits.

For more information about the relationship between Web services and
service-oriented architectures refer to the IBM Redbook Patterns:
Service-Oriented Architecture and Web Services, SG24-6303.

1.3 Web services

If we had to describe Web services using just one sentence, we would use the
following:

Web services are self-contained, modular applications that can be described,
published, located, and invoked over a network.

Web services perform encapsulated business functions, ranging from simple
request-reply to full business process interactions. These services can be new
applications or wrapped around existing business functions to make them
network-enabled. Services can rely on other services to achieve their goals.

The World Wide Web Consortium (W3C) Services Architecture Working Group
defines a Web service as follows:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP
messages, bypically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

It is important to note from this definition that a Web service is not constrained to
use SOAP over HTTP/S as the transport mechanism. Web services are equally
at home in the messaging world.

1.3.1 Properties of a Web service

All Web services share the following properties:
» Web services are self-contained.

On the client side, no additional software is required. A programming
language with XML and HTTP client support is enough to get you started. On
the server side, merely an HTTP server and a SOAP server are required.

Chapter 1. Overview of Web services 7

» Web services are self-describing.

A Web Service Description Language (WSDL) file provides all the information
you need to implement a Web service as a provider or to invoke a Web
service as a requester.

» Web services can be published, located, and invoked across the Web.

The service requester uses established lightweight Internet standards such
as HTTP to invoke the service provider. It leverages the existing
infrastructure.

» Web services are modular.

Simple Web services can be aggregated to form more complex ones, either
using workflow techniques or by calling lower-layer Web services from a Web
service implementation. Web services can be chained together to perform
higher-level business functions. This shortens development time and enables
best-of-breed implementations.

» Web services are language-independent and interoperable.

The client and server can be implemented in different environments. Any
language can be used to implement Web service clients and servers.

» Web services are inherently open and standards-based.

XML and HTTP are the major technical foundation for Web services. A large
part of the Web service technology has been built using open source projects.
Therefore, vendor independence and interoperability are realistic goals.

» Web services are loosely coupled.

A service requester has to know the interface to a Web service but not the
details of how it has been implemented.

» Web services provide programmatic access.

The approach provides no graphical user interface; it operates at the code
level.

» Web services provide the ability to wrap existing applications.

Existing applications can easily be integrated into the service-oriented
architecture by implementing a Web service as an interface to the application.

1.3.2 Core standards

Web services are built upon four core standards: XML, SOAP, WSDL, and UDDI.
Each standard is described briefly in this section.

8 Implementing CICS Web Services

Extensible Markup Language (XML)

XML is the foundation of Web services. However, since much information has
already been written about XML, we do not describe it in this document. You can
find information about XML at:

http://www.w3.0org/XML/

SOAP

Originally proposed by Microsoft®, SOAP was designed to be a simple and
extensible specification for the exchange of structured, XML-based information in
a decentralized, distributed environment. As such, it represents the main means
of communication between the three actors in an SOA: the service provider, the
service requester, and the service broker. A group of companies, including IBM,
submitted SOAP to the W3C for consideration by its XML Protocol Working
Group. There are currently two versions of SOAP: Version 1.1 and Version 1.2.

The SOAP 1.1 specification contains three parts:

» An envelope that defines a framework for describing message content and
processing instructions. Each SOAP message consists of an envelope that
contains an arbitrary number of headers and one body that carries the
payload. SOAP messages might contain faults; faults report failures or
unexpected conditions.

» A set of encoding rules for expressing instances of application-defined data
types.

» A convention for representing remote procedure calls and responses.

A SOAP message is, in principle, independent of the transport protocol which is
used, and can, therefore, potentially be used with a variety of protocols such as
HTTP, JMS, SMTP, or FTP. Right now, the most common way of exchanging
SOAP messages is through HTTP.

The way SOAP applications communicate when exchanging messages is often
referred to as the message exchange pattern (MEP). The communication can be
either one-way messaging, where the SOAP message only goes in one
direction, or two-way messaging, where the receiver is expected to send back a

reply.

Due to the characteristics of SOAP, it does not matter what technology is used to
implement the client, as long as the client can issue XML messages. Similarly,
the service can be implemented in any language, as long as it can process XML
messages.

We discuss SOAP in more detail in “SOAP” on page 12.

Chapter 1. Overview of Web services 9

http://www.w3.org/XML/
http://www.w3.org/XML/

Note: The authors of the SOAP 1.1 specification declared that the acronym
SOAP stands for Simple Object Access Protocol. The authors of the SOAP
1.2 specification decided not to give any meaning to the acronym SOAP.

Web Services Description Language (WSDL)

This standard describes Web services as abstract service endpoints that operate
on messages. Both the operations and the messages are defined in an abstract
manner, while the actual protocol used to carry the message and the endpoint’s
address are concrete.

WSDL is not bound to any particular protocol or network service. It can be
extended to support many different message formats and network protocols.
However, because Web services are mainly implemented using SOAP and
HTTP, the corresponding bindings are part of this standard.

As of this writing, WSDL 1.1 is in use and WSDL 2.0 is a working draft. We
discuss WSDL in more detail in “WSDL” on page 18.

Universal Description, Discovery, and Integration (UDDI)

The Universal Description, Discovery, and Integration standard defines a means
to publish and to discover Web services. As of this writing, UDDI Version 3.0 has
been finalized, but UDDI Version 2.0 is still more commonly used. For more
information, refer to:

http://www.uddi.org/
http://www.oasis-open.org/specs/index.php#wssvl.0

1.3.3 Web Service Interoperability Basic Profile 1.0

10

Web services can be used to connect computer systems together across
organizational boundaries. Therefore, defining a set of open, non-proprietary
standards to which all Web services adhere maximizes the ability to connect
disparate systems together.

The Web Services Interoperability Organization (WS-I1) is an organization that
promotes open interoperabiltity between Web services regardless of the
platforms, operating systems, or programming languages used. To support this
cause the WS-I has released a basic profile; this profile outlines a set of
specifications to which WSDL documents and SOAP messages sent over HTTP
must adhere in order to be WS-I compliant. The full list of specifications can be
found on the WS-1 Web site:

http://www.ws-i.org/

Implementing CICS Web Services

http://www.uddi.org/
http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.ws-i.org/
http://www.ws-i.org/

CICS support for Web services conforms with WS- Basic Profile 1.0. Because
SOAP 1.2 is not included in WS-I Basic Profile 1.0, most Web service runtimes
still support and recommend using SOAP 1.1. CICS TS V3.1 has support for
both SOAP 1.1 and SOAP 1.2.

1.3.4 Additional standards

Figure 1-2 provides a snapshot of the rapidly changing landscape of Web
services-related standards and specifications. We do not intend it to be a strictly
correct stack diagram — it just attempts to show the various standards efforts in
terms of the general category to which they belong.

Business Process Execution Language (BPEL)
rocesses
4 N[ws-Reliable
WS-Coordination WS-Security Messaging o
family of WS-Distributed of Servi)c,:e
; specifications -Distribute
WS-Transactions . p) Management
and Discovery
SOAP, SOAP Attachments [)
: Other protocols Messaging
XML, XML Infoset Other services and Encoding
\ Y,

Figure 1-2 Web services standards

Given the current momentum behind Web services and the pace at which
standards are evolving, you may also wish to refer to an online compilation of
Web services standards. An online compilation is available on the IBM
developerWorks® Web site at:

http://www.ibm.com/developerworks/views/webservices/standards.jsp

Of particular interest to those developing Web services in CICS are:

» WS-Transactions (the family of specifications that relate to transactional Web
services)

» WS-Security (the family of specifications that relate to securing Web services)

Chapter 1. Overview of Web services 11

http://www.ibm.com/developerworks/views/webservices/standards.jsp

1.4 SOAP

In this section we focus mainly on SOAP 1.1.

1.4.1 The envelope

12

A SOAP message is an envelope containing zero or more headers and exactly
one body:

» The envelope is the root element of the XML document, providing a container
for control information, the addressee of a message, and the message itself.

» Headers contain control information, such as quality of service attributes.
» The body contains the message identification and its parameters.
» Both the headers and the body are child elements of the envelope element.

Figure 1-3 shows a simple SOAP request message.

» The header tells who must deal with the message and Zow to deal with it.
When the actor is next or when actor is omitted, the receiver of the message
must do what the body says. Furthermore, the receiver must understand and
process the application-defined <TranID> element.

» The body tells what has to be done: Dispatch an order for quantityRequired
1 of itemRefNumber 0010 to customerID CB1 in chargeDepartment ITSO.

<Envelope>
Envelope <Header>
<actor>http:// ...org/soap/actor/next</actor>
Header <TranID mustUnderstand="1">ABCD</TranID>
[0..n] </Header>
<Body>
<dispachOrderRequest>
Body <itemRefNumber>0010</1temRefNumber>
[1] <quantityRequired>1</quantityRequired>
<customerID>CB1l</customerID>

<chargeDepartment>ITS0</chargeDepartment>
</dispatchOrderRequest>
</Body>
</Envelope>

Figure 1-3 Example of a simple SOAP message
Namespaces

Namespaces play an important role in SOAP messages. A namespace is simply
a way of adding a qualifier to an element name to ensure that it is unique.

Implementing CICS Web Services

For example we may have a message that contains an element <customer>.
Customers are fairly common so it is very likely that many Web services will have
customer elements. To ensure we know what customer we are talking about we
declare a namespace for it, for example as follows:

xmins:itso="http://itso.ibm.com/CICS/catalogApplication

This identifies the prefix itso with the declared namespace. Then whenever we
reference the element <customer> we prefix it with the namespace as follows:
<itso:customer>. This identifies it uniquely as a customer type for our
application. Namespaces can be defined as any unique string. They are often
defined as URLs since URLs are generally globally unique, and they have to be
in URL format. These URLs do not have to physically exist though.

The WS-I Basic Profile 1.0 requires that all application-specific elements in the
body must be namespace qualified to avoid collisions between names.

Table 1-1 shows the namespaces of SOAP and WS-I Basic Profile 1.0 used in
this book.

Table 1-1 SOAP namespaces

Namespace URI Explanation

http://schemas.xmlsoap.org/soap/envelope/ SOAP 1.1 envelope namespace

http://schemas.xmlsoap.org/soap/encoding/ SOAP 1.1 encoding namespace

http://www.w3.0rg/2001/XMLSchema-instance Schema instance namespace

http://www.w3.0rg/2001/XMLSchema XML Schema namespace

http://schemas.xmlsoap.org/wsdl WSDL namespace for WSDL
framework

http://schemas.xmlsoap.org/wsdl/soap WSDL namespace for WSDL
SOAP binding

http://ws-i.org/schemas/conformanceClaim/ WS- Basic Profile

SOAP envelope

The Envelope is the root element of the XML document representing the
message; it has the following structure:

<SOAP-ENV:Envelope >
<SOAP-ENV:Header>
<SOAP-ENV:HeaderEntry.... />
</SOAP-ENV :Header>
<SOAP-ENV:Body>
[message payload]

Chapter 1. Overview of Web services 13

14

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In general, a SOAP message is a (possibly empty) set of headers plus one body.
The SOAP envelope also defines the namespace for structuring messages. The
entire SOAP message (headers and body) is wrapped in this envelope.

Headers

Headers are a generic and flexible mechanism for extending a SOAP message
in a decentralized and modular way without prior agreement between the parties
involved. They allow control information to pass to the receiving SOAP server
and also provide extensibility for message structures.

Headers are optional elements in the envelope. If present, the Header element
must be the first immediate child element of a SOAP Envelope element. All
immediate child elements of the Header element are called header entries.

There is a predefined header attribute called SOAP-ENV:mustUnderstand. The
value of the mustUnderstand attribute is either 1 or 0. The absence of the SOAP
mustUnderstand attribute is semantically equivalent to the value 0.

If the mustUnderstand attribute is present in a header entry and set to 1, the
service provider must implement the semantics defined by the element:

<Header>
<thens:TranID mustUnderstand="1">ABCD</thens:TranID>
</Header>

In the example, the header entry specifies that a service invocation must fail if
the service provider does not support the ability to process the TranlD header.

A SOAP intermediary is an application that is capable of both receiving and
forwarding SOAP messages on their way to the final destination. In realistic
situations, not all parts of a SOAP message may be intended for the ultimate
destination of the SOAP message, but, instead, may be intended for one or more
of the intermediaries on the message path. Therefore, a second predefined
header attribute, SOAP-ENV:actor, is used to identify the recipient of the header
information. In SOAP 1.2 the actor attribute is renamed SOAP-ENV:role. The
value of the SOAP actor attribute is the URI of the mediator, which is also the
final destination of the particular header element (the mediator does not forward
the header).

If the actor is omitted or set to the predefined default value, the header is for the
actual recipient and the actual recipient is also the final destination of the
message (body). The predefine value is:

http://schemas.xmlsoap.org/soap/actor/next

Implementing CICS Web Services

If a node on the message path does not recognize a mustUnderstand header and
the node plays the role specified by the actor attribute, the node must generate a
SOAP MustUnderstand fault. Whether the fault is sent back to the sender
depends on the message exchange pattern in use. For request/response, the
WS-I BP 1.0 requires the fault to be sent back to the sender. Also, according to
WS-I BP 1.0, the receiver node must discontinue normal processing of the SOAP
message after generating the fault message.

Headers can carry authentication data, digital signatures, encryption information,
and transactional settings. They can also carry client-specific or project-specific
controls and extensions to the protocol; the definition of headers is not just up to
standards bodies.

Note: The header must not include service instructions (that would be used by
the service implementation).

Body

The SOAP Body element provides a mechanism for exchanging information
intended for the ultimate recipient of the message. The Body element is encoded
as an immediate child element of the SOAP Envelope element. If a Header
element is present, then the Body element must immediately follow the Header
element. Otherwise it must be the firstimmediate child element of the Envelope
element.

All immediate child elements of the Body element are called body entries, and
each body entry is encoded as an independent element within the SOAP Body
element. In the most simple case, the body of a basic SOAP message consists of
an XML message as defined by the schema in the types section of the WSDL
document. It is legal to have any valid XML as the body of the SOAP message,
but WS-I conformance requires that the elements be namespace qualified.

Chapter 1. Overview of Web services 15

16

Error handling

One area where there are significant differences between the SOAP 1.1 and 1.2
specifications is in the handling of errors. Here we focus on the SOAP 1.1
specification for error handling.

SOAP itself predefines one body element, which is the fault element used for
reporting errors. If present, the fault element must appear as a body entry and
must not appear more than once. The children of the fault element are defined
as follows:

» faultcode is a code that indicates the type of the fault. SOAP defines a small
set of SOAP fault codes covering basic SOAP faults:

— soapenv:Client, indicating that the client sent an incorrectly formatted
message

— soapenv:Server, for delivery problems

— soapenv:VersionMismatch, which can report any invalid namespaces
specified on the Envelope element

— soapenv:MustUnderstand, for errors regarding the processing of header
content

» faultstring is a human-readable description of the fault. It must be present
in a fault element.

» faultactor is an optional field that indicates the URI of the source of the fault.
The value of the faultactor attribute is a URI identifying the source that
caused the error. Applications that do not act as the ultimate destination of
the SOAP message must include the faultactor elementin a SOAP fault
element.

» detail is an application-specific field that contains detailed information about
the fault. It must not be used to carry information about errors belonging to
header entries. Therefore, the absence of the detail element in the fault
element indicates that the fault is not related to the processing of the body
element (the actual message).

For example, a soapenv:Server fault message is returned if the service
implementation throws a SOAP Exception. The exception text is transmitted in the
faultstring field.

Although SOAP 1.1 permits the use of custom-defined faultcodes, the WS-l
Basic Profile only permits the use of the four codes defined in SOAP 1.1.

Implementing CICS Web Services

1.4.2 Communication styles

SOAP supports two different communication styles:

Document Also known as message-oriented style: This is a very flexible
communication style that provides the best interoperability. The
message body is any legal XML as defined in the types section
of the WSDL document.

RPC The remote procedure call is a synchronous invocation of an
operation which returns a result; it is conceptually similar to other
RPCs.

1.4.3 Encodings

In distributed computing environments, encodings define how data values
defined in the application can be translated to and from a protocol format. We
refer to these translation steps as serialization and deserialization, or,
synonymously, marshalling and unmarshalling.

When implementing a Web service, we have to choose one of the tools and
programming or scripting languages that support the Web services model.
However, the protocol format for Web services is XML, which is independent of
the programming language. Thus, SOAP encodings tell the SOAP runtime
environment how to translate from data structures constructed in a specific
programming language into SOAP XML and vice versa.

The following encodings are defined:

SOAP encoding The SOAP encoding enables marshalling/unmarshalling of
values of data types from the SOAP data model. This
encoding is defined in the SOAP 1.1 standard.

Literal The literal encoding is a simple XML message that does not
carry encoding information. Usually, an XML Schema
describes the format and data types of the XML message.

1.4.4 Messaging modes

The two styles (RPC and document) and the two common encodings (SOAP
encoding and literal) can be freely intermixed to produce what is called a SOAP
messaging mode. Although SOAP supports four modes, only three of the four

Chapter 1. Overview of Web services 17

modes are generally used, and further, only two are preferred by the WS-I Basic
Profile.

» Document/literal—Provides the best interoperability between language
environments. The WS-| Basic Profile states that all Web service interactions
should use the Document/literal mode.

» RPClliteral—Possible choice between certain implementations. Although
RPClliteral is WS-I compliant, it is not frequently used in practice. There are a
number of usability issues associated with RPClliteral.

» RPC/encoded—Early Java™ implementations supported this combination,
but it does not provide interoperability with other implementations and is not
recommended

» Document/encoded—Not used in practice.

You can find the SOAP 1.1 specification at the following URL:
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508

The SOAP 1.2 specification is at the following URL:

http://www.w3.0rg/TR/SOAP12

1.5 WSDL

18

This section introduces Web Services Description Language (WSDL) 1.1. WSDL
uses XML to specify the characteristics of a Web service: what the Web service
can do, where it resides, and how it is invoked. WSDL can be extended to allow
descriptions of different bindings, regardless of what message formats or
network protocols are used to communicate.

WSDL enables a service provider to specify the following characteristics of a
Web service:
» Name of the Web service and addressing information

» Protocol and encoding style to be used when accessing the public operations
of the Web service

» Type information: Operations, parameters, and data types comprising the
interface of the Web service, plus a name for this interface

Implementing CICS Web Services

http://www.w3.org/2000/xp/Group/
http://www.w3.org/TR/SOAP12

1.5.1 WSDL Document

A WSDL document contains the following main elements:

Types A container for data type definitions using some type system,
usually XML Schema.

Message An abstract, typed definition of the data being communicated. A
message can have one or more typed parts.

Port type An abstract set of one or more operations supported by one or
more ports.

Operation An abstract description of an action supported by the service that
defines the input and output message and optional fault
message.

Binding A concrete protocol and data format specification for a particular
port type. The binding information contains the protocol name,
the invocation style, a service ID, and the encoding for each
operation.

Port A single endpoint, which is defined as an aggregation of a
binding and a network address.

Service A collection of related ports.

Note that WSDL does not introduce a new type definition language. WSDL
recognizes the need for rich type systems for describing message formats and
supports the XML Schema Definition (XSD) specification.

WSDL 1.1 introduces specific binding extensions for various protocols and
message formats. There is a WSDL SOAP binding, which is capable of
describing SOAP over HTTP. It is worth noting that WSDL does not define any
mappings to a programming language; rather, the bindings deal with transport
protocols. This is a major difference from interface description languages, such
as the CORBA Interface Definition Language (IDL), which has language
bindings.

You can find the WSDL 1.1 specification at the following URL:

http://www.w3.org/TR/wsdl
1.5.2 WSDL document anatomy

Figure 1-4 on page 21 shows the elements comprising a WSDL document and
the various relationships between them.

Chapter 1. Overview of Web services 19

http://www.w3.org/TR/wsdl

20

The diagram should be interpreted in the following way:

»

One WSDL document contains zero or more services. A service contains
zero or more port definitions (service endpoints), and a port definition
contains a specific protocol extension.

The same WSDL document contains zero or more bindings. A binding is
referenced by zero or more ports. The binding contains one protocol
extension, where the style and transport are defined, and zero or more
operations bindings. Each of these operation bindings is composed of one
protocol extension, where the action and style are defined, and one to three
messages bindings, where the encoding is defined.

The same WSDL document contains zero or more port types. A port type is
referenced by zero or more bindings. This port type contains zero or more
operations, which are referenced by zero or more operations bindings.

The same WSDL document contains zero or more messages. An operation
usually points to an input and an output message, and optionally to some
faults. A message is composed of zero or more parts.

The same WSDL document contains zero or more types. A type can be
referenced by zero or more parts.

The same WSDL document points to zero or more XML Schemas. An XML
Schema contains zero or more XSD types that define the different data types.

Implementing CICS Web Services

definition

abstract
service
interface
definition

how the
service is binding ¢
implemented

location of

service sefvice
port

S,
*,
*,
e,

Figure 1-4 WSDL elements and relationships

Example

We now give an example of a simple, complete, and valid WSDL file. As this
example shows, even a simple WSDL document contains quite a few elements
with various relationships to each other. Example 1-1 contains the WSDL file
example. This example is analyzed in detail later in this section.

