
On Demand Business solutions
White paper

IBM WebSphere Application
Server for z/OS Version 6:
A performance report.

By Mike Cox, Advanced Technical Support, Americas;
Jim Cunningham, IBM Software Group; Bob St. John,
IBM Systems and Technology Group; Steve Grabarits,
IBM Systems and Technology Group; Linwood Overby,
IBM Software Group; Carl Parris, IBM Systems and
Technology Group; and Gary Puchkoff, IBM Software Group

May 2006

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 2

Introduction

The information in this white paper is designed to provide a balance that can suit users

of both IBM System z™ mainframes, and Java™ 2 Platform, Enterprise Edition (J2EE)

technology-based IBM WebSphere® systems. However, this paper is not designed to be a

tutorial on J2EE or a complete articulation of the many unique strengths of the System z

server, or the IBM z/OS® operating environment.

When discussing IBM WebSphere Application Server for z/OS performance, it is important

to look at performance in the context of an operational environment as opposed to a simple

benchmark environment. Using an operational environment enables you to see the true

value and strengths of a WebSphere Application Server for z/OS and System z solution.

WebSphere Application Server for z/OS is designed to be a cohesive part of the integration

platform created by System z servers.

When planning to introduce new workloads into your existing environment, you need help

assessing the impact these workloads might have on your existing and future hardware and

software systems. Unfortunately, there is no magic formula or set of benchmarks to evaluate

system performance. A standardized test is simply unable to provide the specific answers

you need for your customized environment. Therefore, the usefulness of any performance

data is based on how well you understand your own system and recognize the pieces of

benchmark data that are relevant to your business needs.

The only accurate method of determining how a server might perform under a particular

workload is to test the server within an environment suitable for that workload.

Unfortunately, this can be a very difficult and expensive proposition for you to undertake.

To assist you in planning for introducing WebSphere Application Server for z/OS workloads

into your existing environments, IBM has documented a combination of primitive

component tests, simple end-to-end tests, client proof-of-concept benchmarks and complex

operational performance tests. You can choose to use this information to help you make an

informed decision, but it is not a substitute for a detailed performance and capacity

planning process.

2 Introduction

4 The value of WebSphere

Application Server for z/OS

and System z

10 Proximity to data: The value

of configuring WebSphere

Application Server for z/OS in

close proximity to operational

data source

16 Why run WebSphere

Application Server for z/OS?

19 The Mettle Test

24 Business value of the

 Mettle Test

24 Java performance

27 WebSphere Application

Server for z/OS, Version 5.1

performance

28 WebSphere Application

Server for z/OS, Version 6.0.1

performance

36 Performance cost of Web-

enabling your 3270

application

40 The eRWW workload

44 System z Application

Assist Processors

54 Summary

55 For more information

Contents

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 3

Many organizations are quickly moving their applications toward service oriented

architecture (SOA), where back-end transactions are packaged as services with a full suite

of common J2EE technology-based connector application programming interfaces (APIs).

 A variety of popular solution applications, such as those for enterprise resource planning

(ERP), collaboration and business intelligence can be accessed through portals and

choreographed flows of multiple atomic Web services built with high-level tools into

business processes.

Application servers and back-end systems can be both local and remote — accessible by a

wide variety of user groups both internal and external. In this environment, the demands

on your back-end IT infrastructure become more unpredictable as Web services become

exposed to a wider range of applications and a broader audience. The days in which server

loads were predictable as the workday progressed through its normal cycle of morning,

lunch, afternoon and evening are quickly disappearing as loads become more and more

volatile. It is no longer feasible to configure separate server farms for each application and

to configure capacity for peak load for each application. And it is also no longer feasible to

bring a system down for maintenance when it is so interconnected. Planned and unplanned

downtime becomes increasingly disruptive and expensive. The ability to efficiently share

compute resources and avoid outages is essential. This capability requires a design focus

on operational performance from the ground up — encompassing hardware, firmware,

operating systems, transaction managers, databases and other subsystems. IBM has been

steadily pursuing this design vision with its System z servers for 40 years. WebSphere

Application Server for z/OS is just a more recent step in the evolution of a robust On Demand

Business system. It is in this context that this white paper discusses WebSphere Application

Server for z/OS performance.

Many different types of workloads and methodologies are used to quantify changes in

performance for the comparisons in this white paper. In the lab, primitive measurements

are often used to look at the performance of a specific subset of a software stack. These

measurements are an important part of the development and performance process to

identify changes in behavior and bottlenecks. When primitive measurements improve

as a group, the end-to-end measurements tend to reflect these improvements. However,

primitive measurements can exaggerate changes in performance. For this reason, it is

important to resist the temptation to make a platform judgment based on looking at a single

primitive test result. Primitive measurements are not a good indicator of how a system will

perform in a complex operational environment. By comparison, you would not make a buying

decision between a luxury car or a subcompact car based on spark-plug performance.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 4

The tests discussed in this white paper cover the range of simple primitive tests to complex

end-to-end operational-performance tests. The following section briefly describes the

different testing categories:

Primitive tests

These test include:

• Single user, single processor tests, such as pingMDBQ

• Multiple-user, multiple-processor tests that drive a single function, such as pingservlet

• Tests that have no input or output; data is retrieved from memory, such as primitive Java virtual

machine (JVM) measurements

End-to-end tests

Multiple users drive multiple transactions through the WebSphere Application Server for

z/OS run time to a back-end database (for example, Trade6 or e-business Relational

Warehouse Workload [eRWW]).

Client benchmarks

These tests are usually simpler than production applications. However, they exercise the

basic design and logic of the application and run against real client data.

Operational-performance tests

These tests consist of mixed workloads, multiple application priorities, multiple partitions,

load spikes, failure recovery and so on. They measure the system’s ability to respond to

operational challenges with acceptable performance. An example of this kind of test would

be the Mettle Test. You can view the results of the Mettle Test at ibm.com/software/

webservers/appserv/zos_os390/mettle.html.

The value of WebSphere Application Server for z/OS and System z

WebSphere Application Server for z/OS, Version 6 has greatly evolved from Version 4.

Version 6 features a common programming model and is built from common code. Version 4

featured distributed IBM WebSphere Application Server products, as well as a totally unique

WebSphere Application Server for z/OS product. WebSphere Application Server for z/OS,

Version 4 had a different programming model, different APIs, interfaces, application

packaging requirements, among others. WebSphere Application Server for z/OS, Version 6

enables administration of its nodes on varying platforms and releases that can be contained

within a cell.

Considerations

• Use caution when making decisions
about a single data point, particularly
with primitive measurements.

• Measurement data is very fluid. It
improves frequently. Some data included
in this white paper might already be out
of date.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 5

The WebSphere Application Server for z/OS product has evolved into a mature, strategic key

piece of software for the mainframe. As SOA is becoming more prevalent, core mainframe

assets are more commonly packaged as services and reused with new J2EE applications.

This makes the unique platform abilities of WebSphere Application Server for z/OS more

attractive than ever.

State-of-the-art transactional run time

When discussing the performance of WebSphere Application Server for z/OS, you must

first look at the how the WebSphere Application Server for z/OS runtime structure has been

designed. It differs from the other J2EE run times in some very important ways that relate

 to achieving operational performance (see Figure 1).

Servant regions

Servant regions

Servant regions

Figure 1. State-of-the-art transactional run time

Merges the best 30 years of critical transaction
monitors and the J2EE programming model

• Isolation
• Availability
• Consistency
• Resource management
• Two-phase commit

Controller region

application

application

application

IMS

DB2

CICS

RRS

RRS

RRS

Low-priority users
and transactions

Medium-priority users
and transactions

High-priority users
and transactions

Workload
manager

• Socket end point
• Authorized
• Recoverable

HTTP

IIOP

As you move in Figure 1 from left to right, you see HTTP, or Internet Inter-ORB Protocol

(IIOP) requests coming in from the network (or local clients) to a z/OS address space called a

controller region. The controller region is an authorized, recoverable address space that

listens on a TCP/IP socket and then routes incoming work to one or more address spaces

called servant regions. These servant regions implement the J2EE artifacts associated with

the work of the transaction, such as servlets, JavaServer Pages (JSP), session Enterprise

JavaBeans (EJB), bean-management persistence (BMP) and container-managed persistence

(CMP) artifacts and message-driven beans (MDBs). Thus, a single WebSphere Application

Server for z/OS runtime instance, or server, is actually made up of multiple address spaces.1

The multi-address space design provides a number of advantages.

1 There are additional address spaces that are part of the run time, which are used for startup and administrative
functions that are not part of the mainline performance path. These address spaces will not be discussed in this
white paper.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 6

Workload management

When work is distributed to a servant region from the controller region, it is placed on a z/OS

Workload Manager (WLM) queue. The z/OS WLM classifies the unit of work by a number

of criteria, including server name, server instance name, user ID and transaction class.

Transaction classes can be assigned using a Workload Classification XML document, which

enables HTTP requests to be classified by host, port or Uniform Resource Identifier (URI);

IIOP requests to be classified by application, module, component or method; and MDBs to

be classified by message listener port and selector attribute. An installation using WLM

defines one or more service classes according to service-level agreement (SLA) criteria, such

as 90 percent of the transactions in a service class must be completed in less than half a second.

When multiple service classes are defined, some can be designated as more important than

others according to importance assignments. WebSphere Application Server for z/OS,

interacting with WLM, monitors the performance of each service class to determine if the

work in that class is meeting its SLA criteria. If work is falling behind or a spike in the load

occurs, WLM can start another servant region, adding resources to handle the additional

workload, which in turn improves performance. If the system is constrained, WLM can shift

resources from lower-priority work to support higher-priority work.

WLM is designed to be in the mainline path of the run time. It consistently monitors the

behavior of transactions running in each service class and providing a tight feedback loop

deeply integrated into the z/OS system. This capability provides real-time adjustments to

system components to help maximize the processing resources to help ensure that higher-

priority work is serviced before lower-priority work.

WLM also provides another advantage for the z/OS installation. Report classes can be

assigned to different work based on all the criteria listed previously. This capability enables

the installation to easily isolate the resource requirements and responsiveness of each

category of work.

Address-space isolation

When using multiple servant-region address spaces, a defective transaction that causes the

address space to fail only affects the transactions running within that servant region. This

capability provides a high degree of application isolation and positively affects availability.

If an address space does fail, WLM detects the loss of resources and immediately starts a

new servant region and begins routing work to it.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 7

Global transactions and two-phase commit

When running transactions with a global commit scope (with TRANSACTION_REQUIRED

as the default), WebSphere Application Server for z/OS registers the commit scope with

Resource Recovery Services (RRS). RRS provides operating-system control of the commit

process. When performing a full two-phase commit with more than one resource manager

such as IBM IMS™, IBM CICS®, IBM DB2® and IBM WebSphere MQ, RRS can handle the full

two-phase-commit coordination process with highly optimized internal z/OS code. This

capability has several advantages:

• Performance is improved because the commit process is internal to the operating system rather

than in middleware. When you are performing a two-phase-commit interaction, locks are held on

more than one back-end data resource. The longer these locks are held, the greater the negative

impact on performance. By optimizing this path, you can enable locks to be released sooner — and

help benefit all work.

• Not all resource adapters can handle full two-phase-commit interactions with Extended

Architecture (XA) middleware without some compromise in commit state.

• When a z/OS system handles two-phase commit, it helps simplify and even eliminate application

management and coding of rollback logic.

The previously mentioned tightly integrated functions of WLM, failure isolation and

two-phase commit are all transparent to the J2EE application and thus, the application

developer. This design offers the benefits of a cluster without actually configuring a cluster

using WLM-based routing and integrated high-availability features. Any J2EE technology-

compliant enterprise archive (EAR) file can deploy transparently in the WebSphere

Application Server for z/OS run time without your needing to modify the application —

and inheriting many of the built-in qualities of service of the System z platform.

Since Version 4, WebSphere Application Server for z/OS has been fully J2EE compatible.

However, WebSphere Application Server for z/OS differs from other distributed J2EE

run times in the industry. WebSphere Application Server for z/OS takes full advantage

of the strengths of the z/OS and System z platform. IBM has incorporated into WebSphere

Application Server for z/OS the lessons learned from more than 30 years of experience

designing and optimizing critical transaction managers in complex operational

environments. These capabilities in other J2EE run times are managed externally to the

operating system through middleware add-ons that increase the level of complexity and

can result in less system integration and additional path length.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 8

The capabilities discussed previously are not demonstrated in many of the primitive

and single instance end-to-end benchmarks mentioned in this white paper. However,

performance tests for a variety of workloads have consistently shown high n-way scalability

with symmetric multiprocessing (SMP) ratios higher than traditional existing Large

Systems Performance Reference (LSPR) workloads using the basic design in WebSphere

Application Server for z/OS, Version 4, Version 5 and now Version 6. The description of the

Mettle Test on page 19 illustrates the operational performance value of these features in a

dynamic multipartitioned environment running a mix of high- and low-priority workloads.

