
 COVER Book Cover
 --
 CICS

 Application Programming Primer

 Document Number SC33-0674-01

 Program Number
 5685-083

 --

CICS Application Programming Primer
Book Cover

© Copyright IBM Corp. 1984, 1991
COVER - 1

 ABSTRACT Abstract
 This book is intended for application programmers who are new to CICS, but
 it is also useful for new system programmers. Before reading this primer
 you should have some knowledge of programming and in a batch environment.
 This book tells you enough to be able to design, code, test and run your
 first CICS application programs. It describes a subset of the full CICS
 product and illustrates CICS facilities and useful techniques by a
 realistic example coded in VS COBOL II.

CICS Application Programming Primer
Abstract

© Copyright IBM Corp. 1984, 1991
ABSTRACT - 1

 EDITION Edition Notice
 First Edition (June 1990)

 This edition applies to Version 3 Release 1 Modification 1 of the IBM
 licensed program Customer Information Control System/Enterprise
 Systems Architecture (CICS/ESA), program number 5685-083, Version 2
 Release 1 and Version 2 Release 1 Modification 1 of the Customer
 Information Control System/Multiple Virtual Storage (CICS/MVS),
 program number 5665-403; Version 2 Release 1 of the Customer
 Information Control System/Virtual Storage Extended (CICS/VSE),
 program number 5686-026, and to all subsequent versions, releases, and
 modifications until otherwise indicated in new editions.

 This is the softcopy version of the printed version of the Application
 Programming Primer (VS COBOL II). Minor changes to formatting have
 been made to make the information more suitable for viewing online.

 Changes made since this book was last published are indicated by the
 hash (#) symbol to the left of the changes.

 Consult the latest edition of the applicable IBM system bibliography
 for current information on this product.

 Order publications through your IBM representative or the IBM branch
 office serving your locality. Publications are not stocked at the
 addresses given below.

 Reader's comments on this publication should be addressed to:

 International Business Machines Corporation, Attn: Dept ACV-H
 1001 Wt Harris Blvd, Charlotte, NC 28257-0001, USA

 or to:

 IBM United Kingdom Laboratories Limited, Information Development,
 Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

 When you send information to IBM, you grant IBM a non-exclusive right
 to use or distribute the information in any way it believes
 appropriate without incurring any obligation to you.

 © Copyright International Business Machines Corporation 1984, 1991.
 All rights reserved.
 Note to U.S. Government Users -- Documentation related to restricted
 rights -- Use, duplication or disclosure is subject to restrictions
 set forth in GSA ADP Schedule Contract with IBM Corp.

CICS Application Programming Primer
Edition Notice

© Copyright IBM Corp. 1984, 1991
EDITION - 1

 CONTENTS Table of Contents
 COVER Book Cover
 ABSTRACT Abstract
 EDITION Edition Notice
 CONTENTS Table of Contents
 FIGURES Figures
 TABLES Tables
 FRONT_1 Notices
 PREFACE Preface
 PREFACE.1 Book structure
 1.0 Setting the scene
 1.1 Introduction to CICS
 1.1.1 What is CICS?
 1.1.1.1 Why you may need an online system
 1.1.2 Why have CICS?
 1.1.3 What does CICS do?
 1.1.3.1 CICS application programs
 1.1.3.2 Couldn't I do all this myself?
 1.1.3.3 Can CICS serve large systems and small systems properly?
 1.1.4 How does a CICS-based application differ from a batch application?
 1.1.4.1 Basic differences
 1.1.4.1.1 Recovering when things go wrong
 1.1.4.1.2 Two vital terms
 1.1.4.2 Starting a transaction
 1.1.4.3 Inside CICS
 1.1.5 How does CICS help you set up an online system?
 1.1.6 How do you use CICS?
 2.0 Application design
 2.1 The CICS example application--a department store
 2.1.1 Defining the problem
 2.1.1.1 The account file records
 2.1.1.2 Requirements imposed by the environment
 2.1.1.3 Refining and developing the program specifications
 2.1.1.4 Estimating the number of transactions
 2.1.2 Summary
 2.1.3 Designing the transactions: preliminaries
 2.1.4 What next?
 2.2 3270 terminals
 2.2.1 3270 field structure
 2.2.2 3270 output data stream
 2.2.3 3270 attribute bytes
 2.2.4 3270 input data stream
 2.2.5 Unformatted 3270 data
 2.2.6 Saved by BMS
 2.3 Designing the user interface
 2.3.1 A first approach
 2.3.1.1 The display transaction
 2.3.1.2 The print transaction
 2.3.1.3 The add transaction
 2.3.1.4 The modify transaction
 2.3.1.5 The delete transaction
 2.3.2 A user-friendly approach
 2.3.2.1 Using a menu screen
 2.3.2.2 Printing the logs
 2.3.2.3 Name inquiry
 2.3.3 Some interface design principles
 2.4 Coming to grips with the data
 2.4.1 The account file
 2.4.1.1 Access by name
 2.4.1.1.1 Choosing the file organization
 2.4.1.1.2 Name index records
 2.4.1.1.3 Choosing a control interval (CI) size
 2.4.2 Recovery requirements
 2.5 Refining the transaction design
 2.5.1 Request analysis

CICS Application Programming Primer
Table of Contents

© Copyright IBM Corp. 1984, 1991
CONTENTS - 1

 2.5.2 Add processing
 2.5.3 Modify processing
 2.5.4 Delete processing
 2.5.5 Display processing
 2.5.6 Print processing
 2.5.7 Name inquiry processing
 2.5.8 Printing the change log
 2.5.9 Printing the error log
 2.5.10 Summary
 2.6 Programming for a CICS environment
 2.6.1 Resources
 2.6.1.1 "Traditional" resources
 2.6.1.1.1 Processor storage
 2.6.1.1.2 Processor time
 2.6.1.1.3 Auxiliary storage
 2.6.1.2 Resources specific to working online
 2.6.1.2.1 User time and good humor
 2.6.1.2.2 One-user-at-a-time resources
 2.6.1.2.3 Line transmission capacity
 2.7 Pseudoconversational or not?
 2.7.1 Conversational transactions
 2.7.2 Pseudoconversational transactions
 2.7.3 Maintaining file integrity
 2.7.3.1 Double updating...
 2.7.3.2 ...and how to avoid it
 2.8 Arranging the processing
 2.8.1 Defining the transactions
 2.8.1.1 Displaying the menu
 2.8.1.2 Analyzing the user's response
 2.8.1.3 Adding a new record
 2.8.1.4 Handling updates and other requests
 2.8.2 Defining the programs
 2.8.2.1 Displaying the menu--ACCT00
 2.8.2.2 Analyzing the user's response, ACCT01
 2.8.2.3 Handling updates (including additions)--ACCT02
 2.8.3 Summary
 2.9 Three remaining considerations
 2.9.1 Communication between transactions
 2.9.2 Handling errors and exceptional conditions
 2.9.2.1 A "catch-all" error program--ACCT04
 2.9.3 Transactions and terminals
 2.9.3.1 A printer program--ACCT03
 2.10 Defining the programs--a final look
 2.10.1 Program ACCT00: menu display
 2.10.2 Program ACCT01: initial request processing
 2.10.3 Program ACCT02: update processing
 2.10.4 Program ACCT03: requests for printing
 2.10.5 Program ACCT04: error processing
 3.0 Application programming
 3.1 Writing CICS programs in COBOL
 3.1.1 What's different about CICS programs?
 3.1.2 How to invoke CICS services
 3.1.3 Restrictions in CICS COBOL
 3.2 Defining screens with basic mapping support (BMS)
 3.2.1 What BMS does
 3.2.2 The BMS macros
 3.2.2.1 The DFHMDF macro: generate BMS field definition
 3.2.2.2 The DFHMDI macro: generate BMS map definition
 3.2.2.3 The DFHMSD macro: generate BMS map set definition
 3.2.2.4 Rules on macro formats
 3.2.3 Map definitions for the example
 3.2.3.1 Defining the account detail map
 3.2.3.1.1 Notes on the detail map
 3.2.3.2 Defining the error map
 3.2.3.3 Defining the message map

CICS Application Programming Primer
Table of Contents

© Copyright IBM Corp. 1984, 1991
CONTENTS - 2

 3.2.3.4 The map set
 3.2.4 Summary
 3.2.5 Optional exercise
 3.3 Using BMS: more detail
 3.3.1 Symbolic description maps (DSECT structures)
 3.3.1.1 Copying the map DSECT into a program
 3.3.1.2 The generated subfields
 3.3.1.2.1 Fields defined with the OCCURS= parameter
 3.3.1.2.2 Some things to keep in mind about these DSECTs
 3.3.2 Sending a map to a terminal
 3.3.2.1 The SEND MAP command
 3.3.2.2 Using SEND MAP in the ACCT example
 3.3.3 Positioning the cursor
 3.3.4 Sending control information without data
 3.3.4.1 The SEND CONTROL command
 3.3.5 Receiving input from a terminal
 3.3.5.1 The RECEIVE MAP command
 3.3.6 Finding out what key the operator pressed
 3.3.6.1 The EXEC Interface Block (EIB)
 3.3.6.1.1 AID byte definitions
 3.3.7 Errors on BMS commands
 3.3.7.1 MAPFAIL errors
 3.3.7.2 INVMPSZ errors
 3.3.8 Other features of BMS
 3.4 Handling files
 3.4.1 Read commands
 3.4.1.1 Reading a file record
 3.4.1.1.1 The account file record format
 3.4.1.1.2 The index file record format
 3.4.1.2 Browsing a file
 3.4.1.2.1 Starting the browse operation
 3.4.1.2.2 Reading the next record
 3.4.1.2.3 Finishing the browse operation
 3.4.1.3 Using the browse commands in the example application
 3.4.2 Write commands
 3.4.2.1 Rewriting a file record
 3.4.2.2 Adding (writing) a file record
 3.4.2.3 Deleting a file record
 3.4.2.4 Using the write commands in the example application
 3.4.3 Errors on file commands
 3.4.4 Other file services
 3.5 Saving data and communicating between transactions
 3.5.1 The need for scratchpad and queuing facilities
 3.5.2 Temporary storage
 3.5.2.1 Adding to, and creating, a temporary storage queue
 3.5.2.2 Replacing items in a temporary storage queue
 3.5.2.3 Reading temporary storage queues
 3.5.2.4 Deleting temporary storage queues
 3.5.2.5 Naming temporary storage queues
 3.5.2.6 Using temporary storage in the example application
 3.5.2.7 Errors on temporary storage commands
 3.5.3 Transient data
 3.6 Program control
 3.6.1 Associating programs and transactions
 3.6.2 Commands for passing program control
 3.6.2.1 The LINK command
 3.6.2.2 The XCTL command
 3.6.2.3 The RETURN command
 3.6.2.4 The COBOL CALL statement
 3.6.2.5 Subroutines revisited
 3.6.3 Passing control and data between programs and transactions
 3.6.3.1 Communicating between transactions in the example application
 3.6.4 Errors on the program control commands
 3.6.5 Abending a transaction
 3.6.6 Other program control commands

CICS Application Programming Primer
Table of Contents

© Copyright IBM Corp. 1984, 1991
CONTENTS - 3

 3.7 Starting another task, and other time services
 3.7.1 Starting another task
 3.7.2 Retrieving data passed in the START command
 3.7.3 Using the START and RETRIEVE commands in the example application
 3.7.4 Errors on the START and RETRIEVE commands
 3.7.5 Other time services
 3.8 Errors and exceptional conditions
 3.8.1 Letting the program continue
 3.8.2 Passing control to a specified label
 3.8.2.1 Changing the HANDLE CONDITION "destinations"
 3.8.3 Errors within the example application
 3.8.4 Other facilities for exceptional conditions
 4.0 The COBOL code of our example application
 4.1 Program ACCT00: menu display
 4.2 Program ACCT01: initial request analysis
 4.3 Program ACCT02: update processing
 4.4 Program ACCT03: requests for printing
 4.5 Program ACCT04: error processing
 5.0 Testing and diagnosis
 5.1 Testing
 5.1.1 Preparing to test
 5.1.1.1 Preparing the application and system table entries
 5.1.1.2 Preparing the system for debugging
 5.1.2 Types of problem
 5.1.2.1 Abends
 5.1.2.2 Loops
 5.1.2.3 Waits
 5.1.2.4 Incorrect output
 5.1.3 Tools for debugging
 5.1.3.1 Execution diagnostic facility (EDF)
 5.1.3.1.1 Other information displayed
 5.1.3.1.2 Useful techniques with EDF
 5.1.3.1.3 Invoking EDF
 5.1.3.1.4 EDF displays
 5.1.3.1.5 EDF options
 5.1.3.1.6 Modifying execution with EDF
 5.1.3.1.7 A session with EDF
 5.1.3.2 Temporary storage browse facility (CEBR)
 5.2 Finding the problem
 5.2.1 Preliminary checklist
 5.2.2 Documentation
 5.2.3 Reference materials
 5.2.4 More testing considerations
 5.2.4.1 Regression testing
 5.2.4.2 Single-thread testing
 5.2.4.3 Multi-thread testing
 5.2.5 Abends
 5.2.5.1 ASRA
 5.2.5.2 ASRB
 5.2.5.3 AICA
 5.2.5.4 APCT
 5.2.5.5 AFCA
 5.2.5.6 AEIx and AEYx
 5.2.5.7 ATNI
 5.2.6 Loops
 5.2.7 Waits
 5.2.8 Incorrect output
 5.2.9 CICS system problems
 6.0 Appendixes
 A.0 Appendix A. Getting the application into your CICS system
 A.1 Introduction
 A.2 What has to be done?
 A.2.1 The result of the SYSPARM=DSECT assembly
 B.0 Appendix B. Other CICS facilities
 B.1 Other CICS facilities

CICS Application Programming Primer
Table of Contents

© Copyright IBM Corp. 1984, 1991
CONTENTS - 4

 B.2 The Application Programming Guide
 B.3 The Application Programmer's Reference
 GLOSSARY Glossary
 INDEX Index
 COMMENTS Readers' Comments