Example 1-1 Complete WSDL document

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmins="http://schemas.xmlsoap.org/wsdl/"
xmins:reqns="http://www.exampleApp.dispatchOrder.Request.com"
xmins:resns="http://www.exampleApp.dispatchOrder.Response.com"
xmins:soap="http://schemas.xmlsoap.org/wsd1/soap/"
xmins:tns="http://www.exampleApp.dispatchOrder.com"
targetNamespace="http://www.exampleApp.dispatchOrder.com">
<types>
<xsd:schema xmins:tns="http://www.exampleApp.dispatchOrder.Request.com"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
attributeFormDefault="qualified"

Chapter 1. Overview of Web services 21

22

elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Request.com"
xmins:regns="http://www.exampleApp.dispatchOrder.Request.com">
<xsd:element name="dispatchOrderRequest" nillable="false">
<xsd:complexType mixed="false">
<xsd:sequence>
<xsd:element name="itemReferenceNumber" nillable="false">
<xsd:simpleType>
<xsd:restriction base="xsd:short">
<xsd:maxInclusive value="9999"/>
<xsd:minInclusive value="0"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="quantityRequired" nillable="false">
<xsd:simpleType>
<xsd:restriction base="xsd:short">
<xsd:maxInclusive value="999"/>
<xsd:minInclusive value="0"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
<xsd:schema xmins:tns="http://www.exampleApp.dispatchOrder.Response.com"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Response.com">
<xsd:element name="dispatchOrderResponse" nillable="false">
<xsd:complexType mixed="false">
<xsd:sequence>
<xsd:element name="confirmation" nillable="false">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="20"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</types>
<message name="dispatchOrderResponse">
<part element="resns:dispatchOrderResponse" name="ResponsePart"/>

Implementing CICS Web Services

</message>
<message name="dispatchOrderRequest">
<part element="reqgns:dispatchOrderRequest" name="RequestPart"/>
</message>
<portType name="dispatchOrderPort">
<operation name="dispatchOrder">
<input message="tns:dispatchOrderRequest" name="DFHOXODSRequest"/>
<output message="tns:dispatchOrderResponse" name="DFHOXODSResponse"/>
</operation>
</portType>
<binding name="dispatchOrderSoapBinding" type="tns:dispatchOrderPort">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="dispatchOrder">
<soap:operation soapAction="" style="document"/>
<input name="DFHOXODSRequest">
<soap:body parts="RequestPart" use="literal"/>
</input>
<output name="DFHOXODSResponse">
<soap:body parts="ResponsePart" use="literal"/>
</output>
</operation>
</binding>
<service name="dispatchOrderService">
<port binding="tns:dispatchOrderSoapBinding" name="dispatchOrderPort">
<soap:address
lTocation="http://myserver:54321/exampleApp/services/dispatchOrderPort"/>
</port>
</service>
</definitions>

Namespaces
WSDL uses the XML namespaces listed in Table 1-2.

Table 1-2 WSDL namespaces

Namespace URI Explanation

http://schemas.xmlsoap.org/wsdl/ Namespace for WSDL framework.

http://schemas.xmlsoap.org/wsdl/soap/ | SOAP binding.

http://schemas.xmlsoap.org/wsd1/http/ | HTTP binding.

http://www.w3.0rg/2000/10/ Schema namespace as defined by XSD.
XMLSchema

Chapter 1. Overview of Web services 23

Namespace URI Explanation

(URL to WSDL file) The this namespace (tns) prefix is used as
a convention to refer to the current
document. Do not confuse it with the XSD
target namespace, which is a different
concept.

The first three namespaces are defined by the WSDL specification itself; the next
definition references a namespace that is defined in the SOAP and XSD
standards. The last one is local to each specification.

1.5.3 WSDL definition

24

The WSDL definition contains types, messages, operations, port types, bindings,
ports, and services.

Also, WSDL provides an optional element called wsd1:document as a container
for human-readable documentation.

Types

The types element encloses data type definitions used by the exchanged
messages. WSDL uses XML Schema Definition (XSD) as its canonical and
built-in type system:

<definitions >
<types>
<xsd:schema /> (0 or more)
</types>
</definitions>

The XSD type system can be used to define the types in a message regardless
of whether or not the resulting wire format is XML. In our example we have two
schema sections; one defines the message format for the input and the other
defines the message format for the output.

In our example, the types definition, shown in Example 1-2, is where we specify
that there is a complex type called dispatchOrderRequest, which is composed of
two elements: a itemReferenceNumber and a quantityRequired.

Example 1-2 Types definition of our WSDL example for the input

<types>
<xsd:schema xmiIns:tns="http://www.exampleApp.dispatchOrder.Request.com"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
attributeFormDefault="qualified"

Implementing CICS Web Services

elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Request.com"
xmins:reqns="http://www.exampleApp.dispatchOrder.Request.com">
<xsd:element name="dispatchOrderRequest" nillable="false">
<xsd:complexType mixed="false">
<xsd:sequence>
<xsd:element name="1itemReferenceNumber" nillable="false">
<xsd:simpleType>
<xsd:restriction base="xsd:short">
<xsd:maxInclusive value="9999"/>
<xsd:minInclusive value="0"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="quantityRequired" nillable="false">
<xsd:simpleType>
<xsd:restriction base="xsd:short">
<xsd:maxInclusive value="999"/>
<xsd:minInclusive value="0"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

</types>

Messages

A message represents one interaction between a service requester and a service
provider. If an operation is bidirectional at least two message definitions are used
in order to specify the transmissions to and from the service provider. A message
consists of one or more logical parts.

<definitions >
<message name="nmtoken"> (0 or more)
<part name="nmtoken" element="qgname"(0 or 1) type="qgname" (0
or 1)/>
(0 or more)
</message>
</definitions>

The abstract message definitions are used by the operation element. Multiple
operations can refer to the same message definition.

Chapter 1. Overview of Web services 25

Operations and messages are modeled separately in order to support flexibility
and simplify reuse of existing definitions. For example, two operations with the
same parameters can share one abstract message definition.

In our example, the messages definition, shown in Example 1-3, is where we
specify the different parts that compose each message. The request message
dispatchOrderRequest is composed of an element dispatchOrderRequest as
defined in the schema in the parts section. The response message
dispatchOrderResponse is similarly defined by the element
dispatchOrderResponse in the schema. There is no requirement for the names of
the message and the schema-defined element to match; in our example we did
this merely for convenience.

Example 1-3 Message definition in our WSDL document

<message name="dispatchOrderResponse">

<part element="resns:dispatchOrderResponse" name="ResponsePart"/>
</message>
<message name="dispatchOrderRequest">

<part element="reqns:dispatchOrderRequest" name="RequestPart"/>
</message>

Port types

A port type is a named set of abstract operations and the abstract messages
involved:

<definitions >
<portType name="nmtoken">
<operation name="nmtoken" /> (0 or more)
</portType>
</definitions>

WSDL defines four types of operations that a port can support:

One-way The port receives a message. There is an input message
only.

Request-response The port receives a message and sends a correlated
message. There is an input message followed by an
output message.

Solicit-response The port sends a message and receives a correlated
message. There is an output message followed by an
input message.

Notification The port sends a message. There is an oufput message
only. This type of operation could be used in a
publish/subscribe scenario.

26 Implementing CICS Web Services

Each of these operation types can be supported with variations of the following
syntax. Presence and order of the input, output, and fault messages
determine the type of message:

<definitions >
<portType > (0 or more)
<operation name="nmtoken" parameterOrder="nmtokens">
<input name="nmtoken"(0 or 1) message="gname"/> (0 or 1)
<output name="nmtoken" (0 or 1) message="qgname"/> (0 or 1)
<fault name="nmtoken" message="qname"/> (0 or more)
</operation>
</portType >
</definitions>

Note that a request-response operation is an abstract notion. A particular binding
must be consulted to determine how the messages are actually sent:

» Within a single transport-level operation, such as an HTTP request/response
message pair, which is the preferred option

» As two independent transport-level operations, which can be required if the
transport protocol only supports one-way communication

In our example, the portType and operation definitions, shown in Example 1-4,
are where we specify the port type, called dispatchOrderPort, and a set of
operations. In this case, there is only one operation, called dispatchOrder.

We also specify the interface that the Web service provides to its possible
clients, with the input message DFHOXODSRequest and the output message
DFHOXODSResponse. Since the input element appears before the output element
in the operation element, our example shows a request-response type of
operation.

Example 1-4 Port type and operation definitions in our WSDL document example

<portType name="dispatchOrderPort">
<operation name="dispatchOrder">
<input message="tns:dispatchOrderRequest" name="DFHOXODSRequest"/>
<output message="tns:dispatchOrderResponse" name="DFHOXODSResponse"/>
</operation>
</portType>

Bindings
A binding contains:

» Protocol-specific general binding data, such as the underlying transport
protocol and the communication style for SOAP.

Chapter 1. Overview of Web services 27

28

» Protocol extensions for operations and their messages.

Each binding references one port type; one port type can be used in multiple
bindings. All operations defined within the port type must be bound in the
binding. The pseudo XSD for the binding looks like this:

<definitions >
<binding name="nmtoken" type="qname"> (0 or more)
<-- extensibility element (1) --> (0 or more)
<operation name="nmtoken"> (0 or more)
<-- extensibility element (2) --> (0 or more)
<input name="nmtoken"(0 or 1) > (0 or 1)
<-- extensibility element (3) -->
</input>
<output name="nmtoken" (0 or 1) > (0 or 1)
<-- extensibility element (4) --> (0 or more)
</output>
<fault name="nmtoken"> (0 or more)
<-- extensibility element (5) --> (0 or more)
</fault>
</operation>
</binding>
</definitions>

As we have already seen, a port references a binding. The port and binding are
modeled as separate entities in order to support flexibility and location
transparency. Two ports that merely differ in their network address can share the
same protocol binding.

The extensibility elements <-- extensibility element (x) --> use XML
namespaces in order to incorporate protocol-specific information into the
language- and protocol-independent WSDL specification.

In our example, the binding definition, shown in Example 1-5, is where we specify
our binding name, dispatchOrderSoapBinding. The connection must be SOAP
HTTP, and the style must be document. We provide a reference to our operation,
dispatchOrder, and we define the input message DFHOXODSRequest and the
output message DFHOXODSResponse, both to be SOAP literal.

Example 1-5 Binding definition in our WSDL document example

<binding name="dispatchOrderSoapBinding" type="tns:dispatchOrderPort">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="dispatchOrder">
<soap:operation soapAction="" style="document"/>
<input name="DFHOXODSRequest">

Implementing CICS Web Services

<soap:body parts="RequestPart" use="literal"/>
</input>
<output name="DFHOXODSResponse">
<soap:body parts="ResponsePart" use="literal"/>
</output>
</operation>
</binding>

Service definition

A service definition merely bundles a set of ports together under a name, as the
following pseudo XSD definition of the service element shows.

<definitions >
<service name="nmtoken"> (0 or more)
<port /> (0 or more)
</service>
</definitions>

Multiple service definitions can appear in a single WSDL document.

Port definition

A port definition describes an individual endpoint by specifying a single address
for a binding:

<definitions >
<service > (0 or more)
<port name="nmtoken" binding="gname"> (0 or more)
<-- extensibility element (1) -->
</port>
</service>
</definitions>

The binding attribute is of type QName, which is a qualified name (equivalent to the
one used in SOAP). It refers to a binding. A port contains exactly one network
address; all other protocol-specific information is contained in the binding.

Any port in the implementation part must reference exactly one binding in the
interface part.

The <-- extensibility element (1) -->is a placeholder for additional XML
elements that can hold protocol-specific information. This mechanism is required
because WSDL is designed to support multiple runtime protocols.

In our example, the service and port definition, shown in Example 1-6, is where
we specify our service, called dispatchOrderService, which contains a collection

Chapter 1. Overview of Web services 29

of our ports. In this case, there is only one that uses the
dispatchOrderSoapBinding and is called dispatchOrderPort. In this port, we
specify our connection point as, for example,
http://myserver:54321/exampleApp/services/dispatchOrderPort.

Example 1-6 Service and port definition in our WSDL document example

<service name="dispatchOrderService">
<port binding="tns:dispatchOrderSoapBinding" name="dispatchOrderPort">
<soap:address
Tocation="http://myserver:54321/exampleApp/services/dispatchOrderPort"/>
</port>
</service>

1.5.4 WSDL bindings

We now investigate the WSDL extensibility elements supporting the SOAP
transport binding.

SOAP binding

WSDL includes a binding for SOAP 1.1 endpoints, which supports the
specification of the following protocol-specific information:

» Anindication that a binding is bound to the SOAP 1.1 protocol

» A way of specifying an address for a SOAP endpoint

» The URI for the SOAPAction HTTP header for the HTTP binding of SOAP

» A list of definitions for headers that are transmitted as part of the SOAP
envelope

Table 1-3 lists the corresponding extension elements.

Table 1-3 SOAP extensibility elements in WSDL

Extension and attributes Explanation

<soap:binding ...> Binding level; specifies defaults for all operations.
transport="uri" Binding level; transport is the runtime transport
(0 or 1) protocol used by SOAP (HTTP, SMTP, and so on).
style="rpc|document" The style is one of the two SOAP communication
(0 or 1) styles, rpc or document.

<soap:operation ... > Extends operation definition.

30 Implementing CICS Web Services

Extension and attributes

Explanation

soapAction="uri"
(0 or 1)

URN.

style="rpc|document"
(0 or 1)

See binding level.

<soap:body ... >

Extends operation definition; specifies how
message parts appear inside the SOAP body.

parts="nmtokens"

Optional; allows externalizing message parts.

use="encoded|Titeral"

literal: messages reference concrete XSD (no
WSDL type);

encoded: messages reference abstract WSDL type
elements;

encodingStyle extension used.

encodingStyle=
"uri-1ist" (0 or 1)

List of supported message encoding styles.

namespace="uri"
(0 or 1)

URN of the service.

<soap:fault ... >

Extends operation definition; contents of fault
details element.

name="nmtoken"

Relates soap:fault to wsd1:fault for operation.

use, encodingStyle,
namespace

See soap:body.

<soap:address ... >

Extends port definition.

location="uri"

Network address of RPC router.

<soap:header ... >

Operation level; shaped after <soap:body ...>.

<soap:headerfault ... >

Operation level; shaped after <soap:body ...>.

1.6 Summary

We began by discussing service-oriented architectures and how Web services
relate to SOAs. We continued by giving an overview of the major technologies
that make Web services possible: XML, SOAP, WSDL, and UDDI. We looked in
detail at SOAP, which provides an XML text-based, platform- and
language-neutral message format. Finally, we explained how WSDL defines the
application data to be conveyed in the SOAP message as well as the information

Chapter 1. Overview of Web services 31

required to access the service, such as the transport protocol used and the
location of the service.

32 Implementing CICS Web Services

CICS support for Web
services

In chapter 1 we introduced several Web services technologies. In this chapter we
explain how to use Web services in CICS TS V3.1.

First, we provide an overview of the different Web services functions provided by
CICS TS V3.1. We then look at how to prepare for running a CICS application as
a service provider and at what processing occurs when a service request arrives
in CICS. Similarly, we consider how to configure CICS as a service requester
and how CICS processes an outbound request from a service requester
application.

We also describe the new CICS resource definitions that are required to support
Web services, URIMAP, PIPELINE, WEBSERVICE, and TCPIPSERVICE. And
we explain how you can control the processing of a Web service request using
message handler and SOAP header processing programs.

© Copyright IBM Corp. 2006. All rights reserved. 33

2.1 Overview

34

What the World Wide Web did for interactions between programs and end users,
Web services can do for program-to-program interactions. CICS support for Web
services makes it possible for CICS applications to be integrated more rapidly,
easily, and cheaply than ever before.

Application programs running in CICS TS V3.1 can participate in a
heterogeneous Web services environment as service requesters, service
providers, or both, using either an HTTP transport or a WebSphere MQ
transport.

CICS TS V3.1 provides the following new functions:
» Itincludes a new Web services assistant utility.

The Web services assistant utility contains two programs, DFHWS2LS and
DFHLS2WS. DFHWS2LS helps you map an existing WSDL document into a
high-level programming language data structure, while DFHLS2WS creates a
new WSDL document from an existing language structure. The Web services
assistant supports the following programming languages:

— COBOL
- PUI

- C

— C++

» It supports two different approaches to deploying your CICS applications in a
Web services environment.

— You can use the Web services assistant.

The Web services assistant helps you deploy an application with the least
amount of programming effort. For example, if you want to expose an
existing application as a Web service, you can start with a high-level
language data structure, and use DFHLS2WS to generate the Web
services description. Alternatively, if you want to communicate with an
existing Web service, you can start with its Web service description and
use DFHWS2LS to generate a high-level language structure that you can
use in your program.

Both DFHLS2WS and DFHWS2LS also generate a file called the wsbhind
file. When your application runs, CICS uses the wsbind file to transform
your application data into a SOAP message on output and to transform the
SOAP message to application data on input.

— You can take complete control of the processing of your data.

You can write your own code to map between your application data and
the message that flows between the service requester and provider. For

Implementing CICS Web Services

»

example, if you want to use non-SOAP messages within the Web service
infrastructure, you can write your own code to transform between the
message format and the format used by your application.

It reads a pipeline configuration file created by the CICS system programmer
to determine which message handlers should be invoked in a pipeline.

A message handler is a program in which you can perform your own
processing of Web service requests and responses. A pipeline is a set of
message handlers that are executed in sequence.

A pipeline can be configured as a service requester pipeline or a service
provider pipeline, but not both.

You can write your own message handlers to perform processing on request
and response messages.

It supplies message handlers designed especially to help you process SOAP
messages.

CICS provides special SOAP message handler programs that can help you to
configure your pipeline as a SOAP node.

— A service requester pipeline is the initial SOAP sender for the request, and
the ultimate SOAP receiver for the response.

— A service provider pipeline is the ultimate SOAP receiver for the request,
and the initial SOAP sender for the response.

Restriction: You cannot configure a CICS pipeline to function as an
intermediary node in a SOAP message path.

The CICS-provided SOAP message handlers can be configured to invoke
one or more user-written SOAP header processing programs and to enforce
the presence of particular headers in the SOAP message.

It allows you to configure many different pipelines.

You can configure a pipeline to support SOAP 1.1 or SOAP 1.2. Within your
CICS system, you can have some pipelines that support SOAP 1.1 and
others that support SOAP 1.2.

It provides the following new resource definitions to help you configure
support for Web services:

— PIPELINE
- URIMAP
— WEBSERVICE

Chapter 2. CICS support for Web services 35

» It provides the following new EXEC CICS application programming interface
(API) commands:

— SOAPFAULT ADD | CREATE | DELETE
— INQUIRE WEBSERVICE
— INVOKE WEBSERVICE
» It conforms to open standards including:
— SOAP1.1and 1.2
— HTTP 1.1
- WSDL 1.1

» |t ensures maximum interoperability with other Web services implementations
by conforming with the Web Services Interoperability Organization (WS-I)
Basic Profile 1.0.

» It supports the WS-Atomic Transaction specification.

Note: CICS TS V3.1 includes some specific enhancements that are related to
Web services implementation using HTTP. In particular, Web Support in CICS
TS V3.1 contains the following improvements:

» HTTP

— Concurrent session limit raised from 900 (in CICS TS V2.3) to 65000
per region.

— There is no affinity to long running CWXN transactions.
» HTTPS

— Concurrent session limit raised from 250 (in CICS TS V2.3) to 65000
per region.

— No affinity to SSL TCB for duration of connection.

— SSL TCB per connection now not required.

— No affinity to long running CWXN transaction.

— Easy choice over Cipher suites specified on TCPIPSERVICE definition.

— Sysplex-wide cache for SSL session ID.
Customers using the Web interface can now exploit persistent sessions for
large networks, as opposed to having to make and break connections with
every request. These customers will make CPU savings. Customers who had
small networks and were already able to exploit persistent connections will

see up to about 4% increase on average size applications. They will however
benefit from a much greater number of concurrent sessions per region.

36 Implementing CICS Web Services

2.2 CICS as a service provider

When CICS is a service provider, it receives a service request, which is passed
through a pipeline to a target application program. The response from the
application is returned to the service requester through the same pipeline. In this

section we first discuss how to prepare for running a CICS application as a
service provider. Then we discuss how CICS processes the incoming service

request.

An existing COMMAREA-based application can be exposed as a service
provider, normally without any application changes. Figure 2-1 shows CICS as a
service provider.

Service

requester

<XML SOAP

message>

CICS TS V3.1

CICS Web

services

 —
COMMAREA

or CONTAINER
<«

CICS

application program

Figure 2-1 CICS as a service provider

When CICS is in the role of service provider, it must perform the following

operations:

1. Receive the request from the service requester.

2. Examine the request, and extract the contents that are relevant to the target

application program.
3. Invoke the application program, passing data extracted from the request.

4. Construct a response (when the application program returns control) using
data returned by the application program.

5. Send a response to the service requester.

Note: This redbook deals with the implementation of CICS Web services

created from COMMAREA-based applications in which there is separation of
business logic and presentation logic.

Chapter 2. CICS support for Web services

37

2.2.1 Preparing to run a CICS application as a service provider

Suppose that you have an existing CICS application that you wish to expose as a
Web service which uses the HTTP transport. Suppose also that you wish to use
the Web services assistant rather than taking control of the processing
yourselves. You would perform the following steps:

1. Generate the wsbind and WSDL files.

a. Create an HFS directory in which to store the generated files. For
example, you might create a directory named
/u/SharedProjectDirectory/MyFirstWebServiceProvider.

b. Run the DFHLS2WS program. The input you provide to the program
includes the following:

* The names of the partitioned data set members that contain the
high-level language structures the application program uses to
describe the Web service request and the Web service response

* The fully qualified HFS names of the wsbind file and the file into which
the Web service description is to be written (the WSDL file)

¢ The relative URI that a client will use to access the Web service

¢ How CICS should pass data to the target application program
(COMMAREA or container)

Note: Typically, an application developer would perform this step.

2. Create a TCPIPSERVICE resource definition.

The resource definition should specify PROTOCOL(HTTP) and supply
information about the port on which inbound requests are received.

Note: Typically, a systems programmer would perform this step and the
subsequent steps.