WebSphere Application Server for z/OS high-availability client POC configuration

Shortly after the general availability of WebSphere Application Server for z/OS, Version 5,

a large financial institution tested its proof-of-concept (POC) online bank-teller

application in the IBM Montpellier Systems Center (see Figure 2). The bank required

extreme scalability, subsecond response time and high availability. Its application

represented a mix of automatic teller machine-like transactions. The application consisted

of servlets driving Java Database Connectivity (JDBC) calls to IBM DB2 Universal

Database™ on z/OS with an average of five to six Structured Query Language (SQL) calls

per transaction.

Figure 2. WebSphere Application Server for z/OS high-availability client POC configuration

z990 z990 z990 z990 z990

DB2
data

• Five zSeries 990 servers
 with 16 CPs per server

• z/OS, Version 1.4
• WebSphere Application Server for z/OS

 Version 5.0
• Java SDK, Version 1.3.1
• DB2 Universal Database, Version 7.1
• Parallel Sysplex with external coupling facility
 - DB2 lock structure and buffer pools
 - Global resource serialization (GRS) structure
 - WebSphere error log
 - RRS logs

Redundant components
• CPUs—single CPU failure fenced
• Central electronics complexes (CECs)
• WebSphere Application Server,
 DB2 and z/OS

Coupling
facility

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 9

As shown in Figure 2, five 16-way IBM ̂ ® zSeries 990 (z990) systems were

configured as a single-system image within an IBM Parallel Sysplex® environment. A single

DB2 database was shared by all the systems in the cluster. A coupling facility consisting

of four processors was used for DB2 buffer pools, the DB2 lock structure and IBM MVS™

functions required to support a sysplex. WebSphere Application Server for z/OS is designed

to be easily configured into a Parallel Sysplex configuration and can use the coupling

facility for a number of functions. In this case, the coupling facility contains WebSphere

Application Server for z/OS error logs and the RRS log.2 Each z990 box was configured with

WebSphere Application Server for z/OS, Version 5, DB2 Universal Database, Version 7.1 and

the z/OS, Version 1.4 operating system.

In addition to configuring a Parallel Sysplex environment for high-end scalability, you

can use a single-system image Parallel Sysplex configuration to provide high availability

with full redundancy in software and hardware. Duplexing3 is often used in production

environments, but in this example, duplexing was not applied to the coupling facility.

WebSphere Application Server for z/OS sysplex client POC results

Figure 3 illustrates the measured results.

 2 WebSphere Application Server for z/OS can also use the coupling-facility structure for shared persistent session
data and Security IDs (SIDs).

 3 System-managed coupling-facility structure duplexing is designed to provide a general-purpose, hardware-
assisted, easy-to-use mechanism for duplexing coupling-facility structure data. It provides a robust recovery
mechanism for failures, such as loss of a single structure or coupling facility, or loss of connectivity to a single
coupling facility, through rapid failover to the other structure instance of the duplex pair.

Figure 3. WebSphere Application Server for z/OS sysplex client POC results

20 000

15 000

10 000

5 000

0

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd

Number of 16-processor z990 systems

 1 2 3 4 5

Response time

75203717

0.0685 0.0462
0.0785

10443

0.1117

13456

0.1213

15947

1

0.75

0.5

0.25

0

Theoretical best transactions per second

Transactions per second

Se
co

nd
s

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 10

In Figure 3, the y axis on the left represents the throughput for the configuration, measured

in transactions per second. The y axis on the right represents response time as measured by

the external load emulator. The x axis shows the number of 16-processor z990 boxes. The

dashed line graphs the measured transaction rate as the number of boxes configured in the

sysplex was scaled up. The solid line shows the theoretically best scaling potential based on

the throughput of one z990 box. The measured results scaled extremely well considering

that the DB2 data is shared and the SQL activities include updates. Also, these scaling

numbers were achieved while consistently providing a less than one-quarter-second

response time on a system running at 95 percent utilization as shown by the dotted line.

These results were obtained using WebSphere Application Server for z/OS, Version 5

just after it became generally available. Improvements discussed in this document for

WebSphere Application Server for z/OS, Version 5.1 and WebSphere Application Server

for z/OS, Version 6 have the potential to improve these transaction rates.

Proximity to data: The value of configuring WebSphere Application Server for z/OS in close

proximity to operational data sources4

The J2EE programming model is a distributed object model that provides flexibility in

application design, as well as a multitude of deployment options. However, you should

consider some important performance factors when making deployment decisions.

WebSphere Application Server for z/OS offers opportunities for local optimizations when

deployed locally with back-end DB2 and transaction managers. The following two examples

demonstrate measured performance improvements realized by clients when they redeployed

or refactored their applications in close proximity to the data that the applications accessed.

These were controlled benchmarks using the client’s own applications. First, consider a

basic J2EE flow as shown in Figure 4.

 4 The discussion in this section is based on a Washington Systems Center technical document entitled,
Optimizing WebSphere for z/OS Performance written by Mike Cox and Paul Glass. For a more detailed discussion
of this topic, you can read this article at ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100558.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 11

Figure 4. A typical J2EE flow

In this example, the TCP/IP flows can be in a J2EE request: client to Web container,

Web container to EJB container, EJB container to EJB container and EJB container to

back-end database (DB2 in this example). Some of these TCP/IP flows are Remote

Method Invocation over Internet InterORB Protocol (RMI/IIOP) calls between the J2EE

components. RMI/IIOP processing can be expensive because it includes serialization

(making a copy of the data that is formatted to be passed over TCP/IP) and deserialization

(essentially rebuilding serialized objects into full Java objects). If all the EJBs required for

an application can be found in the same EJB container, you can avoid serialization and

deserialization cost. Local EJB interfaces can be defined, or the pass-by reference5 option

can be used so that objects passed as parameters from one EJB to another do not need to

go through this costly processing for each EJB call.

In the next section, you can see the benefits of reducing the number of remote EJB calls

per transaction, which can help reduce serialization cost and network latency. The second

example demonstrates the potential savings associated with making local JDBC calls

using the Type-2 JDBC option as opposed to a remote Type 4-JDBC call.

 5 Pass by reference is a parameter that you can select through the WebSphere Application Server for z/OS
administrative console when applicable.

HTTPS IIOP IIOP

Resource
manager

(DB2)

Browser
Servlet EJB EJB

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 12

Proximity to data: Transportation industry benchmark—refactoring an application to avoid remote

EJB-to-EJB interactions

The following benchmark comparison was performed at IBM Washington Systems Center

using a benchmark provided by a large transportation company for its customer information

system. In Figure 5 the configuration shows the base case with the original configuration

tested. The application flow consisted of a Web container and an EJB container running in

WebSphere Application Server for z/OS on an IBM System p™ machine with the IBM AIX®

operating system. The application servlet running in the Web container made a local IIOP

call to a session EJB that contained the business logic of the transaction. The session EJB

then made several RMI/IIOP calls to CMPs running in WebSphere Application Server for

z/OS, which then accessed DB2 using Type-2 JDBC calls. In this case, DB2 is configured as

a Parallel Sysplex environment for both scalability and availability.

The business-logic session EJB was running remotely to the CMP EJBs, which ran the SQL

calls to DB2. To make matters worse, for each transaction, the business-logic session EJB

had to make several calls to these remote CMP EJBs. As a result, these RMI/IIOP calls

added significant serialization and deserialization overhead.

Figure 5. Remote (distributed) business-processing logic environment

DB2
WebSphere Application

Server for z/OS
EJB container

DB2
WebSphere Application

Server for z/OS
EJB container

IIOP data flow IIOP data flow

z990 processor
z/OS operating system

z990 processor
z/OS operating system

HTTPS data flow

System p processor
AIX operating system

WebSphere Application
Server for z/OS Web container

Database

DB2 server DB2 server

• WebSphere requests were
 serviced here.
• Business-process EJB and
 all business-logic steps were
 implemented here.
• Business logic invoked
 remote EJB on System z for
 SQL activity.

EJB for SQL
calls were

implemented here.

• Client workstation
• Web browser
• HTTP request

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 13

Figure 6 shows the same physical configuration, but in this case, the application has been

refactored to place the business-logic processing in the same EJB container with the data

access CMP EJBs in the WebSphere Application Server for z/OS run time. Doing this helped

significantly reduce the traffic from the System p machine to the System z machines. In

addition, local interfaces in the application were defined for the EJBs that shared the

EJB container on z/OS. Doing this helped reduce the number of remote EJB calls per

transaction, helping to significantly reduce the serialization and deserialization cost.

Figure 6. Local z/OS business-processing logic environment

Table 1 shows that there was a very significant difference in the overall performance of these

two application-deployment approaches.

• Average processor time per EJB transaction was reduced by more than 77 percent.

• The data volume per EJB transaction was reduced by 99 percent.

Benchmark configuration Average processor time
per EJB transaction (ms)

Amount of data transferred
per EJB transaction (KB)

Remote (distributed)business-logic environment 11.73 54.4

Local z/OS business-logic environment 2.64 0.5

Table 1. Comparison of local and remote IIOP performance

IIOP data flow IIOP data flow

z990 processor
z/OS operating system

z990 processor
z/OS operating system

HTTPS data flow

System p processor
AIX operating system

WebSphere Application
Server Web container

• WebSphere requests were
 serviced here.
• Servlet invoked business-process
 EJB on z/OS platform.

Database

• Business-logic EJBs
ran here in the refactored
client application.

• EJB SQL calls were
made here.

DB2
WebSphere Application

Server for z/OS
EJB containerDB2

WebSphere Application
Server for z/OS
EJB container

DB2 server DB2 server

• Client workstation
• Web browser
• HTTP request

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 14

By putting both the business and data logic in the same WebSphere Application Server for

z/OS EJB container and minimizing the interactions between the Web tier and the EJB tier,

fewer cycles were spent in serialization and deserialization, and less data was transferred

over TCP/IP, which helped result in reduced processor consumption, bandwidth

and latency.

Proximity to data: Finance industry benchmark — reducing physical tiers to optimize local access

to DB2

The following benchmark comparison was performed at a client site using the client’s

configuration with the assistance of IBM expertise. In this case, the client was running a

multitier configuration illustrated in Figure 7.

Figure 7. Financial client with remote (distributed) enterprise database

In this example, the first step is a WebSphere Application Server for z/OS container

operating on a distributed System z box. The distributed box is running a servlet that makes

a remote IIOP call to WebSphere Application Server for z/OS on System z, which is running

the session EJB business logic. Next, a local IIOP call is made to the data-access CMP EJB,

which then makes SQL calls to DB2 on z/OS. DB2 on z/OS is running on another System z

box. The CMP EJB SQL calls to DB2 on z/OS are using a remote Type-4 JDBC connection

which goes through Distributed Relational Database Architecture (DRDA). This

configuration is running WebSphere Application Server for z/OS as a distributed tier,

not taking advantage of the potential for closer proximity to the Web container or closer

proximity to the back-end data.6

6 A number of factors contributed to the separation of the Web container from the EJB container in this case,
which were unrelated to performance considerations.

IIOP data flow

System z processor
z/OS platform 2

HTTPS data flow

Distributed processor

WebSphere Application
Server Web container

• WebSphere requests were
 serviced here.
• Servlet invoked business-
 process EJB on z/OS
 platform 1.

Database

System z processor
z/OS platform 1

DB2 server
DB2

WebSphere Application
Server for z/OS EJB container

• Client workstation
• Web browser
• HTTP request

• Business-logic EJBs ran here
 in the client application.
• EJB SQL calls were made here.
• JDBC Type 4 connection issued
 DRDA SQL request to DB2 on
 z/OS platform 2.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 15

When accessing DB2 remotely, a number of steps take place. In the case of DB2 Universal

Database for z/OS, a Type-2 JDBC driver can be used when the J2EE components and DB2

subsystem reside on the same operating-system image. When the Type-2 JDBC driver is

used, data can be passed to DB2 in a more-usable format than a Type-4 connection, and

the TCP/IP flows are eliminated. When using the Type-2 JDBC driver, tasks are not

redispatched, and the DB2 activity continues on the current implementation thread.

The WLM priority of the current request being processed is maintained. In addition,

the Type-2 JDBC driver uses RRS to manage transaction state, which performs better

than the Type-4 XA JDBC provider.

Figure 8 shows the configuration when it has been changed to take advantage of local

Type-2 JDBC access to DB2.

Figure 8. Financial client with local enterprise database

In the above case, the physical configuration has been modified to eliminate one of the tiers

in the flow. The business-logic session EJB still makes a local call to the CMP EJB, which

runs SQL calls to a local instance of DB2 Universal Database on z/OS using the local Type-2

JDBC connection. Changing from a Type-4 to Type-2 JDBC connector is a simple process of

defining a new data source and configuring the application to use it.