CICS Application Programming Primer
Table of Contents

© Copyright IBM Corp. 1984, 1991
CONTENTS - 5

 FIGURES Figures
 1. The CICS online environment 1.1.1
 2. A DB/DC system 1.1.1.1
 3. The flow of control during a transaction 1.1.4.3
 4. Account file record format 2.1.1.1
 5. The CICS sign-on screen 2.2.1
 6. A 3270 output data stream 2.2.2
 7. The sign-on screen in use 2.2.4
 8. A 3270 input data stream 2.2.4
 9. An example of a display screen format 2.3.1.1
 10. A corresponding skeleton screen 2.3.1.3
 11. An example of a menu screen 2.3.2.1
 12. An expanded menu screen 2.3.2.3
 13. Account file record format 2.4.1
 14. The name index record format 2.4.1.1.2
 15. Request analysis 2.5.1
 16. Add processing 2.5.2
 17. Modify processing 2.5.3
 18. Delete processing 2.5.4
 19. Display processing 2.5.5
 20. Print processing 2.5.6
 21. Name inquiry processing 2.5.7
 22. Printing the change log 2.5.8
 23. Printing the error log 2.5.9
 24. The conversational sequence of the modify transaction 2.7
 25. The pseudoconversational structure 2.7.2
 26. The three transactions and three programs 2.8.3
 27. The six transactions and five programs 2.9.3.1
 28. The transaction error screen 2.10.5
 29. The steps of a typical batch program 3.1.1
 30. A detailed look at the menu screen 3.2.1
 31. The DFHMDF macros for the menu map 3.2.2.1
 32. The DFHMDI macro for the menu map 3.2.2.2
 33. The account detail map 3.2.3.1
 34. The account detail map definition 3.2.3.1
 35. The error screen map 3.2.3.2
 36. The error screen map definition 3.2.3.2
 37. The message map definition 3.2.3.3
 38. All four maps 3.2.3.4
 39. Copying the menu map into your program 3.3.1.1
 40. The menu screen at work 3.3.1.2
 41. Attribute values for the IBM 3270 data stream 3.3.1.2
 42. Attribute values used in the Primer 3.3.1.2
 43. Building the detail display map 3.3.2.2
 44. The standard attention identifier values 3.3.6.1.1
 45. Code to handle MAPFAIL 3.3.7.1
 46. The COBOL record definition for the account file 3.4.1.1.1
 47. The COBOL record definition for the index file records 3.4.1.1.2
 48. The name summary search code 3.4.1.3
 49. Transferring control between programs (normal returns) 3.6.2
 50. Outline logic of a standard "edit and update" module. 3.6.2.5
 51. Passing information to the error program 3.6.3
 52. Receiving information in the error program 3.6.3
 53. Transferring control between programs (after an abend) 3.6.5
 54. The exception conditions for the Primer's subset of CICS
 commands 3.8.3
 55. Invoking the account file transaction 5.1.3.1.7
 56. The account file menu 5.1.3.1.7
 57. Let's delete account number 11111 5.1.3.1.7
 58. Now confirm the deletion... 5.1.3.1.7
 59. ... by typing "Y" 5.1.3.1.7
 60. Hold it! We've got a problem -- and we've been backed
 out 5.1.3.1.7
 61. Deleting the scratchpad record 5.1.3.1.7
 62. Going, going, ... 5.1.3.1.7

CICS Application Programming Primer
Figures

© Copyright IBM Corp. 1984, 1991
FIGURES - 1

 63. Gone! 5.1.3.1.7
 64. Now activate EDF 5.1.3.1.7
 65. OK 5.1.3.1.7
 66. Now re-enter the account file transaction 5.1.3.1.7
 67. And into EDF 5.1.3.1.7
 68. OK so far 5.1.3.1.7
 69. Again "yes" to continue with the next transaction 5.1.3.1.7
 70. Back to the menu 5.1.3.1.7
 71. Now we can enter record 11111 5.1.3.1.7
 72. Ready to begin the request analysis 5.1.3.1.7
 73. Response: QIDERR 5.1.3.1.7
 74. OK, carry on 5.1.3.1.7
 75. "yes" to carry on into AC02 5.1.3.1.7
 76. OK -- the big moment is (nearly) here 5.1.3.1.7
 77. Here we go 5.1.3.1.7
 78. Ready? 5.1.3.1.7
 79. The INVREQ (invalid request) condition 5.1.3.1.7
 80. The error report 5.1.3.1.7
 81. Here's our abend, EACC 5.1.3.1.7
 82. Just prior to the ABEND command 5.1.3.1.7
 83. Sent the error map 5.1.3.1.7
 84. Writing to temporary storage queue 5.1.3.1.7
 85. About to write to temporary storage queue 5.1.3.1.7
 86. About to send the error map 5.1.3.1.7
 87. Starting the error-handling program, ACCT04 5.1.3.1.7
 88. Linking to the error program, ACCT04 5.1.3.1.7
 89. The HANDLE CONDITION ERROR command 5.1.3.1.7
 90. Do the HANDLE CONDITION ERROR command 5.1.3.1.7
 91. Here's our failing instruction again 5.1.3.1.7
 92. Back with our abend, EACC, again 5.1.3.1.7
 93. The abnormal task termination 5.1.3.1.7
 94. This is the CICS message 5.1.3.1.7
 95. The temporary storage browse (CEBR) display 5.1.3.2
 96. AEIx and AEIy abend conditions 5.2.5.6
 97. Result of the SYSPARM=DSECT assembly A.2.1

CICS Application Programming Primer
Figures

© Copyright IBM Corp. 1984, 1991
FIGURES - 2

 TABLES Tables
 1. Source code members A.2

CICS Application Programming Primer
Tables

© Copyright IBM Corp. 1984, 1991
TABLES - 1

 FRONT_1 Notices
 References in this publication to IBM products, programs, or services do
 not imply that IBM intends to make these available in all countries in
 which IBM operates.

 Any reference to an IBM licensed program or other IBM product in this
 publication is not intended to state or imply that only IBM's program or
 other product may be used. Any functionally equivalent program that does
 not infringe any of IBM's intellectual property rights may be used instead
 of the IBM product. Evaluation and verification of operation in
 conjunction with other products, except those expressly designated by IBM,
 is the user's responsibility.

 IBM may have patents or pending patent applications covering subject
 matter in this document. The furnishing of this document does not give
 you any license to these patents. You can send license inquiries, in
 writing, to the IBM Director of Commercial Relations, IBM Corporation,
 Purchase, NY 10577.

 In this publication are illustrations in which names are used. These
 names are used solely for illustrative purposes and not for the
 identification of any person or company.

 This book contains sample programs. Permission is hereby granted to copy
 and store the sample programs into a data processing machine and to use
 the stored copies for study and instruction only. No permission is
 granted to use the sample program for any other purpose.

 The following terms, denoted by an asterisk (*), used in this publication,
 are trademarks or service marks of IBM Corporation in the United States or
 other countries:

 CICS/ESA, CICS/MVS, IBM, IMS/ESA, RACF

 The following terms, denoted by a double asterisk (**), used in this
 publication, are trademarks of other companies as follows:

 Teletype Teletype Corporation

CICS Application Programming Primer
Notices

© Copyright IBM Corp. 1984, 1991
FRONT_1 - 1

 PREFACE Preface
 This book is intended to help you to write CICS application programs,
 using the command-level CICS interface and the COBOL programming language.

 We assume you're an application programmer, bringing to CICS your existing
 knowledge of COBOL gained in a batch programming environment. However,
 experience of other (non-CICS) online systems, and of other high-level
 programming languages (such as PL/I or C), will be helpful.

 It contains guidance about designing, coding, testing and running your
 first CICS application program. We want to point you to the various books
 in the CICS library that will fill in the gaps because, in a book this
 size, we won't be able to tell you all about CICS. The information in the
 book is not part of the definition of any programming interface for
 customers. It must not be used for programming purposes.

 We'll be talking about, and basing our examples on, a subset of the full
 CICS facilities. This makes things easier for you because it means we
 won't have to keep referring you to other books in the CICS library while
 you're learning. These other books are shown in the library diagram for
 your particular release of CICS.

 The subset of CICS commands we've chosen is as complete and
 self-sufficient as we can make it. It will give you a sound framework for
 your first application programs, and offer a logical starting point for
 more advanced work.

 Changes since the first edition

 Since its first edition, when CICS/VS Version 1 Release 6 was current,
 there's been a major innovation of direct concern to all CICS application
 programmers. This is the RESP option, which you can add to any EXEC CICS
 command. RESP deals with the exceptional conditions that CICS raises when
 things go wrong with CICS commands. By adding RESP to a command, you can
 immediately test for any condition that concerns you and decide, then and
 there, what to do next. This makes it much easier to write
 clearly-structured code.

 What we've done to the ACCT programs that form the example application
 mainly reflects this new ability. We've moved almost completely away from
 the use of HANDLE CONDITION commands, adopting the more structured
 approach that RESP encourages. (We've also converted to VS COBOL II code.
 We've made some minor structural changes by moving sections of related
 processing to the end of the code and using PERFORM statements. This
 helps clarify the underlying logic of the application.)

 There are two editions of this Application Programming Primer. The
 original edition (SC33-0139) contains COBOL source code that will run
 under CICS/DOS/VS, CICS/OS/VS, and CICS/MVS (*). This edition (SC33-0674)
 contains VS COBOL II source code that will run under CICS/ESA (*).

 How to use this book

 Read through it at your own pace until you reach "The COBOL code of our
 example application" in topic 4.0. At that point, you meet the VS COBOL
 II source code of our example application. (It's supplied in machine
 readable form on the CICS distribution tape in the CICS330.SAMPLIB
 library.)

 Study the code. Run the application. Think how you would improve it
 (this might not be as difficult as you imagine!). Make your changes and
 try them out. Remember: "I read, and I remember; I do, and I understand."

 A note on installing your CICS system

CICS Application Programming Primer
Preface

© Copyright IBM Corp. 1984, 1991
PREFACE - 1

 Before you can test your application, you need a CICS system on which to
 run it. We tell you where to find out about installing a CICS system in
 Appendix A, "Getting the application into your CICS system" in topic A.0.

 By referring to this appendix, and with the help of a friendly system
 programmer, you should end up with a working CICS system on which you can
 install and run your first application program.

 Product names

 Throughout the book we've used the simple, commonly used, abbreviations
 for the names of IBM program products. If you want to know exactly what
 these abbreviations mean, look in the glossary at the back.

 Computer systems

 CICS runs on a wide range of IBM computer systems. Since its first
 edition, when CICS/VS application programmer, you can assume for the time
 being that the information here applies to all these systems. However,
 where we need to make an assumption about the computer system that you are
 using, we assume a relatively small system, running under MVS.

 Terminals

 We'll be assuming 3270 Information Display System terminals are used for
 the example application in this book.

 (*) IBM Trademark. For a complete list of trademarks See
 "Notices" in topic FRONT_1.

 Subtopics
 PREFACE.1 Book structure

CICS Application Programming Primer
Preface

© Copyright IBM Corp. 1984, 1991
PREFACE - 2

 PREFACE.1 Book structure

 "Setting the scene" in topic 1.0
 introduces CICS, and tries to answer the question "What's different
 about CICS?" (compared with, say, a batch system).

 "Application design" in topic 2.0
 deals with application design from various angles: the user interface,
 the design of the data, the splitting of the processing steps into
 sensible transactions, the exercise of control and communication
 between transactions, and so on.

 "Application programming" in topic 3.0
 tells you how to write the COBOL programs that will implement the CICS
 example file inquiry and update application. These programs form a
 realistic (non-trivial) working system.

 "The COBOL code of our example application" in topic 4.0
 contains the source code in full, and detailed step-by-step notes of
 how it works.

 "Testing and diagnosis" in topic 5.0
 covers running, testing, and debugging application programs. It shows
 you a complete debugging session using the powerful facilities of the
 Execution Diagnostic Facility (EDF). (The bug is one we deliberately
 added, in case you're wondering...)

 It also shows you how to work through a transaction dump of the same
 problem, arriving at the same conclusion.

 Appendix A, "Getting the application into your CICS system" in topic A.0
 tells you where to find out how to install and bring up a CICS system
 with the example application.

 Appendix B, "Other CICS facilities" in topic B.0
 tells you about the various features of CICS that we've not been able
 to cover in a book this size. It also introduces you to the three
 other application programming books you'll need when you start writing
 your own programs: the CICS/ESA Application Programming Guide , the
 CICS/ESA Problem Determination Guide which contain guidance
 information, and the CICS/ESA Application Programming Reference ,
 which contains definitive application programming interface
 information.

 "Glossary" in topic GLOSSARY
 defines special CICS terms used in the library and words used with
 other than their everyday meaning.

CICS Application Programming Primer
Book structure

© Copyright IBM Corp. 1984, 1991
PREFACE.1 - 1

 1.0 Setting the scene

 +--- This part of the Primer: ---+
 ¦ ¦
 ¦ ¦ Describes the ideas behind CICS ¦
 ¦ ¦
 ¦ ¦ Explains some of the CICS terminology ¦
 ¦ ¦
 ¦ ¦ Describes a typical online application program. ¦
 ¦ ¦
 +--+

 Subtopics
 1.1 Introduction to CICS

CICS Application Programming Primer
Setting the scene

© Copyright IBM Corp. 1984, 1991
1.0 - 1

 1.1 Introduction to CICS

 Subtopics
 1.1.1 What is CICS?
 1.1.2 Why have CICS?
 1.1.3 What does CICS do?
 1.1.4 How does a CICS-based application differ from a batch application?
 1.1.5 How does CICS help you set up an online system?
 1.1.6 How do you use CICS?

CICS Application Programming Primer
Introduction to CICS

© Copyright IBM Corp. 1984, 1991
1.1 - 1

 1.1.1 What is CICS?

 CICS (Customer Information Control System) is a general-purpose data
 communication system that can support a network of many hundreds of
 terminals. You may find it helpful to think of CICS as an operating
 system within your own operating system (although this definition might
 offend purists). In these terms, CICS is a specialized operating system
 whose job is to provide an environment for the execution of your online
 application programs, including interfaces to files and database products.
 See Figure 1.

 PICTURE 1

 Figure 1. The CICS online environment

 The total system is known as a database/data-communication system, but
 this is such a mouthful that we usually shorten it to DB/DC system.

 Your host operating system, of course, is still the final interface with
 the computer; CICS is "merely" another interface, this time with the
 operating system itself.

 Operating systems are designed to make the best use of the computer's
 various resources. CICS helps out by separating a particular kind of
 application program (namely, online applications) from others in the
 system, and handling these programs itself.

 Subtopics
 1.1.1.1 Why you may need an online system

CICS Application Programming Primer
What is CICS?