3. Create a PIPELINE resource definition.
a. Create a service provider pipeline configuration file.

A pipeline configuration file is an XML file that describes, among other
things, the message handler programs and the SOAP header processing
programs that CICS invokes when it processes the pipeline.

b. Create an HFS directory in which to store installable wsbind and WSDL
files.

38 Implementing CICS Web Services

We call this directory the “pickup” directory since CICS will pick up the
wsbind and WSDL files from this directory and store them on a “shelf”
directory.

c. Create an HFS directory for CICS to store installed wsbind files in.
We call this directory the “shelf” directory.

d. Create a PIPELINE resource definition to handle the Web service request.
* Specify the CONFIGFILE attribute to point to the file created in step 3a.
¢ Specify the WSDIR attribute to point to the directory created in step 3b.
* Specify the SHELF attribute to point to the directory created in step 3c.

e. Copy the wsbind and WSDL files created in step 1 to the pickup directory
created in step 3b.

4. Install the TCPIPSERVICE and PIPELINE resource definitions.

When the CICS system programmer installs the PIPELINE definition, CICS
scans the pickup directory for wsbind files. When CICS finds the wsbind file
created in step 1, CICS dynamically creates and installs a WEBSERVICE
resource definition for it. CICS derives the name of the WEBSERVICE
definition from the name of the wsbind file. The WEBSERVICE definition
identifies the name of the associated PIPELINE definition and points to the
location of the wsbind file in the HFS.

During the installation of the WEBSERVICE resource:

— CICS dynamically creates and installs a URIMAP resource definition.
CICS bases the definition on the URI specified in the input to DFHLS2WS
in step 1 and stored by DFHLS2WS in the wsbind file.

— CICS uses the wsbind file to create main storage control blocks to map the
inbound service request (XML) to a COMMAREA or a container and to
map to XML the outbound COMMAREA or container that contains the
response data.

5. Publish the WSDL files to the service requester clients.

a. Customize the Tocation attribute on the <address> element in the WSDL
file so that its value specifies the TCP/IP server name of the machine
hosting the service and the port number defined in the TCPIPSERVICE
defined in step 2.

b. Publish the WSDL to any parties wishing to create clients to this Web
service.

Chapter 2. CICS support for Web services 39

2.2.2 Processing the inbound service request

40

Figure 2-2 shows the processing that occurs when a service requester sends a

SOAP message over HTTP to a service provider application running in a CICS
TS V3.1 region.

CICS TS V3.1

| TCPIPSERVICE

T
SOAP
. message
Service k
<—>
URIMAP matching
/A\

URIMAP
\

v dynamic

install

handlers _}

B
handlers J

pipeline
config

wsDL |

PIPELINE

handlers
B

dynamic
install

CICS Web services data mapping

it

Business

WSBind WEBSERVICE Logic
I) L = |
\\/ g

Language
structure
—

Figure 2-2 Web service run-time service provider processing

The CICS-supplied sockets listener transaction (CSOL) monitors the port
specified in the TCPIPSERVICE resource definition for incoming HTTP requests.
When the SOAP message arrives, CSOL attaches the transaction specified in
the TRANSACTION attribute of the TCPIPSERVICE definition; normally, this will
be the CICS-supplied Web attach transaction CWXN.

CWXN finds the URI in the HTTP request and then scans the URIMAP resource
definitions for a URIMAP that has its USAGE attribute set to PIPELINE and its
PATH attribute set to the URI found in the HTTP request. If CWXN finds such a
URIMARP, it uses the PIPELINE and WEBSERVICE attributes of the URIMAP
definition to get the name of the PIPELINE and WEBSERVICE definitions, which
it will use to process the incoming request. CWXN also uses the TRANSACTION

Implementing CICS Web Services

attribute of the URIMAP definition to determine the name of the transaction that it
should attach to process the pipeline; normally, this will be the CPIH transaction.

CPIH starts the pipeline processing. It uses the PIPELINE definition to find the
name of the pipeline configuration file. CPIH uses the pipeline configuration file
to determine which message handler programs and SOAP header processing

programs to invoke.

A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) removes the SOAP envelope from the inbound request and passes the
SOAP body to the data mapper function.

CICS uses the DFHWS-WEBSERVICE container to pass the name of the
required WEBSERVICE definition to the data mapper. The data mapper uses the
WEBSERVICE definition to locate the main storage control blocks that it needs
to map the inbound service request (XML) to a COMMAREA or a container.

The data mapper links to the target service provider application program,
providing it with input in the format that it expects. The application program is not
aware that it is being executed as a Web service. The program performs its
normal processing and then returns an output COMMAREA or container to the
data mapper.

The output data from the CICS application program cannot just be sent back to
the pipeline code. The data mapper must first convert the output from the
COMMAREA or container format into a SOAP body.

2.3 CICS as a service requester

When CICS is a service requester, an application program sends a request,
which is passed through a pipeline to a target service provider. The response
from the service provider is returned to the application program through the same
pipeline. In this section we discuss how to prepare for running a CICS application
as a service requester. Then we discuss how CICS processes the outbound
service request.

Figure 2-3 on page 42 shows CICS as a service requester.

Chapter 2. CICS support for Web services 41

CICS TS V3.1

CICS Web

> . —_ > .
cics COMMAREA services <XML SOAP Service
application program | or CONTAINER

message> provider

A

Figure 2-3 CICS as a service requester

When CICS is in the role of service requester, it must perform the following
operations:

1. Build a request using data provided by the application program.
2. Send the request to the service provider.

3. Receive a response from the service provider.

4

. Examine the response, and extract the contents that are relevant to the
original application program.

5. Return control to the application program.

Note: Local optimization is possible when a CICS service requester invokes a
CICS service provider application (see “Local optimization” on page 45).

2.3.1 Preparing to run a CICS application as a service requester

42

Suppose you wish to write a new CICS application that will invoke a Web service.
Suppose also that you wish to use the Web services assistant rather than taking
control of the processing yourselves. You would perform the following steps:

1. Generate the wsbind file and the language structures.

a. Create an HFS directory in which to store the wsbind file. For example,
you might create a directory named
/u/SharedProjectDirectory/MyFirstWebServiceRequester

b. Run the DFHWS2LS program. The input you provide to the program
includes the following:

* The fully qualified HFS name of the WSDL file that describes the Web
service you want to request.

Implementing CICS Web Services

¢ The names of the partitioned data set members into which DFHWS2LS
should put the high-level language structures it generates. The
application program uses the language structures to describe the Web
service request and the Web service response.

Note: Typically, an application developer would perform this step.

2. Create a PIPELINE resource definition.
a. Create a service requester pipeline configuration file.

The pipeline configuration file describes the message handler programs
and the SOAP header processing programs that CICS will invoke when it
processes the pipeline.

b. Create an HFS directory in which to store installable wsbind files.

CICS will pick up the wsbind file from this directory and store it on a “shelf”
directory.

c. Create the shelf directory for CICS to store installed wsbind files in.

d. Create a PIPELINE resource definition to handle the Web service request:
* Specify the CONFIGFILE attribute to point to the file created in step 2a.
* Specify the WSDIR attribute to point to the directory created in step 2b.
* Specify the SHELF attribute to point to the directory created in step 2c.

e. Copy the wsbind file created in step 1to the pickup directory created in
step 2b.

Note: Typically, a systems programmer would perform this step.

3. Install the PIPELINE resource definition.

When the CICS system programmer installs the PIPELINE definition, CICS
scans the pickup directory for wsbind files. When CICS finds the wsbind file
created in step 1, CICS dynamically creates and installs a WEBSERVICE
resource definition for it. CICS derives the name of the WEBSERVICE
definition from the name of the wsbind file. The WEBSERVICE definition
identifies the name of the associated PIPELINE definition and points to the
location of the wsbind file in the HFS.

During the installation of the WEBSERVICE resource, CICS uses the wsbind
file to create main storage control blocks to map the outbound service request
to an XML document and to map the inbound XML response document to a
language structure.

Chapter 2. CICS support for Web services 43

Note: Typically, a systems programmer would perform this step.

4. Use the language structure generated in step 1 to write the application
program.

a. The application issues the following command to place the outbound data
into container DFHWS-DATA:

EXEC CICS PUT CONTAINER(DFHWS-DATA) CHANNEL(name_of_channel)
FROM(data_area)

b. It then issues the following command to invoke the Web service:

EXEC CICS INVOKE WEBSERVICE(name of WEBSERVICE definition)
CHANNEL (name_of channel) OPERATION(name_of_operation)

Note: Typically, an application developer would perform this step.

2.3.2 Processing the outbound service request

Figure 2-4 shows the processing that occurs when a service requester running in
a CICS TS V3.1 region sends a SOAP message to a service provider.

44 Implementing CICS Web Services

L] CICS TS V3.1
User Transaction
Language
Business structure
Logic
. HFS
data mapping e |- WEBSERVICE Ry

dynamic . -
install “t+| WSBind ﬂ
.,
. PIPELINE) CICS Web services

handlers ‘t

,

i§

assistant

WSDL

-

pipeline
config

y

Fel

handlers)
y _/

!
handlers J

Service
Provider;

message

Figure 2-4 Web service run-time service requester processing

When the service requester issues the EXEC CICS INVOKE WEBSERVICE
command, CICS uses the information found in the wsbind file that is associated
with the specified WEBSERVICE definition to convert the language structure into
an XML document. CICS then invokes the message handlers specified in the
pipeline configuration file, and they convert the XML document into a SOAP
message.

CICS sends the SOAP request message to the remote service provider via either
HTTP or WebSphere MQ.

When the SOAP response message is received, CICS passes it back through
the pipeline. The message handlers extract the SOAP body from the SOAP
envelope, and the data mapping function converts the XML in the SOAP body
into a language structure, which is passed to the application program in container
DFHWS-DATA.

2.3.3 Local optimization

A special “local” optimization is possible when CICS is in the role of both service
requester and service provider. In this case, CICS avoids the overhead of

Chapter 2. CICS support for Web services 45

46

converting a language structure into an XML document by simply converting the
EXEC CICS INVOKE WEBSERVICE command into an EXEC CICS LINK
command.

Important: Invoking a CICS Web service using local optimization results in a
significant performance benefit.

When an EXEC CICS INVOKE WEBSERVICE command is used to invoke a
CICS service provider application, the provider application name in the Web
service binding file associated with the WEBSERVICE resource is used to
enable the local optimization of the Web service request. If you use this
optimization, the request is optimized to an EXEC CICS LINK command
(Figure 2-5).

CICS TS V3.1 CICS TS V3.1
CICS Web
CICS Web LINK €|
cics services _— services
application program | —> <COMMAREA e CICS
EXEC CICS INVOKE or CONTAINER> application program
WEBSERVICE < €« <

Figure 2-5 Invoking a CICS Web service using local optimization

The CICS service requester and service provider applications can be installed in
the same CICS region or different regions. If they are in different regions, then an
MRO or ISC connection must exist which enables the LINK request to be
shipped to the remote CICS region hosting the service provider application.

Note that this optimization has an effect on the behavior of the EXEC CICS
INVOKE WEBSERVICE command when the Web service is not expected to
send a response:

» When the optimization is not in effect, control returns from the EXEC CICS
INVOKE WEBSERVICE command as soon as the request message is sent.

» When the optimization is in effect, control returns from the EXEC CICS
INVOKE WEBSERVICE command only when the target program terminates.

When the Web service is expected to send a response, control returns from the
command when the response is available.

Implementing CICS Web Services

Restriction: You can use this optimization only if the service provider
application and the service requester application are deployed with the Web
services assistant.

2.4 CICS resources for Web services

We now look in more detail at what CICS resources a systems programmer must
implement in order to enable Web services in a CICS environment. In Chapter 3,
“Web services using HTTP” on page 73 we describe the resources that we
created in order to enable Web services in our environment.

2.4.1 URIMAP

The URIMAP resource definition is used to define one of three different
Web-related facilities in CICS. It is the value of the USAGE attribute on a
URIMAP definition that determines which of the three facilities that particular
definition controls.

1.

Requests from a Web client, to CICS as an HTTP server

URIMAP definitions for requests for CICS as an HTTP server have a USAGE
attribute of SERVER. These URIMAP definitions match the URLs of HTTP
requests that CICS expects to receive from a Web client, and they define how
CICS should provide a response to each request. You can use a URIMAP
definition to tell CICS to:

— Provide a static response to the HTTP request, using a document
template or z/ OS UNIX® System Services HFS file

— Provide a dynamic response to the HTTP request, using an application
program that issues EXEC CICS WEB application programming interface
commands

— Redirect the request to another server, either temporarily or permanently

For CICS as an HTTP server, URIMAP definitions incorporate most of the
functions that were previously provided by the analyzer program specified on
the TCPIPSERVICE definition. An analyzer program may still be involved in
the processing path if required.

Requests to a server, from CICS as an HTTP client

URIMAP definitions for requests from CICS as an HTTP client have a USAGE
attribute of CLIENT. These URIMAP definitions specify URLs that are used
when a user application, acting as a Web client, makes a request through
CICS Web support to an HTTP server. Setting up a URIMAP definition for this

Chapter 2. CICS support for Web services 47

48

purpose means that you can avoid identifying the URL in your application
program.

3. Web service requests

URIMAP definitions for Web service requests have a USAGE attribute of
PIPELINE. These URIMAP definitions associate a URI for an inbound Web
service request (that is, a request by which a client invokes a Web service in
CICS) with a PIPELINE or WEBSERVICE resource that specifies the
processing to be performed.

You can use a URIMAP with a USAGE attribute of PIPELINE to specify:

— The name of the transaction that CICS uses for running the pipeline alias
transaction (the default is CPIH)

— The user ID under which the pipeline alias transaction runs

Figure 2-6 illustrates the purpose of a URIMAP resource definition for Web
service requests.

CICS TS V3.1

handlers

|

handlers |

handlers |

HFS

URIMAP
\ 4

\/ dynamic
install
pipeline

config PIPELINE
L~/

dynamic

WSDL install

CICS Web services data mapping

assistant

]

Language
structure
L/~

Figure 2-6 URIMAP resource relationships

Business
Logic

)
WSBind

4

—[WEBSERVICE

You can create URIMAP resource definitions in the following ways:
» Use the CEDA transaction

Implementing CICS Web Services

» Use the DFHCSDUP batch utility
» Use CICSPlex® SM Business Application Services
» Use the EXEC CICS CREATE URIMAP command

When you install a PIPELINE resource, or when you issue a PERFORM
PIPELINE SCAN command (using CEMT or the CICS system programming
interface), CICS scans the directory specified in the PIPELINE’s WSDIR attribute
(the pickup directory), and creates URIMAP and WEBSERVICE resources
dynamically. For each Web service binding file in the directory, that is, for each
file with the wsbind suffix, CICS installs a WEBSERVICE and a URIMAP if one
does not already exist. Existing resources are replaced if the information in the
binding file is newer than the existing resources.

Note: If you allow CICS to install the URIMAP resource dynamically, you
cannot use the URIMAP definition to specify either the name of the transaction
or the user ID under which the pipeline will run.

2.4.2 PIPELINE

A PIPELINE resource definition provides information about the message
handlers that will act on a service request and on the response. The information
about the message handlers is supplied indirectly; the PIPELINE definition
specifies the name of an HFS file, called the pipeline configuration file, which
contains an XML description of the message handlers and their configuration.

The most important attributes of the PIPELINE definition are as follows:
» WSDIR

The WSDIR attribute specifies the name of the Web service binding directory
(also known as the pickup directory). The Web service binding directory
contains Web service binding files that are associated with the PIPELINE,
and that are to be installed automatically by the CICS scanning mechanism.
When the PIPELINE definition is installed, CICS scans the directory and
automatically installs any Web service binding files it finds there.

If you specify a value for the WSDIR attribute, it must refer to a valid HFS
directory to which the CICS region has at least read access. If this is not the
case, any attempt to install the PIPELINE resource will fail.

If you do not specify a value for WSDIR, no automatic scan takes place on
installation of the PIPELINE, and PERFORM PIPELINE SCAN commands
will fail.

» SHELF

Chapter 2. CICS support for Web services 49

The SHELF attribute specifies the name of an HFS directory where CICS will
copy information about installed Web services. CICS regions into which the
PIPELINE definition is installed must have full permission to the shelf
directory: read, write, and the ability to create subdirectories.

A single shelf directory may be shared by multiple CICS regions and by
multiple PIPELINE definitions. Within a shelf directory, each CICS region
uses a separate subdirectory to keep its files separate from those of other
CICS regions. Within each region’s directory, each PIPELINE uses a
separate subdirectory.

After a CICS region performs a cold or initial start, it deletes its subdirectories
from the shelf before trying to use the shelf.

» CONFIGFILE

This attribute specifies the name of the PIPELINE configuration file.

Figure 2-7 illustrates the purpose of the PIPELINE resource definition.

CICS TS V3.1

handlers

T
/ \
\
N HFS 4 handlers
\/
pipeline
config PIPELINE 1
handlers

dynamic
WsbL L} install

i

data mapping

-, Business
WSBind WEBSERVICE » : Logic
X i

CICS Web services
assistant

i]

Language
structure
| E—

Figure 2-7 PIPELINE resource relationships

{

You can create PIPELINE resource definitions in the following ways:
» Use the CEDA transaction
» Use the DFHCSDUP batch utility

50 Implementing CICS Web Services

» Use CICSPIlex SM Business Application Services
» Use the EXEC CICS CREATE PIPELINE command

Pipeline configuration file

When CICS processes a Web service request, it uses a pipeline of one or more
message handlers to handle the request. The configuration of a pipeline used to
handle a Web service request is specified in an XML document, known as a
pipeline configuration file. Use a suitable XML editor or text editor to work with
your pipeline configuration files. The exact configuration of the pipeline will
depend upon the specific needs of the application.

There are two kinds of pipeline configuration files: one describes the
configuration of a service provider pipeline, the other describes the configuration
of a service requester pipeline. Each is defined by its own schema, and each has
a different root element. The root element for a provider pipeline is
<provider_pipeline>, while the root element for a requester pipeline is
<requester_pipeline>.

The immediate child elements of the <provider_pipeline> element are:

» A mandatory <service> element, which specifies the message handlers that
are invoked for every request, including the terminal message handler. The
terminal message handler is the last handler in the pipeline.

» An optional <transport> element, which specifies message handlers that are
selected at run time based upon the resources that are being used for the
message transport. For example, for the HTTP transport, you can specify that
CICS should invoke the message handler only when the port on which the
request was received is defined on a specific TCPIPSERVICE definition. For
the WebSphere MQ transport, you can specify that CICS should invoke the
message handler only when the inbound message arrives at a specific
message queue.

» An optional <apphandler> element, which specifies the name of the program
that the terminal message handler will link to by default, that is, the name of
the target application program (or wrapper program) that provides the service.
Message handlers can specify a different program at run time by using the
DFHWS-APPHANDLER container, so the name coded here is not always the
program that is linked to.

Important: When you use DFHLS2WS or DFHWS2LS to deploy your
service provider, you must specify DFHPITP as the target program.
DFHPITP will get the name of your target application program (or wrapper
program) from the wsbind file.

Chapter 2. CICS support for Web services 51

52

The <apphandler> element is used when the last message handler in the
pipeline (the terminal handler) is one of the CICS-supplied SOAP message
handlers.

If you do not code an <apphandler> element, one of the message handlers
must use the DFHWS-APPHANDLER container to specify the name of the
program.

» An optional <service_parameter 1ist> element, which contains parameters

that CICS will make available to the message handlers in the pipeline via
container DFH-SERVICEPLIST.

Example 2-1 shows the sample service provider pipeline configuration file
basicsoap11provider.xml.

Example 2-1 Configuration file for service provider

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
xmins="http://www.ibm.com/software/htp/cics/pipeline"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">
<service>
<terminal_handler>
<cics_soap_1.1 handler/>
</terminal_handler>
</service>
<apphandler>DFHPITP</apphandler>
</provider pipeline>

Important: A pipeline can be configured to support SOAP 1.1 or SOAP 1.2.
Within your CICS system, you can have many pipelines, some of which
support SOAP 1.1 and some of which support SOAP 1.2.

The immediate sub-elements of a <requester_pipeline> element are:

» An optional <service> element, which specifies the message handlers that
are invoked for every request

» An optional <transport> element, which specifies message handlers that are
selected at run time, based upon the resources that are being used for the
message transport

» An optional <service_parameter_list> element, which contains parameters
that CICS will make available to the message handlers in the pipeline via
container DFH-SERVICEPLIST

Implementing CICS Web Services

Example 2-2 shows the sample service requester pipeline configuration file
basicsoap11requester.xml.

Example 2-2 Configuration file for service requester

<?xml version="1.0" encoding="EBCDIC-CP-US"?>

<requester_pipeline

xmins="http://www.ibm.com/software/htp/cics/pipeline"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
requester.xsd ">
<service>
<service_handler_list>
<cics_soap_l.1 handler/>
</service_handler_list>
</service>
</requester pipeline>

2.4.3 WEBSERVICE
Three objects define the execution environment that allows a CICS application
program to operate as a Web service provider or a Web service requester:
» The Web service description
» The Web service binding file
» The pipeline
These three objects are defined to CICS on the following attributes of the
WEBSERVICE resource definition:
» WSDLFILE
» WSBIND
» PIPELINE
The WEBSERVICE definition has a fourth attribute, VALIDATION, which
specifies whether full validation of SOAP messages against the corresponding
schema in the Web service description should be performed at run time.

VALIDATION(YES) ensures that all SOAP messages that are sent and received
are valid XML with respect to the XML schema.

Important: Validation of a SOAP message against a schema incurs
considerable processing overhead, and you should normally specify
VALIDATION(NO) in a production environment.

Chapter 2. CICS support for Web services 53

If VALIDATION(NO) is specified, sufficient validation is performed to ensure that
the message contains well-formed XML.