System z processor
z/OS platform 1

HTTPS data flow

Distributed processor• WebSphere requests were
 serviced here.
• Servlet invoked business
 process EJB on z/OS
 platform 1.

Database

DB2 server

DB2
WebSphere Application

Server for z/OS EJB container

IIOP data flow

WebSphere Application
Server Web container

• Business-logic EJBs ran here
 in the client application.
• EJB SQL calls were made
 here, which resulted in a
 Type-2 JDBC (local)
 connection to DB2 on z/OS
 platform 1.

• Client workstation
• Web browser
• HTTP request

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 16

Significant improvements in performance were observed as a result of this change. A 50

percent reduction in average (Web) user response times were reported by the test driver

tools. Also, the overall processor power required by the z/OS system environment was 50

percent less than the remote (to z/OS) system implementation. In essence, moving to a

Type-2 driver resulted in performance improvements and less processor churn.

Proximity to data: Summary

The client-based benchmark examples demonstrate the real and potential performance

advantages provided by consolidating J2EE business logic and enterprise data access on a

single z/OS tier. Reduced processor consumption, improved response times and reduced

bandwidth requirements combine with other quality-of-service advantages, such as

resource management, transaction-commit scope management and security to make

WebSphere Application Server for z/OS an attractive option for critical J2EE technology-

enabled applications.

Why run WebSphere Application Server for z/OS?

WebSphere Application Server runs on many platforms. It is important to understand why

you should choose to run WebSphere Application Server on z/OS. As discussed previously in

this white paper, the WebSphere Application Server for z/OS run time has a unique design

that takes advantage of many z/OS and System z features to provide industry-leading

qualities of service, such as the following capabilities:

Integrated sysplex functionality

WebSphere Application Server for z/OS is designed to easily take advantage of Parallel

Sysplex functionality. Along with the well-known advantages of scalability (as demonstrated

previously in this white paper) and availability, WebSphere Application Server for z/OS

can use the coupling facility for error and RRS logging, persistent session durability,

client-affinity redirection for state management, and a security ID cache. In the case of a

WebSphere Application Server for z/OS failure, the previously discussed data can remain

available to other WebSphere Application Server for z/OS images configured in the sysplex.

WebSphere Application Server for z/OS maintenance can be applied without affecting

availability. The sysplex distributor interacting with WLM dynamically routes incoming

WebSphere Application Server for z/OS requests to the least-busy WebSphere Application

Server for z/OS instance.

Why run WebSphere Application
Server for z/OS?

Integrated sysplex functionality that
helps enable you to:

• Scale using the sysplex, while
transparently supporting client-affinity
redirection for state management

• Dynamically upgrade to new operating-
system and database releases without
bringing the system down

• Survive a software subsystem outage
without losing the availability of the
entire system

IBM System z hardware that enables
you to:

• Survive a processor failure without losing
the availability of the entire system

• Dynamically add capacity to respond to
unexpected workload spikes

The ability, since Version 4, of
WebSphere Application Server for
z/OS and RRS to support application
models that require two-phase
commit across IMS, CICS and DB2

State-of-the-art resource
management that enables you to
differentiate and prioritize work
based on service-level requirements,
using WLM in WebSphere
Application Server, WLM in z/OS,
IBM Intelligent Resource Director
and WLM with a sysplex distributor.

Deep, end-to-end security integration
that provides:

• Enhanced IBM RACF® controls for
user access to the TCP/IP stack, ports
and network

• Integrated intrusion-detection services
for port scanning, stack attacks and
flooding detection

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 17

System z hardware

System z servers provide near-continuous reliable operation (CRO) and deliver high-

availability solutions. High-availability solutions yield the industry’s highest mean time

between failure (MTBF) results for unscheduled system outages. The z990 family of

processors are designed to have a MTBF of more than 30 years, with recent field performance

exceeding the design target based on current worldwide client field data. If a single processor

fails, a spare processor can be switched in automatically by the firmware. Even in the rare

case where no spare processing units are available, then the failed processor is fenced off

from the system, and in the vast majority of cases, doesn’t affect any running applications.7

Integrated two-phase commit

The z/OS operating system handles two-phase-commit processing using the tightly

integrated RRS function. Unlike distributed XA function, RRS is not managed externally

to the operating system in middleware. Providing two-phase-commit processing within the

operating-system layer provides performance advantages by helping to reduce lock-held time

in each of the back-end enterprise information systems (EISs) within the commit scope,

while also helping to improve the performance of single-phase-commit transactions running

concurrently against the same resources. RRS supports local two-phase-commit processing

between WebSphere Application Server for z/OS, IMS, CICS, WebSphere MQ for z/OS and

DB2 Universal Database for z/OS.

Because the RRS component of the z/OS operating system handles global commit rollback,

you don’t have to provide additional compensation or rollback logic in the business logic of

the application, thus helping to simplify application development.

State-of-the-art resource management

Four mechanisms are provided to differentiate between different priorities of work on the

system using client-defined SLA criteria through WLM.

• WLM within the WebSphere Application Server for z/OS run time manages priorities between

different WebSphere Application Server for z/OS transactions.

• WLM within z/OS manages priorities between WebSphere Application Server for z/OS and

non-WebSphere Application Server for z/OS applications (such as Java batch applications and

existing applications) running within the same z/OS instance.

7 For more information about CRO and high-availability solutions, visit: ibm.com/journal/rd/435/mueller.html.

The reliability, availability and serviceability (RAS) strategy for z990 and IBM System z9™ mainframes is to
continue the IBM S/390® objective of providing CRO. This RAS strategy is constructed with a set of building
blocks that work closely together: error prevention, error detection, error recovery, problem determination, service
structure, change management, and RAS measurement and analysis. The interdependency among the building
blocks is such that removing or weakening any of them limits the ability of the design to achieve the overall CRO
objective. Each building block must be fully implemented and must run flawlessly within itself and together with
the other blocks.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 18

• WLM of all service classes running across a multipartitioned configuration using Intelligent

Resource Director enables the shifting of resources to high-priority WebSphere Application Server

for z/OS work in one partition from lower-priority work in another partition. This capability

uses the Parallel Sysplex coupling facility and can monitor the work running in all of the logical

partitions (LPARs) of a multibox sysplex.

• WLM, in conjunction with the sysplex distributor, intelligently routes incoming WebSphere

Application Server for z/OS requests to the least busy WebSphere Application Server for z/OS

partition when multiple WebSphere Application Server for z/OS partitions are configured.

Although the top three examples of WLM usage move resources to the work, sysplex distributor

routes work to the resources.

No other system in the industry has this level of resource-management integration with

hooks in the hardware, hipervisor, operating system and the J2EE run time.

Deep end-to-end security integration

WebSphere Application Server for z/OS is designed with a System Authorization Facility

(SAF) interface. You can continue to use your existing security definitions in your security

subsystem when running WebSphere Application Server for z/OS. Tight integration with

the security component means that authentication, authorization and auditing can all be

performed using the same administration on z/OS as traditional z/OS subsystems. Also,

taking advantage of z/OS cryptographic hardware means strong, fast, and security-rich

processing for things like Secure Sockets Layer (SSL) connections.

Network access to WebSphere Application Server for z/OS is provided by the z/OS

communications server TCP/IP. The communications server maintains a hardened line of

defense for the z/OS system and provides a highly secure network infrastructure on which to

deploy WebSphere Application Server. The communications server uses SAF protection

through the SERVAUTH class to help ensure that local users have permission to access

TCP/IP resource networks, such as population of fast response cache accelerator (FRCA)

Web content, access to local ports, network resources and even the TCP/IP stack itself.

The communications server also has a built-in intrusion detection system (IDS) that reports

and defends against attacks on the z/OS network layers. The IDS is policy-based, rather than

signature-based, and uses its position as the server end point to detect both known and

unknown attacks that might otherwise go undetected by outboard network-based intrusion-

detection devices. The IDS detects network and port scans, single-packet attacks, and

multipacket denial-of-service attacks.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 19

The Mettle Test

Most of the performance data referenced in this white paper has been measured running

 in a controlled lab environment with care taken to help ensure that there haven’t been any

configuration bottlenecks, such as lack of memory, communications adapters and disks.

The measurements were usually taken during a sample interval where the workload had

achieved a steady state. Tests were usually done in dedicated partitions with nothing

else running on the system. Although this is valuable for performance analysis to highlight

changes in various components, it is not the way an enterprise might run in real-world

operational environments.

Also, because of the previously discussed lab-evaluation methodology, many of the

value-added functions of the WebSphere Application Server for z/OS run time are not

required or demonstrated. In fact, having WLM, RRS, security and cross-address-space

communications in the mainline paths adds some processor costs to the transactions in

spite of the attention paid to optimize these functions.

The WebSphere Application Server for z/OS on System z development teams have made a

conscious decision to optimize for operational performance rather than benchmark

performance. Ultimately, in the real world, this test has the ability to deliver more-usable

performance than is demonstrated in benchmarks that run a single workload at steady state

on a single operating system on a single box with nothing else running in the configuration.

To fully optimize all of the resources on a system while running multiple workloads of

different priorities, it is necessary to take a system view of performance and to design the

qualities of service into the hardware, firmware, operating system and WebSphere

Application Server for z/OS run time.

The Mettle Test is an operational performance demonstration of the unique

capabilities of the WebSphere Application Server for z/OS running on a System z machine.8

The Washington Systems Center configured the system in Figure 9 for this test.

 8 To see the full demonstration, download the Mettle Test Flash demonstration from ibm.com/software/webservers/
appserv/zos_os390/mettle.html. The information in this white paper only touches the surface. The demonstration
package includes in-depth descriptions of WebSphere Application Server, z/OS and System z functions, such
as WLM, Intelligent Resource Director, Parallel Sysplex, hardware and software recovery, and maintenance, along
with screen images taken from a running system.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 20

Sy
sp

le
x

di
st

rib
ut

or
—

VI
PA

Figure 9. The Mettle Test configuration

The configuration was built with high-availability considerations. Incoming client

requests drove a pair of IBM WebSphere Edge Server systems (one functioned as back-

up) running on Microsoft® Windows® 2000.9 The edge servers drove a pair of HTTP Web

servers and plug-ins, each running in a Linux® environment on a System z guest on the

IBM z/VM® platform. The HTTP servers passed transactions to WebSphere Application

Server for z/OS running in four LPARs on a z900 16-processor system. These four

LPARs (SysA, SysB, SysC and SysD) ran “production” applications. A fifth partition

(SysE) simulated a development and test partition running a WebSphere Application

Server for z/OS workload and a non-WebSphere Application Server DB2 batch workload.

The five LPARs shared the 16 physical processors configured on the z900 machine.

SysA, SysB and SysC were configured as a single system image in a Parallel Sysplex

environment, sharing a single copy of the DB2 data. These partitions ran an order-inventory

workload called eRWW (see page 40), which consists of WebSphere Application Server for

z/OS driving the IBM CICS Transaction Gateway J2EE Connector Architecture (JCA) to

CICS Transaction Server and DB2. Eight transactions are in the workload ranging from

high-volume, trivial transactions, to medium to heavy queries and a processing-intensive

query. All but the processing-intensive query are the highest-priority transactions in the

system. The processing-intensive transaction is low priority. The workload has an 80/20

read-write ratio. HTTP requests to SysA, SysB and SysC used the sysplex distributor and

virtual IP addressing (VIPA) to route requests to the least-busy WebSphere Application

Server for z/OS instance based on dynamically monitored WLM statistics.

 9 At the time of the Mettle Test, WebSphere Edge Server was not available on Linux on System z. It now runs on this
operating environment and could be configured in Linux on System z guests.

Users

Backup

WebSphere Edge Server:
Network dispatcher
media access control (MAC)
forwarding to HTTP servers HTTP server:

WebSphere plug-in

Linux on System z
HTTP server

plug-in

Linux on System z
HTTP server

plug-in

z/VM

WebSphere
Edge server

Windows 2000

Testing group

SysA

SysC

SysB

SysD

SysE

eRWW

eRWW

eRWW

Trade2

Trade2

DB2 test
batch

DB2

CICS
DB2

CICS
DB2

CICS
DB2

2604-216 z/OS, Version 1.3

WebSphere
Application
Server for z/OS

WebSphere
Application
Server for z/OS

WebSphere
Application
Server for z/OS

WebSphere
Application
Server for z/OS

WebSphere
Application
Server for z/OS

2604-216

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 21

SysD ran the Trade2-EJB benchmark in “production.” SysE ran Trade2-EJB as a “test”

workload along with DB2 batch. Each of the workloads in the system had SLA criteria

and were assigned to service classes with a range of priorities.