© Copyright IBM Corp. 1984, 1991
1.1.1 - 1

 1.1.1.1 Why you may need an online system

 If you're the sort of person we've imagined as a typical reader, until now
 you've written programs that (typically) read a file, process individual
 data records, update a carried-forward version of the file, and produce
 some type of printed output. These files usually go offline when your
 program has finished with them, and the file data thus becomes
 inaccessible for inquiry purposes. Furthermore, the records in the files
 are only as up-to-date as the most recent program run, and don't reflect
 any intervening activity.

 Nowadays, this often isn't good enough. Your users want immediate
 responses to their information processing needs. The overnight turnaround
 associated with traditional systems is no longer adequate: accurate,
 up-to-date information is needed within seconds. To achieve this you need
 an online information processing system, using terminals that can give
 direct access to data held in either data sets or databases. In other
 words, you need a DB/DC system.

 Developing a DB/DC system can be a major undertaking, particularly if you
 choose to write all your own control programs for handling terminals and
 files, and provide your own job-scheduling mechanisms. However, CICS can
 make it very much easier by supplying all the basic components needed to
 handle your data communications. This allows you to concentrate on
 developing application programs to meet your organization's business
 needs. You don't need to concern yourself with the details of data
 transmission, buffer handling, or the properties of individual terminal
 devices.

 PICTURE 2

 Figure 2. A DB/DC system

CICS Application Programming Primer
Why you may need an online system

© Copyright IBM Corp. 1984, 1991
1.1.1.1 - 1

 1.1.2 Why have CICS?

 The online end users within a network can make all sorts of demands on
 many different sets of data. The things they want to do individually are
 usually short. Often they are interrelated and share the same programs
 and data. Furthermore, the response times they get should be as short as
 possible. For all these reasons, the users' transactions are done more
 efficiently within a single operating system job, rather than as separate
 jobs.

 If all the transactions are to be handled within the same job, a
 controller is needed to look after them, in much the same way that an
 operating system is needed within a computer to control the jobs. CICS
 carries out this controlling function within a DB/DC job.

 CICS provides the communications control and service functions necessary
 for users to create their own, customized DB/DC system. This cuts down
 the total amount of programming needed. You can customize CICS to the
 needs of practically any online application, and it can support networks
 consisting of a wide variety of terminals and subsystems.

 For most of the time, the users will be unaware of CICS and, indeed,
 unaware of the existence of other applications. They will spend their
 time using the online application programs that you've designed for their
 particular transactions.

 Because CICS is a general-purpose product, the view your users get of it
 will depend far more on the configuration of your system and the
 application programs you provide, than on any features of CICS.

CICS Application Programming Primer
Why have CICS?

© Copyright IBM Corp. 1984, 1991
1.1.2 - 1

 1.1.3 What does CICS do?

 CICS controls online DB/DC application programs. But what does this mean?
 In fact, it means that CICS is a program that does a lot of work on your
 behalf. CICS handles interactions between terminal users and your
 application programs. An interaction may consist of one or more requests
 from, and responses to, a terminal user in the course of a single job by
 that user.

 CICS provides:

 � The functions required by application programs for communication wit
 remote and local terminals and subsystems

 � Control of concurrently running programs serving many online user

 � Facilities for accessing databases and files, in conjunction with th
 various IBM database products and data access methods that are
 available

 � The ability to communicate with other CICS systems and databas
 systems, both in the same computer and in connected computer systems.

 We've left things as open as possible to allow our customers to produce
 the system they need. It's up to your systems and applications designers
 (which could mean you, of course) to choose what they want from the
 various CICS facilities, and to build whatever kind of user interface that
 best suits the end users. So, although you still have to provide the
 application programs that the end users actually run, CICS makes it much
 easier. Your programs gain access to the CICS facilities they need by
 straightforward, high-level, commands.

 Subtopics
 1.1.3.1 CICS application programs
 1.1.3.2 Couldn't I do all this myself?
 1.1.3.3 Can CICS serve large systems and small systems properly?

CICS Application Programming Primer
What does CICS do?

© Copyright IBM Corp. 1984, 1991
1.1.3 - 1

 1.1.3.1 CICS application programs

 Online application programs have certain features and needs in common.
 Typically, they:

 � Serve many online users, apparently simultaneousl

 � Require common access to the same data sets and database

 � Try to give each end user a timely response to each interactio

 � Involve telecommunications access to remote terminals

 The host operating system is in overall charge of the computer and manages
 resources in whatever way you set up. But the very versatility of a
 general-purpose operating system means that it often cannot give online
 programs the sort of priority treatment they need. Instead, CICS may be
 given "privileged" treatment on behalf of all the online programs that run
 under it.

 To make the best use of the time and system resources that the operating
 system gives to CICS, CICS takes on itself some of the aspects of an
 operating system. For example, CICS allows more than one of its programs
 (tasks) to be in an active state at the same time. But CICS doesn't
 duplicate all of the services provided by the operating system. Whenever
 appropriate, CICS goes straight to the operating system to provide what
 its tasks ask for.

CICS Application Programming Primer
CICS application programs

© Copyright IBM Corp. 1984, 1991
1.1.3.1 - 1

 1.1.3.2 Couldn't I do all this myself?

 Yes, of course, but why reinvent the wheel? CICS is a large, mature piece
 of software that has evolved in parallel with the growth of online
 terminal networks and the movement toward distributed processing. It
 supports a wide range of hardware and software. Many thousands of
 data-processing installations around the world have based their data
 communication systems on CICS.

CICS Application Programming Primer
Couldn't I do all this myself?

© Copyright IBM Corp. 1984, 1991
1.1.3.2 - 1

 1.1.3.3 Can CICS serve large systems and small systems properly?

 Yes. CICS is designed in a modular fashion, and we supply it as a set of
 programs that you can combine rather like building blocks. If you don't
 need certain CICS functions, you simply leave out those parts of CICS when
 installing your system. Or perhaps, more typically, you might install
 everything, but only use what you need.

 To start with, though, you'll be putting together your first application
 on the subset CICS system that we've chosen for this Primer.

CICS Application Programming Primer
Can CICS serve large systems and small systems properly?

© Copyright IBM Corp. 1984, 1991
1.1.3.3 - 1

 1.1.4 How does a CICS-based application differ from a batch application?

 As we hinted in the preface, we expect you to have a batch programming
 background. That being so, you don't need us to tell you what batch
 programming is all about. However, we do want to tell you how a
 CICS-based application differs from a batch application.

 Subtopics
 1.1.4.1 Basic differences
 1.1.4.2 Starting a transaction
 1.1.4.3 Inside CICS

CICS Application Programming Primer
How does a CICS-based application differ from a batch application?

© Copyright IBM Corp. 1984, 1991
1.1.4 - 1

 1.1.4.1 Basic differences

 Not everything is different, of course. But here are some points to think
 about:

 � In a batch program, you often define all the required input/output an
 work areas within the program. In CICS, these areas are allocated by
 CICS, as needed, by CICS itself from a dynamic storage area within the
 CICS region. This lets CICS economize on main storage, and use the
 same copy of a program to do work for several users at once.

 � A batch program reads its own input data, whereas CICS reads the dat
 on behalf of the CICS application programs. A particular CICS
 application program need not even be loaded into the computer before
 its first input message arrives.

 � A batch program issues its input/output instructions directly to th
 operating system. CICS application programs always issue such
 instructions to CICS, and CICS handles the interface to the operating
 system.

 � Recovering when things go wrong is more interesting (as we'll see)

 Subtopics
 1.1.4.1.1 Recovering when things go wrong
 1.1.4.1.2 Two vital terms

CICS Application Programming Primer
Basic differences

© Copyright IBM Corp. 1984, 1991
1.1.4.1 - 1

 1.1.4.1.1 Recovering when things go wrong

 The final major difference between a batch system and an online system
 comes up when things go wrong.

 Obviously, all data processing systems need to be able to survive faults
 and errors such as the loss of power supply, processor failures, program
 errors, data set failures, and (in online systems) communication errors.
 Procedures are required to recover from such faults or to restart the
 system if a fault has stopped it.

 Recovery and restart design is inevitably more complex for an online
 system than for a batch system:

 � For batch processing, input data is prepared before processing begins.
 The data is then supplied to the batch process in one orderly
 sequence, which is controlled and predictable.

 � For online processing, input data isn't prepared beforehand, but is
 entered as needed while the application is running. Furthermore, the
 input data can come from many different users working concurrently.
 In other words, input data does not arrive in a predictable sequence.

 If a failure occurs:

 � With a batch program, you can repeat the processing, or continue i
 from the point of failure. This is because the processing sequence is
 predictable (it is based entirely on the predefined input data), and
 because the input data is still available.

 � With an online application, you cannot simply rerun the application o
 continue from the point of failure because the state of the process is
 unknown. And even if it were known, you couldn't expect the terminal
 users to reenter a day's work.

 So, online application programs need a system that provides special
 mechanisms for recovery and restart. In broad terms, these mechanisms
 ensure that each resource associated with an interrupted online
 application is returned to a known state so that processing can be
 restarted safely. As you work through this book, you'll see how CICS can
 help you get over your recovery and restart problems.

 Perhaps the most striking difference is how a small, simple application
 program can be loaded into the computer and promptly be used, by hundreds
 of people throughout a terminal network. Not only that, but the same
 application program could be in use by all these people at the same time.
 And yet these online application programs aren't necessarily more
 difficult to write and get working than the programs you've been used to
 up to now.

CICS Application Programming Primer
Recovering when things go wrong

© Copyright IBM Corp. 1984, 1991
1.1.4.1.1 - 1

 1.1.4.1.2 Two vital terms

 Next, we want to introduce two important words in the CICS vocabulary:
 "transaction" and "task." You'll constantly see these so it's good to
 know what they mean right from the start.

 A transaction is a piece of processing initiated by a single request,
 usually from an end user at a terminal. A single transaction will consist
 of one or more application programs that, when run, will carry out the
 processing needed.

 In other words, "transaction" means in CICS what it does in everyday
 English: a single event or item of business between two parties. In
 batch processing, transactions of one type are grouped together and
 processed in a batch (all the updates to the personnel file in one job, a
 list of all the overdue accounts in another, and so on). In an online
 system, by contrast, transactions aren't sorted by type, but instead are
 done individually as they arrive (an update to a personnel record here, a
 customer order entered there, a billing inquiry next, and so on).

 Having given you this straightforward definition, we'll immediately
 complicate things a bit by admitting that the word "transaction" is used
 to mean both a single event (as we just described) and a class of similar
 events. Thus, we speak of adding Mary Smith to the Payroll File with a
 (single) "add" transaction, but we also speak of the "add" transaction,
 meaning all additions to that particular file.

 Things are further complicated by the fact that one sometimes describes
 what the user sees as a single transaction (the addition to a file,
 perhaps) as several transactions to CICS. We get to this nicety in
 "Pseudoconversational or not?" in topic 2.7. Until we get there, you
 should use the definition of transaction we've given above; you'll be able
 to tell from context whether we mean a transaction type or a single bit of
 processing.

 Now, what about a task?

 Users tell CICS what type of transaction they want to do next by using a
 transaction identifier. By convention, this is the first "word" in the
 input for a new transaction, and is from one to four characters long,
 although this source of the identifier is sometimes overridden by
 programming.

 CICS looks up the transaction identifier to find out which program to
 invoke first to do the work requested. It creates a task to do the work,
 and transfers control to the indicated program. So a task is a single
 execution of some type of transaction, and means the same thing as
 "transaction" when that word is used in its single event sense.

 A task can read from and write to the terminal that started it, read and
 write files, start other tasks, and do many other things. All these
 services are controlled by and requested through CICS commands in your
 application programs. CICS manages many tasks concurrently. Only one
 task can actually be executing at any one instant. However, when the task
 requests a service which involves a wait, such as file input/output, CICS
 uses the wait time of the first task to execute a second; so, to the
 users, it looks as if many tasks are being executed at the same time.

CICS Application Programming Primer
Two vital terms

© Copyright IBM Corp. 1984, 1991
1.1.4.1.2 - 1

 1.1.4.2 Starting a transaction

 Normally, end users wishing to begin an online session will first identify
 themselves to CICS by signing on. Signing on to CICS gives users the
 authority to invoke certain transactions. Once signed-on, they invoke the
 particular application (transaction) they intend to use. They can do so
 by typing the transaction identification code at the start of their
 initial request. But, if your designers decide otherwise, it's just as
 easy to set up a particular program function (PF) key to invoke a
 transaction with a single keystroke or, indeed, for a given terminal
 always to invoke a particular transaction.

 Application programs are stored in a library on a direct access storage
 device (DASD) attached to the processor. They can be loaded when the
 system is started, or simply loaded as required. If a program is in
 storage and isn't being used, CICS can release the space for other
 purposes. When the program is next needed, CICS loads a fresh copy of it
 from the library.

CICS Application Programming Primer
Starting a transaction

© Copyright IBM Corp. 1984, 1991
1.1.4.2 - 1

 1.1.4.3 Inside CICS

 In the time it takes to process one transaction, the system may receive
 messages from several terminals. For each message, CICS loads the
 application program (if it isn't already loaded), and starts a task to
 execute it. Thus multiple CICS tasks can be running concurrently.

 CICS maintains a separate thread of control for each task. When, for
 example, one task is waiting to read a disk file, or to get a response
 from a terminal, CICS is able to give control to another task. Tasks are
 managed by the CICS task control program; the management of multiple tasks
 is called multitasking.

 CICS manages both multitasking and requests from the tasks themselves for
 services (of the operating system or of CICS itself). This allows CICS
 processing to continue while a task is waiting for the operating system to
 complete a request on its behalf. Each transaction that is being managed
 by CICS is given control of the processor when that transaction has the
 highest priority of those that are ready to run.