Figure 2-8 on page 54 illustrates the purpose of the WEBSERVICE resource
definition.

CICS TS V3.1

handlers !

\/>

HFS

handlers

pipeline
config

0,

handlers |

g

wsDL |

CICS Web services
assistant

]

Language
structure

data mapping_l
I Business
WSBind WEBSERVICE ; Logic

(i

Figure 2-8 WEBSERVICE resource relationships

You can create WEBSERVICE resource definitions in the following ways:
» Using the CEDA transaction

Using the DFHCSDUP batch utility

Using CICSPlex SM Business Application Services

Using the EXEC CICS CREATE WEBSERVICE command

v

v

v

When you install a PIPELINE resource, or when you issue a PERFORM
PIPELINE SCAN command (using CEMT or the CICS system programming
interface), CICS scans the directory specified in the PIPELINE’s WSDIR attribute
(the pickup directory), and creates URIMAP and WEBSERVICE resources
dynamically. For each Web service binding file in the directory, that is, for each
file with the wsbind suffix, CICS installs a WEBSERVICE and a URIMAP if one
does not already exist. Existing resources are replaced if the information in the
binding file is newer than the existing resources.

54 Implementing CICS Web Services

The CEMT INQUIRE WEBSERVICE command is used to obtain information
about a WEBSERVICE resource definition. The data returned depends on the
type of Web service.

Web service binding file

A Web services description contains abstract representations of the input and
output messages used by the service. When a service provider or service
requester application executes, CICS needs information about how the content
of the messages maps to the data structures used by the application. This
information is held in a Web service binding file.

Web services binding files are created:

» By utility program DFHWS2LS when language structures are generated from
WSDL

» By utility program DFHLS2WS when WSDL is generated from a language
structure

At run time, CICS uses information in the Web service binding file to perform the
mapping between application data structures and SOAP messages.

2.4.4 TCPIPSERVICE

A TCPIPSERVICE definition is required in a service provider that uses the HTTP
transport, and contains information about the port on which inbound requests are
received.

You can create TCPIPSERVICE resource definitions in the following ways:

» Using the CEDA transaction

» Using the DFHCSDUP batch utility

» Using CICSPIlex SM Business Application Services

» Using the EXEC CICS CREATE TCPIPSERVICE command

2.4.5 Resources checklist

The relationships between CICS Web services definitions are shown in
Figure 2-9 on page 56.

Chapter 2. CICS support for Web services 55

COMMAREA
structure

Web service assistant

BINDING=
URI=

PGMINT=

PGMNAME=

HFS

config

—

WSDL

e

WSBind — pick-up directory

CICs

URIMAP

HOST
PATH
| — PIPELINE

USAGE(PIPELINE)

WEBSERVICE —|

A

>~ PIPELINE
| —~

[—= CONFIGFILE
SHELF
- WSDIR

v

dynamic
install

R— PIPELINE
WSBIND
[~ WSDLFILE

WEBSERVICE <

Figure 2-9 CICS Web services resource interrelationships

The resources that are required to support a particular application program
depends upon the following:

» Whether the application program is a service provide or a service requester

» Whether the application is deployed with the CICS Web services assistant or
you write your own code to map between your application data and SOAP

messages

Table 2-1 is a checklist of resource definitions.

Table 2-1 Resource checklist

Service CICS Web PIPELINE WEBSERVICE | URIMAP | TCPIPSERVICE
requester or services required required required | required
provider assistant used
Provider yes yes yes (1) yes (1) (2)

no yes no yes (2)
Requester yes yes yes no no

no yes no no no

(1). When the CICS Web services assistant is used to deploy an application program, the WEBSERVICE and
URIMAP resources can be created automatically when the PIPELINE’s pickup directory is scanned. This happens
when the PIPELINE resource is installed, or as a result of a PERFORM PIPELINE SCAN command.

(2). A TCPIPSERVICE resource is required when the HTTP transport is used. When the WebSphere MQ transport is
used, you must define a queue.

56 Implementing CICS Web Services

2.5 Message handlers

When you want to perform specialized processing on the messages that flow
between a service requester and a service provider, and CICS does not supply a
message handler that meets your needs, you will need to supply your own.

The message handler interface lets you perform the following tasks in a message
handler program:

» Examine the contents of an XML request or response, without changing it

» Change the contents of an XML request or response

» In a non-terminal message handler, pass an XML request or response to the
next message handler in the pipeline

» In a terminal message handler (the last handler in the pipeline) call an
application program, and generate a response

» In the request phase of the pipeline, force a transition to the response phase,
by absorbing the request, and generating a response

» Handle errors

Message handlers can be used for specific custom functions like:
» Logging requests

» Changing the “context” of a request, for example, changing the name of the
transaction that CICS uses for running the pipeline alias transaction

Message handlers use channels and containers to interact with one another, and
with the system (see “Channels and containers” on page 59).

2.5.1 SOAP message handlers

CICS provides SOAP message handlers that you can include in your pipeline to
process SOAP 1.1 and SOAP 1.2 messages. You can use the SOAP message
handlers in a service requester or in a service provider pipeline.

On input, the SOAP message handlers parse inbound SOAP messages, and
extract the SOAP <Body> element for use by your application program. On
output, the handlers construct the complete SOAP message, using the <Body>
element that your application provides.

If you use SOAP headers in your messages, the SOAP handlers can invoke
user-written header processing programs that allow you to process the SOAP
headers on inbound messages, and to add them to outbound messages. For

Chapter 2. CICS support for Web services 57

58

example, a header processing program could check security information in a
SOAP header or SOAP body.

Tip: Do not confuse header processing programs with message handlers. A
header processing program can only be invoked by a CICS-supplied SOAP
message handler to process a specific kind of SOAP header.

A SOAP message handler, and optional header processing programs, are
specified in the pipeline configuration file using the <cics_soap_1.1 handler>
and the <cics_soap_1.2 handler> elements and their sub-elements.

Typically, you will need just one SOAP message handler in a pipeline. However,
there are some situations where more than one is needed. For example, you can
ensure that SOAP headers are processed in a particular sequence by defining
multiple SOAP message handlers.

SOAPFAULT commands

SOAP message handlers and header processing programs can use three API
commands which are new in CICS TS V3.1 to manage SOAP faults:

» EXEC CICS SOAPFAULT CREATE

Use this command to create a SOAP fault. If a SOAP fault already exists in
the context of the SOAP message that is being processed by the message
handler, the existing fault is overwritten.

» EXEC CICS SOAPFAULT ADD

Use this command to add either of the following items to a SOAPFAULT
object that was created with an earlier SOAPFAULT CREATE command:

— A subcode
— A fault string for a particular national language

If the fault already contains a fault string for the language, then this
command replaces the fault string for that language. In SOAP 1.1, only the
fault string for the original language is used.

» EXEC CICS SOAPFAULT DELETE

Use this command to delete a SOAPFAULT object that was created with an
earlier SOAPFAULT CREATE command.

These commands require information that is held in containers on the channel of
the CICS-supplied SOAP message handler. To use these commands, you must
have access to the channel. Only the following types of programs have this
access:

Implementing CICS Web Services

» Programs that are invoked directly from a CICS-supplied SOAP message
handler, including SOAP header processing programs.

» Programs deployed with the Web services assistant that have a channel
interface. Programs with a COMMAREA interface do not have access to the
channel.

Many of the options on the SOAPFAULT CREATE and SOAPFAULT ADD
commands apply to SOAP 1.1 and SOAP 1.2 faults, although their behavior is
slightly different for each level of SOAP. Other options apply to one SOAP level
or the other, but not to both, and if you specify any of them when the message
uses a different level of SOAP, the command will raise an INVREQ condition. To
help you determine which SOAP level applies to the message, container
DFHWS-SOAPLEVEL contains a binary fullword with one of the following values:

— 1-The request or response is a SOAP 1.1 message.
— 2 - The request or response is a SOAP 1.2 message.
— 10 - The request or response is not a SOAP message.

2.5.2 Channels and containers

Channels and containers are new resources in CICS TS V3.1 that provide the
capability to pass data from one application to another application.

» A channel is a logical resource that must contain one or more containers.

» A container is a named block of data designed for passing information
between programs.

The major advantage of using channels and containers compared to using a
COMMAREA is that the length of a container can exceed the 32 KB limit for
COMMAREA data. CICS uses channels and containers to pass data between
the message handlers of a pipeline.

All programs that are used as message handlers are invoked with the same
channel interface. The channel holds a number of containers. The containers
can be categorized as:

» Control containers

These are essential to the operation of the pipeline. Message handlers can
use the control containers to modify the sequence in which the message
handlers are processed.

» Context containers

In some situations, message handler programs need information about the
context in which they are invoked. CICS provides this information in a set of
context containers that are passed to the programs. Some of the context

Chapter 2. CICS support for Web services 59

containers hold information that you can change in your message handler.
For example, in a service provider pipeline, you can change the user ID and
transaction ID of the target application program by modifying the contents of
the appropriate context containers.

» Header containers

Containers that are specific to the header processing program interface.

» User containers

These contain information that one message handler needs to pass to
another. The use of user containers is entirely a matter for the message
handlers.

For each container, Table 2-2 explains what the function of the container is and
the type of access permitted to message handlers and header processing
programs.

Table 2-2 CICS Web service containers

Name Message Header Comment

handler processing
program

Control containers

DFHERROR Update Update Used to convey information about pipeline
errors to other message handlers.

DFHFUNCTION Update Update Indicates where in a pipeline a program is
being invoked.

DFHNORESPONSE Update Update In the request phase of a service requester
pipeline, indicates that the service provider is
not expected to return a response.

DFHREQUEST Update Read only Contains the request message that is
processed in the request phase of a pipeline.

DFHRESPONSE Update Read only Contains the response message that is
processed in the response phase of a pipeline.

Context containers

DFHWS-PIPELINE Read only Read only The name of the PIPELINE in which the
program is being run.

DFHWS-WEBSERVICE | Update Update The name of the WEBSERVICE that specifies
the execution environment.

DFHWS-URI Update Update The URI of the service for a service provider

pipeline only.

60 Implementing CICS Web Services

Name Message Header Comment

handler processing
program

DFHWS-SOAPACTION | Update Update The SOAPAction header associated with the
SOAP message in container DFHWS-BODY.

DFH-HANDLERPLIST Read only Read only The <handler_parameter_list> contents.

DFH-SERVICEPLIST Read only Read only The <service_parameter_list> contents.

DFHWS-APPHANDLER | Update Update The <apphandler> contents.

DFHWS-DATA Update Update Used in INVOKE WEBSERVICE (outbound
only) deployed with the CICS Web services
assistant. It holds the top-level data structure
that is mapped to and from a SOAP request.

DFHWS-TRANID Update Update The transaction ID with which the task in the
pipeline is running.

DFHWS-USERID Update Update The user ID with which the task in the pipeline
is running.

DFHWS-SOAPLEVEL Read only Read only The level of SOAP used in the message that is
being processed.

DFHWS-OPERATION Read only Read only In the response phase of a service requester
pipeline, contains the name of the operation
that is specified in a SOAP request.

Header containers

DFHHEADER None Update The single header block that caused the
header processing program to be driven.

DFHWS-XMLNS None Read only The list of name-value pairs that map
namespace prefixes to namespaces for the
XML content of the request.

DFHWS-BODY None Update The contents of the SOAP body.

2.6 Tools for developing CICS Web services

In this section, we provide a brief overview of the main tools for developing CICS
Web services. For more detailed information, see Application Development for
CICS Web Services, SG24-7126.

Chapter 2. CICS support for Web services 61

2.6.1 CICS Web services assistant

62

The CICS Web services assistant is a set of batch utilities that can help you
transform existing CICS applications into Web services and enable CICS
applications to use Web services provided by external providers. The assistant
supports rapid deployment of CICS applications for use in service providers and
service requesters, with minimal programming effort.

When you use the Web services assistant for CICS, you do not have to write
your own code for parsing inbound messages and for constructing outbound
messages; CICS maps data between the body of a SOAP message and the
application program’s data structure.

Resource definitions are, for the most part, generated and installed
automatically. You do have to define PIPELINE resources, but you can, in many
cases, use one of the pipeline configuration files that CICS provides.

The assistant can create a WSDL document from a simple language structure, or
a language structure from an existing WSDL document, and supports COBOL,
C/C++, and PL/I. It also generates information used to enable automatic run-time
conversion of the SOAP messages to containers and COMMAREAs, and vice
versa.

However, the assistant cannot deal with every possibility, and there are times
when you will need to take a different approach. For example:

» You don’t want to use SOAP messages.

If you prefer to use a non-SOAP protocol for your messages, you can do so.
However, your application programs will be responsible for parsing inbound
messages, and constructing outbound messages.

» You want to use SOAP messages, but don’t want CICS to parse them.

For an inbound message, the assistant maps the SOAP body to an
application data structure. In some applications, you may want to parse the
SOAP body yourself.

» The CICS Web services assistant does not support your application’s data
structure.

Although the CICS Web services assistant supports the most common data
types and structures, there are some that are not supported. For example,
OCCURS DEPENDING ON and REDEFINES on data description entries are
not supported. For full details on the data types and structures supported by
the CICS Web Services assistant, see the CICS Web Services Guide
(SC34-6458).

Implementing CICS Web Services

In this situation, you should consider one of the following alternatives:

— Provide a wrapper program that maps your application’s data to a format
that the assistant can support.

— Use WebSphere Developer for zSeries® (see 2.6.3, “WebSphere
Developer for zSeries” on page 65).

2.6.2 Web services assistant utility programs

The CICS Web services assistant provides two utility programs: DFHLS2WS and
DFHWS2LS. They are described in detail in this section.

DFHLS2WS

This program generates a Web services description and Web services binding
file from a language structure. Example 2-3 shows sample JCL for running
DFHLS2WS.

Example 2-3 DFHLS2WS JCL sample

//LS2WS JOB *accounting information’,name,MSGCLASS=A
// SET QT="°*"

//JAVAPROG EXEC DFHLS2WS,

// TMPFILE=&QT.&SYSUID.&QT

//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.CICS.SDFHSAMP

REQMEM=DFHOXCP4

RESPMEM=DFHOXCP4

LANG=COBOL

PGMNAME=DFHOXCMN

URI=exampleApp/inquireSingle

PGMINT=COMMAREA
WSBIND=/u/exampleapp/wsbind/inquireSingle.wshind
WSDL=/u/exampleapp/wsd1/inquireSingle.wsdl

/*

The main input parameters are as follows:
» PDSLIB

Specifies the name of the partitioned data set that contains the high-level
language data structures to be processed.

» REQMEM

Specifies the name of the partitioned data set member that contains the
high-level language structure for the Web service request.

Chapter 2. CICS support for Web services 63

— For a service provider, the Web service request is the input to the
application program.

— For a service requester, the Web service request is the output from the
application program.

» RESPMEM

Specifies the name of the partitioned data set member that contains the
high-level language structure for the Web service response:

— For a service provider, the Web service response is the output from the
application program.

— For a service requester, the Web service response is the input to the
application program.

» LANG
Specifies the language of the language structure to be created.
» PGMNAME

Specifies the name of the target CICS application program that is being
exposed as a Web service.

» URI

In a service provider, this parameter specifies the relative URI that a client will
use to access the Web service. CICS uses the value specified when it
generates a URIMAP resource from the Web service binding file created by
DFHLS2WS. The parameter specifies the path component of the URI to
which the URIMAP definition applies.

» PGMINT

For a service provider, specifies how CICS passes data to the target
application program (using a COMMAREA or a channel).

» WSBIND
Specifies the HFS name of the Web service binding file.
» WSDL
Specifies the HFS name of the Web service description file.

DFHWS2LS

This program generates a language structure and Web services binding file from
a Web services description. Example 2-4 shows sample JCL for running
DFHWS2LS.

Example 2-4 DFHWS2LS JCL sample

//WS2LS JOB ’accounting information’,name,MSGCLASS=A
// SET QT="7"

64 Implementing CICS Web Services

//JAVAPROG EXEC DFHWS2LS,

// TMPFILE=8&QT.&SYSUID.&QT

//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.CICS.SDFHSAMP
REQMEM=CPYBK1

RESPMEM=CPYBK2

LANG=COBOL

PGMNAME=DFHOXCMN
URI=exampleApp/inquireSingle
PGMINT=COMMAREA
WSBIND=/u/exampleapp/wsbind/inquireSingle.wshind
WSDL=/u/exampleapp/wsd1/inquireSingle.wsdl
/*

2.6.3 WebSphere Developer for zSeries

WebSphere Developer for zSeries V6 is based on the IBM Rational® Software
Development Platform and facilitates the development of both Java- and
z/OS-based applications. It includes capabilities that make traditional z/OS
mainframe development, Web development, and integrated composite
development faster and more efficient. In particular, WebSphere Developer
contains tools that support the development of Web services and the XML
enablement of existing CICS COBOL applications.

The XML Services for the Enterprise (XSE) capability of WebSphere Developer
provides tools that let you adapt COBOL-based applications so that they can
consume and produce XML messages. XSE supports the creation of driver
programs that work with existing CICS (or IMS™) applications.

The Web Services Enablement wizard is the XSE tool that supports the
bottom-up approach for creating Web services based on existing CICS COBOL
programs. It takes as input the COMMAREA copybook. The XML structure and
data types are then derived from the COBOL data declarations. Based on these,
the Web Services Enablement wizard generates the set of artifacts shown in
Figure 2-10 on page 66.

Chapter 2. CICS support for Web services 65

66

COBOL copybook
WSBind

Conversion program

Input converter
WebSphere

Developer for
zSeries Output converter
XSE

Driver converter

Document schema
\Tinitions (.xsd)
WSDL

Figure 2-10 WebSphere Developer for zSeries

The artifacts generated by the Web Services Enablement wizard are:

>

Input converter

A COBOL program that takes an incoming XML document and maps it into
the corresponding COBOL data structure that the existing CICS application
expects.

Output converter

A COBOL program that takes the COBOL data results returned from the
CICS application and maps them to an XML document.

Converter driver

A COBOL program that shows how the input and output converters can be
used to interact with the existing CICS application.

Input document XML schema definition (XSD)

XML schema that describes the incoming XML document.
Output document XML schema definition (XSD)

XML schema that describes the outgoing XML document
WSDL

Web service description file.

Implementing CICS Web Services

» WSBind
Web service binding file.

For additional information visit the WebSphere Developer for zSeries Web site at:

http://www.ibm.com/software/awdtools/devzseries/

2.7 Catalog manager example application

The CICS catalog manager example application is a COBOL application
designed to illustrate best practice when connecting CICS applications to
external clients and servers.

The example is constructed around a simple sales catalog and order processing
application, in which the end user can perform these functions:

» List the items in a catalog (implemented as a VSAM file)

» Inquire on individual items in the catalog

» Order items from the catalog

The base application has a 3270 user interface, but the modular structure, with
well-defined interfaces between the components, makes it possible to add further
components. In particular, the application comes with Web services support,

which is designed to illustrate how you can extend an existing application into the
Web services environment.

2.7.1 The base application

Figure 2-11 on page 68 shows the structure of the base application.

Chapter 2. CICS support for Web services 67

68

mapsets
EGUI DFHOXS1
DFHOXS2

oS CIcs1
presentation manager
(DFHOXGUI) [|
; } i b i :
E 01INQC.. | E 01ING@S. : E 010RDR. |
commarea - $) ; ‘) & ¢)
Catalog manager
(DFHOXCMN)
| | I
[OfNQC. | O1INGS. | O1ORDR. | Eomspo.} [01STKO. |
‘ l l Outb;:und WebService?
STUB Datastore Type = VSAM N \%
or
or
Dummy VSAM Dummy Dispatch Dummy
data handler data handler dispatch manager manager stock manager
(DFHOXSDS) (DFHOXVDS) (DFHOXSOD) (DFHOXWOD) (DFHOXSSM)
L
Pipeline
i (EXPIPEO2) :
e —
T
Outbound WebService URI
' VSAM SOAP Request SOAP Request
Catalog Order
5 Order
data 2:?‘3:;?” dispatch endpoint
(EXMPCAT) (DFHOF;(ODE) (ExampleAppDispatch)

CICSs2 WAS

Figure 2-11 Basic catalog manager application structure

The components of the base application are:

1. A BMS presentation manager (DFHOXGUI) that supports a 3270 terminal or
emulator, and that interacts with the main catalog manager program.

2. A catalog manager program (DFHOXCMN) that is the core of the example
application, and that interacts with several back-end components.

3. The back-end components are:

a. A data handler program that provides the interface between the catalog
manager program and the data store. The base application provides two
versions of this program. They are the VSAM data handler program
(DFHOXVDS), which stores data in a VSAM data set; and a dummy data
handler (DFHOXSDS), which does not store data, but simply returns valid
responses to its caller. Configuration options let you choose between the
two programs.

Implementing CICS Web Services

b. A dispatch manager program that provides an interface for dispatching an
order to a customer. Again, configuration options let you choose between
the two versions of this program: DFHXOWOD is a service requester that
invokes a remote order dispatch end point, and DFHX0SOD is a dummy
program that simply returns valid responses to its caller. There are two
equivalent order dispatch endpoints: DFHOXODE is a CICS service
provider program; ExampleAppDispatchOrder.ear is an enterprise archive
that can be deployed in WebSphere Application Server or similar
environments.

¢. A dummy stock manager program (DFHOXSSM) that returns valid
responses to its caller, but takes no other action.

2.7.2 Web services support for the catalog example application

The Web services support extends the example application, providing a Web
client front end and two versions of a Web services endpoint for the order
dispatcher component.

The Web client front end and one version of the Web services endpoint are
supplied as enterprise archives (EARs) that will run in the following
environments:

» WebSphere Application Server Version 5 Release 1 or later

» WebSphere Studio Application Developer Version 5 Release 1 or later with a
WebSphere unit test environment

» WebSphere Studio Enterprise Developer Version 5 Release 1 or later with a
WebSphere unit test environment

The second version of the Web services endpoint is supplied as a CICS service
provider application program (DFHOXODE).