This benchmark system configuration was confronted with a series of 10 operational

challenges to demonstrate operator-free resource management according to SLA

specifications, as well as unplanned- and planned-outage avoidance. Variations in high-

and low-priority loads and numerous failures were tested. System behavior was monitored

on custom gauges designed specifically for the Mettle Test.

The goals of the dynamic resource management (self-optimizing) scenarios included:

• Distinguish between high- and low-priority WebSphere Application Server for z/OS users

• Distinguish between high- and low-priority applications

• Respond with flexibility to changing processing capacity requirements with

Intelligent Resource Director

The goals of the planned- and unplanned-outage avoidance (self-healing) scenarios

included:

• Isolate WebSphere Application Server for z/OS application failures

• Provide continuous availability of the sysplex

• Isolate and recover hardware failures

• Provide nondisruptive installation of application and middleware maintenance

Self-optimization tests

Self-optimization refers to the ability of systems or components to efficiently maximize

resource allocation and usage to meet user needs without human intervention. Typically,

self-optimization addresses the complexity of managing system performance and workload

balancing. More-advanced self-optimizing components, such as those found in System z

servers and the z/OS operating system, are designed to learn from experience, and

automatically and proactively tune themselves in the context of overall service for both

system users and their customers.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 22

The Mettle Test included two self-optimization scenarios:

• Managing goals in a system

The first self-optimizing scenario demonstrated that z/OS WLM can distinguish between

high-priority order-entry WebSphere Application Server for z/OS work and low-priority

data-mining work running in the same WebSphere Application Server for z/OS image,

and autonomically adjust system resources to help ensure that the higher-priority work

is completed within its stated business objectives.

• Managing goals across systems

The second self-optimizing scenario demonstrated that System z Intelligent Resource

Director can extend this autonomic workload management beyond a single system by

redirecting resources from a lower-priority z/OS image (in this case, a z/OS system

running test and batch) to a higher-priority z/OS image running the WebSphere

Application Server for z/OS workload.

Because z/OS is a system that exhibits self-optimizing behavior, and WebSphere Application

Server for z/OS is tightly integrated with the self-optimizing algorithms of WLM, the

resources of each z/OS image of the Mettle Test were properly and automatically assigned

so that the critical, higher-priority work wouldn’t miss SLA criteria. The test also showed

WLM clamping down on the resources available to the lower-priority work until the higher-

priority work was done. When the resources were freed, they were automatically reassigned

to the lower-priority data-mining work.

Self-healing tests

Self-healing systems can detect improper operations — either proactively through

predictions, or reactively — and initiate corrective action without disrupting system

applications. Corrective action could mean that a product alters its own state or influences

changes in other elements in the environment. Having self-healing capabilities helps the

system to ensure that day-to-day operations do not falter or fail because of events at the

component level. Likewise, the system as a whole becomes more resilient as changes in the

system are made to reduce or eliminate the business impact of failing components.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 23

The Mettle Test included several self-healing scenarios:

• Recovering from application failure

In this scenario, a poorly written application with a memory leak was injected into a

stable, running system. Because of the advanced architectural structure of WebSphere

Application Server for z/OS, the failure was isolated and fenced off, and the system

structures were repaired without any loss of availability.

• Recovering from system failure

One of the operating-system images running the critical order-entry workload was

abnormally ended. In response, z/OS subsystems automatically restarted on the remaining

systems to clean up resources and establish an environment for restarting the failed system.

While the self-healing was under way, the system also reallocated system resources to keep

the order-entry workload on goal, despite effectively losing one-third of its capacity.

• Recovering from a hardware failure

A critical hardware component, a central processor (CP), was forced to fail, and a spare

physical unit immediately took over for the failed CP without any loss of availability.

• Nondisruptive WebSphere Application Server for z/OS upgrade

The service level of the WebSphere Application Server for z/OS running in one of the

systems was upgraded without any loss of availability.

• Nondisruptive application upgrade

The service level of the order-entry WebSphere application running in one of the z/OS

systems was upgraded without any loss of availability.

To experience the full impact of the Mettle Test, you have to see it. To download the Mettle

Test and get more information about the autonomic capabilities of WebSphere Application

Server for z/OS, visit ibm.com/software/webservers/appserv/zos_os390/mettle.html.

The Mettle Test scenarios
graphically illustrate what happens
when an important application
experiences a sudden spike in
activity when the system is already
100 percent busy, and when an LPAR
running the critical work in a sysplex
fails. The scenarios also show what
happens when a processor fails with
six different workloads running
across five LPARs sharing 16
physical processors.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 24

Business value of the Mettle Test

The Mettle Test shows that WebSphere Application Server for z/OS can:

• Manage resource consumption based on business objectives.

• Run diverse mixed workloads concurrently.

• Protect critical work from killer applications.

• Dynamically alter existing work priorities as business needs demand.

• Help enable you to use all existing capacity while potentially reducing cost.

• Respond quickly to shifts in business priorities.

• Minimize both planned and unplanned outages.

Java performance

A high percentage of the WebSphere Application Server for z/OS runtime code is written
in the Java language. The J2EE servlets and EJB are also in Java. Thus, the performance
of the JDK components—JVM, just-in-time (JIT) and class libraries— is an important build-
ing block. The following section describes situations in which Java performance runs
independent of a WebSphere Application Server for z/OS on J2EE container.

Integration with Java on z/OS running on System z

It might be a surprise to some people that Java on z/OS is very tightly integrated with the hard-
ware. Figure 10 shows how Java relates to the system-control program, and how it relates to the
hardware. Java applications basically consist of class files and class libraries. A Java application
can certainly exploit the class library included with the JVM because this library provides all
the basic constructs, like String and Hashtable, that make Java so powerful. A Java application

can also take advantage of class libraries provided by various software vendors.

Figure 10. Java structure

G5 G6 z900 z990

Application Class librariesClass libraries

JVM and JIT compilers

System control program

Hardware

IEEE IBM z/Architecture™,
such as Load
Address Relative
Long (LARL)
and Load Logical
Halfword (LLGH)

64 bit operations

• z/OS
• IBM OS/2®

• AIX
• IBM AS/400®

• Linux
• Windows on Intel®

Translate
instruction (TR)

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 25

Some of the support provided by the JVM must interact with the system-control program

(z/OS, Linux, AIX and Windows). For example, when Java starts a new thread, underlying

system-control program services are used. These portions of JVM code might be unique for

a specific platform. However, most of the code in the IBM JVM is common across all the

platforms for which IBM provides Java support. In addition, the class libraries provided

with the IBM JVM are common across the various platforms. Therefore, most of the updates

that have been made to improve the JVM for z/OS also help the JVMs for other platforms.

Likewise, most of the improvements made to any other IBM JVMs benefit the JVM on

z/OS as well.

All Java class files, whether they are part of the application or part of a class library,

represent their implementable code using platform-agnostic Java bytecodes. Initially,

bytecodes are interpreted by the JVM. This means that the JVM reads each bytecode and

performs the appropriate action for that bytecode. However, after the JVM determines

that Java code is used frequently enough, the JVM uses the JIT compiler to compile the

bytecodes into implementable code using the appropriate instruction set for the platform.

On the z/OS platform, the JIT compiler generates code using ESA/390 architecture

instructions — the same code you might generate if you wrote a program in S/390 assembler

language and compiled it on z/OS.

The Java JIT compiler provides some significant advantages. First, when it compiles Java

code, it provides a huge increase in performance. Three-hundred and ninety instructions

that are directly implemented by the hardware perform much better than JVM code to

interpret each Java bytecode. Another benefit of the JIT compiler is that it knows the target

machine when it compiles the code. The JIT compiler can take advantage of all the latest

hardware features and instructions of the machine it’s running on. The same thing is true if

you run the same Java application on an old machine and a new machine — the JIT compiler

running on the new machine can generate code to take advantage of the latest hardware

features and instructions of that machine. This represents a significant improvement

over statically compiled programs that are often compiled to run on the lowest supported

hardware level.

Java performance on z/OS has improved from release to release since Java was first

introduced on the platform. For historical information, as well as more current information

about how Java performance on z/OS continues to improve, visit ibm.com/servers/eserver/

zseries/software/java/javafaq.html#perform.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 26

SDK performance improvements

Figure 11 shows the performance improvement from Java Software Development Kit

(SDK), Version 1.3.1 to SDK, Version 1.4.2. SDK, Version 1.3.1 is recommended for use with

WebSphere Application Server for z/OS, Version 5.0.2. SDK, Version 1.4.2 is recommended

for use with WebSphere Application Server for z/OS, Version 5.1 and WebSphere Application

Server for z/OS, Version 6.

The workload used to generate the chart in Figure 11 is multithreaded and runs multiple

times, each time adding another thread. The workload processes online transaction

processing (OLTP) transactions like those used in the TPC-C benchmark. However, this

Java workload can’t provide database access or input and output. All the database

information is kept in memory, in the Java heap.

Because the measurements were performed on a 16-processor machine, it’s not surprising

that the transaction rate increases as the number of threads is increased from 1 to 16. Each

additional thread enables the benchmark to more fully use a 16-thread processor. When the

seventeenth and eighteenth threads are added to the workload, other thread-management

overhead causes the throughput to degrade. As more threads are added, the throughput

continues to degrade, but much more gradually. Generally, these results show that Java,

Version 1.3.1 and Java, Version 1.4.2 both scale very well on the z/OS operating system.

20

15

10

5

0

Pe
rf

or
m

an
ce

 re
la

tiv
e t

o

SD
K,

 V
er

si
on

 1.
3.

1
on

e
th

re
ad

Threads

z/OS, Version 1.6 on a z990 16-way processor with a 1400MB heap

SDK, Version 1.4.2, 31 bit

SDK, Version 1.3.1, 31 bit

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Figure 11. SDK multithreaded performance improvements

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 27

You can see that SDK, Version 1.4.2 consistently performs better than SDK, Version 1.3.1.

In fact, comparing the peak, 16-thread results in Figure 2, SDK, Version 1.4.2 performs 26

percent better than SDK, Version 1.3.1. This multithreaded primitive test simulates the

processing done by the JVM in a servant region and is a good indicator of improvements in

WebSphere Application Server for z/OS runtime performance.

Of course, there is no guarantee that your WebSphere Application Server for z/OS

application will realize the same improvement, but clearly using SDK, Version 1.4.2 rather

than SDK, Version 1.3.1 can provide WebSphere Application Server for z/OS, Version 5.1

with a significant performance advantage over WebSphere Application Server for z/OS,

Version 5.0.2.

WebSphere Application Server for z/OS, Version 5.1 performance

WebSphere Application Server for z/OS, Version 5.1 provided significant performance

improvements over WebSphere Application Server for z/OS, Version 5.0.2. A number

of factors contributed to this improvement. One key influence was how the WebSphere

Application Server for z/OS run time used SDK, Version 1.4. As demonstrated in Figure 11,

SDK performance improved by approximately 25 percent. The WebSphere Application

Server for z/OS run time also benefited from improvements to the EJB container and

higher levels of compiler optimizations.

Figure 12 illustrates a range of performance improvements from a sample of primitive

benchmarks and end-to-end benchmarks. The most significant benefits are seen in MDB

performance and in benchmarks, such as Trade3, that use EJBs.

WSBench tests Web services performance and is described in the section entitled

“WebSphere Application Server for z/OS, Version 6.0.1 Web services performance” on

page 34. The IMS eRWW benchmark consists of WebSphere Application Server accessing

IMS and DB2 using the IBM IMS Connect for J2C. The CICS eRWW benchmark consists

of WebSphere Application Server for z/OS accessing CICS and DB2 using the CICS

Transaction Gateway J2C. The eRWW benchmark is described in the section entitled

“The eRWW workload” on page 40. Approximately 40 percent of the eRWW workload is

running WebSphere Application Server for z/OS and Java and the remainder is traditional

CICS and DB2 or IMS and DB2 with z/OS. Thus, the 12 percent overall benefit to eRWW

from WebSphere Application Server for z/OS, Version 5.1 over Version 5.0.2 is based on a

sizeable improvement in the WebSphere Application Server for z/OS and Java portions of

the workload.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 28

WebSphere Application Server for z/OS, Version 6.0.1 performance

WebSphere Application Server for z/OS, Version 6.0.1 contains a significant set of both

functional and performance improvements over previous WebSphere Application Server

for z/OS releases. This section of the white paper focuses on providing information that

quantifies the performance improvements possible in Version 6.0.1.