 While it runs, your application program requests various CICS facilities
 to handle message transmissions between it and the terminal, and to handle
 any necessary file accesses. When the application is complete, CICS
 returns the terminal to a standby state. Figure 3 should help you
 understand what goes on.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 3 ¦
 ¦ ¦
 ¦ ¦
 ¦ The flow of control during a transaction (code ACCT) is shown by the ¦
 ¦ sequence of numbers 1 to 8 on the panels. Don't take this transaction ¦
 ¦ too seriously; we're only using it to show some of the stages that can ¦
 ¦ be involved. The meanings of these eight stages are as follows: ¦
 ¦ ¦
 ¦ 1. Terminal control accepts characters ACCT, typed at the terminal, ¦
 ¦ and puts them in working storage. ¦
 ¦ ¦
 ¦ 2. System services interpret the transaction code ACCT as a call for ¦
 ¦ an application program called ACCT00. If the terminal operator has ¦
 ¦ authority to invoke this program, it is either found already in ¦
 ¦ storage or loaded from.... ¦
 ¦ ¦
 ¦ 3. The program library into working storage, where.... ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 4 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ 4. A task is created. Program ACCT00 is given control on its behalf. ¦
 ¦ This particular program invokes.... ¦
 ¦ ¦
 ¦ ¦
 ¦ 5. Basic mapping support (BMS) and terminal control to send a menu to ¦
 ¦ the terminal, allowing the user to specify precisely what information ¦
 ¦ is needed. ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦

CICS Application Programming Primer
Inside CICS

© Copyright IBM Corp. 1984, 1991
1.1.4.3 - 1

 ¦ ¦
 ¦ PICTURE 5 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ 6. BMS and terminal control also handle the user's next input, ¦
 ¦ returning it to ACCT01 (the program designated by ACCT00 to handle the ¦
 ¦ next response from the terminal) which then invokes.... ¦
 ¦ ¦
 ¦ 7. File control to read the appropriate file for the information the ¦
 ¦ terminal user has requested. Finally, ACCT01 invokes.... ¦
 ¦ ¦
 ¦ 8. BMS and terminal control to format the retrieved data and present ¦
 ¦ it on the terminal. ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 3. The flow of control during a transaction

 The transaction continues to run until it reaches a place in the program
 at which it's waiting for some activity (such as a disk access) to end.
 At this point, CICS allocates the processor to the next task that can run.
 Only when there's no work to do on behalf of any CICS task does CICS pass
 control back to the operating system to allow batch work to run. This
 allows CICS to maintain the priority of online working over batch work in
 other address spaces.

 In this way, CICS controls the overall flow of your online system.

 Besides doing all the transaction processing, CICS also supports the
 bookkeeping side of the system, by accumulating performance statistics and
 monitoring the resources used. This gives you the information that
 enables user departments in an organization to be charged accordingly. It
 also allows you to find out which parts of CICS are being heavily or
 lightly used. This will help your systems people change the CICS set-up
 when you wish to tune your system to improve its performance.

CICS Application Programming Primer
Inside CICS

© Copyright IBM Corp. 1984, 1991
1.1.4.3 - 2

 1.1.5 How does CICS help you set up an online system?

 After your system has been designed, the programming effort to turn the
 specification into a working application is normally divided between two
 groups: the people who install and maintain the system, and those who
 write the application programs it will use. (We don't want to rule out
 the possibility of all this work being done by one heroic person.) CICS
 offers a variety of helpful features for both groups. Concentrating on
 the application programming side, CICS aids include:

 � A choice of programming language. You can write your application
 programs in assembler, COBOL, PL/I, or C language.

 � A command-level programming interface with CICS. You need know little
 about how CICS works. You request data or communication with
 terminals by issuing CICS commands that resemble those of the
 programming language you are using. A command language translator
 preprocesses the application source code, translating CICS commands
 into CALL statements in the language of the application program. It
 also provides useful diagnostics.

 � An execution diagnostic facility (EDF), for testing command-level
 application programs interactively.

CICS Application Programming Primer
How does CICS help you set up an online system?

© Copyright IBM Corp. 1984, 1991
1.1.5 - 1

 1.1.6 How do you use CICS?

 Now that you have some idea of what CICS is and how it fits into your
 computer system, we can explain how you use it. We're going to do so by
 showing you the stages in designing and implementing a reasonably
 typical (1) and useful application: a file inquiry and update system.
 This example starts in the next topic.

 To get the best out of your CICS system (or, for that matter, any system)
 you should design the system around its applications. However, for our
 purposes, we'll assume that you've been through this process for other
 applications, and simply wish to extend your present system by adding this
 online file inquiry and update application.

 In reality, if your proposed new application programs were very different
 from your existing ones, your systems programmers might have to tailor
 your CICS system to provide the necessary functions, typically by picking
 different sets of system parameters for different occasions. This could
 mean initializing the system again, to include IBM-supplied programs to
 help you do what you want. If your needs are very unusual, they might
 have to customize some parts of your CICS system, adding code of their
 own, before initializing the system. The programs that we develop and
 describe in this book are all supported by a simple CICS system, so you
 can forget about initialization or customization for the time being.

 (1) Asking "What's a typical application?" is a bit like asking
 "How long is a piece of string?". Nevertheless, many diverse
 users share common information processing needs. So we shall
 see how CICS can meet the needs of a "typical
 application"--the online requirements of the Flibinite
 boutique--part of our example application, described in
 "Designing the user interface" in topic 2.3.

CICS Application Programming Primer
How do you use CICS?

© Copyright IBM Corp. 1984, 1991
1.1.6 - 1

 2.0 Application design

 +--- This part of the Primer: ---+
 ¦ ¦
 ¦ ¦ Explains how to design your first CICS application programs ¦
 ¦ ¦
 ¦ ¦ Defines the problem ¦
 ¦ ¦
 ¦ ¦ Describes 3270 Information System data streams ¦
 ¦ ¦
 ¦ ¦ Deals with designing the data ¦
 ¦ ¦
 ¦ ¦ Talks about establishing the user interface ¦
 ¦ ¦
 ¦ ¦ Examines special features of the CICS environment ¦
 ¦ ¦
 ¦ ¦ Defines the example application programs involved, and their ¦
 ¦ interactions. ¦
 ¦ ¦
 +--+

 The CICS example application--a department store

 +--- The current situation --+
 ¦ ¦
 ¦ A department store (the Flibinite boutique) with credit customers ¦
 ¦ keeps a master file of its customers' accounts. Each customer record ¦
 ¦ holds the customer's name, address, telephone number, charge limit, ¦
 ¦ current balance, account activity, payment history, and so on. ¦
 ¦ ¦
 ¦ At the moment, a set of batch processing programs updates this master ¦
 ¦ file (and some related ones) twice a week with the necessary charge ¦
 ¦ and payment information. The records are also printed periodically, ¦
 ¦ bound into bulky folders, and distributed to each section to help in ¦
 ¦ answering questions both from customers and from within the Accounting ¦
 ¦ and Customer Service sections. ¦
 ¦ ¦
 ¦ However, the listing is too large to be printed often, so it's usually ¦
 ¦ out-of-date. ¦
 ¦ ¦
 +--+

 +--- Online access to information ---------------------------------------+
 ¦ ¦
 ¦ The store wants online access to a customer's record, to have ¦
 ¦ absolutely current information. So we need an inquiry function. ¦
 ¦ Furthermore, the people in Accounts want to be able to update these ¦
 ¦ customer records online, for convenience and currency. So we also ¦
 ¦ need a facility to add new records, delete records and change ¦
 ¦ addresses and other information unrelated to billing. ¦
 ¦ ¦
 ¦ Each customer has a unique account number, which is the key to the ¦
 ¦ existing master file. The users in Accounts will presumably access ¦
 ¦ records by this number, because it's always available when they are ¦
 ¦ processing work or answering questions. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Application design

© Copyright IBM Corp. 1984, 1991
2.0 - 1

 +--- Access by name ---+
 ¦ ¦
 ¦ However, people in the Customer Service Department say they must be ¦
 ¦ able to access the file by customer name if possible. Their ¦
 ¦ experience suggests that customers don't usually know their account ¦
 ¦ numbers, but can always remember their names! ¦
 ¦ ¦
 ¦ If a customer wants to charge items but has forgotten to bring along ¦
 ¦ the right charge card, a clerk calls Customer Service, verifies the ¦
 ¦ existence and payment status of the account, and gets the account ¦
 ¦ number for the charge slip. ¦
 ¦ ¦
 +--+

 +--- Logging and printing changes ---------------------------------------+
 ¦ ¦
 ¦ Finally, the people in Accounts have asked us to make quite sure that ¦
 ¦ all changes to the file are logged, and all errors, with a hard-copy ¦
 ¦ report in both cases. They seem to be rather nervous about subjecting ¦
 ¦ their master file to online updating, but assure us that they will ¦
 ¦ feel more confident having a printed record of all changes made. ¦
 ¦ ¦
 ¦ They are also concerned about the security aspects of this first ¦
 ¦ venture into online file updating, and want to be able to trace ¦
 ¦ changes to specific records. Later, they will probably agree to ¦
 ¦ direct this log to tape, printing it only when necessary, but for the ¦
 ¦ moment they need it in hard-copy form. ¦
 ¦ ¦
 +--+

 Subtopics
 2.1 The CICS example application--a department store
 2.2 3270 terminals
 2.3 Designing the user interface
 2.4 Coming to grips with the data
 2.5 Refining the transaction design
 2.6 Programming for a CICS environment
 2.7 Pseudoconversational or not?
 2.8 Arranging the processing
 2.9 Three remaining considerations
 2.10 Defining the programs--a final look

CICS Application Programming Primer
Application design

© Copyright IBM Corp. 1984, 1991
2.0 - 2

 2.1 The CICS example application--a department store
 This topic explains, with the help of an example, one way of designing a
 CICS application. The text you've just been reading (in the boxes
 opposite) describes what the application is to do.

 The outline specification for our example is a simple one. It shows
 design issues and programming requirements that arise in nearly every
 application. The CICS services required by this application are a subset
 of the full range available; however, this subset consists of those
 functions that most straightforward applications need to use. Let's
 relate the department store's needs to some general points about CICS
 application programs. A CICS application usually consists of three main
 parts consisting of the data to be processed, the transactions to be
 performed, and the interface with the user.

 You can see these parts in the specifications just described for the
 example. The customer information in the account file is the data to be
 processed; the online operations (display a record, add a record, and so
 on) are the transactions to be performed on that data; and the terminals,
 formatted screens, and operating procedures are the interface with the
 user. Let's see how each of these parts could be designed.

 It is important to note before starting, and it will certainly be clear in
 what follows, that each of these three parts bears on the others. You
 cannot design one without reference to the other two.

 Moreover, design is an iterative process. Decisions about the user
 interface affect transaction definition, which, in turn, causes a slight
 change in specifications, and the whole cycle begins again. These
 adjustments are normal and should be expected in any design process.
 However, unless you freeze the design at some point you will never
 complete the job.

 Subtopics
 2.1.1 Defining the problem
 2.1.2 Summary
 2.1.3 Designing the transactions: preliminaries
 2.1.4 What next?

CICS Application Programming Primer
The CICS example application--a department store

© Copyright IBM Corp. 1984, 1991
2.1 - 1

 2.1.1 Defining the problem

 The first step in the design process is to specify broadly what the
 application will do. In our case, the need for the application came from
 two user departments, and the first functions they requested are:

 � Display of customer account record, given an account numbe

 � Addition of new account record

 � Modification of existing account records (by account number

 � Deletion of account records (by account number

 � Hard-copy listing of changes to the account fil

 � Ability to access records by name

 Subtopics
 2.1.1.1 The account file records
 2.1.1.2 Requirements imposed by the environment
 2.1.1.3 Refining and developing the program specifications
 2.1.1.4 Estimating the number of transactions

CICS Application Programming Primer
Defining the problem

© Copyright IBM Corp. 1984, 1991
2.1.1 - 1

 2.1.1.1 The account file records

 The detailed design of our programs is going to be influenced by the
 established form of the existing customer data, of course. The account
 file is very much at the center of this application. Its records are
 shown in Figure 4.

 +--+
 ¦ ¦
 ¦ Field Length Occurs Total Type ¦
 ¦ Account Number (Key) 5 1 5 Online ¦
 ¦ Surname 18 1 18 Online ¦
 ¦ First Name 12 1 12 Online ¦
 ¦ Middle initial 1 1 1 Online ¦
 ¦ Title (Jr, Sr, and so on) 4 1 4 Online ¦
 ¦ Telephone number 10 1 10 Online ¦
 ¦ Address line 24 3 72 Online ¦
 ¦ Other charge name 32 4 128 Online ¦
 ¦ Cards issued 1 1 1 Online ¦
 ¦ Date issued 6 1 6 Online ¦
 ¦ Reason issued 1 1 1 Online ¦
 ¦ Card code 1 1 1 Online ¦
 ¦ Approver (initials) 3 1 3 Online ¦
 ¦ Special codes 1 3 3 Online ¦
 ¦ Account status 2 1 2 Batch ¦
 ¦ Charge limit 8 1 8 Batch ¦
 ¦ Payment history: (36) 3 108 Batch ¦
 ¦ -Balance 8 ¦
 ¦ -Bill date 6 ¦
 ¦ -Bill amount 8 ¦
 ¦ -Date paid 6 ¦
 ¦ -Amount paid 8 ¦
 ¦ ¦
 +--+
 Figure 4. Account file record format

 The fields marked as Type "Online" are the ones that are to be maintained
 by our online program. Those marked "Batch" are already updated by the
 existing batch billing and payment cycle and need only be displayed by our
 online system.

CICS Application Programming Primer
The account file records

© Copyright IBM Corp. 1984, 1991
2.1.1.1 - 1

 2.1.1.2 Requirements imposed by the environment

 Besides the users' requirements, we're going to assume that certain others
 are imposed by the environment in which this application will run. These
 are:

 � The terminals available are IBM 3270 system displays and printers
 The screens display 24 lines, each of 80 characters (the IBM 3278
 Display Station model 2, for example), with corresponding printers.

 � Some of the people who will use the application will do s
 infrequently. Consequently, the application should be as
 self-documenting as possible, and users should not need to memorize
 very much to use it comfortably. On the other hand, help to casual
 users should not result in slow or annoying interactions for frequent
 users. Some hard-copy documentation on how to use the system will be
 provided, but we hope users will only rarely need to look at it. The
 goal is to keep everything nice and simple for all users.

 � The integrity of the account file must be maintained. This means tha
 it must be protected from inconsistent or lost data, whether resulting
 from a failure in the application or CICS or the operating system. It
 also must be protected from total loss, such as a disk head crash or
 other catastrophe.

 � The existing account file is a VSAM key-sequenced data set containin
 about 10 000 records of 383 characters each, including the 5-digit
 account number key.