Figure 2-12 on page 70 shows the structure of the Web services catalog
application.

Chapter 2. CICS support for Web services 69

Workstation

Browser]]= -----------:
WAS ExampleAppElientear M

0
SOAP Request g

CPIH .
Pipeline

I | |

commarea | O1INQC. . | 01INQS. | | 01ORDR. .

Catalog manager

(DFHOXCMN)
[
B — —— - -
L01INQC. . | O1INGS. | [O1ORDR. 01DSPO. | 01STKO. .
+ 1
VSAM Dispatch Dummy
data handler manager stock manager
(DFHOXVDS) (DFHOXWOD) (DFHOXSSM)
.............. L.
Pipeline
CICS1 (EXPIPE02) |
- SOAP | Request
Catalog Order
VSAM data dispatch endpoint
(EXMPCAT)
~ CICS2 or WAS

Figure 2-12 Web services catalog manager application structure

In this configuration, the application is accessed through:

» A Web browser client connected to WebSphere Application Server, in which
ExampleAppClient.ear is deployed.

The order dispatch endpoint can be:

» A CICS service provider application

» A J2EE service provider application (ExampleAppDispatchOrder.ear) running
in WebSphere Application Server

70 Implementing CICS Web Services

Part 2

Web service
configuration

In this part we provide detailed instructions on how we configured our test CICS
environment to support Web services using both HTTP and WebSphere MQ as
transport mechanisms. We also describe how we deployed service requester
and service provider applications in WebSphere Application Server, and how we
used Web services to connect between WebSphere Application Server and
CICS.

In chapter 5, we introduce the service integration bus and we outline the
configuration steps for connecting to a CICS Web service via the bus.

© Copyright IBM Corp. 2006. All rights reserved. 71

72 Implementing CICS Web Services

Web services using HTTP

In this chapter we describe how we configured our test CICS environment to
support Web services using HTTP as the transport mechanism.

© Copyright IBM Corp. 2006. All rights reserved.

73

3.1 Preparation

After outlining our test configuration (Figure 3-1), we explain how we configured
CICS as a service provider. In Section 3.2, “Configuring CICS as a service
provider” on page 76, we show details of how we set up the environment,
including:

» Configuring code page support

» Configuring the HFS file system

» Enabling the service provider application in CICS

» Deploying the service requester client in WebSphere Application Server for
Windows®

Managing the WebSphere Application Server connection pool for Web
services outbound connections

v

In Section 3.3, “Configuring CICS as a service requester” on page 94, we show
how we configured the same CICS region to act as a service requester,
including:

» Enabling the service requester application in CICS
» Deploying the service provider application in WebSphere Application Server
for z/OS

z/0OS V1.6 mvsg3.mop.ibm.com

CICS TS V3.1
CIWSR3C1
Windows 2000 Cam21-Pc3
Catalog manager Dispatch manager
WebSphere Application L (service provider) (service requester)
Server V6 HTTP /

Catalog.ear

z/0S V1.6 tx1.mop.ibm.com HTTP

WebSphere Application
Server V6.0.1 for zZOS

Order dispatch
Endpoint
(service provider)

Figure 3-1 Software components: Web services using HTTP transport

74 Implementing CICS Web Services

We do not provide information on how to install the software products and we
assume the reader has a working knowledge of both CICS and WebSphere

Application Server.

3.1.1 Software checklist

For the configuration shown in Figure 3-1 we used the levels of software shown

in Table 3-1.

Table 3-1 Software used in the HTTP scenarios

Windows

z/0S

Windows 2000 SP4

z/OS V1.6

IBM WebSphere Application Server - ND
V6.0.2.0

WebSphere Application Server for z/OS
V6.0.1

CICS Transaction Server V3.1

Internet Explorer® V6.0

Our J2EE application

» Catalog.ear
Catalog manager service requester
application

CICS-supplied catalog Manager
application

Our user-supplied CICS programs
» SNIFFER (message handler program)
» CIWSMSGH (message handler
program)
Our J2EE application
» dispatchOrder.ear
Catalog application service provider

3.1.2 Definition checklist

The z/OS definitions we used to configure the scenario are listed in Table 3-2.

Table 3-2 Definition checklist

Value CICS TS WebSphere Application
Server

IP name mvsg3.mop.ibm.com tx1.mop.ibm.com

IP address 9.100.193.167 9.100.193.122

TCP/IP port 13301 13880

Job name CIWSR3CH1 CITGRS1S

Chapter 3. Web services using HTTP 75

Value CICS TS WebSphere Application
Server

APPLID A6POR3C1

TCPIPSERVICE R3C1

Provider PIPELINE EXPIPEO1

Requester PIPELINE EXPIPEO2

3.1.3 The sample application

For our tests we used the sample program described in Section 2.7, “Catalog
manager example application” on page 67. We do not document how to install
the sample application itself, because this is explained in detail in CICS Web

Services Guide V3.1, SC34-6458.

3.2 Configuring CICS as a service provider

In this section we discuss how we configured CICS as a service provider. The
configuration we used is shown in Figure 3-2.

Windows 2000 Cam21-Pc3

WebSphere Application
Server V6

Catalog.ear |+

HTTP
[

z/0S V1.6 mvsg3.mop.ibm.com

| R3C1

CICS TS V3.1 CIWSR3C1

PIPELINE:
EXPIPEO1

Catalog manager
(service provider)

TCPIPSERVICE:

Figure 3-2 CICS as a service provider

76 Implementing CICS Web Services

3.2.1 Configuring code page support

We configured our z/OS system to support conversions between the two coded
character sets used by the example application; these are shown in Example 3-1.

Example 3-1 CCSID description

037 EBCDIC Group 1: USA, Canada (z/0S), Netherlands, Portugal,
Brazil, Australia, New Zealand

1208 UTF-8 Level 3

To do this we added the statements shown in Example 3-2 to the conversion
image for our z/OS system.
Example 3-2 Required conversions

CONVERSION 037,1208;
CONVERSION 1208,037;

We used the SET UNI=31 z/OS command to activate the updated conversion
image, where 31 is the suffix of the CUNUNIxx member of SYS1.PARMLIB.

For more information on code page support, see CICS Installation Guide V3.1,
GC34-6426.

Tip: With z/0OS V1R7, the Unicode Services environment can be dynamically
updated when a conversion service is requested. If the appropriate table
needed for the service is not already loaded into storage, Unicode Services
will load the table without requiring an IPL or disrupting the caller’s request.
For more information, see z/OS Support for Unicode: Unicode Services,
SA22-7649-06.

3.2.2 Configuring CICS

To enable CICS to receive Web service requests using HTTP we performed the
following tasks:

» Updating CICS system initialization table (SIT) parameters

» Creating the HFS directories

» Configuring the TCPIPSERVICE resource definition

» Customizing the pipeline configuration file

» Writing a message handler program that changes the transaction ID
» Configuring the PIPELINE resource definition

Chapter 3. Web services using HTTP 77

78

» Installing the TCPIPSERVICE and PIPELINE definitions

Updating SIT parameters

Since we decided to use HTTP as the transport for the service request flows, we
added the following SIT parameter:

TCPIP=YES

We then restarted the CICS region to put the parameter into effect.

Creating the HFS directories

Next we created the HFS directories (Example 3-3) used in the PIPELINE
definition.

Example 3-3 HFS directories used in the PIPELINE definition

/CINS/R3C1/config
/CIWS/R3C1/shelf
/CIWS/R3C1/wsbind/provider
/CIWS/R3C1/wsbind/requester

The CICS region user ID must have read permission to the /config directory, and
update permission to the /shelf directory.

Configuring the TCPIPSERVICE definition

Next we logged onto CICS and created the TCPIPSERVICE resource definition
in CICS using the command:

CEDA DEFINE TCPIPSERVICE(R3C1) GROUP(R3C1)

We defined the R3C1 TCPIPSERVICE as shown in Figure 3-3.

Implementing CICS Web Services

/'OVERTYPE TO MODIFY CICS RELEASE = 0648
CEDA DEFine TCpipservice(R3C1)

TCpipservice : R3Cl

GROup : R3C1

DEscription ==> TCPIPSERVICE DEFINITION FOR CATALOG APPLICATION

Urm ==> NONE

POrtnumber ==> 13301 1-65535

STatus ==> Open Open | Closed

PROtoco] ==> Http Iiop | Http | Eci | User
TRansaction ==> CWXN

Backlog ==> 00001 0-32767

TSqprefix ==>

Ipaddress ==>

SOcketclose ==> No No | 0-240000 (HHMMSS)
Maxdatalen ==> 000032 3-524288
SECURITY

SS1 ==> No Yes | No | Clientauth

CErtificate ==>
(Mixed Case)

SYSID=R3C1 APPLID=A6POR3C]
- /

Figure 3-3 CEDA DEFINE TCPIPSERVICE

We set the PORTNUMBER to 13301, the PROTOCOL to HTTP, and the URM to
NONE. We allowed the other attributes to default, and we installed the R3C1

group.

The default setting for the SOCKETCLOSE attribute is NO. Therefore, when a
connection is made between a Web service client and CICS, by default CICS
keeps the connection open until the Web service client closes the connection.
You could set a value (in seconds) for the SOCKETCLOSE attribute if you want
to close a persistent connection after the timeout period is reached.

Recommendation: Do not set the SOCKETCLOSE attribute to 0 because
this will close the connection after each request.

We used the default setting for SOCKETCLOSE and we configured WebSphere
Application Server to timeout idle persisting connections (see “Managing the
WebSphere Application Server connection pool” on page 89).

Chapter 3. Web services using HTTP 79

80

Customizing the pipeline configuration file

The default pipeline alias transaction ID used for inbound HTTP Web service
requests is CPIH. We wanted to assign different transaction IDs to different
service requests. To do that, we wrote a message handler program CIWSMSGH
that replaced the transaction ID in the DFHWS-TRANID container with a
transaction ID based on the service request (which can be retrieved from the
DFHWS-WEBSERVICE container).

To activate the message handler program, we needed to make changes to the
PIPELINE configuration file. We copied the file, basicsoap12provider.xml to the
/CIWS/R3C1/config directory shown in Example 3-3 on page 78. The change we
made is shown in Example 3-4.

Example 3-4 Service provider configuration file

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline
xmins="http://www.ibm.com/software/htp/cics/pipeline"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">
<transport>
<default_transport_handler_list>
<handler>
<program>CIWSMSGH</program>
<handler_parameter list/>
</handler>
</default_transport_handler_list>
</transport>
<service>
<terminal_handler>
<cics_soap_1.2 handler/>
</terminal_handler>
</service>
<apphandler>DFHPITP</apphandler>
</provider pipeline>

Note: The <default_transport handler_ 1ist> specifies the message
handlers that are invoked by default when any transport is in use.

Writing the message handler program

In this section we show how we used a message handler program to change the
default transaction ID (CPIH) to a transaction ID based on the Web service
request in the DFHWS-WEBSERVICE container.

Implementing CICS Web Services

Table 3-3 shows the relationship that we established between the transaction 1D
and the Web service request.

Table 3-3 Transaction ID to Web service name relationship

Transaction ID Web service request
INQS inquireSingle

INQC inquireCatalog

ORDR placeOrder

There are many reasons why you might want to change the transaction ID based
on the service request, for example:

Security You may want to use transaction security to control
access to specific services.

Priority You may want to assign different performance goals to
specific services.

Accounting You may need to charge users based on access to
different services.

We show how we used transaction security to control access to specific services
in Section 8.2, “Basic security configuration” on page 250.

Before we activated the message handler program we needed to create the new
TRANSACTION definitions with the same characteristics as the CICS-supplied
definition for CPIH. We used the CEDA COPY commands shown in Example 3-5
and then installed the definitions.

Example 3-5 CICS definitions - TRANSACTION

CEDA COPY TRANSACTION(CPIH) GROUP(DFHPIPE) TO(R3C1) AS(INQS)
CEDA COPY TRANSACTION(CPIH) GROUP(DFHPIPE) TO(R3C1) AS(INQC)
CEDA COPY TRANSACTION(CPIH) GROUP(DFHPIPE) TO(R3C1) AS(ORDR)

The program logic we used for the message handler program is shown in
Example 3-6 through Example 3-9. The full program is shown in Section A.1,
“Sample message handler program - CIWSMSGH” on page 500.

Note: A message handler can be written in any of the languages CICS
supports. The CICS commands in the DPL subset can be used.

Chapter 3. Web services using HTTP 81

Example 3-6 shows the flow of control of the message handler program. The
program will only execute for Web service requests.

Example 3-6 Message handler program - Flow of control

007700 IF WS-DFHFUNCTION equal 'RECEIVE-REQUEST'

007800 PERFORM VALIDATE-REQUEST THRU END-VAL-REQUEST
007900 PERFORM CHANGE-TRANID THRU END-CHANGE-TRANID
008000 EXEC CICS

008100 DELETE CONTAINER('DFHRESPONSE')

008200 END-EXEC

008300 END-IF
008400 EXEC CICS RETURN END-EXEC.

Tip: When the message handler processes a request, it must delete the
DFHRESPONSE container if a transition to the response phase of the pipeline
will not take place.

Example 3-7 shows the code to get the Web service request from the
DFHWS-WEBSERVICE container.

Example 3-7 Message handler program - Get the DFHWS-WEBSERVICE container

010300 EXEC CICS

010400 GET CONTAINER('DFHWS-WEBSERVICE')
010500 SET (ADDRESS OF CONTAINER-DATA)
010600 FLENGTH(CONTAINER-LEN)

010700 END-EXEC.

Example 3-8 shows the code that determines the new transaction ID, replacing
the default transaction ID in the DFHWS-TRANID container.

Example 3-8 Message handler program - Determine new transaction ID

011400%-----=--=mmmmmmm CHANGE DEFAULT TRANID CPIH/CPIL ---------
011500 CHANGE-TRANID.

011600 EXEC CICS GET CONTAINER('DFHWS-TRANID')

011700 SET(ADDRESS OF CONTAINER-DATA)

011800 FLENGTH(CONTAINER-LEN)

011900 END-EXEC.

012000 IF WS-WEBSERVICES = 'inquireSingle'

012100 MOVE 'INQS' TO CA-TRANID

012200 PERFORM CHANGE-CONTAINER THRU END-CHANGE-CONTAINER

012300 END-IF
012400 IF WS-WEBSERVICES = 'inquireCatalog'

82 Implementing CICS Web Services

012500 MOVE 'INQC' TO CA-TRANID

012600 PERFORM CHANGE-CONTAINER THRU END-CHANGE-CONTAINER
012700 END-IF

012800 IF WS-WEBSERVICES = 'placeOrder'

012900 MOVE 'ORDR' TO CA-TRANID

013000 PERFORM CHANGE-CONTAINER THRU END-CHANGE-CONTAINER
013100 END-IF.

013200 END-CHANGE-TRANID. EXIT.

Example 3-9 shows how the program changes the transaction ID in the
DFHWS-TRANID container, and performs an EXEC CICS PUT CONTAINER.

Example 3-9 Message handler program - Change transaction ID

013600 CHANGE-CONTAINER.

013700 MOVE CA-TRANID TO CONTAINER-DATA(1:4)
013800 EXEC CICS PUT CONTAINER('DFHWS-TRANID')
013900 FROM(CONTAINER-DATA)

014000 FLENGTH(CONTAINER-LEN)

014100 END-EXEC.

015000 END-CHANGE-CONTAINER. EXIT.

Configuring the PIPELINE definition

We then defined the pipeline for the CICS service provider using the following
CICS command:

CEDA DEFINE PIPELINE(EXPIPEO1) GROUP(R3C1)

We defined the EXPIPEO1 pipeline as shown in Figure 3-4 on page 84.

Chapter 3. Web services using HTTP

83

e ™
OVERTYPE TO MODIFY CICS RELEASE = 0640
CEDA DEFine PIpeline(EXPIPEQL)

PIpeline : EXPIPEOL

Group : R3C1

Description ==>

STatus ==> Enabled Enabled | Disabled

Configfile ==> /CIWS/R3C1/config/ITSO_7206_basicsoapl2provider.xml
(Mixed Case) ==>

SHelf ==> [CIWS/R3C1/shelf
(Mixed Case) ==>

v

v

Wsdir : /CIWS/R3C1/wsbind/provider/
(Mixed Case)

_ SYSID=R3C1 /-\PPLID=/-\6POR3C1/

Figure 3-4 CEDA DEFINE PIPELINE

Tip: The colons in front of Wsdir on the CEDA screen in Figure 3-4 mean that
you are not able to enter input on the lines. You must press F8 to be able to
enter the path for the directory.

» We set CONFIGFILE to the name of our pipeline configuration file:
/CIWS/R3C1/config/ITSO_7206_basicsoap12provider.xml

Note: In a subsequent section we show how we modified the
basicsoap12provider.xml file, which is why we did not use the pipeline
configuration file provided in the /usr/Ipp/cicsts/cicsts31/samples/pipelines
directory.

» We set SHELF to the name of the shelf directory:
/CIWS/R3C1/shelf

84 Implementing CICS Web Services

» We copied the following wsbind files to directory
/CIWS/R3C1/wsbind/provider from the CICS supplied directory
/usr/lpp/cicsts/cicsts31/samples/webservices/wsbind/provider/:
— inquireSingle.wsbind
— inquireCatalog.wsbind
— placeOrder.wsbind

Note: /ust/Ipp/cicsts/cicsts31 is our CICS HFS install root.

» We set WSDIR to the Web service binding directory that contains the wsbind
files for the sample application:

/CIWS/R3C1/wsbind/provider/

Installing the PIPELINE definition

We then used CEDA to install the PIPELINE definition. When the PIPELINE is
installed CICS scans the wsdir directory, and dynamically creates
WEBSERVICE and URIMAP definitions for the wsbind files found.

Figure 3-5 shows a CEMT INQUIRE PIPELINE for EXPIPEO1.

/'INQUIRE PIPELINE
RESULT - OVERTYPE TO MODIFY
Pipeline(EXPIPEO1)
Enablestatus(Enabled)
Configfile(/CIWS/R3C1/config/ITSO_7206 basicsoapl2provider.xml)
Shelf(/CIWS/R3C1/shelf/)
Wsdir(/CIWS/R3C1/wsbind/provider/)

SYSID=R3C1 APPLID=A6POR3C1
N J

Figure 3-5 CEMT INQUIRE PIPELINE - EXPIPEO1

WEBSERVICE resource definitions

In our configuration the WEBSERVICE resource definitions are dynamically
installed when the PIPELINE is installed. Optionally, we could define and install
the Web services using the CEDA DEFINE WEBSERVICE command; however,
this is not normally necessary when using the CICS Web services assistant.

Note: The name for an explicitly defined WEBSERVICE is limited to 8
characters in length, whereas the automatically installed Web service names
can be up to 32 characters in length.

Chapter 3. Web services using HTTP 85

86

When a Web service is dynamically installed, the name of the service is taken
from the wsbind file. Figure 3-6 shows the Catalog manager application Web
services dispatchOrder, inquireCatalog, inquireSingle and placeOrder.

/INQUIRE WEBSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
Webs (inquireCatalog) Pip(EXPIPEO1)
Ins Uri($606021) Pro(DFHOXCMN) Com Dat (20050408)
Webs (inquireSingle) Pip(EXPIPEO1)
Ins Uri($606023) Pro(DFHOXCMN) Com Dat (20050408)
Webs (placeOrder) Pip(EXPIPEOL)
Ins Uri($606025) Pro(DFHOXCMN) Com Dat (20050408)
S SYSID=R3C1 APPLID=A6POR3C1)

Figure 3-6 CEMT INQUIRE WEBSERVICE

URIMAP resource definition

In our configuration the URIMAP resource definitions are dynamically installed
when the PIPELINE is installed. Optionally, we could define and install them
manually using the CEDA DEFINE URIMAP command; however, this is not
normally necessary when using the CICS Web services assistant.

Using the URIMAP to change the default transaction ID

As an alternative to using the message handler program to change the
transaction IDs the services run under, we could have used the URIMAP
resource definition. That would, however, mean that we would need to define a
URIMAP for each deployed Web service.

A sample resource definition that could have been used is shown in
Example 3-10.

Example 3-10 CEDA URIMAP definitions

CEDA DEFINE URIMAP(INQS) GROUP(R3C1) HOST(*)
PATH(/exampleApp/inquireSingle)
PIPELINE(EXPIPEO1) TRANSACTION(INQS) USAGE(PIPELINE)
WEBSERVICE (inquireSingle)
CEDA DEFINE URIMAP(INQC) GROUP(R3C1) HOST(*)
PATH(/exampleApp/inquireCatalog)
PIPELINE(EXPIPEO1) TRANSACTION(INQC) USAGE(PIPELINE)
WEBSERVICE (inquireCatalog)
CEDA DEFINE URIMAP(ORDR) GROUP(R3C1) HOST(*)
PATH(/exampleApp/placeOrder)
PIPELINE(EXPIPEO1) TRANSACTION(ORDR) USAGE(PIPELINE)
WEBSERVICE (placeOrder)

Implementing CICS Web Services

Figure 3-7 shows a URIMAP resource definition dynamically installed when the
PIPELINE is installed.

/INQUIRE URIMAP
RESULT - OVERTYPE TO MODIFY

Urimap ($606021)
Usage(Pipe)
Enablestatus(Enabled)
Analyzerstat (Noanalyzer)
Scheme (Http)
Redirecttype(None)
Tcpipservice()
Host (*)
Path(/exampleApp/inquireCatalog)
Transaction(CPIH)
Converter()
Program()
Pipeline(EXPIPEOL)
Webservice(inquireCatalog)
Userid()
Certificate()
Ciphers()
Templatename()

_ SYSID=R3C1 APPLID=A6POR3C1

Figure 3-7 CEMT INQUIRE URIMAP

3.2.3 Configuring WebSphere Application Server on Windows

In this section we discuss how we deployed the Web service client on
WebSphere Application Server for Windows. We discuss how we used the
WebSphere administrative console to install the Web service client.