Performance improvements in WebSphere Application Server for z/OS, Version 6.0.1 result

from changes to the following key functional areas:

• Improved Web container performance and scalability related to the reduction of code-path length

and enhanced caching features

• Improved EJB container performance related to the reduction of code-path length, new read-only

bean optimizations and improved read-ahead functionality

• A new dynamic cache called distributed map (DMap) caching that performs better than command

caching because of improved cache-hit ratios

• Enhanced Web services performance resulting from the caching of frequently used serializers and

deserializers, helping to significantly decrease the processing time for large messages

40

30

20

10

0

Pe
rc

en
t im

pr
ov

em
en

t

IM
S eR

WW

WSBen
ch

Ping
MDBQs

Ping
Serv

let

Tra
de

3 w
ith

ou
t d

yn
ac

ac
he

Tra
de

3 w
ith

 dy
na

ca
ch

e

CICS eR
WW

Primitives

End to end

Figure 12. WebSphere Application Server, Version 5.1 performance comparisons

17.6

34

16.7
11.7 12.1

30.6

23

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 29

Although the results presented in this section highlight the improvements made to key

areas of WebSphere Application Server for z/OS, they do not map directly to every

application because of variations in application functionality. Performance improvements

have been made across the programming model, and some of the benchmarks used in these

tests exercise portions of the programming model that others do not. For example, the Web

container was redesigned for Version 6, parts of the EJB container were improved, and the

connection manager and JSP compiler were enhanced. As a result, any benchmark that

takes advantage of these components can be expected to show performance improvements.

Trade6: A WebSphere Application Server for z/OS performance benchmark

Trade6 is the fourth generation of the WebSphere Application Server for z/OS end-to-end

performance application benchmark. Trade6 models an online stock-brokerage application

and has been redesigned and developed to cover the significantly expanding WebSphere

Application Server for z/OS programming model. Trade6 provides a real-world application

driving the WebSphere Application Server for z/OS implementation of J2EE, Version 1.4

and Web services, including key WebSphere performance components and features.

The Trade6 design spans J2EE, Version 1.4 including the EJB, Version 2.1 component

architecture, MDB, transactions (one-phase and two-phase commit) and Web services.

Trade6 also highlights key WebSphere Application Server for z/OS performance

components such as dynamic caching, Web services, and the new Java messaging engine.

To learn more about the Trade6 workload, including download and installation instructions,

visit ibm.com/software/webservers/appserv/was/performance.html.

WebSphere Application Server for z/OS, Version 6.0.1 Trade performance without dynamic caching

WebSphere Application Server for z/OS consolidates several caching activities, including

servlets, Web services and WebSphere commands, into a single service called the dynamic
cache. Caching the output of servlets, commands and JSP components can improve

application performance significantly. Trade provides an option that allows the benchmark

to run both with and without dynamic caching.

Considerations when
comparing the performance of
Java and COBOL applications

• Programmer skill

• Language impact

• Transaction-manager run times

• Interface impact

• Programming model

• Application design

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 30

Figure 13 illustrates the performance of the Trade benchmark without dynamic caching.

The benchmark was run on a z990 server using two processors. This measurement

compares WebSphere Application Server for z/OS, Version 5.1 to Version 6.0.1, with an

upgrade in DB2 Universal Database versions from Version 7 to Version 8. The DB2

KEEPDYNAMIC10 parameter is set to YES, as opposed to past Trade measurements. The

Trade benchmark is also updated from Trade3 to Trade6. Trade6 is essentially unchanged

over Trade3. Trade6 uses the same database and the same business logic, with a few minor

changes to accommodate some features available in WebSphere Application Server for

z/OS, Version 6.0.1.

Pe
rc

en
ta

ge
 o

f
th

ro
ug

hp
ut

 im
pr

ov
em

en
t

Full-stack comparison
z990 running two processors with no dynacache

WebSphere Application Server for z/OS, Version 5.1 Trade3
DB2 Universal Database, Version 7
KEEPDYNAMIC=NO

WebSphere Application Server for z/OS, Version 6.0.1 Trade6
DB2 Universal Database, Version 8
KEEPDYNAMIC=NO

WebSphere Application Server for z/OS, Version 6.0.1 Trade6
DB2 Universal Database, Version 8
KEEPDYNAMIC=YES

WebSphere Application Server for z/OS, Version 6.0.2 Trade6
DB2 Universal Database, Version 8
KEEPDYNAMIC=YES

Figure 13. WebSphere Application Server for z/OS, Version 6.0.1 and 6.0.2 Trade performance
without dynacache

26 percent total performance improvement
• 12 percent from WebSphere Application

Server, Version 6.0.1 and DB2 Universal
Database, Version 8 stack

• 10 percent from KEEPDYNAMIC=YES
• 4 percent from WebSphere Application

Server for z/OS, Version 6.0.2

100
112 122 126

 10 The DB2 bind option (KEEPDYNAMIC=YES) preserves dynamic statements past a commit point for an
application process. An application can issue a PREPARE command for a statement once and omit
subsequent PREPARE commands for that statement. The PREPARE process creates the implementable form
of a dynamic SQL statement, called the prepared statement, from the character string form, which is called the
statement string. When the dynamic statement cache is not active, and an application is run that is bound (with
KEEPDYNAMIC=YES), DB2 saves only the statement string for a prepared statement after a commit operation.
On a subsequent OPEN, EXECUTE or DESCRIBE command, DB2 must prepare the statement again before
performing the requested operation. When the dynamic statement cache is active, and an application is run that
is bound (with KEEPDYNAMIC=YES), DB2 retains a copy of both the prepared statement and the statement
string. The prepared statement is cached locally for the application process. If the application issues an OPEN,
EXECUTE or DESCRIBE command after a commit operation, the application process uses its local copy of
the prepared statement to avoid a prepare operation and a search of the cache.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 31

The percentage throughput improvement seen moving from WebSphere Application

Server for z/OS, Version 5.1 to Version 6.0.1, and upgrading DB2 from Version 7 to Version 8

(with KEEPDYNAMIC=YES) is approximately 26 percent. Approximately 12 percent of

this improvement is the result of path-length improvements made to the Web and EJB

containers. An additional 10 percent is due to the usage of KEEPDYNAMIC. Another 4

percent improvement was delivered in WebSphere Application Server for z/OS,

Version 6.0.2.

WebSphere Application Server for z/OS, Version 6.0.1 Trade performance with dynamic caching

WebSphere Application Server for z/OS, Version 6.0.1 provides an improved dynamic-cache

service, providing Struts and Tiles caching and Web services client caching in addition to

the servlet and JSP fragment caching, distributed map, command caching and Web services

server-side caching available in Version 5.1. The WebSphere Application Server for z/OS

dynamic cache is an in-memory cache that can also overflow cached entries to disk to

support a large number of objects, using a hash-table-on-disk. A dynamic cache hit is

generally served in a fraction of the time of a noncached request. Significant performance

gains are generally achieved with Trade6 by taking advantage of the dynamic-cache

technology available in Version 6.0.1. Trade6 is designed as a performance application

benchmark for the WebSphere Application Server for z/OS, Version 6.0.1 dynamic cache.

Trade6 integrates DMap caching as well as both command bean and a combined fragment

and command-bean caching configuration for performance research and as a sample for

configuring a particular application.

Figure 14 illustrates the performance differences between WebSphere Application Server

for z/OS, Version 5.1 and Version 6.0.1 when using dynamic caching. When the Trade6

workload is run using command-bean caching, performance improves by 26 percent. When

the same test is performed using DMap caching, performance improves by an additional

nine percent. The key performance enhancement comes from improved dynacache hit

performance. Rather than making copies of the object that’s being referred to, you can just

pass a pointer to the object and get better performance. Combining the DMap-caching

enhancements with other enhancements of WebSphere Application Server for z/OS, Version

6.0.1 improves performance by 36 percent. In this case, KEEPDYNAMIC=YES accounts for

about nine percent improvement. An additional five percent improvement is delivered with

WebSphere Application Server, Version 6.0.2.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 32

WebSphere Application Server for z/OS, Version 6.0.1 Trade6 scalability (with and without

dynamic caching)

The z/OS operating system and System z hardware have a long-standing reputation as

being the premier platform supporting large OLTP systems. WebSphere Application Server

for z/OS continues that tradition by providing excellent scalability.

In Figure 15, using the Trade6 benchmark, taking measurements without dynacache

enabled and scaling the z990 server from a one-way to an eight-way engine, yields about 7.7

out of 8 engines, which indicates WebSphere Application Server for z/OS, Version 6.0.1

delivers extremely good scalability. N-way scalability tends to be a consistent pattern for the

WebSphere Application Server for z/OS run time, starting with WebSphere Application

Server for z/OS, Version 4 and continuing through Version 6.

150

100

50

0

Pe
rc

en
ta

ge
 o

f
th

ro
ug

hp
ut

 im
pr

ov
em

en
t

Com
man

d c
ac

hin
g

Com
man

d c
ac

hin
g

DMap
 ca

ch
ing

DMap
 ca

ch
ing

Full-stack comparison z990
running two processors with dynacache

WebSphere Application Server for z/OS, Version 5.1 Trade3
DB2 Universal Database, Version 7
KEEPDYNAMIC=NO

WebSphere Application Server for z/OS, Version 6.0.1
DB2 Universal Database, Version 8
KEEPDYNAMIC=YES

WebSphere Application Server, Version 6.0.1 Trade6
DB2 Universal Database, Version 8
KEEPDYNAMIC=YES

WebSphere Application Server, Version 6.0.2 Trade6
DB2 Universal Database, Version 8
KEEPDYNAMIC=YES

Figure 14. WebSphere Application Server for z/OS, Version 6.0.1 and Version 6.0.2 Trade
performance with dynacache

36 percent total combined improvement
• 13 percent improvement with WebSphere

Application Serv er, Version 6.0.1 and DB2
Universal Database, Version 8 stack

• 9 percent improvement with
KEEPDYNAMIC=YES

• 9 percent improvement with DMap caching
• 5 percent improvement with WebSphere

Application Server for z/OS, Version 6.0.2

DMap cache
• Allows definition of unique instances of

dynacache on a per-application basis.
• Improves dynacache hit performance

by passing a reference rather than making
a copy.

100

122
131 136

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 33

The same set of scaling measurements as shown in Figure 15 were obtained, this

time using DMap caching. The tests shown in Figure 16 result in a scalability ratio

of approximately seven out of eight engines, which, although representing a slight

deterioration over the no-dynacache case, still show an excellent scalability ratio.

9

8

7

6

5

4

3

2

1

0

Sc
al

in
g

ra
tio

Number of processors

Trade6 no dynacache

Theoretical

Trade6

0 1 2 3 4 5 6 7 8

1.0x
1.96x

3.97x

Figure 15. WebSphere Application Server for z/OS, Version 6.0.1 Trade6 scalability without dynacache

9

8

7

6

5

4

3

2

1

0

Sc
al

in
g

ra
tio

Number of processors

Trade6 dynacache: Dmap

Theoretical

Trade6

0 1 2 3 4 5 6 7 8

1.0x
1.97x

3.79x

7.06x

Figure 16. WebSphere Application Server for z/OS, Version 6.0.1 Trade6 scalability with dynacache

7.71x

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 34

WebSphere Application Server for z/OS, Version 6.0.1 J2EE primitive performance

Component-level (or primitive) benchmarks can be used to help establish performance

expectations of basic building blocks and to uncover performance bottlenecks. Trade

contains more than 20 primitives that exercise commonly used J2EE operations. The

measurements shown in Figure 17 were made using a number of different J2EE runtime

primitives that exercise key functions of the J2EE programming model. The results show

that WebSphere Application Server for z/OS, Version 6.0.1 has improved performance

by from 9 to 36 percent compared to Version 5.1.

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd

WebSphere Application Server for z/OS, Version 6.0.1 improvements from 9 to 36 percent

Ping
JD

BCRea
dP

rep
Stm

t-9
08

Ping
HTTP

Ses
sio

n2
-90

80

Ping
JS

P-90
80

Ping
Serv

let

Ping
JS

PEL

Ping
Serv

let
2S

es
sio

n2
CMROn

Ping
Serv

let
2S

es
sio

n2
En

tit

z990 with four processors

WebSphere Application Server for z/OS, Version 5.1

WebSphere Application Server for z/OS, Version 6.0.1

Figure 17. WebSphere Application Server for z/OS, Version 6.0.1 primitive performance comparisons

WebSphere Application Server for z/OS, Version 6.0.1 Web services performance

The WSBench benchmark provides a suite of Web services primitives with varying payload

sizes, complexities and data types. The primitive suite is based on an industry-standard Web

service being defined in the banking industry as well as the IBM Trade benchmark. It is

built on industry standards, including SOAP, Web Services Description Language (WSDL),

Java API for XML-based remote procedure call (JAX-RPC) and Web services for J2EE.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 35

In the past, IBM has made significant performance improvements in Web services,

particularly from WebSphere Application Server for z/OS, Version 4 to Version 5. Figure 18

illustrates the performance improvements in WebSphere Application Server for z/OS,

Version 6.0.1 as compared to Version 5.1 using the WSBench benchmark. The scenarios

vary, with the SOAP payload request and response sizes from 1 to 100 KB. Figure 18 shows

significant performance improvements in Version 6.0.1, where the benefit is greater at the

larger payload sizes. This is because there is a small setup penalty associated with the new

enhancements, which is a larger percent of the processing for the smaller payloads.