CICS Application Programming Primer
Requirements imposed by the environment

© Copyright IBM Corp. 1984, 1991
2.1.1.2 - 1

 2.1.1.3 Refining and developing the program specifications

 The next step in defining the problem is to verify the first program
 specifications with whoever made the original requests. You should be
 especially alert for information or functions that no-one requested but
 that nevertheless may actually be required when real work is attempted.
 Otherwise the users will make the same discoveries right after you
 complete your programming effort, and you'll be faced with making changes
 when it may prove difficult, rather than now when it is easy.

 It is always useful to talk to the actual users of an application, to find
 out how they do their work and how they view the functions you intend to
 provide. Supervisors can provide other insights. It is very important to
 repeat this verification step as the design process moves along from a
 broad outline toward more and more detailed specifications.

CICS Application Programming Primer
Refining and developing the program specifications

© Copyright IBM Corp. 1984, 1991
2.1.1.3 - 1

 2.1.1.4 Estimating the number of transactions

 Now is also the time to find out how often the system will be expected to
 cope with the transactions of each type, what sort of response times will
 be expected, what times of the day the application will have to be
 available, and so on. This will allow you to design programs that are
 efficient for the bulk of the work, and it will help you in determining
 system and operational requirements.

 For the example application, let's assume that our inquiries produced the
 following information:

 � There will be about 10 additions, 50 modifications, 5 deletions, an
 200 inquiries (by account number) per day in the Accounting
 Department.

 � The people in Accounting are unable to estimate the number o
 inquiries that they would make by name, but they sound intrigued with
 the possibility, and therefore may be expected to make some use of
 this facility.

 � Accounting would find it very useful to be able to get a printed cop
 of a customer account record, besides being able to display it on the
 screen. (This is a new requirement, not in the original
 specification. We should consider providing it.)

 � Customer Service makes nearly 1000 inquiries per day against accoun
 records, ninety percent of them by name. For most of these, the only
 items used from the complete account record are the name and address
 (to verify that it is the right record), and the credit status and
 limit.

 Note: In assessing estimates of transaction frequency, we need to account
 for a fact of life. That is, if we make it much easier to do something,
 such as an inquiry, users will almost certainly do it more often than they
 used to do. Indeed, the eventual transaction rates experienced with
 online systems are almost always higher than can be predicted from the
 current workload -- often a reliable indication of their success.

CICS Application Programming Primer
Estimating the number of transactions

© Copyright IBM Corp. 1984, 1991
2.1.1.4 - 1

 2.1.2 Summary

 We've now identified some of the first steps when starting to design an
 application. You should:

 � Broadly set down the application functions based on user need

 � Identify the individual data elements involved in the processin

 � Consider any external environmental factors and restriction

 � Verify your initial specifications with the user

 � Estimate the expected load on the system from the various ne
 functions that your application will provide.

 When you've done this, you can then go on to design the transactions and
 processing programs that you'll need. So, let's continue now with some
 application design considerations.

CICS Application Programming Primer
Summary

© Copyright IBM Corp. 1984, 1991
2.1.2 - 1

 2.1.3 Designing the transactions: preliminaries

 Earlier in this topic, we described the functions needed in our example.
 Let's now see how we might define transactions to perform these functions.
 One obvious approach is to make each function a separate transaction. The
 transaction to display an account record, then, would work something like
 this:

 � Find out from the terminal user which record is to be displayed

 � Read that record from the file

 � Display the information from that record at the terminal

 That seems straightforward. How about the add transaction?

 � Get the data for the new record as keyed in by the user at th
 terminal.

 � Write this data to the file

 Even simpler. However, there are a few things we've not taken into
 account.

 First of all, we're not dealing with the familiar batch devices of card
 reader and line printer here. The 3270-system terminals are radically
 different in their characteristics from such batch devices. They are
 different, too, from line-oriented or record-oriented devices such as
 Teletypes (**) and IBM 2741s.

 Second, there are human beings operating the terminals, and their
 happiness and efficiency must be a major design goal in any application.

 Third, we have to deal with the implications of processing in an online
 environment, where our goals and constraints may be quite different from
 those that govern a batch program.

 Finally, we've not provided for any exceptional conditions. For example,
 what if the record to be displayed isn't in the file? Or if the one to be
 added is in the file? You probably know that in a batch program about 80
 percent of the effort and the code is devoted to handling errors, even
 though this code is executed rarely. In online programs, all these same
 problems have to be thought about and resolved, and there are also some
 new potential problems.

 (**) Trademark. For a complete list of trademarks, see "Notices"
 in topic FRONT_1.

CICS Application Programming Primer
Designing the transactions: preliminaries

© Copyright IBM Corp. 1984, 1991
2.1.3 - 1

 2.1.4 What next?

 Before we continue trying to design our transactions, let's learn a little
 more about the 3270 systems that our users will be using to communicate
 with the transactions. After all, one of the first things to be
 considered is the user interface: how will the terminal operators
 communicate with this application, and how will it give them the
 information they need?

 We can then go on to find out more about a much wider range of issues:
 what makes users happy ("human factors"), the design of data, programming
 for a CICS environment, and so on.

 But first, 3270s. If you are already familiar with 3270 terminals and the
 3270 data stream, you can skip ahead to "Designing the user interface" in
 topic 2.3.

CICS Application Programming Primer
What next?

© Copyright IBM Corp. 1984, 1991
2.1.4 - 1

 2.2 3270 terminals
 Remember, you're free to skip this topic if you know about IBM 3270
 terminals already.

 The 3270 Information Display System is a family of display and printer
 terminals. Different 3270 device types and models differ in screen sizes,
 printer speeds, features (like color and special symbol sets) and manner
 of attachment to the processor, but they all use essentially the same data
 format.

 You need to know a little about this format to make the best use of
 3270-system devices, and to understand the Basic Mapping Support (BMS)
 services that CICS provides for communicating with these devices. That's
 the purpose of this topic.

 Let's talk about the IBM 3278 Display Station Model 2, which has a display
 screen and a keyboard. This device is used for both input and output, and
 in both cases the screen (or rather a buffer that represents it) is the
 crucial medium of exchange between the terminal and the processor. The
 purpose of the keyboard is to modify the screen, in preparation for input,
 and to signal when that input is ready to be sent to the processor.

 When your application program writes to a 3278, the processor sends a
 stream of data in the special format used by 3270 devices. Most of the
 data in the stream is the text that is to be displayed on the screen; the
 rest of it is control information that defines where the text should go on
 the screen, whether it can be overtyped from the keyboard later, and so
 on.

 The printers that correspond to the 3278 can use this same data stream, so
 a stream built for a display device can be used equally well for a
 printer.

 Subtopics
 2.2.1 3270 field structure
 2.2.2 3270 output data stream
 2.2.3 3270 attribute bytes
 2.2.4 3270 input data stream
 2.2.5 Unformatted 3270 data
 2.2.6 Saved by BMS

CICS Application Programming Primer
3270 terminals

© Copyright IBM Corp. 1984, 1991
2.2 - 1

 2.2.1 3270 field structure

 The screen of the 3278 Model 2 can display up to 1920 characters, in 24
 rows and 80 columns. That is, the face of the screen is logically divided
 into an array of positions, 24 deep and 80 wide, each capable of
 displaying one character, with enough space around it to separate it from
 the next character.

 Each of these 1920 character positions is individually addressable. This
 means that your COBOL application program can send data to any position on
 the screen, without having to space it out with space characters to get it
 into the right location. Your program does not, however, give an address
 for each character you want displayed. Instead, within your program, you
 divide your display output into fields. A field on the 3278 screen is a
 consecutive set of character positions, all having the same display
 characteristics (high intensity, normal intensity, protected, not
 protected, and so on). Normally, you use a 3270 field in exactly the same
 way as a field in a file record or an output report: to contain one item
 of data.

 To show you how this works, Figure 5 shows the screen that the CICS system
 uses for the standard sign-on transaction:

 +--+
 ¦ ¦
 ¦ CESN - CICS/VS SIGNON - ENTER USERID AND PASSWORD ¦
 ¦ USERID: _ ¦
 ¦ PASSWORD: ¦
 ¦ ¦
 +--+

 Figure 5. The CICS sign-on screen

 There are a number of fields on this screen although, as shown, only three
 of the fields are displaying character data. The first one is at row 1,
 column 1 (position 1,1), and it contains the data CICS/VS SIGNON - ENTER
 USERID AND PASSWORD. The field is specified as both protected (meaning
 that the terminal operator cannot type over that area of the screen) and
 bright (high intensity, in this case just for emphasis). The second field
 is at position (4,5) and contains the data USERID:. This is also protected
 and bright. (The underscore after USERID: is the cursor and marks the
 position into which the next character entered from the keyboard will go.)
 Both of these fields have been used for output only, to convey something
 to the user. For the second field, it was to show what should be typed
 into the third field. The second field is followed by an attribute byte
 at position (4,11), and then the third field starts at position (4,12).

 This third field is different because we intend the user to key something
 into it which will become input the next time the terminal transmits. So
 it isn't protected. It is set for normal intensity, and, even though you
 cannot see this by looking at the screen, it is 20 positions long. This
 is the permitted length of the name field in the CICS Sign-On Table, with
 which the contents of this field will later be compared.

 At the end of this field is another field, known as a stopper field. (You
 can't see this one, either.) Its only function is to stop the user from
 keying more than 20 characters into the name field. The reason for this
 is that the beginning, but not the end, of each field is flagged in the
 buffer that represents the screen. The end of a field is one position
 before the start of the next field. There's no data in this "stopper"
 field; the important thing is that it is protected. Whenever you try to
 key into a protected field on the screen, you are prevented from doing so,
 and the keyboard locks. Users who try to key more than 20 characters into

CICS Application Programming Primer
3270 field structure

© Copyright IBM Corp. 1984, 1991
2.2.1 - 1

 the name field, therefore, run into this protected field, and are made
 aware of the error by the locking of the keyboard.

 The next three fields are two lines down, at positions (6,5), (6,15) and
 (6,24). They are rather like the three fields on the earlier line. The
 first of them contains the data PASSWORD: and is protected. The second is
 the field into which the user is supposed to enter the password. It is
 unprotected, and has another attribute that may at first seem curious. It
 is dark or nondisplay. This means that the data in the field does not
 show on the screen (whether the user puts it there or the program does),
 even though it is very much there. Nondisplay is used for this field
 because passwords are supposed to be secret, and this way no one passing
 by while the user is signing-on will see the password. The third field is
 again a stopper field to stop the user from keying in more than eight
 characters of password information.

CICS Application Programming Primer
3270 field structure

© Copyright IBM Corp. 1984, 1991
2.2.1 - 2

 2.2.2 3270 output data stream

 Now let's see how this information is formatted for transmission from the
 processor to the 3278. Figure 6 shows the data stream.

 +--+
 ¦ ¦
 ¦ __ ¦
 ¦ Control information affecting the whole transmission, such ¦
 ¦ as whether to unlock the keyboard or not, where to place ¦
 ¦ the cursor, and so on. ¦
 ¦ __ ¦
 ¦ First Encoded screen address showing where ¦
 ¦ field: the next field goes on the screen (row 1, ¦
 ¦ column 1) ¦
 ¦ __ ¦
 ¦ Control information to show that a ¦
 ¦ field is about to begin ¦
 ¦ __ ¦
 ¦ Control information to describe display ¦
 ¦ attributes of field: high intensity, protected ¦
 ¦ __ ¦
 ¦ Data to be displayed: "CESN - CICS/VS ¦
 ¦ SIGNON - ENTER PERSONAL DETAILS" ¦
 ¦ __ ¦
 ¦ Second Encoded screen address showing where ¦
 ¦ field: the next field goes on the screen (row 4, ¦
 ¦ column 5) ¦
 ¦ __ ¦
 ¦ Control information to show that a ¦
 ¦ field is about to begin ¦
 ¦ __ ¦
 ¦ Control information to describe display ¦
 ¦ attributes of field: high intensity, protected ¦
 ¦ __ ¦
 ¦ Data to be displayed "USERID:" ¦
 ¦ __ ¦
 ¦ Third Control information to show that a ¦
 ¦ field: field is about to begin ¦
 ¦ __ ¦
 ¦ Control information to describe display ¦
 ¦ attributes of field: normal intensity, ¦
 ¦ unprotected ¦
 ¦ __ ¦
 ¦ Control information cursor position ¦
 ¦ __ ¦
 ¦ Fourth Encoded screen address showing where ¦
 ¦ field: the next field goes on the screen (row 4, ¦
 ¦ column 32) ¦
 ¦ __ ¦
 ¦ Control information to show that a ¦
 ¦ field is about to begin ¦
 ¦ __ ¦
 ¦ Control information to describe display ¦
 ¦ attributes of field: protected (stopper) ¦
 ¦ __ ¦
 ¦ Fifth Encoded screen address showing where ¦
 ¦ field: the next field goes on the screen (row 6, ¦
 ¦ column 5) ¦
 ¦ __ ¦
 ¦ Control information to show that a ¦
 ¦ field is about to begin ¦
 ¦ __ ¦
 ¦ Control information to describe display ¦
 ¦ attributes of field: high intensity, protected ¦

CICS Application Programming Primer
3270 output data stream

© Copyright IBM Corp. 1984, 1991
2.2.2 - 1

 ¦ __ ¦
 ¦ Data to be displayed: "PASSWORD:" ¦
 ¦ __ ¦
 ¦ ...And so on for the remaining fields. ¦
 ¦ ¦
 +--+
 Figure 6. A 3270 output data stream

 There are several things to note about this data stream:

 � For the first and second fields, a screen address appears in the dat
 stream, whereas for the next field it does not. This is because no
 new address needs to be provided when one field immediately follows
 another. Addresses for these fields could be included, but they would
 increase the length of the transmission. It is important to keep
 transmissions as short as possible when dealing with terminals that
 may be connected by telephone lines.

 � Similarly, data is included for the first two fields but not for th
 next two. Again, if there is no data, it isn't necessary to include
 anything in the data stream. This also reduces the length of the
 transmission.

 � We've shown the various fields for the screen being transmitted in th
 order they appear on the screen. This is customary and natural, but
 it isn't required by the device, which will accept fields in any
 order, but it's much faster to display them in the correct order.

 � The most striking feature of the data stream is its variable lengt
 and format, which depend on the presence or absence of data, adjacency
 or nonadjacency of fields, and so on. This would be very cumbersome
 to produce in a COBOL program, to say the least. Moreover, every time
 you moved something about on the screen, you would have to change the
 program that produced the data stream.

 Don't panic! "Saved by BMS" in topic 2.2.6 shows us the light at the end
 of this particular tunnel.