Installing the service requester

CICS TS V3.1 provides a sample Web service client, ExampleAppClient.ear.
This application archive is built at the J2EE 1.3 level. We planned to use the
client in a J2EE 1.4 environment (WebSphere Application Server V6), therefore
we migrated the client. We called the new application archive file Catalog.ear.

Note: The CICS-supplied ExampleAppClient.ear file is located in the
/usr/Ipp/cicsts/cicsts31/samples/webservices/client directory.

Chapter 3. Web services using HTTP 87

Deploying the Catalog.ear file on WebSphere Application Server

Next we deployed the Catalog.ear file on WebSphere Application Server for
Windows. To log on to the WebSphere administrative console, we opened a Web
browser window and entered the following url:

http://cam21-pc11:9060/admin
We entered a user ID and were presented with the window shown in Figure 3-8.
We clicked Local file system and then clicked Browse to locate the EAR file:

F:\Web Services Sysprog\LAN book\addmat\src\ears\Catalog.ear

Walcome

Servers

Preparing for the application installation

B applications

Enterprise Specify the EAR, WAR or JAR module to upload and
Applications install,

Install Hew

application Path to the new application.

=)
Resources Lacal file system

Specify path
|F:"-,'l.l'l.l'eb Services Sl,lsprcn;l Browsze. ..

Security

Environrment
" Remote fila systam

Systermn administration
Monitaring and Tuning
Troubleshooting

Context root
Service integration |

Used only for standalone Web
UDDI rnodules [war files)

Cancel

Figure 3-8 WebSphere administrative console - Install new application

We clicked Next — Next — Next — Next — Finish and then saved the
configuration.

Next we clicked Enterprise Applications, selected the Catalog application, and
clicked Start to start the application.

88 Implementing CICS Web Services

Managing the WebSphere Application Server connection pool

Since our service requester runs in WebSphere Application Server, the
application can take advantage of the connection pooling for Web services HTTP
outbound connections.

The HTTP transport properties are set using the JVM™ custom property panel in
the WebSphere administrative console. The following properties apply to our
scenario:

» com.ibm.websphere.webservices.http.connectionTimeout

This property specifies the interval, in seconds, after which a connection
request times out and the WebServicesFault("Connection timed out") error
occurs. The wait time is needed when the maximum number of connections in
the connection pool is reached. For example, if the property is set to 300 and
the maximum number of connections is reached, the connector waits for 300
seconds until a connection is available. After 300 seconds, the
WebServicesFault("Connection timed out") error occurs if a connection is not
available. If the property is set to 0 (zero), the connector waits until a
connection is available.

We allowed this property setting to default to 300 seconds.
» com.ibm.websphere.webservices.http.maxConnection

This property specifies the maximum number of connections that are created
in the HTTP outbound connector connection pool. If the property is set to 0
(zero), the com.ibm.websphere.webservices.http.connectionTimeout property
is ignored. The connector attempts to create as many connections as allowed
by the system.

We allowed this property setting to default to 50.
» com.ibm.websphere.webservices.http.connectionPoolCleanUp

This property specifies the interval, in seconds, between runs of the
connection pool maintenance thread. When the pool maintenance thread
runs, the connector discards any connections remaining idle for longer than
the time set in com.ibm.websphere.webservices.http.connectionldleTimeout

property.
We allowed this property setting to default to180 seconds.
» com.ibm.websphere.webservices.http.connectionldleTimeout

This property specifies the interval, in seconds, after which an idle connection
is discarded.

We changed this property setting from the default (5 seconds) to 60 seconds
because we wanted the connections to persist for a longer period.

Chapter 3. Web services using HTTP 89

We used the WebSphere administrative console to change the connection idle
timeout from the default 5 seconds to 60 seconds:

We clicked Servers — Application servers — server1 — Java and Process
management — Environment Entries —» New, and on the presented window,
we entered the value shown in Figure 3-9.

We restarted the application server to activate the change.

Application servers

Application servers > serverl > Custom Properties

Specifies arbitrary name and value pairs of data, The value is a string that can set internal system
configuration properties,

Preferances

M Delete

¥ P

Select| Marme & Value O Description

r comiibm.websphere webservices. http, connectionIdleTimeout | &0 Idle timeout
value
changed from
3 to el
seconds

Total 1

Figure 3-9 WebSphere admin console - Setting connection idle timeout

Tip: For more information on the WebSphere Application Server connection
pooling properties see “Additional HTTP transport properties for Web services
applications” in the WebSphere Application Server information center.

3.2.4 Testing the configuration

In this section we discuss how we tested the configuration by invoking the Web
client application running on WebSphere Application Server for Windows.

Running the Web client application
We started a browser session and entered the url:

http://cam21-pcl11:9080/CatalogWeb/Welcome.jsp

Implementing CICS Web Services

The window shown in Figure 3-10 was displayed.

ORDER ITEM

CICS Example - Catalog Application

Welcome to the CICS Catalog Example
Application

LIST ITEMS
Please select an option from the menu
INQUIRE

CONFIGURE

CICS Transaction Server for z/0S

Figure 3-10 CICS - Catalog application

We clicked CONFIGURE, and the window in Figure 3-11 was presented. We
entered the following urls:

>

Inquire catalog
http://mvsg3.mop.ibm.com:13301/exampleApp/inquireCatalog
Inquire item
http://mvsg3.mop.ibm.com:13301/exampleApp/inquireSingle
Place order
http://mvsg3.mop.ibm.com:13301/exampleApp/placeOrder

and clicked SUBMIT.

Chapter 3. Web services using HTTP

91

92

Configure Application

LIST ITEMS

m Inquire Catalog Service Endpoint

ORDER 1ITEMESLLEL http://fmvsg3.mop.ibm.com:13301/exampleApp/finquireCatalog
New http://mvsg3. mop.ibm.com:13301/exampleApp/finquireCatalog

Inquire Item Service Endpoint

Current http://mvsg3. mop.ibm.com:13301fexampleApp/finquireSingle
New http://mvsg3.mop.ibm.com:13301/exampleApp/finquireSingle

Place Order Service Endpoint

Current http://mvsg3. mop.ibm.com:13301/exampleApp/placeCrder
New http://mvsg3. mop.ibm.com:13301/exampleApp/placeOrder

SUBMIT

Figure 3-11 CICS - Catalog application configuration

Next we started three Web browser sessions and entered the URL for each
browser:

http://cam21-pc11:9080/Catalogheb/Welcome.jsp
The Catalog application welcome page (Figure 3-10 on page 91) was presented.
We then invoked a different service in each of the browsers:
» LIST ITEMS in browser one
» INQUIRE in browser two
» ORDER ITEM in browser three
From a CICS 3270 screen we used the CICS Execution Diagnostic Facility (EDF)

to intercept each of the INQC, INQS and ORDR transactions. We then used the
CEMT INQUIRE TASK command to view the in-flight transactions (Figure 3-12).

Implementing CICS Web Services

INQUIRE TASK
STATUS: RESULTS - OVERTYPE TO MODIFY

Tas (0000052) Tra(CPIH) Sus Tas Pri(001)

Sta(U) Use(CICSUSER) Uow(BE06893FAF5D9305) Hty(RZCBNOTI)
Tas (0000053) Tra(INQC) Sus Tas Pri(001)

Sta(U) Use(CICSUSER) Uow(BE06893FDD7796AE) Hty(EDF)
Tas (0000057) Tra(CPIH) Sus Tas Pri(001)

Sta(U) Use(CICSUSER) Uow(BE06895367D28546) Hty(RZCBNOTI)
Tas (0000058) Tra(INQS) Sus Tas Pri(001)

Sta(U) Use(CICSUSER) Uow(BE06895368907606) Hty(EDF)
Tas (0000062) Tra(CPIH) Sus Tas Pri(001)

Sta(U) Use(CICSUSER) Uow(BE068962FFC04308) Hty(RZCBNOTI)
Tas(0000063) Tra(ORDR) Sus Tas Pri(001)

Sta(U) Use(CICSUSER) Uow(BE06896300499061) Hty (EDF)

-

SYSID=R3C1 APPLID=A6POR3C/1

Figure 3-12 CEMT INQUIRE TASK

Figure 3-12 shows one instance of each of the INQC, INQS, and ORDR
transactions. For each transaction there is an associated pipeline alias
transaction CPIH. We noted that these transactions are currently all running

under the CICS default user ID CICSUSER.

Example 3-11 shows the output from our message handler program CIWSMSGH
for the three service requests. Both the DFHWS-WEBSERVICE and
DFHWS-TRANID containers are logged. See Section A.1, “Sample message
handler program - CIWSMSGH” on page 500 for more information on the

CIWSMSGH program.

Example 3-11 Sample output from message handler program - CIWSMSGH

CIWSMSGH: >================================<
CIWSMSGH: Container Name: : DFHWS-WEBSERVICE
CIWSMSGH: Container content: inquireCatalog
CIWSMSGH: === e e e e
CIWSMSGH: Container Name: : DFHWS-TRANID
CIWSMSGH: Container content: INQC

CIWSMSGH: >================================<
CIWSMSGH: Container Name: : DFHWS-WEBSERVICE
CIWSMSGH: Container content: inquireSingle
CIWSMSGH: === = mm e e e
CIWSMSGH: Container Name: : DFHWS-TRANID
CIWSMSGH: Container content: INQS

CIWSMSGH: >================================<

Chapter 3. Web services using HTTP 93

CIWSMSGH:
CIWSMSGH:
CIWSMSGH:
CIWSMSGH:
CIWSMSGH:

Container Name: : DFHWS-WEBSERVICE
Container content: placeOrder

Container Name: : DFHWS-TRANID
Container content: ORDR

3.3 Configuring CICS as a service requester

In this section we discuss how we configured CICS to support outbound Web

service requests. The configuration we used is shown in Figure 3-13.

Windows 2000 Cam21-Pc3

z/0OS V1.6 mvsg3.mop.ibm.com

Server V6

WebSphere Application

Catalog.ear

CICS TS V3.1 CIWSR3C1

PIPELINE:

EXPIPEO1 Catalog manager

(service provider)

TCPIPSERVICE: ‘

// R3C1

PIPELINE:
EXPIPE02

Dispatch manager
(service requester)

/

/

z/0S V1.6 tx1.mop.ibm.com /

/

WebSphere Application
Server for z/OS V6

Dispatch manager
service provider
(dispatchOrder.ear

Figure 3-13 CICS as service requester

Figure 3-13 shows the TCPIPSERVICE R3C1 used for inbound HTTP Web

service requests. Note that a TCPIPSERVICE is not required for outbound HTTP

Web service requests from CICS.

94 Implementing CICS Web Services

3.3.1 Configuring CICS
To enable CICS to generate Web service requests using HTTP, we performed
the following tasks:
» Configuring the PIPELINE definition
» Configuring the requester TRANSACTION definition
» Configuring the sample application

Configuring the PIPELINE definition

We defined the PIPELINE for the CICS service requester using the following
CICS command:

CEDA DEFINE PIPELINE(EXPIPEO2) GROUP(R3C1)

We defined the EXPIPEO2 pipeline as shown in Figure 3-14.

KOVERTYPE TO MODIFY CICS RELEASE = 0648
CEDA DEFine PIpeline(EXPIPEQ2)
PIpeline : EXPIPEO2
Group : R3C1
Description ==> PIPELINE DEFINITION FOR DISPATCH ORDER REQUESTER
STatus ==> Enabled Enabled | Disabled
Configfile ==> /CIWS/R3C1/config/ITSO_7206_basicsoapllrequester.xml

(Mixed Case) ==>

==>
SHelf ==> [CIWS/R3C1/shelf
(Mixed Case) ==>

Wsdir : /CIWS/R3C1/wsbind/requester/
(Mixed Case)

L SYSID=R3C1 APPLID=A6POR3C1

Figure 3-14 CEDA DEFINE PIPELINE command

» We set the CONFIGFILE attribute to:
/CIWS/R3C1/config/ITSO_7206_basicsoap11requester.xml

Chapter 3. Web services using HTTP 95

96

» We set the SHELF attribute to:
/CIWS/R3C1/shelf

» We copied the wsbind file dispatchOrder.wsbind to directory
/CIWS/R3C1/wsbind/requester from the CICS-supplied directory:
/usr/Ipp/cicsts/cicsts31/samples/webservices/wsbind/requester/

» We set WSDIR to the Web service binding directory that contains the wsbind
files for the sample application:

/CIWS/R3C1/wsbind/requester/

Note: In 3.2, “Configuring CICS as a service provider” on page 76, we used
the basicsoap12provider.xml configuration file, which supports both SOAP 1.1
and SOAP 1.2 inbound service requests. CICS only supplies a
basicsoap11requester.xml configuration file for SOAP 1.1 outbound requests.

Figure 3-15 shows a CEMT INQUIRE PIPELINE for EXPIPEOQ2.

/>INQUIRE PIPELINE
RESULT - OVERTYPE TO MODIFY
Pipeline(EXPIPE02)
Enablestatus(Enabled)
Configfile(/CIWS/R3C1/config/ITSO_ 7206 basicsoapllrequester.xml)
Shelf(/CIWS/R3C1/shelf/)
Wsdir(/CIWS/R3C1/wsbind/requester/)

SYSID=R3C1 APPLID=A6POR3C1
- J

Figure 3-15 CEMT INQUIRE PIPELINE - EXPIPEO2

Configuring the requester transaction

The duration a Web service requester task will wait for a response is controlled
by the DTIMOUT attribute on the TRANSACTION definition. The CICS default is
NO, meaning that the request will wait indefinitely. We used the CEDA ALTER
command to change the DTIMOUT value for the ORDR transaction to 30
seconds:

CEDA ALTER TRANSACTION(ORDR) GROUP(R3C1) DTIMOUT(30)

Timeout considerations

When a CICS application is the service provider, normal resource timeout
mechanisms such as RTIMEOUT (read timeout) apply. If, however, the
requester decides to time out before CICS is ready to send the response, the

Implementing CICS Web Services

provider transaction abends and CICS issues the messages shown in
Example 3-12.

Example 3-12 CICS service provider error message

DFHPI0401 12/15/2005 15:51:12 A6POR3C1 ORDR The CICS pipeline HTTP transport
mechanism failed to send a response or receive a request because the connection
was closed.

DFHPI0503 12/15/2005 15:51:12 A6POR3C1 ORDR The CICS Pipeline Manager has
failed to send a response on the underlying transport. TRANSPORT: HTTP,
PIPELINE: EXPIPEOL.

For a CICS application which is a service requester (Figure 3-16), timeout is
controlled by the DTIMOUT attribute on the TRANSACTION definition.

CICS TS V3.1

Provider

HTTP HTTP
Requester

DTIMEOUT controls how long
CICS waits for a response

Figure 3-16 CICS timeout considerations

Note: The DTIMOUT attribute on the TRANSACTION definition only controls
service requester timeout if HTTP is used as the transport mechanism.

If the request times out, CICS issues the message shown in Example 3-13.

Example 3-13 CICS service requester error message

DFHPI0504 12/15/2005 15:55:33 A6POR3C1 ORDR The CICS Pipeline Manager has
failed to communicate with a remote server due to an error in the underlying
transport. TRANSPORT: HTTP, PIPELINE: EXPIPEQZ2.

Configuring the sample application
We used the catalog manager configuration transaction (ECFG) to configure the
example application. Figure 3-17 shows how we changed the setting of Qutbound

Chapter 3. Web services using HTTP 97

WebService to Yes, and entered the URI of the service provider for our outbound
service request:

http://tx1.mop.ibm.com:13880/exampleApp/services/dispatchOrderPort
We then pressed PF3 to save the configuration.

Tip: The 3270 terminal we used to configure the sample application had to be
set to NOUCTRAN. We used the following CICS command:

CEOT NOUCTRAN

(CONFIGURE CICS EXAMPLE CATALOG APPLICATION)
Datastore Type ==> VSAM STUB|VSAM
Outbound WebService? ==> YES YES|NO
Catalog Manager ==> DFHOXCMN
Data Store Stub ==> DFHOXSDS
Data Store VSAM ==> DFHOXVDS
Order Dispatch Stub ==> DFHOXSOD
Order Dispatch WebService ==> DFHOXWOD
Stock Manager ==> DFHOXSSM
VSAM File Name ==> EXMPCAT
Server Address and Port ==>
Outbound WebService URI ==> http://tx1l.mop.ibm.com:13880/exampleApp/serv
==> jces/dispatchOrderPort
==>
==>
==>
APPLICATION CONFIGURATION UPDATED
PF 3 END 12 CNCL
- J

Figure 3-17 Catalog application configuration screen

With this configuration, the sample application uses the command EXEC CICS
INVOKE WEBSERVICE(“dispatchOrder”) to invoke the dispatchOrder service
which in our configuration runs in WebSphere Application Server for z/OS.

3.3.2 Configuring WebSphere Application Server for z/OS

In this section we discuss how we deployed the ExampleAppDispatchOrder
service provider application on WebSphere Application Server, including:

» How we used FTP to download the ear file

98 Implementing CICS Web Services

» How we used the WebSphere administrative console to install the application

Downloading the EAR file
The CICS-supplied ExampleAppDispatchOrder.ear file is located in directory:

/usr/lpp/cicsts/cicsts31/samples/webservices/client

We used the Windows ftp command shown in Example 3-14 to download the file
to the workstation.

Example 3-14 Using fip to download the EAR file

F:\>cd F:\Web Services Sysprog\LAN book\addmat\src\Catalog
Application\Configuration part

F:\Web Services Sysprog\LAN book\addmat\src\Catalog Application\Configuration
part>ftp mvsg3.mop.ibm.com

Connected to 9.100.193.167.

220-FTPD1 IBM FTP CS V1R6 at MVSG3.pssc.mop.ibm.com, 17:39:13 on 2005-11-24.
220 Connection will close if idle for more than 5 minutes.

User (9.100.193.167:(none)): CIWSTJ

331 Send password please.

Password:

230 CIWSTJ is logged on. Working directory is "CIWSTJ.".

ftp> cd /usr/1pp/cicsts/cicsts31/samples/webservices/client

250 HFS directory /usr/lpp/cicsts/cicsts31/samples/webservices/client is the
current working directory

ftp> get ExampleAppDispatchOrder.ear

200 Port request OK.

125 Sending data set
Jusr/1pp/cicsts/cicsts31/samples/webservices/client/Example
AppDispatchOrder.ear

250 Transfer completed successfully.

ftp: 50623 bytes received in 0,03Seconds 1687,43Kbytes/sec.

ftp> bye

221 Quit command received. Goodbye.

Installing the service provider

CICS TS V3.1 provides a sample Web service provider application
ExampleAppDispatchOrder.ear. This application archive is built at the J2EE 1.3
level. We planned to use the application in a J2EE 1.4 environment (WebSphere
Application Server V6), therefore we migrated the application. We called the new
application archive file dispatchOrder.ear.

Next we installed the dispatchOrder.ear file on WebSphere Application Server for
z/OS. We opened a Web browser window and entered the URL.:

http://tx1.mop.ibm.com:13880/ibm/console

Chapter 3. Web services using HTTP 99

After logging in, we clicked Applications — Install New Application. On the
next window (Figure 3-18) we clicked Local file system and entered the path of
the EAR file:

F:\Web Services Sysprog\LAN book\addmat\src\ears\dispatchOrder.ear

Welzome
Servers
Preparing for the application installation
E Applications
Enterpriza Specify the EAR, WAR or JAR module to upload and
Applications install,

Install Mew
Path to the new application.

Application
% Local file system
Resources
Specify path
Security |F:\Web Services Sysprogl Browsze. ..

&)

R EmmEmE " Remote file system

]

Swstern adriinistration

&)

Monitoring and Tuning

]

Traubleshaoting Contest root

Service integration | Uzed only for standalone

&)

web modules [war files)

Cancel

Figure 3-18 WebSphere Administrative console

]

upDI

We clicked Next — Next — Next — Next — Next — Finish, and then saved the
changes to the master configuration.

3.3.3 Testing the configuration

100

In this section we discuss how we tested the configuration using the same
method described in 3.2.4, “Testing the configuration” on page 90.

Running the Web client application
We started a Web browser session and entered the URL.:

http://cam21-pc11:9080/Catalogheb/Welcome.jsp

The window in Figure 3-10 on page 91 was presented, and we clicked ORDER
ITEM.

The window in Figure 3-19 was presented. We entered values for User Name and
Department Name and clicked SUBMIT.

Implementing CICS Web Services

CICS Example - Catalog Application

Enter Order Details

Item Reference Number 0010
m CQuantity 001
User Name Tommy
Department Name ITSO

SUBMIT

BACK
CONFIGURE

Figure 3-19 CICS - Catalog application order window

We received a message back saying “ORDER SUCCESFULLY PLACED.” We also
noted that the service provider application wrote a message confirming the order
to the WebSphere Application Server for zZOS SYSPRINT DD (Example 3-15).

Example 3-15 ExampleAppDispatchOrder output from WebSphere Application Server

DispatchOrderSoapBindingImpl: dispatchOrder(): ItemRef=10 Quantity=1
CustomerName=Tommy Dept=ITSO

3.4 Configuring for high availability

After you have successfully configured and tested your CICS Web service
configuration, you should consider how you can clone the CICS regions in order
to improve scalability and availability.