Although Figure 18 indicates a performance improvement of as high as 55 percent, the

typical performance improvement expected with WebSphere Application Server for z/OS,

Version 6.0.1 is approximately 30 percent.

1500

1000

500

0

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd

• Significant improvements with WebSphere Application Server for z/OS, Version 6.0.1
• Percentage improvements increase with message size.

10
KB / 1

0K
B

10
KB / 1

KB

1K
B /

 10
KB

1K
B / 1

KB

10
0K

B /
 10

0K
B

WSBench

WebSphere Application Server for z/OS, Version 5.1

WebSphere Application Server for z/OS, Version 6.0.1

Send-receive message sizes

-4%

+19%

+24% +33%

+55%

Figure 18. WebSphere Application Server for z/OS, Version 6.0.1 Web services performance comparisons

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 36

WebSphere Application Server for z/OS, Version 6.0.1 performance summary

WebSphere Application Server for z/OS, Version 6.0.1 contains a significant set of

performance improvements along with functional and architectural changes that also

contribute to performance benefits. Performance benefits come from a variety of sources:

• Improved code-path and caching function in both Web and EJB containers

• Improved dynamic caching mechanism with DMap caching

• Performance improvements provided by Web services through more-efficient deserializers

and caching

• Continued excellence in scalability

Performance cost of Web-enabling your 3270 application

IBM clients frequently ask, “How much does Java cost compared to COBOL?” The question

itself is not very specific, and neither is the answer. Comparing simple programs written in

Java to a procedural language is not a fruitful exercise and is better left to an academic

research paper. Usually, what is really being asked is, “How much more processing power is

required to enable existing CICS or IMS transactions for WebSphere Application Server for

z/OS?” or “How will the performance of a complete WebSphere and J2EE application

compare to a traditional CICS or IMS application performing the same business function?”

Many factors must be considered when answering these questions. The primary intent of

this discussion is to provide an overview of these issues and not to evaluate each of them in

detail. Considerations include:

• Programmer skill

• Language impact

• Transaction-manager run times

• Interface impact

• Programming model

• Application design

When implementing WebSphere Application Server for z/OS either as a front end to existing

transactions or to drive new application business logic using the full capabilities of the

J2EE model, the entire runtime environment must be considered. The IMS, and CICS

COBOL and PL/1 environments have been around for many years, and best practices are

well established. Although a growing body of knowledge about J2EE best practices is

available, there is still a lot of room for maturation.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 37

Programmer skill

Based on working with clients who have implemented WebSphere Application Server for

z/OS for the first time, IBM has learned that the skill and knowledge of the application

developer is still a key factor. Also, when using tools such as IBM Rational® Application

Developer, formerly known as IBM WebSphere Studio Application Developer, many options

can have significant performance implications. Knowledge of these impacts is important.

This is discussed in more detail in the section entitled “Application design” on page 39.

Language impact

In general, object-oriented languages are less easily optimized than procedural languages —

although good-performing object-oriented applications are implemented. Whereas Java

bytecodes can be run on any hardware architecture, JIT compilers have been highly

optimized to take full advantage of underlying instruction-set architectures, including

System z. In most cases, language selection is based on factors other than performance,

and factors other than language selection have much more influence on performance.

Transaction-manager run times

WebSphere Application Server for z/OS, like IMS and CICS servers, is a transaction manager.

IMS and CICS servers were developed during a time when processing cycles were very

expensive, and thus, were highly optimized for the System z architecture. They continue to

provide high performance, along with the high levels of RAS required for critical applications.

IMS and CICS servers also continue to be enhanced to support a number of open, Java

technology-based interfaces that enable them to participate fully in a Web services-based

SOA environment.

WebSphere Application Server for z/OS has also been optimized to run on System z.

However, many components of the run time have been designed to run on multiple platforms

to allow cross-platform portability, and to facilitate a fully distributed programming model

that requires a higher level of abstraction. Each successive release of WebSphere Application

Server for z/OS provides demonstrated improvements in performance, and this trend is

expected to continue. However, for the time being, WebSphere Application Server for z/OS

performance has not matured to the same level as platform-specific IMS and CICS

transaction managers.

Although choosing transaction managers can have performance implications, you must

weigh them against the other advantages provided by WebSphere Application Server for z/OS

and the J2EE application-development and deployment environment.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 38

Interface impact

One of the key motivating factors for using WebSphere Application Server is to expose

existing and new applications to the Web with an attractive GUI. When moving from an

existing environment, doing this might mean a move from an IBM Systems Network

Architecture (SNA) or IBM Virtual Telecommunications Access Method (IBM VTAM®)

environment highly optimized for a System z infrastructure to a TCP/IP-based

network environment.

GUIs usually increase the amount of data transfer and network-bandwidth requirements.

For example, XML and Extensible Stylesheet Language Transformations (XSLT) provide

higher levels of abstraction and increased interoperability, but they require parsing and

larger data transfers. The choice of interface can have deployment considerations that

can also influence performance.

On System z, local interfaces between WebSphere Application Server for z/OS, and IMS,

CICS and DB2 are optimized when running within the same operating-system image.

Communications between the Web container and between session beans can also be

optimized when running locally to avoid a lot of serialization and deserialization overhead.

However, exposing applications to HTTP, IIOP, SOAP over XML and Web services can

open a business to new customers and new applications, and provide a level of business

integration never before possible.

Programming model

Many J2EE programming model options can be used to implement a transaction. WebSphere

Application Server for z/OS has evolved significantly from the product’s early releases when

only servlets and JSPs were available. Session EJBs and entity EJBs (BMPs, CMPs) provide

more options and EJB specifications continue to evolve with enhancements, such as

container-managed relationships (CMRs) and data-transfer objects (DTOs), among others.

Connector options have also evolved. The WebSphere Application Server for z/OS run time

has implemented numerous caching and locking technologies to improve EJB performance,

but performance compared to functional trade-offs should still be considered.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 39

Application design

J2EE tools can facilitate faster application development and a robust application-development

and test environment. Many of the details of the underlying data structures and access

methods are hidden from the developer. However, tooling technology can also affect the

performance of the generated code and deployment options, which also can affect

performance. Also, tooling technologies are also evolving rapidly, along with the

programming model. JCA technology has moved from IBM VisualAge® for Java to IBM

WebSphere Application Developer Integration Edition to Rational Application Developer

in a very short period. This white paper discusses some of the implications to performance

with these tools.

The use of HTTP sessions and EJB sessions can affect performance. Heap sizes and

garbage-collection considerations must be addressed, influencing real memory-configuration

requirements. How often the state is persisted, if at all, and what media is used for the

persistent data, is also critical.

When using the entity-bean model, the tuning of access intents and setting database-

isolation levels can have a significant influence on performance. The choice of commit

scope and transaction properties can also play a performance role.

Finally, the object design of the application can facilitate good performance or seriously

degrade performance. No amount of operating-system tuning, WebSphere Application

Server for z/OS runtime tuning or deployment optimization can make up for a poorly

designed application. These issues are not uncommon. It is recommended that the early

application-design phase involve application architects who understand performance and

that early proof-of-concept performance testing should be implemented prior to settling

on a programming model and database design.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 40

The previous discussion is far from complete, but it is clear that the question of Java versus

COBOL language performance is not the critical factor. The discussion in the next section

of this white paper takes a brief look at the base costs of enabling CICS transactions for

WebSphere Application Server for z/OS compared to existing 3270 transactions. This

white paper does not attempt to quantify all of the issues associated with Web-enabling

applications. IBM continues to monitor many of these options in the lab, but the

performance data is often obsolete before any analysis information can be published.

The eRWW workload

The following measurements were done using the eRWW workload that was developed in

the IBM Poughkeepsie Development Lab.

The eRWW workload models an order or inventory environment. It consists of seven

transactions that range from high-volume trivial transactions to relatively heavy queries.

The read-write ratio is approximately 80 percent read to 20 percent write. For the 3270- and

HTTP-based tests, the messages are up to 4KB in size. These messages tend to be lighter

than most clients frequently experience.

The transaction behavior and mix has been adjusted to drive the System z platform

in a way that is as representative as possible of the real-world environments of most clients.

There is a natural skew in arrival patterns and variable selection. To be as realistic as

possible, tests are run using a seven-second think time with thousands of concurrently

logged-on users. All load emulation is performed externally to the system hosting the

WebSphere Application Server for z/OS run time and database, and to the processor

being tested.

Web-enabling your 3270 application

A 3270 CICS and DB2 environment is the base case used for the tests illustrated in Figure

19. All the business logic is in CICS with DB2 being accessed using the highly optimized

CICS and DB2 interface. The initial request for a transaction, such as price quote, drives a

transaction to get the CICS price-quote form, which is returned to the user. The user then

fills in the fields of the form and drives the full CICS price-quote transaction by retrieving

data from a DB2 system. Transaction rates count the number of CICS and DB2 transactions

that have run and include the form request as part of the overall transaction. The 3270 base

case was driven by a Teleprocessing Network Simulator (TPNS) across a SNA-VTAM

network interface.

Details about the eRWW workload

• Order-inventory workload

• A mix of seven transactions ranging
 from trivial to relatively heavy queries

• A read-write ratio of 80 to 20

• Run with large numbers of users
 (2000 or more)

• A seven-second user think time

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 41

Figure 19. Web-enabling a 3270 application

The Web-enabled flow uses a Web-based emulator that drives HTTP over TCP/IP into the

WebSphere Application Server for z/OS run time. As mentioned previously, the WebSphere

implementation can be handled in many ways. In this case, it was compared to a servlet,

session EJB and CICS Transaction Gateway model illustrated in Figure 20.11

Figure 20. WebSphere Studio Application Developer Integration Edition flow for Web-enabling a CICS and DB2
transaction

3270 remote
terminal
emulator

Web-browser
emulator

CICS region

CICS
program

DB2

CICS region

CICS
program

DB2

Servlets

CICS Transaction
Gateway classes

WebSphere Application
Server for z/OS

CICS
Transaction Server

CICS
Transaction Server

Control
units

TCP/IP

SNA LU2

3270

Web enabled

Load simulation

TPNS

Br
ow

se
r Servlet

JSP

HTTP

HTTP

Web container EJB container

CICS Transaction
Server

DB2

WSIFJava bean

Stateless
session EJB

CICS
Transaction

Gateway

eRWW Web-HTTP interface

IIOP

 11 Figure 20 shows the Web Services Invocation Framework (WSIF) interface between the session EJB and the CICS
Transaction Gateway connector. This is a result of using WebSphere Studio Application Developer Integration
Edition tools to generate the transaction. This interface was removed with the Rational Application Developer,
Version 6.0.0.1 tooling. The performance implications of this are discussed later in this white paper.

EXCI

JDBC

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 42

A handwritten version of a servlet model in Figure 21 was also measured, where

the business logic is in the servlet instead of CICS and DB2 is accessed through JDBC.

In this case, the SQL from the CICS business logic was manually (not using tools) cut and

pasted into the servlet with minor modifications. In addition, this model does not allow EJB

transaction properties to be defined. In the CICS Transaction Gateway example, the user

can choose to allow CICS Transaction Gateway to manage the transaction-commit scope

or to define the commit scope in the session EJB using a transaction property such as

TRANSACTION_REQUIRED. Thus, this eRWW servlet or JDBC implementation is not

fully tool-generated and is not running within a transaction-commit scope. The CICS

Transaction Gateway measurements discussed in the next section were implemented

using the TRANSACTION_NOT_REQUIRED property except where shown.

Br
ow

se
r Servlet

JSP

Web container

JDBC

DB2

Java bean

Servlet and JSP JDBC (handwritten)

Figure 21. Flow for a manually written servlet for JDBC connection to DB2

Web-enabled eRWW performance comparisons

Many comparisons are illustrated in Figure 22. Some measurements were performed on

older systems and were normalized for comparison purposes. A very close relationship

exists between changes in the tools and the J2EE programming model options available to

the developer, because it can affect performance. WebSphere Studio Application Developer

Integration Edition tools introduced the WSIF interface, which did not exist in the

VisualAge for Java tools. The WSIF interface degraded performance by as much as 25

percent in measurements performed on WebSphere Application Server, Version 5.0.2.