CICS Application Programming Primer
3270 output data stream

© Copyright IBM Corp. 1984, 1991
2.2.2 - 2

 2.2.3 3270 attribute bytes

 One more point about this output data stream. If you followed the screen
 positions used in the example carefully, you may have noticed that each
 field seems to be one position too long. If the 20-position name field
 begins at (4,11), why doesn't the stopper field start at (4,31) instead of
 (4,32)? This is because the display attributes to which we've referred
 (protected, bright, and so on) actually occupy one screen position for
 each field. That is, if we start a 20-character field at position (4,11),
 the attribute byte (as it is called) for the field is located at (4,11)
 and the actual data goes from (4,12) through (4,31). The attribute byte
 looks like a space on the screen, and is itself protected (whether or not
 the field to which it applies is protected), so that the user cannot key
 into it and change the field identity.

 As noted earlier, the attribute byte controls how data is shown on the
 screen. The choices are:

 � High intensit
 � Normal intensit
 � Dark (nondisplay)

 The attribute byte also governs what can be done to the field from the
 keyboard. Here the choices are:

 � Unprotected: The user may key anything into the field

 � Numeric: The user may key only digits, decimal points, and minus sign
 into the field.

 � Protected: The user may not key into the field

 � Autoskip: The user may not key into the field and, furthermore, th
 cursor will automatically skip over the field if the previous field is
 filled.

 Autoskip is usually used for stopper fields if the information in the
 previous field is of fixed length and always fills the field. That way,
 the user can key continuously, and doesn't have to use the cursor advance
 key after filling a field to get to the next one.

 After variable-length data (such as the name field in the sign-on screen)
 however, it is customary to make the stopper a protected field, instead.
 If you specify autoskip, and the user keys too much, the excess goes into
 the next unprotected field, and the user may not be aware of this. Where
 there are fields for both fixed-length and variable-length data, some
 programmers like to use only protected stoppers, so that the user
 consistently has to use the cursor advance key to get to the next field,
 whether or not the current field is full. Others prefer to use both kinds
 on the same screen.

 The attribute byte also carries one more piece of information. This is
 the modified data tag. It has to do with input, however, and so we'll
 explain it later. (If you can't wait, you'll find more details on 2.2.4
 and in "The BMS macros" in topic 3.2.2.)

 Note: Not all combinations of attributes are permitted, but all the
 useful ones are. We should also point out now that displays with
 additional features, like color and special symbols, have more complex
 attribute combinations to express the additional possibilities. However,
 the logic for formatting the data stream with these extended attributes is
 essentially the same.

CICS Application Programming Primer
3270 attribute bytes

© Copyright IBM Corp. 1984, 1991
2.2.3 - 1

 2.2.4 3270 input data stream

 Now that we've described what output to a 3278 looks like, what does the
 input look like? There are several different possible formats, and the
 one used depends both on the type of read command used and on certain
 other circumstances. Figure 7 shows our sign-on screen after John Jones
 has been busy at it.

 +--+
 ¦ ¦
 ¦ CESN - CICS/VS SIGNON - ENTER USERID AND PASSWORD ¦
 ¦ USERID: JONESJO ¦
 ¦ PASSWORD: OPNSESME_ ¦
 ¦ ¦
 +--+

 Figure 7. The sign-on screen in use

 We're showing you the password here but, remember, you wouldn't normally
 see it because it's held in a nondisplay field.

 What is of interest to us is what CICS gets when it reads a screen like
 this one. Figure 8 shows us what comes back after the user presses the
 ENTER key.

 +--+
 ¦ ¦
 ¦ __ ¦
 ¦ Control information affecting the whole transmission, such ¦
 ¦ as which key caused the input to be sent (ENTER, PFx), ¦
 ¦ where the cursor is, and so on ¦
 ¦ __ ¦
 ¦ First Encoded screen address showing where ¦
 ¦ field: the field was on the screen (here Row 4, ¦
 ¦ Column 11). ¦
 ¦ __ ¦
 ¦ Contents of the field: "JONESJO" ¦
 ¦ (7 characters, not the full 20 allowed). ¦
 ¦ __ ¦
 ¦ Second Encoded screen address showing where ¦
 ¦ field: the field was on the screen (here Row 6, ¦
 ¦ Column 15). ¦
 ¦ __ ¦
 ¦ Contents of the field: "OPNSESME" ¦
 ¦ __ ¦
 ¦ ¦
 +--+
 Figure 8. A 3270 input data stream

 Points to note about this transmission are:

 � Practically nothing came back. All the fields used for titles an
 labels have been omitted from the transmission, and even the "new
 password" field, which the user did not fill in, is missing. This is
 because only changed fields are transmitted back on the kind of read
 used here by CICS. The reason the hardware works this way is, again,
 to minimize the length of the transmission.

 How does the 3278 know what to send? When a user keys into a field, a
 bit in the attribute byte is turned on. This is the modified data
 tag, or "MDT." You can also turn this bit on when you write to the
 screen, so that the field is returned whether or not the user keys
 into it. This provides a handy method for storing information on the

CICS Application Programming Primer
3270 input data stream

© Copyright IBM Corp. 1984, 1991
2.2.4 - 1

 screen between transactions, but we'll explain that later, in
 "Communication between transactions" in topic 2.9.1.

 � The second thing to note is that only the significant portion of
 changed field is sent; the unused portion on the right-hand side of
 the field is not. This is because the 3270 does not send empty
 positions on the screen. Empty positions are called nulls, and have a
 character encoding of hexadecimal (hex) 00 (LOW-VALUE in COBOL). If
 you ask for the screen to be erased (as you'll often want to) before
 your data stream is written to it, the screen is set to nulls. Nulls
 aren't the same as spaces, even though they look the same on the
 screen. Spaces have a hexadecimal representation of 40 and are
 transmitted; thus the space between JOHN and JONES comes in, but the
 unused part of the field after JONES does not. This is, once again,
 to minimize the length of the data transmission.

 The result of all these length-reduction measures is another data stream
 of extremely variable format. This time the position of the data coming
 back depends not only on the content of what was sent but also on what the
 operator did, presenting a considerable challenge to decode.

 We mentioned earlier that there were several different formats used for
 transmission to the processor, depending on the type of read used and
 other circumstances.

 One of the other circumstances is the type of key the operator used to
 send the input. A number of keys cause the 3278 to send input to the
 processor at the earliest opportunity (these keys include CLEAR and ENTER,
 the program access (PA) keys, and the program function (PF) keys). Of
 these, the CLEAR key and the PA keys send only the identity of the key
 itself, without sending any of the data on the screen. If the operator
 uses one of these so-called "short-read" keys, the data stream shown in
 Figure 8 ends right after the initial control information. This causes a
 special situation which you'll have to deal with in any program that tries
 to read a formatted screen.

CICS Application Programming Primer
3270 input data stream

© Copyright IBM Corp. 1984, 1991
2.2.4 - 2

 2.2.5 Unformatted 3270 data

 As well as transmitting a short data stream to the processor, the CLEAR
 key also erases the screen. The entire screen is set to null values, and
 there are no fields. You may prefer to think of the screen as just one
 big field, but it is a field without attributes. The user can key into
 this field and send it to the processor. In fact, if you think about it,
 almost every new transaction is going to start this way. The user presses
 CLEAR to erase the leftovers from the previous operation, and then keys in
 something to identify the next request and transmits it with the ENTER
 key. What does this look like coming in to the processor?

 Data that comes in from a screen that was not formatted into fields by a
 previous write is called, very logically, unformatted data. The data
 stream looks like the one in Figure 8 in topic 2.2.4 except that no
 address is provided (the data is assumed to start at the first position on
 the screen), and there is only one field. The field consists of every
 character that isn't a null--that is, every character that the user
 keyed--regardless of where it is on the screen, and in the order it
 appears on the screen).

 Unformatted data is handled in CICS with a slightly different set of
 commands from formatted data. Unformatted data is actually simpler than
 formatted data (and you can write it as well as receive it), but it isn't
 nearly as useful. So we'll only cover formatted data in this Primer, and
 point you to where you can find out how to use unformatted screens if you
 should want to.

CICS Application Programming Primer
Unformatted 3270 data

© Copyright IBM Corp. 1984, 1991
2.2.5 - 1

 2.2.6 Saved by BMS

 We said earlier that you do not have to deal directly with this data
 format in your CICS program. The feature of CICS that spares you this
 complexity is called Basic Mapping Support (BMS). BMS:

 � Allows you to deal with data in a fixed format, providing a dat
 structure for you to copy into your program in which the input fields
 (the name, password, and new password in the example we showed) are
 always in the same place and of the same (maximum) length.

 � Allows you to deal with data by name. In this instance we might hav
 called the fields where we expected input NAME, and PSWD. (We would
 do this when we first defined the screen.) Then we could refer to
 these variables by name in our program, without any concern for where
 they are on the screen.

 � Allows you to define all the constant data for the screen (titles
 field labels, and so on) separately from your program, so that you
 don't have to clutter your code with a great many statements like

 MOVE 'ENTER PERSONNEL NUMBER' TO

 � Saves you from having to know about the details of the 3270 dat
 stream.

 With these facilities, you can change the arrangement of the screen, the
 words in the titles, and so on without any changes to your program--a very
 important advantage.

 "What BMS does" in topic 3.2.1 tells you more about BMS and explains how
 to use it.

 Now, let's go on and look at what we'll have to consider when designing
 the user interface.

CICS Application Programming Primer
Saved by BMS

© Copyright IBM Corp. 1984, 1991
2.2.6 - 1

 2.3 Designing the user interface
 We know broadly what we want our application to do:

 � Display customer account records, given their account number
 � Add new account record
 � Modify existing account record
 � Delete account record
 � Print a list of the changes made to the account fil
 � Print a single copy of a customer account recor
 � Access records by name

 We also now know something about how the 3270 data stream works and how
 CICS starts transactions. So we can start thinking about how our
 application might look to the user.

 Subtopics
 2.3.1 A first approach
 2.3.2 A user-friendly approach
 2.3.3 Some interface design principles

CICS Application Programming Primer
Designing the user interface

© Copyright IBM Corp. 1984, 1991
2.3 - 1

 2.3.1 A first approach

 One approach is to review the transactions which the user wants to do, and
 think about what the user should see while performing each one.

 Subtopics
 2.3.1.1 The display transaction
 2.3.1.2 The print transaction
 2.3.1.3 The add transaction
 2.3.1.4 The modify transaction
 2.3.1.5 The delete transaction

CICS Application Programming Primer
A first approach

© Copyright IBM Corp. 1984, 1991
2.3.1 - 1

 2.3.1.1 The display transaction

 If we take the simplest one as a starting point, displaying a record in
 the file, then we need to decide:

 1. How the user enters a request.

 2. How we show the user the requested record.

 3. What to do if the user makes a mistake.

 The user need enter only a very little information to request the display
 of a record: just the transaction type (display, in this case) and
 something to identify the record to be displayed. The output, on the
 other hand, is quite extensive, consisting of all the fields in the
 account record.

 We can therefore imagine that a user wanting to display a record might
 switch on the terminal, sign-on to the system, clear the screen, and enter
 something like:

 +--+
 ¦ ¦
 ¦ DISP12345 ¦
 ¦ ¦
 +--+

 DISP here is the transaction identifier that CICS needs to decide which
 transaction the user wants to perform, and 12345 is the number of the
 account to be displayed.

 If the requested record can be found in the Account File, the application
 program should respond with a screen showing the data in the record.

 To make the screen as easy as possible to understand, we should label each
 field to show what it means. Figure 9 shows a possible screen format.

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: RECORD DISPLAY ¦
 ¦ ACCOUNT NO: 12345 SURNAME: MOUNCE ¦
 ¦ FIRST: DAVID MI: C TITLE: ¦
 ¦ TELEPHONE: 7512483960 ADDRESS: 79 WISTFUL VISTA ¦
 ¦ PLEASANTVILLE, NY 10549 ¦
 ¦ OTHERS WHO MAY CHARGE: ¦
 ¦ CHRISTA MOUNCE (WIFE) PETER MOUNCE (SON) ¦
 ¦ NO. CARDS ISSUED: 2 DATE ISSUED: 04 01 89 REASON: L ¦
 ¦ CARD CODE: C APPROVED BY: CES SPECIAL CODES: A J ¦
 ¦ ACCOUNT STATUS: N CHARGE LIMIT: 2000.00 ¦
 ¦ HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT ¦
 ¦ 0.00 04/25/89 101.37 05/05/89 101.37 ¦
 ¦ 0.00 05/25/89 42.50 06/08/89 42.50 ¦
 ¦ 3210.97 06/25/89 321.97 ¦
 ¦ PRESS "CLEAR" OR "ENTER" WHEN FINISHED ¦
 ¦ ¦
 +--+

 Figure 9. An example of a display screen format

 If the request wasn't correct, we have to write back some sort of message
 explaining exactly what's wrong. Very little can go wrong here with the
 display transaction (unlike the add transaction, where all sorts of things
 can happen!). The user can make a format error in specifying the record,

CICS Application Programming Primer
The display transaction

© Copyright IBM Corp. 1984, 1991
2.3.1.1 - 1

 or name a non-existent record and thus try to display something that isn't
 there.

 Note that CICS has to deal with errors in the transaction type. If the
 user gets the DISP part wrong, CICS won't know what transaction to start
 up, and will so inform the user. So, if the user enters something other
 than DISP, but something that happens to match a valid transaction
 identifier, CICS will happily start up the "wrong" transaction. Beware!
 (The "cure" the user generally tries in such a situation is usually to
 press the CLEAR key and try again.)

 Other, "higher level" error possibilities include:

 � The user may not be authorized for acces

 � The account file may not be onlin

 � There may be a physical error while accessing a record from the file

 However, in the absence of these "high level" problems, as we said, very
 little can go wrong here.

CICS Application Programming Primer
The display transaction

© Copyright IBM Corp. 1984, 1991
2.3.1.1 - 2

 2.3.1.2 The print transaction

 We can make the print transaction very similar to the display transaction.
 The only functional difference will be that the output will go to a
 printer instead of the screen. If we intend to use more than one printer,
 we'll probably want to let the user tell us which one, which means another
 item of input (and, we must admit, more opportunity for error).