The principal areas for consideration are:

» How to load balance TCP/IP requests across multiple CICS listener regions

» How to load balance Web service requests dynamically across multiple CICS
AORs

Chapter 3. Web services using HTTP 101

3.4.1 TCP/IP load balancing

CICS is designed to work with Sysplex Distributor. Sysplex Distributor is an
integral part of zZOS Communications Manager, which offers the ability to load
balance incoming socket open requests across different address spaces running
on different IP stacks (usually on different LPARS). The routing decision is based
on real-time socket status and z/OS Quality of Service (QoS) criteria. This
provides the benefit of balancing work across different MVS™ images, providing
enhanced scalability and failover in a z/OS Parallel Sysplex®.

3.4.2 High availability configuration

Figure 3-20 shows the recommended high availability configuration. CICSPlex
SM provides a dynamic routing program that supports the dynamic routing of

transactions. This provides the ability for applications invoked by Web service

requests to be dynamically routed across a CICSplex.

LPAR-1 z/0S sysplex
cics

listener
/ region 1
LPAR-3
HTTP Sysplex
—_— CICs
SOAP Distributor
LPAR-2 - CICS AORs
cics
listener /
region 2

Figure 3-20 High scalability and availability configuration

3.4.3 Routing inbound Web service requests

Inbound Web service requests can be routed to a different CICS region than the
one that receives the request using one of two routing models:

» Distributed routing
» Dynamic program routing

102 Implementing CICS Web Services

The distributed routing model
The transaction that runs the target application program is eligible for routing
when one of the following is true:

» The content of the DFHWS-USERID container has been changed by a
program in the pipeline.

» The content of the DFHWS-TRANID container has been changed by a
program in the pipeline.

» The transaction is defined as DYNAMIC or with REMOTESYSTEM(sysid).

Figure 3-21 shows how the distributed routing model can be used to route
requests for the ORDR transaction. The routing can be controlled by the routing
program specified in the DSRTPGM system initialization parameter. CICSPlex
SM can be used to balance the routing requests across multiple AORs.

CsoL CWXN CPIH ORDR
Sockets Web attach Pipeline alias transaction DFHPITP
listener task task task

Distributed routing
(DSRTPGM)

Figure 3-21 Web service provider - Distributed routing

Pipeline configuration

Special considerations have to be made when configuring a pipeline to be used
in a distributed routing environment. Table 3-4 shows the resource definition
requirements for both the listener region and AOR, and whether each resource
definition can be shared between the regions.

Table 3-4 Pipeline resource definitions in dynamic routing configuration

Resource Listener region AOR

TCPIPSERVICE Required Not required

PIPELINE Required, shared Required, shared

WEBSERVICE Automatically installed Required, automatically
from PIPELINE, shared installed from PIPELINE,

shared
Pipeline configuration file Required, shared Required, shared
TRANSACTION definition DYNAMIC(YES) DYNAMIC(NO)

Chapter 3. Web services using HTTP 103

The dynamic routing model

An alternative way to dynamically route a Web service request, is at the point
where CICS links to the user program, in our case DFHOXCMN. At this point
(Figure 3-22) the request is routed using the dynamic routing model. In this
scenario, the routing can be controlled by the program specified in the DTRPGM
system initialization parameter. CICSPlex SM can be used to balance the
program link requests across multiple AORs.

CSsoOL CWXN CPIH DFHPITP DFHOXCMN

Sockets Web attach Pipeline alias
listener task task task ?

Dynamic routing
(DTRPGM)

Figure 3-22 Web service provider - Dynamic routing

3.5 Problem determination

In this section we highlight different ways of diagnosing problems that occur
when an incorrect URI is used in a Web services call.

3.5.1 Error calling dispatch service - INVREQ

During testing of the CICS service requester scenario we experienced the
problem shown in Figure 3-23.

CICS Example - Catalog Application

Order Placed

ML Error calling dispatch service - INVREC

ORDER ITEM

Figure 3-23 CICS - Catalog application INVREQ

Figure 3-24 shows the catalog manager configuration (including the URI for the
outbound Web service).

104 Implementing CICS Web Services

Example 3-16 Sample DispatchOrder CICS trace

Datastore Type

Qutbound WebService?
Catalog Manager

Data Store Stub

Data Store VSAM

Order Dispatch Stub

Order Dispatch WebService
Stock Manager

VSAM File Name

Outbound WebService URI

PF 3 END
-

~
CONFIGURE CICS EXAMPLE CATALOG APPLICATION

Server Address and Port ==

APPLICATION CONFIGURATION UPDATED

==> {SAM STUB | VSAM
==> YES YES|NO
==> DFHOXCMN

==> DFHOXSDS

==> DFHOXVDS

==> DFHOXSOD

==> DFHOXWOD

==> DFHOXSSM

==> EXMPCAT

==> http://tx1.mop.ibm.com:13880/exampleApp/dispat|
==> hQrder

==>

12 CNCL

Figure 3-24 CICS - Catalog application ECFG screen

CICS trace

To help diagnose the problem we turned on CICS auxiliary trace using the CETR
transaction. In trace entry 002142 of Example 3-16 we see the error returned
from WebSphere Application Server:

“Error 404: SRVEOI90E:

File not found /services/dispatchOrder.”

PI 0A31 PIIS EVENT - REQUEST_CNT - TASK-00182 KE_NUM-008C TCB-L8003/00ADCOA8 RET-9753E4F2
TIME-12:13:58.4376239562 INTERVAL-00.0000008750 =002137=
1-0000 3C534F41 502D454E 563A456E 76656C6F 70652078 6D6C6E73 3A534F41 502D454E

0020

0040

0060

0080

00A0

563D2268 7474703A 2F2F7363 68656D61

61702F65 6E76656C 6F70652F 22203E3C

69737061 7463684F 72646572 52657175

2F2F7777 772E6578 616D706C 65417070

65717565 73742E63 6F6D223E 3C697465

<SOAP-ENV:Envelope xmlns:SOAP-EN
732E786D 6C736F61 702E6F72 672F736F

V="http://schemas.xmlsoap.org/so
534F4150 2D454E56 3A426F64 793E3C64

ap/envelope/" ><SOAP-ENV:Body><d
65737420 786D6C6E 733D2268 7474703A

ispatchOrderRequest xmlns="http:
2E646973 70617463 684F7264 65722E52

//www.exampleApp.dispatchOrder.R
60526566 6572656E 63654E75 6D626572

equest.com"><itemReferenceNumber

Chapter 3. Web services using HTTP 105

0oco

00EO

0100

0120

0140

0160

0180

PI 0A32

1-0000

0020

3E31303C 2F697465 6D526566 6572656E

74795265 71756972 65643E31 3C2F7175

63757374 6F6D6572 49643E54 6F6D6D79

3C636861 72676544 65706172 746D656E

67654465 70617274 6D656E74 3E3C2F64

6573743E 3C2F534F 41502D45 4E563A42

6E76656C 6F70653E

63654E75 6D626572 3E3C7175 616E7469
>10</1itemReferenceNumber><quanti
616E7469 74795265 71756972 65643E3C
tyRequired>1</quantityRequired><
2020203C 2F637573 746F6D65 7249643E
*customerId>Tommy
743E4954 534F2020 20203C2F 63686172
*<chargeDepartment>ITSO
69737061 7463684F 72646572 52657175
geDepartment></dispatchOrderRequ
6F64793E 3C2F534F 41502D45 4E563A45
est></SOAP-ENV:Body></SOAP-ENV:E
*nvelope> *

</customerId>*

</char*

PIIS EVENT - RESPONSE_CNT - TASK-00182 KE_NUM-008C TCB-L8003/00ADCOA8 RET-9753E4F2

TIME-12:13:58.4376326594 INTERVAL-00.0000006562

4572726F 72203430 343A2053 52564530

6F756E64 3A202F73 65727669 6365732F

=002142=
31393045 3A204669 6C65206E 6F742066

Error 404: SRVEO190E: File not f
64697370 61746368 4F726465 720A

*ound: /services/dispatchOrder. *

106

Using SNIFFER

The user-written SNIFFER handler program is a simple program that browses
through the containers available in the pipeline. It can be used as a message
handler program or a header processing program.

It browses the containers by issuing a STARTBROWSE CONTAINER command
followed by GETNEXT CONTAINER until all containers have been browsed. It
then issues an ENDBROWSE CONTAINER command. For each container
browsed, it writes the container name and contents to the CICS transient data

queue CESE.

We added the SNIFFER message handler program to the requester pipeline
EXPIPEO2. Example 3-17 shows the pipeline configuration file with SNIFFER

added as a message handler program.

Example 3-17 Pipeline configuration file with SNIFFER

<?xml version="1.0" encoding="EBCDIC-CP-US"?>

<requester_pipeline xmIns="http://www.ibm.com/software/htp/cics/pipeline"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.ibm.com/software/htp/cics/pipeline

requester.xsd ">
<service>
<service_handler_list>

<cics_soap_l.1 handler/>

</service_handler_list>

Implementing CICS Web Services

</service>
<default_transport_handler_list>
<handler>
<program>SNIFFER</program>
<handler_parameter_list/>
</handler>
</default_transport_handler_list>
</requester_pipeline>

The full program is shown in Appendix A.3, “Sample handler program -
SNIFFER” on page 511. Example 3-18 shows the containers in the requester
pipeline as listed by SNIFFER. The container of interest is DFHWS-URI:

http://tx1.mop.ibm.com:13880/exampleApp/dispatchOrder

Example 3-18 sample SNIFFER output

SNIFFER : *** Start ***
SNIFFER : >================================<
SNIFFER : Container Name : DFHFUNCTION
SNIFFER : Content Tength : 00000016
SNIFFER : Container content: SEND-REQUEST
SNIFFER : Containers on channel: List starts.
SNIFFER : >================================<
SNIFFER : Container Name : DFHHEADER
SNIFFER : Content Tength : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-XMLNS
SNIFFER : Content length : 00000059
SNIFFER : Container content: xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/"
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-SOAPLEVEL
SNIFFER : Content Tength : 00000004
SNIFFER : Container content:
SNIFFER : >================================<
SNIFFER : Container Name : DFH-HANDLERPLIST
SNIFFER : Content Tength : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHRESPONSE
SNIFFER : Content length : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHFUNCTION
SNIFFER : Content Tength : 00000016
SNIFFER : Container content: SEND-REQUEST
SNIFFER : >================================<

Chapter 3. Web services using HTTP 107

SNIFFER : Container Name : DFH-SERVICEPLIST

SNIFFER : Content Tength : 00000000

SNIFFER : Container EMPTY

SNIFFER : >================================<

SNIFFER : Container Name : DFHWS-USERID

SNIFFER : Content Tength : 00000008

SNIFFER : Container content: CICSUSER

SNIFFER : >================================<

SNIFFER : Container Name : DFHWS-TRANID

SNIFFER : Content Tength : 00000004

SNIFFER : Container content: ORDR

SNIFFER : >================================<

SNIFFER : Container Name : DFHREQUEST

SNIFFER : Content length : 00000000

SNIFFER : Container EMPTY

SNIFFER : >================================<

SNIFFER : Container Name : DFHWS-BODY

SNIFFER : Content Tength : 00000293

SNIFFER : Container content: <SOAP-ENV:Body><dispatchOrderRequest

xmins="http://www.exampleApp.dispatchOrder.Request.com"><itemRefe

renceNumber>10</1itemReferenceNumber><quantityRequired>1</quantityRequired><cust

omerId>Tommy </customerId><chargeDepartment>ITSO

</chargeDepartment></dispatchOrderRequest></SOAP-ENV:Body>

SNIFFER : >================================<

SNIFFER : Container Name : DFHWS-URI

SNIFFER : Content length : 00000255

SNIFFER : Container content:
http://tx1.mop.ibm.com:13880/exampleApp/dispatchOrder

SNIFFER : >================================<

SNIFFER : Container Name : DFHWS-SOAPACTION

SNIFFER : Content Tength : 00000002

SNIFFER : Container content: ""

SNIFFER : >================================<

SNIFFER : Container Name : DFHWS-OPERATION

SNIFFER : Content Tength : 00000255

SNIFFER : Container content: dispatchOrder

SNIFFER : >================================<

SNIFFER : Container Name : DFHWS-PIPELINE

SNIFFER : Content length : 00000008

SNIFFER : Container content: EXPIPEO2

SNIFFER : >================================<

SNIFFER : Container Name : DFHWS-DATA

SNIFFER : Content Tength : 00000023

SNIFFER : Container content: 0010001Tommy ITSO

SNIFFER : Containers on channel: List ends

SNIFFER : in a SOAP header processing program.....

SNIFFER : **¥* End ****

108 Implementing CICS Web Services

Checking the SOAP address in the WSDL

Next we checked the SOAP address in the WSDL file of the deployed EAR file.
In the WebSphere administrative console we clicked Applications —
Enterprise applications — dispatchOrder — Publish WSDL file —»
DispatchOrder_WSDLFiles.zip and saved the file to disk. We unzipped the file
into the directory structure shown in Figure 3-25.

EE redbook-Webservices Svsprog on 'camz21-Pol’ (H:)
El{:l Web Services Sysprog
E‘D Lar book,
EH:I addmat
{:I ather
& ppt
= prz
=7 sre
{:I Catalog Application
{:I Cics
{:I config
B ears
E|{:I dispatchOrder
B0 META-INF
{:I theme
B- WEB-INF
EI{:I wed|
=1 com
EI{:I dispatchOrder
=1 exampleApp
B v

Figure 3-25 ExampleAppDispatchOrder path

In the WSDL file dispatchOrder.wsdl (Example 3-19) we noted the URI of the
Web service as found in the soap: address location.

Example 3-19 dispatchOrder sample wsdl

<?xml version="1.0" encoding="UTF-8"?>

<definitions targetNamespace="http://www.exampleApp.dispatchOrder.com"
xmins:tns="http://www.exampleApp.dispatchOrder.com"
xmins:regns="http://www.exampleApp.dispatchOrder.Request.com"
xmins:soap="http://schemas.xmlsoap.org/wsd1/soap/"
xmins:resns="http://www.exampleApp.dispatchOrder.Response.com"
xmins="http://schemas.xmlsoap.org/wsdl/">

<types>
<xsd:schema attributeFormDefault="qualified"

elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Request.com"
xmins:reqns="http://www.exampleApp.dispatchOrder.Request.com"
xmins:tns="http://www.exampleApp.dispatchOrder.Request.com"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema">

Chapter 3. Web services using HTTP 109

<xsd:element name="dispatchOrderRequest" nillable="false">
. Part of wsdl not included

<binding name="dispatchOrderSoapBinding" type="tns:dispatchOrderPort">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/
soap/http"/>
<operation name="dispatchOrder">
<soap:operation soapAction="" style="document"/>
<input name="DFHOXODSRequest">
<soap:body parts="RequestPart" use="literal"/>
</input>
<output name="DFHOXODSResponse">
<soap:body parts="ResponsePart" use="literal"/>
</output>
</operation>
</binding>
<service name="dispatchOrderService">
<port name="dispatchOrderPort" binding="tns:dispatchOrderSoapBinding">
<soap:address location="http://tx1.mop.ibm.com:13880/
exampleApp/services/dispatchOrderPort" />
</port>
</service>
</definitions>

The error shown in Figure 3-24 on page 105 was caused by specifying an
incorrect URI for the dispatchOrder Web service. In the catalog manager
configuration (Figure 3-24) we specified the URI /exampleApp/dispatchOrderPort
for the outbound Web service. This is the correct URI for the dispatchOrder
service provider deployed inside CICS, but a URI of
/exampleApp/services/dispatchOrderPort is the correct URI for our
dispatchOrder service deployed in WebSphere Application Server.

110 Implementing CICS Web Services

Web services using
WebSphere MQ

In this chapter we describe how we configured our test CICS environment to
support Web services using WebSphere MQ as the transport mechanism.

© Copyright IBM Corp. 2006. All rights reserved. 111

4.1 Preparation

After outlining our test configuration (Figure 4-1), we show how we enabled
WebSphere MQ (WMQ) support in a CICS region. We next explain how we
configured CICS as a service provider for incoming WMQ message requests.

Finally, we show how we configured a CICS region to act as a service requester,

sending requests in WMQ messages.

Windows 2000 Cam21-Pc3

WebSphere Application
Server V6

Catalog.ear

HTTP

z/OS V1.6 mvsg3.mop.ibm.com

CICS TS V3.1
CIWSR3C1

Catalog manager
(service provider)

Dispatch manager
(service requester)

L)

Queue Manager

7
z

MQS3
CICS TS V3.1 1
CIWSR3C2 Order dispatch

Endpoint
(service provider)

Figure 4-1 Software components: Web services using HTTP and WMQ

Note: We used a CICS-to-CICS scenario in order to demonstrate how WMQ

can be used with a CICS service provider and a service requester. You can
also use WMQ to pass SOAP messages between WebSphere Application

Server and CICS.

We do not provide details on how to install the software components, and we

also assume the reader has a working knowledge of CICS and WebSphere MQ.

112 Implementing CICS Web Services

4.1.1 Software checklist

For the configuration shown in Figure 4-1 we used the levels of software shown

in Table 4-1.

Table 4-1 Software used in the WebSphere MQ scenarios

Windows

z/0S

Windows 2000 SP4

z/OS V1.6

Vv6.0.2.0

IBM WebSphere Application Server - ND

CICS Transaction Server V3.1

Internet Explorer V6.0

WebSphere MQ V5R3M1

Our J2EE applications
» Catalog.ear

application

Catalog manager service requester

Our user-supplied CICS programs
» CIWSMSGH (message handler
program)

Tip: If you use WMQ to pass SOAP messages between WebSphere

Application Server and CICS, you should install the fix for APAR PK20393.

4.1.2 Definition checklist

The z/OS definitions we used to configure the scenarios are listed in Table 4-2.

Table 4-2 Definition checklist

Value CICS region 1 CICS region 2

IP name mvsg3.mop.ibm.com mvsg3.mop.ibm.com
IP address 9.100.193.167 9.100.193.167
TCP/IP port 13301

Job name CIWSR3CH1 CIWSR3C2

APPLID ABPOR3C1 ABPOR3C2
TCPIPSERVICE R3C1

Provider PIPELINE EXPIPEO1 EXPIPEPO3
Requester PIPELINE EXPIPEO2

WMQ queue manager MQS3 MQS3

Chapter 4. Web services using WebSphere MQ

113

The WMQ definitions we used to configure the scenarios are listed in Table 4-3.

Table 4-3 WMQ definition checklistt

Value Queue manager MQS3

Queues V3G3.R3C2.PIPE3.REQUEST
V3G3.R3C2.PIPE3.RESPONSE

Process VSG3.R3C2.PROCESS

4.2 WebSphere MQ configuration

We completed the following tasks in order to enable WMQ support in the two
CICS regions CIWSR3C1 and CIWSR3C2:

» Adding WMQ support to CICS
» Defining the queues
» Defining the trigger process

4.2.1 Adding WebSphere MQ support to CICS

114

We updated the CICS startup procedure for each CICS region by adding the
WMQ libraries to the STEPLIB and DFHRPL as shown in Example 4-1.

Example 4-1 CICS startup JCL

//STEPLIB DD DSN=CICSTS31.CICS.SDFHAUTH,DISP=SHR

// DD DSN=CICSTS31.CICS.SDFJAUTH,DISP=SHR
// DD DSN=MQM.SCSQANLE,DISP=SHR

// DD DSN=MQM.SCSQAUTH,DISP=SHR

//DFHRPL DD DSN=CIWS.CICS.USERLOAD,DISP=SHR

// DD DSN=CEE.SCEECICS,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=CICSTS31.CICS.SDFHLOAD,DISP=SHR
// DD DSN=MQM.SCSQLOAD,DISP=SHR

// DD DSN=MQM.SCSQANLE,DISP=SHR

// DD DSN=MQM.SCSQCICS,DISP=SHR

// DD DSN=MQM.SCSQAUTH,DISP=SHR

» We updated the SIT parameters on CICS region CIWSR3CH1:
— MQCONN=YES
— INITPARM=(CSQCPARM='SN=MQS3,TN=1,IQ=VSG3.R3C1.INITQ')

Implementing CICS Web Services

» We updated the SIT parameters on CICS region CIWSR3C2:
— MQCONN=YES
— INITPARM=(CSQCPARM='SN=MQS3,TN=1,IQ=VSG3.R3C2.INITQ")

» We added the WMQ RDO groups to the startup LIST on CICS region 1 using
the following commands, and then we restarted the CICS region:

CEDA ADD GROUP(CSQCAT1) TO LIST(LISTR3C1)
CEDA ADD GROUP(CSQKDQ1) TO LIST(LISTR3C1

» We added the WMQ RDO groups to the startup LIST on CICS region 2 using
the following commands, and then we restarted the CICS region:

CEDA ADD GROUP(CSQCAT1) TO LIST(LISTR3C2)
CEDA ADD GROUP(CSQKDQl) TO LIST(LISTR3C2)

4.2.2 Defining the queues

Example 4-2 shows the JCL that we used to define two QUEUE resources of
type local in the MQS3 queue manager region. One queue is for incoming
requests and the other is for responses.

Example 4-2 JCL for defining the queues

//CHIQUEUE JOB 1,CIWS,TIME=1440,NOTIFY=&SYSUID,REGION=4M,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
/1*

//CSQUTIL EXEC PGM=CSQUTIL,PARM='MQS3'
//STEPLIB DD DSN=MQM.SCSQLOAD,DISP=SHR

// DD DSN=MQM.SCSQANLE,DISP=SHR

// DD DSN=MQM.SCSQAUTH,DISP=SHR
//STDOUT ~ DD SYSOUT=*

//STDERR DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

COMMAND DDNAME (CMDINP)

/*

//CMDINP DD *

*

DEFINE QLOCAL(VSG3.R3C2.PIPE3.REQUEST) -
DESCR('QUEUE SOAP INCOMING REQUEST') -
PROCESS(VSG3.R3C2.PROCESS) -

TRIGGER -

TRIGTYPE(FIRST) -
INITQ('VSG3.R3C2.INITQ') -

*

DEFINE QLOCAL(VSG3.R3C2.PIPE3.RESPONSE) -

Chapter 4. Web services using WebSphere MQ 115

DESCR('QUEUE SOAP RESPONSE') -
*

/*

The INITQ VSG3.R3C2.INITQ is the same name as specified in the INITPARM
parameter for the CIWSR3C2 region.