Rational Application Developer, Version 6.0 tools eliminated this interface with the

positive results discussed in the next section of this white paper. The combination of tooling

improvements and WebSphere Application Server for z/OS runtime improvements have

narrowed the gap with traditional 3270 performance.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 43

Figure 22. Web-enabled eRWW workload-performance comparisons

Figure 22 highlights a number of points about Web-enabled eRWW workload-performance

comparisons:

• Web-enabling previously existing CICS and DB2 transactions with CICS Transaction Gateway,

using the latest WebSphere Application Server for z/OS and Rational Application Developer tools,

can cost about 1.7 times more than a 3270 implementation.

• Using a customized servlet model within WebSphere Application Server for z/OS to access DB2

directly with JDBC cost 1.5 times more than a 3270 implementation. However, as previously

discussed, there are tooling and transactional limitations with this model.

• Tooling improvements with Rational Application Developer, Version 6.0.0.1 that help eliminate

the WSIF interface between the session EJB and CICS Transaction Gateway help improve

performance by as much as 12 percent.12

• WebSphere Application Server for z/OS, Version 6.0.2 and WebSphere Application Server for

z/OS, Version 5.1 performance using the WebSphere Studio Application Developer Integration

Edition, Version 5.1 tools is equivalent (not shown here).

• Using TRANSACTION_REQUIRED causes an 11 percent drop in performance compared to

TRANSACTION_NOT_SUPPORTED.

• Unfortunately, WebSphere Application Server for z/OS, Version 6.0.1 performance data for the

eRWW servlet manually written implementation is not available for comparison.

Tr
an

sa
ct

io
ns

 p
er

 p
ro

ce
ss

in
g

se
co

nd

3270 existing system
eRWWJDBC hand-written code with WebSphere Application Server for z/OS, Version 5.1
eRWW CICS Transaction Gateway and WebSphere Studio Application Developer Integration
Edition with WebSphere Application Server for z/OS, Version 5.1 (TRANSACTION_NOT_SUPPORTED)
eRWW CICS Transaction Gateway and WebSphere Studio Application Developer Integration
Edition with WebSphere Application Server for z/OS, Version 5.1 (TRANSACTION_REQUIRED)
eRWW CICS Transaction Server and WebSphere Application Server for z/OS, Version 6.0.1
with Rational Application Developer, Version 6.0.0.1 (TRANSACTION_NOT_SUPPORTED)

+12%

-11%

700

600

500

400

300

200

100

0

4 processors z900T 2064-2C4

642

417

344
311

385

 12 Rational Application Developer, Version 6.0.0.1 improves the performance of the JCA interface by replacing WSIF
with direct Common Client Interface (CCI) calls. This function helps reduce the cost of passing data over the
connector. Removing WSIF also helps reduce the complexity of Java objects that are passed over the RMI/IIOP
interface (not shown in the measurements discussed in this section).

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 44

The eRWW comparison is a subset of many comparisons that could be performed, and

as mentioned at the beginning of this section, many factors can cause the results to vary.

However, these measurements demonstrate that the baseline costs to implement WebSphere

Application Server for z/OS can be less than two times the cost of previously existing

non-Web-enabled 3270 CICS and DB2 COBOL and PL/I transactions.

System z Application Assist Processors

As this white paper has already discussed, WebSphere Application Server for z/OS provides

robust qualities of service through a unique design that takes advantage of the underlying

System z hardware and operating system. Workload management, isolation, availability,

security and unified systems management are built in while still providing excellent

performance and scalability. System z now provides System z Application Assist Processors

(zAAPs) to further enhance the WebSphere Application Server for z/OS and Java environment

on z/OS to take advantage of data proximity while helping to reduce overall hardware and

software costs. The following section explains what zAAPs are and how they can help

improve WebSphere Application Server for z/OS price-performance ratio.

zAAP technical overview

As Figure 23 shows, a zAAP runs on a standard processing unit (PU) that can have multiple

personalities. A PU can be:

• A standard processor running z/OS, Transaction Processing Facility (TPF), IBM z/VSE™ or Linux

on System z.

• An Integrated Facilities for Linux (IFL) system that is dedicated to run only Linux on System z.

• A system assist processor (SAP) that runs the input-output (I/O) subsystem code.

• An Interconnection Facility (ICF) that runs coupling-facility code.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 45

Figure 23. zAAP technical overview

However, with zAAPs, a PU is used to run only Java on z/OS. In this scenario, a PU can be

used as a spare processor that can swap in and assume the appropriate personality if another

PU with any of the previously listed personalities fails. The underlying microprocessor and

instruction-set architecture is the same for all the previously listed personalities.

Modifications to the JVM for z/OS detect when Java code is called or when Java code calls

out to non-Java code. These JVM modifications signal the z/OS dispatcher that the unit of

work can be moved to or from a standard processor and a zAAP. These engines have also

been customized to avoid some common CP functions, such as taking I/O interrupts. zAAPs

share the L2 cache and main memory with the other PUs on the system. This tight

integration of zAAPs with the JVM and the z/OS dispatcher, on top of logical partitioning

(LPAR), performance rating (PR) and shared memory (SM) virtualization technology,

helps minimize latency and processor degradation while enabling significant portions of

WebSphere and Java applications to be offloaded onto engines (zAAP processors) with

substantial price-performance advantages. This Java offload capability is achieved without

having to modify the application. Only the systems programmer knows that the zAAPs

are configured.

General physical processor pool zAAP physical processor pool

 z/OS LPAR

General CP
instructions

Logical CP

General CP
instructions

Logical CP

Java

Logical zAAP

Java

Logical zAAP

zAAP
shared

physical
processor

zAAP
shared

physical
processor

General
shared

physical
processor

General
shared

physical
processor

General
shared

physical
processor

General
shared

physical
processor

LPAR hipervisor only dispatches standard logical processors on standard physical
processors and zAAP logical processors on zAAP physical processors.

• When dispatcher
zAAP runs on general
CPs, it can select non-
Java and Java work.*

• When dispatcher runs
on zAAP, it can only
select Java work.

* Subject to installation controls

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 46

The memory-coherent design of System z mainframes provides a number of advantages

over network-attached, distributed offload devices. It enables the operating system to

manage and monitor zAAPs within the same workload manager, Systems Management

Facility (SMF) and Resource Measurement Facility (RMF) infrastructure that is used to

monitor and manage the other PUs. This design also delivers the full range of WebSphere

Application Server for z/OS, z/OS and System z qualities of service that you expect with the

System z platform—as demonstrated in the Mettle Test (see page 19).

The zAAP and the proxy for switching into the zAAP is integrated into the JVM, so that the

switchover to avoid latency degradation can be efficiently managed. This support has been

integrated into the z/OS dispatcher, again to help maximize performance.

zAAP requirements and characteristics

This section provides some of the requirements and characteristics for zAAPs:

• zAAPs are available on z890, z990 and the System z9 processors with a microcode update.

• Java Development Kit (JDK), Version 1.4.1 or later is required to dispatch Java code to the zAAP.

• Java code can run on general CPs and zAAPs; however, zAAPs can process only Java.

• zAAP engines run at the same speed as the CPs of the z990 and System z9 machine on which they

coexist. zAAPs on z890s run faster than coexisting CPs for model x10 to x60. They can run at the

same speed on the x70 model.13

• Configuring zAAPs does not increase the million service units (MSUs) ratings of the CEC or LPAR.

The MSU rating is determined only by the number of CPs.

• Any product that can run with JDK, Version 1.4.1 or later and runs on z/OS can use zAAPs.

The products listed previously are just a subset of the products that can use zAAPs. WebSphere

Application Server for z/OS, Version 5.1 or later must be installed to use zAAPs.

• The use of zAAPs is transparent to all IBM and independent software vendor (ISV) Java programs

running on JDK, Version 1.4.1 or later.

 13 z890 models are defined as model xyy where x indicates the number of processors and yy indicates the processor
power rating. Thus, a model 110 is a uniprocessor at the lowest power rating. A model 170 is a uniprocessor at the
highest power rating. The high end of the product line is the model 470– four processors at the highest processor
power rating.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 47

zAAP price-performance advantages

Price-performance savings from zAAPs come from three main sources:

• Hardware savings. zAAPs cost US$125 000 dollars per PU (engine) and are priced similarly to

Integrated facilities for Linux®(IFLs).

• Software savings. IBM and ISVs historically charge for software based on the MSU rating of the

CEC or LPAR. MSU ratings are based on the number of CPs only. zAAP capacity is not included in

the MSU rating. ISV pricing policies vary from vendor to vendor and are the prerogatives of each

vendor. It is IBM policy to not charge for IBM software on zAAPs. At the date of publication of this

white paper, IBM is not aware of any vendors who charge for software running on zAAPs.

• Configuration savings. Prior to zAAPs, many clients were configuring WebSphere Application

Server for z/OS in an LPAR separate from the back-end data source to help minimize software

costs. This is no longer necessary because adding zAAPs to enable running WebSphere

Application Server for z/OS in the same tier of an existing system does not usually increase the

cost of the preexisting software. At the same time, it offers the performance advantages of data

proximity and helps to reduce the number of operating-system images that need to be managed.

Table 2 illustrates some of these points with examples. These examples are not migration

scenarios.

Configuration Reduction in MSUs MSU cost savings CP cost savings

Traditional two-way processor
compared to one general
processor (GP) and one zAAP
(1 + 1)

48 percent fewer software
pricing MSUs (132 compared
to 70 MSUs)

• WebSphere Application
Server for z/OS costs reduced
by 43 percent

• Typical monthly licensing
charge (MLC) stack costs
reduced by 32 percent

US$125 000 per zAAP compared
to traditional hardware costs

Traditional 16-way processor
compared to eight GPs and eight
zAAPs (8 + 8)

41 percent fewer software
pricing MSUs (761 compared
to 448 MSUs)

• WebSphere Application
Server for z/OS costs reduced
by 32 percent

• Typical MLC stack costs
reduced by 26 percent

US$125 000 per zAAP compared
to traditional hardware costs

Traditional three-way processor
compared to two GPs and one
zAAP (2 + 1)

31 percent fewer software
pricing MSUs (191 compared
to 132 MSUs)

• WebSphere Application
Server for z/OS costs reduced
by 27 percent

• Typical MLC stack costs
reduced by 22 percent

US$125 000 per zAAP compared
to traditional hardware costs

Table 2. Examples of theoretical z990 configuration cost savings

Notes:
1. MLC stack: z/OS with features, IMS, Version 7, DB2 Universal Database, Version 7, CICS Transaction Server,
 Version 2 and IBM COBOL for z/OS, Version 2
2. WebSphere Application Server, Version 5: License cost, one year service and subscription (S&S)

More savings can potentially be realized when an organization upgrades to future, faster processors. At the date of publication for
this white paper, the cost of IFLs have been held constant for the newer System z9 platform.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 48

These ratios can vary depending on the size of the system and the ratio of CPs to zAAPs,

which is primarily determined by the nature of application itself.

zAAP and CP configuration options

For a given number of PUs in a configuration, a number of combinations of CPs and zAAPs

are possible, as illustrated in Figure 24. Configuring more zAAPs than CPs on a CEC is not

permitted. It is possible to have more zAAPs than CPs within a LPAR as long as the physical

ratio of zAAPs to CPs does not exceed 50-50 on the CEC.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 1+1 2+1 3+1 4+1 5+1 6+1 7+1 8+1 9+1 10+1 11+1 12+1 13+1 14+1 15+1
 2+2 3+2 4+2 5+2 6+2 7+2 8+2 9+2 10+2 11+2 12+2 13+2 14+2
 3+3 4+3 5+3 6+3 7+3 8+3 9+3 10+3 11+3 12+3 13+3
 4+4 5+4 6+4 7+4 8+4 9+4 10+4 11+4 12+4
 5+5 6+5 7+5 8+5 9+5 10+5 11+5
 6+6 7+6 8+6 9+6 10+6
 7+7 8+7 9+7
 8+8

Possible combinations CPs and zAAPs
per number of processors

Figure 24. zAAP configuration options

zAAPs and performance

In the lab, IBM evaluated zAAP performance with a number of different workloads with a

range of Java characteristics. Figure 25 shows a few examples of the Java content for these

workloads.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 49

The percentages in Figure 25 are based on the total end-to-end path length of the transaction.

If WebSphere Application Server for z/OS is configured to run its own LPAR accessing

data remotely, the percentage of Java content within the WebSphere Application Server for

z/OS LPAR would be considerably higher: 75 to 90 percent is not uncommon. Pages 53

and 54 provides information about how to determine the percentage of Java content for

your workload.

Figure 25. Sample workloads and percentage of Java content

100

80

60

40

20

0

98

45

60

40 40

0

XML P
ar

se

Tra
de

2
Tra

de
3

CIC
S/eR

W
W

IM
S/eR

W
W

IM
S Tr

ad
iti

on
al

Java Non-Java
Pe

rc
en

ta
ge

 o
f t

ot
al

 C
PU

 ti
m

e

• XML Parse: processing-intensive XML, no WebSphere Application Server. Parses documents of different sizes with Simple
API for XML (SAX) and Document Object Model (DOM), both with and without validity checking.