CICS Application Programming Primer
The print transaction

© Copyright IBM Corp. 1984, 1991
2.3.1.2 - 1

 2.3.1.3 The add transaction

 When it comes to adding a new record to the file--an add transaction--we
 must still think about the same three things as for the display
 transaction. Unlike the display situation, however, the input required is
 very extensive. We could let users enter the request and the particulars
 for an add at the same time, but this would make things rather difficult
 for them, besides being a poor use of the 3270. With that many fields to
 enter, we definitely want users to enter the input into formatted screens,
 with labels to show where and how to enter the data.

 So users will have to make two entries to do an add. The first one will
 display the formatted screen, and the second will contain the input for
 the addition. The output screen for the first stage of the add will be
 the skeleton into which the user is to enter the data. No output is
 actually required from the second stage of the add, but good human factors
 suggest that we consider telling the user that the transaction was
 successful.

 Also, unlike the display transaction, there are plenty of opportunities
 for errors on an add. The record to be added might already exist on the
 file, or some of the fields entered might be missing or incorrect or
 inconsistent with each other. We don't want to make our users start all
 over again if they get one or two items wrong, so we'll have to think of a
 way for them to fix any bad fields without rekeying the good ones.

 Maybe an add transaction could go like this. The user would enter
 something like ADD 12345 and the transaction would do one of two things.
 Either it would respond with an error message that the record to be added
 already existed (far better to tell the user now, instead of after all the
 data for the record has been keyed in). Or it would display a skeleton
 screen for the user to fill in.

 Now, users entering records are probably reading from a form of some sort
 while they do the data entry. It's very helpful to them if you make the
 screen look as much like their original data form as possible. Figure 10
 shows the sort of skeleton screen that we'd want. (The underscores simply
 show where the input fields are; they wouldn't appear on the screen.)

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: NEW RECORD ¦
 ¦ ACCOUNT NO: ______ SURNAME: ___________________ ¦
 ¦ FIRST: _____________ MI: _ TITLE:_____ ¦
 ¦ TELEPHONE: __________ ADDRESS: ________________________ ¦
 ¦ ________________________ ¦
 ¦ OTHERS WHO MAY CHARGE: ¦
 ¦ ________________________________ __________________________________ ¦
 ¦ ________________________________ __________________________________ ¦
 ¦ NO. CARDS ISSUED: _ DATE ISSUED: __/__/__ REASON: _ ¦
 ¦ CARD CODE: _ APPROVED BY: ___ SPECIAL CODES: _ _ _ ¦
 ¦ _______________________ (message area) _______________________________ ¦
 ¦ ¦
 +--+

 Figure 10. A corresponding skeleton screen

 Notice there are some bits and pieces on the form that we haven't
 transferred to the data entry screen. For example, the addresses of the
 other account users, the meanings of the four "reason" codes, the format
 of the date, and the customer's signature.

 While it's generally true that a well-designed form will translate

CICS Application Programming Primer
The add transaction

© Copyright IBM Corp. 1984, 1991
2.3.1.3 - 1

 painlessly into a data entry screen, never miss the chance to re-think
 aspects of the data entry task from the terminal operator's point of view.
 Also remember that if the operator's receiving information during a
 telephone conversation, the original form may be largely irrelevant to
 that particular situation.

 After the user had filled in this screen, the transaction would check the
 input fields for reasonable and consistent values. If one or more of them
 were unacceptable, it could redisplay the user's input with the fields in
 error highlighted, and with a message added that the highlighted fields
 were either wrong or inconsistent with each other. The user could then
 fix the errors, and this input-edit-redisplay cycle could be repeated
 until the input was right. Then the transaction would send a message to
 the terminal saying that the record had been added to the file.

 Strictly speaking, the transaction needn't confirm that the addition was
 successful. However, many users don't entirely trust computers, and a
 wary user might develop the habit of doing a display transaction after
 each add, just to make sure the add worked. This would waste a lot of
 user and computer time, and can easily be avoided by having a confirmation
 message.

CICS Application Programming Primer
The add transaction

© Copyright IBM Corp. 1984, 1991
2.3.1.3 - 2

 2.3.1.4 The modify transaction

 A modification could be almost like an add, except that instead of a
 skeleton screen being displayed, the information in the record would be
 displayed instead. The user would show the changes by typing over the old
 information on the screen.

CICS Application Programming Primer
The modify transaction

© Copyright IBM Corp. 1984, 1991
2.3.1.4 - 1

 2.3.1.5 The delete transaction

 The deletion could be a very simple matter. We could let the user enter
 DELE12345, and then simply delete account number 12345, and send back a
 message that we had done so. It turns out that this isn't a good idea,
 however. Users could easily make a mistake in keying the account number,
 and would be very distressed when they realized that they had removed the
 wrong record and had to put it back again. Worse than that, they might
 not notice at all!

 Generally, when you're about to perform something as potentially
 irrevocable as a deletion in an online system, it's a good idea to confirm
 that the user really wants to go ahead with it.

 Therefore, we probably want a deletion to be handled like a special case
 of a modification. Users will enter the account number to be deleted;
 we'll show them the record they are about to delete; and instead of keying
 in changes as they would for a modification, they will enter something to
 confirm that the record on the screen is really the one they want to
 delete. Only then will we delete it and say that we've done so.

 Of course, we must give the user some way to say "no, I didn't mean it,"
 cancel the transaction, and escape the deletion. Come to think of it,
 we'll have to do that in all these update transactions. If a user starts
 to add a record and then can't complete the entry for some reason (perhaps
 some required information is missing), then the user must be able to
 cancel the request without corrupting the files with a half-completed
 addition, modification, or whatever.

CICS Application Programming Primer
The delete transaction

© Copyright IBM Corp. 1984, 1991
2.3.1.5 - 1

 2.3.2 A user-friendly approach

 Subtopics
 2.3.2.1 Using a menu screen
 2.3.2.2 Printing the logs
 2.3.2.3 Name inquiry

CICS Application Programming Primer
A user-friendly approach

© Copyright IBM Corp. 1984, 1991
2.3.2 - 1

 2.3.2.1 Using a menu screen

 Before going on to the other transactions, let's look at an alternative
 approach to this growing list of transaction identifiers. It's called the
 menu technique, and it's very popular as a user interface.

 It works like this. For any application, users need to remember just one
 transaction identifier. When they want to do any transaction in that
 application (in our case, add, display, print, and so on) they enter just
 the one transaction identifier. In response, the screen displays a menu
 of things that the users can do in this application. The menu has
 formatted fields for the data items that are required on input. It also
 shows instructions in case users don't remember exactly what to do.

 The chief advantage of this technique is that the user has to remember
 almost nothing, a big help to the "infrequent" users of our example
 application.

 There are some other benefits as well: you can diagnose errors in the
 request input in the same convenient way that we described for the "add"
 screen, so that the user gets a good explanation of the problem and has to
 do a minimum of rekeying to correct the errors. Also, when you complete a
 transaction such as an add, you can combine your confirmation message with
 this menu screen. This way the user knows that the previous entry was
 successful, and is all ready to enter the next request.

 The menu for this application might look like the one here (Figure 11).
 Again, the input fields are underscored in the figure to show their
 position, but the underscores wouldn't appear on the actual screen:

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: MENU ¦
 ¦ TO SEARCH BY NAME, ENTER: ONLY SURNAME ¦
 ¦ REQUIRED. EITHER ¦
 ¦ SURNAME: _________ FIRST NAME: _________ MAY BE PARTIAL. ¦
 ¦ ________________________ ¦
 ¦ FOR INDIVIDUAL RECORDS, ENTER: ¦
 ¦ ________________________________ __________________________________ ¦
 ¦ ________________________________ __________________________________ ¦
 ¦ NO. CARDS ISSUED: _ DATE ISSUED: __/__/__ REASON: _ ¦
 ¦ CARD CODE: _ APPROVED BY: ___ SPECIAL CODES: _ _ _ ¦
 ¦ _______________________ (message area) _______________________________ ¦
 ¦ ¦
 +--+

 Figure 11. An example of a menu screen

 Almost the only disadvantage to this menu technique is that a user has to
 go through one extra screen for the first transaction of a session, and
 one extra step (clearing the screen in this case) to escape. The only
 time this is a serious matter is when users need to mix transactions from
 different applications constantly. This isn't the case in our example,
 and we do have infrequent users to think about, so we'll use the menu
 approach.

 So here's how, say, a modify transaction will work:

 1. The user keys in the four-character transaction identifier to get
 started.

 2. The menu screen is displayed in response.

CICS Application Programming Primer
Using a menu screen

© Copyright IBM Corp. 1984, 1991
2.3.2.1 - 1

 3. The user enters M for the request type, keys in an account number, and
 presses ENTER.

 If there's a problem, the user will see the same screen with the fields in
 error highlighted and a message at the bottom saying what's wrong.

 Otherwise, the response will be a display of the record to be modified,
 ready for the user to change. The user will change the fields to be
 modified, and then press ENTER to send the screen back. If there are
 errors in the changes, the transaction will send back the input with the
 errors highlighted and a message if necessary. If (when) the user gets it
 right, the transaction will update the file, and send back the menu
 screen, with a message at the bottom saying that the modification just
 requested was completed successfully. The user will then enter the next
 request, or clear the screen to quit our application.

CICS Application Programming Primer
Using a menu screen

© Copyright IBM Corp. 1984, 1991
2.3.2.1 - 2

 2.3.2.2 Printing the logs

 We've not yet dealt with the printing of the two logs: the log of changes
 to the account file, and the log of errors. The logs will be printed only
 occasionally, perhaps once a day, and this will be done by a supervisor in
 the Accounting Department. We probably don't want to include these
 options in our menu, because it will only confuse the other users, who may
 not even know what a log is. So we'll have separate transaction
 identifiers for these two functions.

 The main output in either case, of course, will be a printed log. We
 should also send a confirmation to the input terminal, however, in case
 the printer isn't in the immediate area or is busy with another task at
 the time of the request.

CICS Application Programming Primer
Printing the logs

© Copyright IBM Corp. 1984, 1991
2.3.2.2 - 1

 2.3.2.3 Name inquiry

 Finally, we must think a little more about the name inquiry transaction.

 In view of the structure of the rest of the application, it would be very
 convenient if we could just fetch a single record from the file on the
 basis of a name instead of an account number. Unfortunately, this won't
 usually be possible, because names are a notorious problem. They cannot
 be depended on to be unique, they vary enormously in format and length,
 and spelling is a great challenge. That, in fact, is exactly why we
 assign an account number to each customer and use it as the file key,
 instead of using the one identifier that is most natural (and that the
 customer is least likely to forget).

 It isn't usually possible to guarantee a unique response to a request that
 specifies a name, because we can't depend on that name being unique (and
 the user may even have misspelled it). What we want to do, then, is to
 give the users who need this facility some way to get to the right account
 number by entering a name. Suppose that our response to such a request is
 a list of customer names, in alphabetical order, starting with the first
 one that matches the requested name, up to the capacity of the screen.

 In fact, since the user may be uncertain of the spelling, we'll treat the
 name entered as a generic or partial name, and show all the names that
 start in the way specified. So, if the user enters "Adams," the response
 will begin with the Adamses and continue with the Adamsons. But if the
 name were one that had several common spellings, such as "Reid" (also
 often "Reade"), then the user could enter just "Re" and get both forms.
 We can treat the first name similarly. The user could enter the first
 name (or initial) if known, to limit the number of responses, but we won't
 make this mandatory.

 In our example, remember, we learned from our user survey that the
 Customer Service people are going to be the heaviest users. Most of their
 transactions will be inquiries by name. Moreover, most of these inquiries
 involve just three items besides the name: DFHP1CDU inquires by name, it
 makes sense to display these items along with the name and account number.
 That way these users will usually see all the data they want on the first
 response, without having to go on to ask for the detailed display of one
 particular record.

 Sometimes, of course, they will want to see the whole record, and the
 Accounting Department will want this facility as well. So we must provide
 some easy way to get from the summary display to the other transactions
 that the users might want to do, once they have the account number.
 Suppose we use the remaining lines on the menu screen to display the
 results of a name search when one is requested. After a search, the users
 can then enter the request directly, without changing screens, on the menu
 to which they are accustomed. Figure 12 shows how the expanded menu
 screen might look:

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: MENU ¦
 ¦ TO SEARCH BY NAME, ENTER: ONLY SURNAME ¦
 ¦ REQUIRED. EITHER ¦
 ¦ SURNAME: ________ FIRST NAME: _________ MAY BE PARTIAL. ¦
 ¦ FOR INDIVIDUAL RECORDS, ENTER: ¦
 ¦ PRINTER REQUIRED ¦
 ¦ REQUEST TYPE: _ ACCOUNT: ___ PRINTER: ___ ONLY FOR PRINT ¦
 ¦ REQUESTS ¦
 ¦ REQUEST TYPES: D = DISPLAY A = ADD X = DELETE ¦
 ¦ P = PRINT M = MODIFY ¦
 ¦ THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT ¦

CICS Application Programming Primer
Name inquiry

© Copyright IBM Corp. 1984, 1991
2.3.2.3 - 1

 ¦ ACCT SURNAME FIRST MI TTL ADDRESS ST LIMIT ¦
 ¦ _____ ____________ _______ _ _____ _________________ __ _______ ¦
 ¦ _____ ____________ _______ _ _____ _________________ __ _______ ¦
 ¦ _____ ____________ _______ _ _____ _________________ __ _______ ¦
 ¦ _____ ____________ _______ _ _____ _________________ __ _______ ¦
 ¦ _____ ____________ _______ _ _____ _________________ __ _______ ¦
 ¦ _____ ____________ _______ _ _____ _________________ __ _______ ¦
 ¦ ____________________________(msg area)__________________________ ¦
 ¦ ¦
 +--+

 Figure 12. An expanded menu screen

CICS Application Programming Primer
Name inquiry

© Copyright IBM Corp. 1984, 1991
2.3.2.3 - 2

 2.3.3 Some interface design principles

 In reaching our current idea of how our user interface will look, we've
 based most of our decisions on what is easiest for the user. Indeed, that
 should be the cardinal rule. Human time has become so much more valuable
 than computer time that it is worth a lot of effort and coding to make the
 user as productive as possible.

 It isn't always obvious how to do this to best advantage, and what is best
 for one user may not be best for another. This applies especially to
 occasional users of an application. In fact, the style of conversation
 between users and computers has changed significantly as people have
 learned more about the "human factors" aspect of online systems.