4.2.3 Defining the trigger process

Example 4-3 shows the command that we used to define a PROCESS.

Example 4-3 WMQ definition of PROCESS

DEFINE PROCESS(VSG3.R3C2.PROCESS)
APPLTYPE(CICS)
APPLICID(CPIL)

The process name is the same name specified when defining the request queue
VSG3.R3C2.PIPE3.REQUEST in Example 4-2. APPLICID is specified as CPIL
(the SOAP MQ inbound listener transaction) which means that this transaction
will be started in CICS when a service request arrives. CPIL matches an
incoming URI to a URIMAP definition in order to match the URI to a
WEBSERVICE, and attaches the CPIQ transaction (the SOAP MQ inbound
router transaction).

4.3 Configuring CICS as a service provider using WMQ

116

In this section we discuss how we configured the CICS region CIWSR3C2 as a
service provider using WMQ (Figure 4-2).

The catalog manager application provides a dispatch manager program that
provides an interface for dispatching an order to an external partner. In this
scenario, we configured a remote order dispatch end point, such that the
dispatch request is sent to a CICS service provider program DFHOXODE using
WMQ.

Implementing CICS Web Services

Windows 2000 Cam21-Pc3

WebSphere Application
Server V6

\

Catalog.ear

z/OS V1.6 mvsg3.mop.ibm.com

HTTP

CIWSR3C1

CICS TS V3.1

Catalog manager
(service provider)

Dispatch manager
(service requester)

/

Ey

Request Queue
VSG3.R3C2.PIPE3.REQUEST

Response Queue
VSG3.R3C2.PIPE3.RESPONSE

l

iy

Order dispatch

Endpoint

(service provider)

DFHOXODE

Figure 4-2 CICS as a service provider using WMQ

Note: On our system the two CICS regions are actually running on the same
z/OS image. In practice they would normally be running on two different

systems.

4.3.1 Configuring the service provider pipeline

To enable CICS to receive Web service requests using WMQ we performed the

following tasks:

» Creating the HFS directories

» Configuring the pipeline configuration file

» Updating the message handler program CIWSMSGH

» Creating and installing the PIPELINE resource definition

Creating the HFS directories
We created the HFS directories shown in Example 4-4.

Chapter 4. Web services using WebSphere MQ

117

118

Example 4-4 HFS directories used in the PIPELINE definition

/CINS/R3C2/config
/CIWS/R3C2/shelf
/CIWS/R3C2/wsbind/provider

We copied the dispatchOrderEndpoint.wsbind file from the CICS-supplied
directory /usr/lpp/cicsts/cicsts31/samples/webservices/wsbind/provider to our
wsbind directory /CIWS/R3C2/wsbind/provider.

The config directory is used for the pipeline configuration file that we create in a
subsequent step, while CICS uses the shelf directory to store installed wsbind
files.

We gave the CICS region user ID read permission to the config and wsbind
directories, and update permission to the shelf directory.

Configuring the pipeline configuration file

In order to add the CIWSMSGH message handler program to the pipeline for the
service provider, we used the same pipeline configuration file that is described in
“Customizing the pipeline configuration file” on page 80.

Updating the message handler program

The default transaction ID assigned to inbound WMQ Web services transactions
is CPIQ. We wanted to assign a different transaction ID to the dispatch request.
To do this, we updated the CIWSMSGH message handler program that we first
introduced in “Writing the message handler program” on page 80. We replaced
the transaction ID in the DFHWS-TRANID container with an ID based on the
service requester (which can be found in the DFHWS-WEBSERVICE container).

Table 4-4 shows the relationship between the transaction ID and the Web service
request.

Table 4-4 Transaction ID to Web services name relationship

Transaction ID Web services request

DISP dispatchOrderEndPoint

Before we activated the message handler program we needed to create the new
TRANSACTION definition with the same characteristics as the CICS-supplied
definition for CPIQ.

Implementing CICS Web Services

We used the following CEDA COPY command to create the transaction
definition:

CEDA COPY TRANSACTION(CPIQ) GROUP(DFHPIPE) TO(R3C2) AS(DISP)

Then we installed the definition.

Creating the PIPELINE resource definition

We then defined the PIPELINE for the CICS service provider using the following
CICS command:

CEDA DEFINE PIPELINE(EXPIPE03) GROUP(R3C2)

We defined EXPIPEO3 as shown in Figure 4-3.

/OVERTYPE TO MODIFY CICS RELEASE = 0640
CEDA DEFine PIpeline(EXPIPEQO3)
PIpeline : EXPIPEO3
Group : R3C2
Description ==>
STatus ==> Enabled Enabled | Disabled

Configfile ==> /CIWS/R3C2/config/basicsoapl2provider.xml
(Mixed Case) ==>
==>

SHelf ==> [CIWS/R3C2/shelf
(Mixed Case) ==>

Wsdir : /CIWS/R3C2/wsbind/provider
(Mixed Case)

Y SYSID=R3C2 APPLID=A6POR3C2)

Figure 4-3 CEDA DEFINE PIPELINE EXPIPEO3

» We set CONFIGFILE to the name of our pipeline configuration file.
/CIWS/R3C2/config/basicsoap12provider.xml

» We set SHELF to the name of the shelf directory.
/CIWS/R3C2/shelf

Chapter 4. Web services using WebSphere MQ 119

120

» We set WSDIR to the Web service binding directory that contains the wsbind
files for the sample application.

/CIWS/R3C2/wsbind/provider

Installing the PIPELINE resource

We used CEDA to install the PIPELINE definition. When the PIPELINE is
installed, CICS scans the wsdir directory and dynamically creates a
WEBSERVICE and a URIMAP definition for each wsbind file that it finds.

Figure 4-4 shows a CEMT INQUIRE PIPELINE for EXPIPEOS.

/INQUIRE PIPELINE
RESULT - OVERTYPE TO MODIFY
Pipeline(EXPIPEO3)
Enablestatus(Enabled)
Configfile(/CIWS/R3C2/config/basicsoapl2provider.xml)
Shelf(/CIWS/R3C2/shelf/)
Wsdir(/CIWS/R3C2/wsbind/provider/)

SYSID=R3C2 APPLID=A6POR3C2
. /

Figure 4-4 CEMT INQUIRE PIPELINE - EXPIPE0O3

After installing the pipeline, we used the CEMT INQUIRE WEBSERVICE
command to view the dynamically installed Web service. In Figure 4-5, we noted
that the name of the service (namely, dispatchOrderEndpoint) is taken from the
wsbind file.

/INQUIRE WEBSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
Webs (dispatchOrderEndpoint) Pip(EXPIPEO3)
Ins Uri(£439310) Pro(DFHOXODE) Com Dat (20051209)

9 SYSID=R3C2 APPLID=A6POR3C2)

Figure 4-5 CEMT INQUIRE WEBSERVICE

Figure 4-6 shows the dynamically installed URIMAP that is associated with the
Web service.

Implementing CICS Web Services

/INQUIRE URIMAP

RESULT - OVERTYPE TO MODIFY
Urimap(£439310)
Usage(Pipe)
Enablestatus(Enabled)
Analyzerstat(Noanalyzer)
Scheme (Http)
Redirecttype(None)
Tcpipservice()
Host (*)
Path(/exampleApp/dispatchOrder)
Transaction(CPIH)
Converter()
Program()
Pipeline(EXPIPEO3)
Webservice(dispatchOrderEndpoint)
Userid()
Certificate()
Ciphers()
Templatename()

9 SYSID=R3C2 APPLID=A6POR3C2)

Figure 4-6 CEMT INQUIRE URIMAP

4.4 Configuring CICS as service requester using WMQ

In this section we explain how we configured CICS region CIWSR3C1 as a
service requester using WMQ. In this particular scenario CICS region
CIWSRS3C1 is both a service provider for the catalog manager application (as
detailed in “Configuring CICS as a service provider” on page 76) and a service
requester of the Dispatch manager application.

Figure 4-7 on page 122 shows the Dispatch manager order dispatch program
DFHOXWOD, which issues an EXEC CICS INVOKE WEBSERVICE command to
make an outbound Web service call to the order dispatcher running in CICS
region CIWSR3C2.

When communication between the service requester and service provider uses
WMQ, the URI of the target is in a form that identifies the target as a queue, and
includes information to specify how the request and response should be handled
by WMQ.

Chapter 4. Web services using WebSphere MQ 121

z/OS V1.6 mvsg3.mop.ibm.com

CICS TS V3.1 CIWSR3C1

T Dispatch manager
og managerILINK | prHoxwoD
—1 (service provider)

WebSphere Application (service requester),
Server V6 HTTP / ’

Catalog.ear L /

Request Queue l
VSG3.R3C2.PIPE3.REQUEST

Response Queue
VSG3.R3C2.PIPE3.RESPONSE

Order dispatch
Endpoint

Windows 2000 Cam21-Pc3

(service provider)

Figure 4-7 CICS as a service provider using WMQ

4.4.1 Configuring the Catalog application

We configured the catalog application to activate the outbound Web services
feature using WMQ. We used the CICS-supplied catalog manager configuration
transaction ECFG to configure the example application (Figure 4-8).

122 Implementing CICS Web Services

~
CONFIGURE CICS EXAMPLE CATALOG APPLICATION

Datastore Type ==> VSAM STUB|VSAM
Outbound WebService? ==> YES YES|NO
Catalog Manager ==> DFHOXCMN
Data Store Stub ==> DFHOXSDS
Data Store VSAM ==> DFHOXVDS
Order Dispatch Stub ==> DFHOXSOD
Order Dispatch WebService ==> DFHOXWOD
Stock Manager ==> DFHOXSSM
VSAM File Name ==> EXMPCAT
Server Address and Port ==> 9.100.193.167:13301
Outbound WebService URI ==> jms:/queue?destination=VSG3.R3C2.PIPE3.REQUE
==> STEMQS3&targetService=/exampleApp/dispatchOr
==> der&replyDestination=VSG3.R3C2.PIPE3.RESPONS
==> E

PF 3 END 12 CNCL
- J

Figure 4-8 Catalog application configuration screen for WMQ

We changed Outbound WebService to Yes, and entered the URI of the service
provider for our outbound service request:

jms:/queue?destination=VSG3.R3C2.PIPE3.REQUEST@MQS3&targetService=/e
xampleApp/dispatchOrder&replyDestination=VSG3.R3C2.PIPE3.RESPONSE
We then pressed PF3 to save the configuration.

Tip: You must use the ampersand (&) character as a separator between
options; otherwise CICS does not recognize the parameters.

The Dispatch manager module DFHOXWOD uses the value of the Outbound
WebService URI parameter as the URI of the Web service to be invoked when it
invokes the dispatch service with an EXEC CICS INVOKE WEBSERVICE
command.

The main parameters for the Outbound WebService URI are as follows:
» jms:/: A specific URI format to use WMQ.

» destination: VSG3.R3C2.PIPE3.REQUEST @ MQS3 is a concatenation of
the target queue name and the queue manager name.

Chapter 4. Web services using WebSphere MQ 123

» targetService: /exampleApp/dispatchOrder is the target service in
CIWSR3C2 (it matches the dynamically installed URIMAP shown in
Figure 4-6 on page 121)

Tip: If you do not want to specify the targetService in URI data, you can
pass the same information by setting /exampleApp/dispatchOrder as the
TRIGDATA attribute of the receive queue VSG3.R3C2.PIPE3.REQUEST.

» replyDestination: VSG3.R3C2.PIPE3.RESPONSE is the reply queue name
for the response.

Important: When the URI specified on a EXEC CICS INVOKE WEBSERVICE
command begins with jms:/, CICS uses WMQ rather than HTTP to send the
request. The application program itself does not need to be aware that WMQ
is being used as the transport mechanism in place of HTTP.

Timeout considerations

It is not possible to manage timeout for a WMQ service requester application by
specifying a timeout value on the URI. We tested different values for the timeout
parameter and found that it always timed out after one minute.

For further information on using WMQ to transport SOAP messages, see
WebSphere MQ - Transport for SOAR, SC34-6651.
4.4.2 Configuring WebSphere Application Server on Windows

We deployed the catalog manager service requester application (catalog.ear) to
WebSphere Application Server for Windows 2000 as documented in 3.2.3,
“Configuring WebSphere Application Server on Windows” on page 87.

4.5 Testing the WMQ configuration

To test our WMQ setup we used a Web browser to run the Catalog application as
described in “Testing the configuration” on page 100.

Figure 4-9 shows order details for our request.

124 Implementing CICS Web Services

=

CICS Example - Catalog Application

Enter Order Details

(AR S| Item Reference Number 0030

Quantity 001
User Name Paolo
Department Name ITSO|

SUBMIT

Figure 4-9 Catalog application - ORDER function

From a CICS 3270 screen we used the CICS Execution Diagnostic Facility (EDF)
to intercept the DISP transaction on CICS region CIWSR3C2. We then used the
CEMT INQUIRE TASK command to view the inflight transactions (Figure 4-10).

g INQUIRE TASK

STATUS: RESULTS - OVERTYPE TO MODIFY
Tas (0000026) Tra (CKAM) Sus Tas Pri(255)

Sta(SD) Use(CIWS3D) Uow(BE0772E8804C9C2B)
Tas(0000344) Tra(CKTI) Sus Tas Pri(001)

Sta(SD) Use(CICSUSER) Uow(BEOCE7454196FC8B) Hty(MQSeries)
Tas(0000386) Tra(CEMT) Fac(G350) Run Ter Pri(255)

Sta(T0) Use(CICSUSER) Uow(BEOCE689E4ECEO6F)
Tas(0000388) Tra(CPIL) Sus Tas Pri(001)

Sta(SD) Use(CICSUSER) Uow(BEOCE7454267F84B) Hty(MQSeries)
Tas(0000389) Tra(CPIQ) Sus Tas Pri(001)

Sta(S) Use(CICSUSER) Uow(BEOCE745420A3860) Hty(RZCBNOTI)
Tas(0000390) Tra(DISP) Sus Tas Pri(001)

Sta(U) Use(CICSUSER) Uow(BEOCE74542800740) Hty(EDF)
Tas(0000392) Tra(CEDF) Fac(G353) Sus Ter Pri(001)

Sta(SD) Use(CICSUSER) Uow(BEOCE74542C74820) Hty(ZCIOWAIT)

SYSID=R3C2 APPLID=A6POR3C2
G J

Figure 4-10 CEMT INQUIRE TASK

Chapter 4. Web services using WebSphere MQ 125

Figure 4-10 shows the inflight transactions:

» The SOAP MQ inbound listener transaction (CPIL)

» The SOAP MQ inbound router transaction (CPIQ)

» The transaction used for running the business logic program (DISP)

After ending the EDF session, we received the ORDER SUCCESFULLY PLACED
response in the browser.

We noted the SYSPRINT messages by the CIWSMSGH message handler for
CICS region CIWSR3C2 (Example 4-5).

Example 4-5 CICS CIWSR3C2 - SYSPRINT

CIWSMSGH:
CIWSMSGH:
CIWSMSGH:
CIWSMSGH:
CIWSMSGH:
CIWSMSGH:
CIWSMSGH:
CIWSMSGH:
CIWSMSGH:

Container Name: : DFHWS-WEBSERVICE
Container content: dispatchOrderEndpoint
Container Name: : DFHWS-TRANID

Container content: DISP

Container Name: : DFHWS-URI
Container content: wmq:VSG3.R3C2.PIPE3.REQUEST/exampleApp/dispatchOrder

Note that after the request for the dispatchOrderEndpoint service arrives, the
message handler changes the transaction ID to DISP. In particular, note that the
DFHWS-URI container shows the URI in WMQ format.

4.6 High availability with WMQ

In Section 3.4, “Configuring for high availability” on page 101 we outlined how
HTTP Web service requests can be balanced across multiple CICS regions in
order to provide a high availability configuration. Here we take a brief look at how
WMQ Web service requests can be balanced across multiple CICS regions.

On page 101, we also discussed how once a request is received by a specific
CICS region, it can be dynamically routed within a CICSPlex. These transaction
and program routing mechanisms can be used irrespective of how the SOAP
message is transported.

The principal areas for consideration when designing a high availability
configuration for WebSphere MQ are:

» How to share access to queues across multiple CICS regions

126 Implementing CICS Web Services

» How to load balance WMQ connections across multiple queue managers

Figure 4-11 shows an example high availability configuration for WMQ, in which
queues shared in the coupling facility can be accessed by CICS regions running
on different LPARs, and WMQ connections are balanced across different queue
managers using shared channels.

Queue Manager A LPAR 1

ciCs
Listener Region 1

WMQ CONNECT

fr v
DB2 7Coupling’
Data Sharing Faclllty LPAR 2

Cics

Listener Region 2

Connect to

Queue Sharing Group

Buiouejeq pieo-| dl

Queue Manager B

Figure 4-11 High availability configuration for WMQ

Figure 4-11 shows an example WMQ configuration that takes advantage of
several parallel sysplex high availability capabilities, specifically:

» Shared queues

A shared queue is a type of queue in which messages on that queue can be

accessed by one or more queue managers that are identified to the sysplex.
The queue managers that can access the same set of shared queues form a
group called a queue-sharing group (QSG).

A QSG controls which queue managers can access which coupling facility list
structures and hence, which shared queues. Each coupling facility list
structure is owned by a QSG and can only be accessed by queue managers
in that QSG.

Multiple queue managers on multiple MVS images within the same
queue-sharing group can put messages to and get messages from the same
shared queue. This is achieved by storing all the messages in a shared
queue in the same coupling facility list structure.

Chapter 4. Web services using WebSphere MQ 127

128

Multiple queue managers on multiple MVS images within the same
queue-sharing group can access the same WebSphere MQ objects. This is
achieved by storing the object definitions in tables of a DB2® data-sharing
group.

The use of shared queues provides a highly available solution because the
failure of a single MVS image does not prevent access to shared queues.
Another benefit is a capability to implement pull workload balancing. It means
that by defining the input queue of an application (such as a CICS service
provider application) as a shared queue, you make any message put to that
queue available to be retrieved by any queue manager in the queue-sharing
group.

Shared channels

The advantage of using shared channels is high availability when compared
to being connected to a single queue manager. An inbound channel is
classed as shared if it is connected to the queue manager through a group
listener. A group listener is an additional task started on each channel initiator
in the queue-sharing group. This task listens on an ip address/port
combination, specific to that queue manager, known as its group address.
Each group address can then be registered with an IP routing mechanism
such as Sysplex Distributor.

Sysplex Distributor

Sysplex Distributor is designed to address the requirement of one single
network-visible IP address for a service. Sysplex distributor can be used to
map a queue-sharing group-wide generic IP address/port to a specific group
address.

For more information on configuring high availability with WMQ refer to
WebSphere MQ in a z/OS Parallel Sysplex Environment, SG24-6864.

Implementing CICS Web Services

Connecting CICS to the
service integration bus

This chapter introduces the service integration bus (or bus) and the benefits of
connecting your CICS Web service applications to a bus. It then goes on to
explain the steps involved in accessing a CICS Web service over a bus.

© Copyright IBM Corp. 2006. All rights reserved. 129

5.1 Overview of the service integration bus

WebSphere Application Server V6 provides the ability to use the service
integration bus as an intermediary between service requestors and service
providers, allowing control over the flow, routing, and transformation of
messages.

The use of Web services with the service integration bus is an evolution of the
Web Services Gateway (WSGW) provided in WebSphere Application Server
Version 5. Whereas the Web Services Gateway was a stand-alone application in
V5, the bus is more tightly integrated into the application server, enabling users
to use the WebSphere Application Server administration and scalability options,
and also build on top of the asynchronous messaging features provided by
WebSphere Application Server.

The bus allows the system administrator to create a level of indirection between
service requesters and providers by exposing existing services at new
destinations. The bus also provides options for managing these services through
mediations, which can access and manipulate incoming and outgoing message
content, or even route the message to a different service. Support for JAX-RPC
(the Java API for XML-based Remote Procedure Calls) handlers is also included
in the bus.

Figure 5-1 is an overview of the bus and how it can be used to enable Web
services clients to access a CICS Web service. Clients can use bus-generated
WSDL to access the service, and appropriate mediations could be used for
message logging or transformation purposes.

Inbound service request ¢~ . .). Outbound service request
Service Integration Bus
Service Endpoint Gat Outb d Gles
n o .
cpoint 1 diewdy utooun Service
Requestor Listener Service Port .
= I - -t Provider
‘Mediation: 'Mediation:! K_/
Inbound service response& _J Outbound service response

WebSphere Application Server

Figure 5-1 Exposing a CICS Web service over the service integration bus

It is possible for CICS to interoperate with the bus both as a service provider and
as a service requester. The use of bus-generated WSDL means that the service
requester does not need to know the location of the CICS service provider; it only
needs to know the location of the bus. The bus itself knows the location of the
CICS service provider. Similarly, a CICS service requester does not need to

130 Implementing CICS Web Services

know the location of the service provider; it only needs to know the location of the
bus.

Among the components you may come across in discussions and
implementations of buses are the following:

>

Bus: The “intelligent network” on which inbound and outbound services and
gateway resources are defined.

Endpoint listener: Entry points to the bus for Web services clients. Endpoint
listeners allow clients to connect over SOAP/HTTP or SOAP/JMS. They are
associated with inbound services and gateway resources.

Inbound service: Destinations within the bus exposed as Web services (a
gateway serv