• Trade2: WebSphere Application Server, JDBC and DB2. Simulates brokerage work. Includes session servlets, JSP, session EJB,
CMPs and light SQL.

• Trade3: WebSphere Application Server, JDBC and DB2. Demonstrates evolution of Trade2 to EJB, Version 2.0 and J2EE,
Version 1.3. Includes MDBs and publish-subscribe.

• CICS/eRWW: WebSphere Application Server, CICS Transaction Gateway, CICS Transaction Server and DB2. Based on
WebSphere Application Server technology-enabled existing OLTP applications, including HTTP, servlets, JSP, session EJB
and CICS business.

• WebSphere Application Server, IMS Connector for Java, IMS and DB2. Based on WebSphere Application Server
technology-enabled existing OLTP applications, including HTTP, servlets, JSP, session EJB and IMS business logic.

This information is for demonstration purposes only. Your workload might be different.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 50

Figure 26 shows the impact of running with zAAPs and the overhead associated with

dispatching between CPs and zAAPs.

2000

1500

1000

500

0
304 303 + 1 zAAP

Internal transaction rate (ITR) Response time

Tr
an

sa
ct

io
ns

 p
er

 C
PU

 b
us

y s
ec

on
d

Model 304 compared to model 303 with one zAAP
Workload contains 45 percent Java content

100

90

80

70

60

50

40

30

20

10

0
CP zAAP

Tr
an

sa
ct

io
ns

 p
er

 C
PU

 b
us

y s
ec

on
d

CPU utilization

ITR dropped 1.1 percent with equivalent response time

Figure 26. Performance impact of zAAPs on z990 systems

In this example, a z990 four-CP system is compared to a z990 three-CP system with one

zAAP. A WebSphere Application Server for z/OS and DB2 workload ran with approximately

45 percent Java content. The impact to throughput and response time is minimal. There is a

one percent increase in the processing costs per transaction to accommodate the costs of the

additional dispatching. In this case, a significant amount of Java processing is still running

on a CP because the workload is 45 percent Java with only 25 percent of the capacity

available on a zAAP. The z/OS dispatcher sends Java work optimally to both CPs and zAAPs

depending on the dynamic characteristics of the workload and the configuration.14

14 Two SYS1.PARMLIB members can be set to specify how Java work can be dispatched between zAAPs and CPs,
and whether the workload-management priority of the Java work can be honored when running on CPs. It is not
in the scope of this paper to go into detail about this contingency. For a discussion of these parameters and many
other zAAP capacity-planning issues, refer to the zAAP capacity planning white paper at ibm.com/support/tech-
docs/atsmastr.nsf/Webindex/WP100417.

20

15

10

5

0

M
ill

is
ec

on
ds

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 51

Figure 27 shows a similar comparison using the same workload comparing a z990 eight-CP

system to a z990 four-CP system with four zAAPs.

Figure 27. Performance impact of zAAPs on z990 systems

In this case, the processing cost per transaction to manage the dispatch activity between

CPs and zAAPs is close to three percent. Numbers that constitute a slight performance

improvement with zAAPs can be seen as high as five percent (sometimes cache benefits

can be realized from dispatching the Java work on a reduced set of processors). Most

measurements are in the two-to-three percent range. Response time is not noticeably

affected when the system is configured properly. These increases in processing cost are

minimal when weighed with the overall price-performance benefits provided by zAAPs,

and should not be viewed as a deterrent to taking advantage of zAAPs.

zAAPs and z890 models

zAAPs on z890 models can run at a different speed then the CPs on z890, depending on

the model of z890 used. This difference in zAAP speed compared to that of CPs could be

attractive for clients with Java workloads with high Java content. Seven gradients of processor

power are available on z890s from the model x10 to the model x70.14 The power ratio for a

model 170 compared to a model 110 is approximately 13.8 times.

3500

3000

2500

2000

1500

1000

500

0Tr
an

sa
ct

io
ns

 p
er

 C
PU

 b
us

y s
ec

on
d

Model 308 compared to model 304 with four zAAPs

Workload contains 45 percent Java content

35

30

25

20

15

10

5

0

M
ill

is
ec

on
ds

308 304 + 4 zAAPs

ITR Response time

ITR dropped 2.8 percent with equivalent response time

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 52

When adding zAAPs to CPs on a z890, the zAAP always runs at the full-rated speed of a

model 170 engine (minus symmetric multiprocessor [SMP] effects). Thus, it is possible for a

zAAP on a model 410 to be 13.8 times more powerful than the combination of the three

CPs on the System z box.

Figure 28 illustrates the performance behavior as a result of the mixed-processor speed

factor. In this example, a model 410 with four CPs is compared to a model 310 with three CPs

and one zAAP. This configuration provides a large net increase in the overall capacity of the

four-way z890. The performance comparison shown in Figure 28 indicates the throughput

increases by almost two times and response time is reduced by almost half when substituting

a zAAP for a CP. In this case, the zAAP engine was only running at 20 percent busy. The

delta between all CPs and a CP and zAAP configuration can diminish as the power rating of

the z890 increases. On a model 470, there would not be a significant change in performance.

200

150

100

50

0
410 310 NX

Tr
an

sa
ct

io
ns

 p
er

 C
PU

 b
us

y s
ec

on
d

NX = no cross-over

Model 410 compared to 310 with one zAAP
Workload contains approximately 45 percent Java content

Figure 28. zAAPs and z890

• z890 zAAP processors run at full model
170 engine speed

• Standard processors run at model 110
engine speed

• In this example:

 - Engine speed ratio = 13.8x
 - zAAP running between 15 - 20 percent busy
 - Standard processors running approximately
 90 percent

• zAAP performance comparisons vary
depending on z890 model

ITR Response time

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 53

Determining how many zAAPs you need

To determine the number of zAAPs you need, you must consider the following aspects:

• The amount of zAAP-eligible content in a workload

• That zAAPs can write an output message every five minutes (but that figure is adjustable)

• That zAAPs are integrated as part of SDK, Version 1.3.1 SR24 or later

• That zAAPs are integrated as part of SDK, Version 1.4

The Java SDK product provides the capability to measure and report the Java content of a

workload, independent of any special z/OS level. This is very useful in estimating the extent

of Java processing that can use a zAAP. Also, if you are already running on z/OS, Version 1.6

(but have not ordered any zAAPs yet), the zAAP-eligible content of a workload can be

measured and reported in the RMF workload activity report. Similar to the Java SDK

capability, this data in the RMF report can be used to estimate the potential zAAP load of

the system.

How to monitor zAAPs in an operational environment

The measurement of zAAP processing has been fully integrated into standard RMF

monitoring and reporting. Just like standard CPs, zAAP busy utilizations are reported in

the processing-activity report. The workload-activity report also provides more-granular

information on zAAP usage for workload, service-class and report-class entities by

extending the postprocessor CPU activity report, the postprocessor workload report and

the Monitor III enclave report. RMF provides the ability to:

• Distinguish between standard CP and Integrated File Adapter (IFA) processors where necessary.

• Collect and report about IFA service times.

• Collect and report about IFA using delay states for service- and report-class periods.

The following SMF record types are extended:

• SMF record 70 subtype 1 (processing activity)

• SMF record 72 subtype 3 (workload activity)

• SMF record 79 subtypes 1 and 2 (address-space state and resource data)

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 54

For more information about zAAPs

A variety of information and resources are available about zAAPs, including:

• The zAAP projection tool for Java 2 Technology Edition, SDK, Version 1.3.1, available with the

Microsoft Excel Summary Workbook. This tool runs in a test environment and gathers usage

information about the percentage of Java content in your workloads that could run on a zAAP. It is

useful in predicting the number of zAAPs necessary for optimum configuration. You can find more

information about this tool at ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100417.

• The z/OS Performance: Capacity Planning Considerations for zAAP white paper, which describes

the zAAP projection tool, prototype measurements and the capacity planning methodology. To

download this white paper, visit ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100417.

• The IBM zAAP Web site is available at ibm.com/servers/eserver/zseries/zap/gettingstarted/.

Summary

The key points of this white paper include:

• WebSphere Application Server for z/OS, Version 5.1 performance improvements. A steady stream

of performance improvements have occurred since the first WebSphere Application Server for

z/OS, Version 4.0 release. WebSphere Application Server for z/OS, Version 5.1 has demonstrated

performance improvements across the board in many different workload environments. Many of

these improvements are influenced by the improved performance of JDK, Version 1.4.2 over JDK,

Version 1.3.1.

• WebSphere Application Server for z/OS, Version 6.0.1 performance improvements. WebSphere

Application Server for z/OS, Version 6.0.1 shows improvements in primitive test cases from 9 to 36

percent. New tooling, programming model enhancements and tuning options combine to improve

end-to-end performance. And improvements have been made in Web services, particularly for

large documents.

• High-quality n-way performance. From ping servlet to Trade3 to client benchmarks with Parallel

Sysplex, the WebSphere Application Server for z/OS run time consistently demonstrates excellent

scalability with n-way ratios that are better than the traditional LSPR workloads.

• WebSphere Application Server for z/OS optimization for performance when configured in

close proximity to data. Type-2 JDBC optimization to DB2, as well as pass-by-reference local

optimization, helps reduce cycles and improve response times.

IBM WebSphere Application Server for z/OS, Version 6.0: A performance report.
Page 55

• Value-added WebSphere Application Server for z/OS runtime features performance

improvements. A two-phase-commit capability is integrated into the operating system with RRS.

Workload-management capabilities are tightly integrated into the mainline path of the run time.

And the product is integrated with Parallel Sysplex to provide availability, scalability, resource

and systems-management advantages.

• Significant price-performance value of zAAPs, without losing qualities of service. zAAPs build

on the tightly integrated WebSphere Application Server for z/OS, z/OS and System z systems

structure to help reduce hardware and software costs for running WebSphere Application Server

for z/OS and Java on z/OS. zAAPs also facilitate running WebSphere Application Server for z/OS

in close proximity to data to maximize qualities of service.

• Many factors to consider when evaluating performance of WebSphere Application Server for

z/OS and Java compared to COBOL, PL/I, and CICS and IMS. The baseline costs to implement

WebSphere Application Server for z/OS are less than 2 times compared to existing CICS and

COBOL, and PL/1 3270 transactions.

• High availability and resource-management operational demos. See the Mettle Test at ibm.

com/software/webservers/appserv/zos_os390/mettle.html. Or read the ITSO Redbook for High

Availability SG24-6850 at www.redbooks.ibm.com/redpieces/abstracts/redp3968.html.

• A growing set of performance monitoring and profiling tools. Learn more about these in the ITSO

Redbook SG24-6825 at www.redbooks.ibm.com/redbooks.nsf/Redbooks?SearchView&Query=sg

24-6850&SearchMax=4999.

For more information

To learn more about IBM WebSphere Application Server for z/OS, contact your IBM

representative or IBM Business Partner, or visit:

ibm.com/software/websphere/appserv

To learn more about zAAPs, contact your IBM representative or IBM Business Partner,

or visit:

ibm.com/servers/eserver/zseries/zaap/gettingstarted/

To join the Global WebSphere Community, visit:

www.websphere.org

G224-7598-00

© Copyright IBM Corporation 2006

 IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
05-06
All Rights Reserved

AIX, AS/400, CICS, DB2, DB2 Universal Database, ,̂
IBM, the IBM logo, IMS, MVS, OS/2, Parallel Sysplex, RACF, Rational,
S/390, System p, System z, System z9, VisualAge, VTAM, WebSphere,
z/Architecture, z/OS, zSeries, z/VM and z/VSE are trademarks of
International Business Machines in the United States, other countries
or both.

Intel is a trademark of Intel Corporation in the United States, other
countries or both.

Microsoft and Windows are trademarks of Microsoft Corporation in
the United States, other countries or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries or both.

Linux is a trademark of Linus Torvalds in the United States, other
countries or both.

Other company, product and service names may be trademarks or
service marks of others.

References in this publication to IBM products or services do not
imply that IBM intends to make them available in any other countries.

The information contained in this document is provided AS IS. Any
person or organization using the information is solely responsible for
any and all consequences of such use. IBM accepts no liability for
such consequences.

Any performance data contained herein was
determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will
be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation.
Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

These prices are subject to change without notice and do not include
applicable sales taxes. IBM is not responsible for printing errors which
result in pricing or information inaccuracies. These prices are for
informational purposes only and do not limit in any way a remarketer’s
ability to set its own price for IBM products.

All statements regarding IBM future direction or intent are subject
to change or withdrawal without notice and represent goals and
objectives only.

This paper discusses strategy and plans, which are subject to change
because of IBM business and technical judgments.

This paper provides addresses to non-IBM Web sites. IBM is not
responsible for the content on such sites.