 The advent of sophisticated terminals, like those in the 3270 system, has
 also had an enormous effect in this area, as it became practical to deal
 with users in ways not possible with earlier devices. The whole idea of
 using a menu, for example, came much later than the original release of
 CICS, and depends explicitly on the characteristics of the 3270 for
 success.

 Though there are no hard-and-fast rules, and though there can be many good
 designs for the user interface, there are five guidelines that we can
 safely propose:

 +--- 1. Make screens easy to understand ---------------------------------+
 ¦ ¦
 ¦ � Keep to the rules used in forms design: try to give the screen ¦
 ¦ layout an uncluttered appearance and, to the extent possible, a ¦
 ¦ columnar structure, so that the reader's eye moves easily from one ¦
 ¦ item to the next and doesn't have to jump long distances. ¦
 ¦ ¦
 ¦ � Put a title on the screen, so that users know where they are in ¦
 ¦ the current transaction. ¦
 ¦ ¦
 ¦ � Be consistent from screen to screen. If you put the title on the ¦
 ¦ top center of one screen, put it there on all the screens. If you ¦
 ¦ put the messages at the bottom of one screen, put them there on ¦
 ¦ all the screens. ¦
 ¦ ¦
 ¦ � If the user will be reading from a form for input to a screen, ¦
 ¦ make the screen look as much as possible like the form. Put the ¦
 ¦ fields in the same order, and use the same placement as far as ¦
 ¦ possible. ¦
 ¦ ¦
 ¦ � Likewise, if a screen is used to display information that the user ¦
 ¦ is accustomed to seeing printed on a form, make the screen ¦
 ¦ resemble the form as nearly as possible. ¦
 ¦ ¦
 +--+

 +--- 2. Cut down what the user must remember ----------------------------+
 ¦ ¦
 ¦ � If there are more than a few fields to be filled in, use a ¦
 ¦ formatted screen with labels and instructions. ¦
 ¦ ¦
 ¦ � Where possible, put instructions on the screen to show what the ¦
 ¦ user can do next. ¦
 ¦ ¦
 ¦ � Use consistent procedures, both within and across application ¦
 ¦ programs. For example, if the CLEAR key is used to cancel in one ¦
 ¦ transaction, use it that way in all transactions. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Some interface design principles

© Copyright IBM Corp. 1984, 1991
2.3.3 - 1

 +--- 3. Protect users from themselves -----------------------------------+
 ¦ ¦
 ¦ If a user is about to do something that's hard to undo, such as a file ¦
 ¦ deletion, get the user to confirm that it's the right deletion. ¦
 ¦ ¦
 +--+

 +--- 4. Save the user's time and patience -------------------------------+
 ¦ ¦
 ¦ � Minimize the number of characters that have to be keyed. ¦
 ¦ ¦
 ¦ � Make the user change screens as little as possible. ¦
 ¦ ¦
 ¦ � Make it as easy as possible to correct errors. There are many ¦
 ¦ ways to do this. In our application, for example, we stick to the ¦
 ¦ following: ¦
 ¦ ¦
 ¦ - We redisplay the user's input in the same screen as the one in ¦
 ¦ which it was entered. ¦
 ¦ ¦
 ¦ - We diagnose all the errors at once (to the extent possible). ¦
 ¦ ¦
 ¦ - We highlight fields that have errors. ¦
 ¦ ¦
 ¦ - If the user misses any required fields, we fill them with ¦
 ¦ asterisks and highlight them. ¦
 ¦ ¦
 ¦ - We place the cursor under the start of the first field in ¦
 ¦ error. ¦
 ¦ ¦
 ¦ - We display an explanatory message if the error may not be ¦
 ¦ obvious. ¦
 ¦ ¦
 ¦ � Place the cursor where the user will probably want to key first. ¦
 ¦ ¦
 ¦ � Minimize the number of times that the users have to skip over ¦
 ¦ fields. ¦
 ¦ ¦
 +--+

 +--- 5. Reassure users --+
 ¦ ¦
 ¦ � Give a positive confirmation that a requested action has been done ¦
 ¦ successfully. ¦
 ¦ ¦
 ¦ � When you know a particular response time is likely to be longer ¦
 ¦ than usual (because of the operation being performed) consider ¦
 ¦ sending an intermediate display. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Some interface design principles

© Copyright IBM Corp. 1984, 1991
2.3.3 - 2

 2.4 Coming to grips with the data
 Having decided what you want to do, you can now determine what data will
 be required to do it and how to organize that data.

 Subtopics
 2.4.1 The account file
 2.4.2 Recovery requirements

CICS Application Programming Primer
Coming to grips with the data

© Copyright IBM Corp. 1984, 1991
2.4 - 1

 2.4.1 The account file

 In this application, we know that we need access to all the fields that
 make up records in the existing account file, because this is the data
 that we intend to maintain and display. We need direct access to these
 records by account number for several of the required operations (display,
 add, and so on). Happily, this file exists in a form directly usable by
 CICS (a VSAM key-sequenced data set (KSDS), with the exact key that we
 need). This isn't pure luck or coincidence. The account number is the
 natural key for this file, and a VSAM key-sequenced data set is a good
 choice for a mixture of sequential and direct processing, such as probably
 occurs now in the batch programs that already use this file. Figure 13
 shows the record format for this file.

 +--+
 ¦ ¦
 ¦ Field Length Occurs Total ¦
 ¦ Account Number (Key) 5 1 5 ¦
 ¦ Surname 18 1 18 ¦
 ¦ First Name 12 1 12 ¦
 ¦ Middle initial 1 1 1 ¦
 ¦ Title (Jr, Sr, and so on) 4 1 4 ¦
 ¦ Telephone number 10 1 10 ¦
 ¦ Address line 24 3 72 ¦
 ¦ Other charge name 32 4 128 ¦
 ¦ Cards issued 1 1 1 ¦
 ¦ Date issued 6 1 6 ¦
 ¦ Reason issued 1 1 1 ¦
 ¦ Card code 1 1 1 ¦
 ¦ Approver (initials) 3 1 3 ¦
 ¦ Special codes 1 3 3 ¦
 ¦ Account status 2 1 2 ¦
 ¦ Charge limit 8 1 8 ¦
 ¦ Payment history: (36) 3 108 ¦
 ¦ -Balance 8 ¦
 ¦ -Bill date 6 ¦
 ¦ -Bill amount 8 ¦
 ¦ -Date paid 6 ¦
 ¦ -Amount paid 8 ¦
 ¦ ¦
 +--+
 Figure 13. Account file record format

 Subtopics
 2.4.1.1 Access by name

CICS Application Programming Primer
The account file

© Copyright IBM Corp. 1984, 1991
2.4.1 - 1

 2.4.1.1 Access by name

 As well as accessing the account file records by account number, we need
 to access them by a second key--the customer name. There are many ways of
 achieving an alternative path into a file. For example, VSAM provides a
 facility called an alternate index, which can be used in CICS. CICS
 supports the DATABASE 2 relational product, and IMS/DB DL/I. These
 systems provide powerful cross-indexing facilities, and they have many
 other features that reduce the coding required in user applications. They
 support complex data structures, provide increased function, and simplify
 the maintenance of file integrity. If you have data that you need to
 access by more than just a few different key fields, or if you have data
 that does not arrange itself into neat units like the account records in
 this application, you should evaluate seriously the use of a database
 system.

 However, all these database products are beyond the scope of this Primer.
 For our application we'll use a simple technique, frequently used and
 quite appropriate to an application of this size. We'll build a small
 separate file, in name sequence order, to use as an index into the account
 file.

 This is probably going to offer us better performance for sequential
 browsing of customer names than, say, an alternate VSAM index.

 Subtopics
 2.4.1.1.1 Choosing the file organization
 2.4.1.1.2 Name index records
 2.4.1.1.3 Choosing a control interval (CI) size

CICS Application Programming Primer
Access by name

© Copyright IBM Corp. 1984, 1991
2.4.1.1 - 1

 2.4.1.1.1 Choosing the file organization

 For the initial read, we'll need direct access to the index file when we
 process an inquiry by name. After that, we'll read sequentially until we
 have enough names to fill one screen. So VSAM key-sequenced
 organization (2) is appropriate to this file as well as to the account
 file. ("Other file services" in topic 3.4.4 lists the other file access
 methods supported in CICS. VSAM KSDS is widely applicable, however, and
 is the only one covered in this book.)

 (2) File organization, of course, isn't generally chosen by an
 application programmer, but by the application designer.

CICS Application Programming Primer
Choosing the file organization

© Copyright IBM Corp. 1984, 1991
2.4.1.1.1 - 1

 2.4.1.1.2 Name index records

 What do we need in our name index records? We need the surname, clearly,
 and the first name. We need the account number, for access to the main
 file and to ensure a unique key. This is all we really need. However,
 since we're maintaining our own index file, we've the option of putting
 more than pointers into it. Let's see what else we can usefully put into
 the name index file.

 In our application, we could produce the display shown in Figure 12 in
 topic 2.3.2.3 in two different ways:

 � Read the name from the name index record and, for each name, use th
 account number in the index to access the account file. This can get
 us the address, the account status, and the charge limit.

 � Repeat the address, the account status, and the charge limit field
 within the name index file. We'd then only need to access the name
 index file (and not the account file) to get these items.

 In the second case, the index records would be a little larger as a
 result, and we'd have two copies of some fields (a potential source of
 trouble in large file-based systems). On the other hand, we could avoid
 one read for every name in the response to a name inquiry.

 This latter point turns out to be important. In VSAM, one read brings a
 whole control interval (CI) of data into virtual storage. CICS passes to
 your program only the particular logical record that your program asked
 for, but on your next program read, CICS can return your record directly,
 without another VSAM read, if the record is in the same control interval.
 When you are reading in key sequence, the probability of the record being
 in the same control interval is very high. In our example, we'll be going
 through the name index records in name order, and the records are small,
 so we can expect there to be only one physical read for several logical
 reads.

 However, if we needed to access the account file once for each of these
 reads, there would probably be a physical read to that file for every
 logical read to the index file, as we wouldn't be reading the account file
 in sequential (customer number) order.

 In deciding which method to choose, we must weigh the cost of the many
 additional reads against file space and against the possible complications
 of keeping the two files synchronized. Changes that will have to be made
 to the batch billing and payment system need to be evaluated as well. If
 searching by name were an infrequent request, or if any of these other
 factors had a large cost associated, we might choose the first method.
 However, for our example we'll assume that this isn't so and, since
 inquiry by name will be by far the most frequent transaction, we'll
 include these fields in the index.

 -- Fig 'INXFMT' unknown -- shows a reasonable layout for the name index
 record:

 +--+
 ¦ ¦
 ¦ Field Length (in bytes) ¦
 ¦ Surname 12 These two fields form ¦
 ¦ Account Number 5 the key. ¦
 ¦ First name 7 ¦
 ¦ Middle Initial 1 ¦
 ¦ Title 4 ¦
 ¦ Street Address 24 ¦
 ¦ Account Status 2 ¦
 ¦ Charge Limit 8 ¦

CICS Application Programming Primer
Name index records

© Copyright IBM Corp. 1984, 1991
2.4.1.1.2 - 1

 ¦ ¦
 +--+
 Figure 14. The name index record format

 The first two fields together form the key. It will be unique because
 account numbers are unique, and it will allow us to search by surname,
 using a partial key of variable length. Notice that we chose field
 lengths for the surname and first name that were shorter than the
 corresponding fields in the account file. We also included only one line
 of the address. This keeps our index records reasonably small and lets us
 display a name index record on a single line of the screen. We can afford
 to do this because our purpose is to help the user in recognizing the
 right name, not to account for all the possibilities that can occur in
 names and addresses.

CICS Application Programming Primer
Name index records

© Copyright IBM Corp. 1984, 1991
2.4.1.1.2 - 2

 2.4.1.1.3 Choosing a control interval (CI) size

 One of the issues in designing VSAM files is choosing control interval
 sizes for the data and the index. The choice depends partly on the fit of
 records into the CI, but it also depends on whether the data will be
 accessed directly or sequentially. In our example, the account file will
 always be accessed directly. That is, there is little or no chance of
 reading account records in account number order. So a large data control
 interval will hurt rather than help us. It will mean larger buffers (more
 demand for virtual storage), and more data will be transferred than can be
 used (the larger the interval, the more records transferred in one read).
 Therefore a small data CI is appropriate for this file.

 In contrast, the name index file will be read sequentially more often than
 directly. The first read in a name inquiry will of course, be random, but
 after that we'll tend to read several records in sequence. Therefore it
 will be helpful to get many logical records in a single physical read, and
 so we'll choose a large data CI size for the name index.

 All these physical reads are done by CICS using VSAM. Your program is
 concerned only with logical reads, which are completely unaffected by CI
 size. So you don't have to think about these factors. However, a good
 application designer will try to take all such factors into consideration.
 While learning, you can certainly put off the choice of the "best" CI size
 until your program is working. After all, you can change the CI sizes of
 your files without changing your application code or your CICS tables, and
 you may wish to do this later if trying to tune your system.

CICS Application Programming Primer
Choosing a control interval (CI) size

© Copyright IBM Corp. 1984, 1991
2.4.1.1.3 - 1

 2.4.2 Recovery requirements

 One of the first requirements for the example application was to maintain
 the integrity of the account file. We'll see in "Pseudoconversational or
 not?" in topic 2.7 how CICS prevents the loss of integrity associated with
 partially completed transactions, and we'll use this feature to keep the
 two files (the name index file and the account file) properly
 synchronized. However, we must also protect the account file from
 disasters such as a head crash.

 In a batch environment, you can keep an extra copy of an important file,
 or keep enough information to recreate it (by keeping back versions, for
 instance, with the inputs to the update runs). In an online environment,
 this isn't so easily done. You cannot copy the file after every update.
 Nor can you afford to lose all the updates since the last time you copied
 the file. These updates were entered at terminals by many different
 users, who may not remember what stage they had reached when you last
 secured the file, who may not have ready access to the input documents any
 longer, and who will certainly be very cross if they have to rekey a large
 number of transactions.

 CICS solves this problem by using a variation on the batch technique. If
 you have a file that must be protected, you ask CICS to journal the
 updates. CICS then keeps a copy of every change made to the file on a
 tape or disk. It logs these changes on the system log, which is journal
 number one. If you lose a file, you go back to the most recent copy of it
 and recreate it from that. Then you run a program that applies the
 changes recorded on all the journals created since that copy was made.

 In our example application, the account file is clearly a file that must
 be protected in this way. In contrast, the index file does not require
 these precautions. We do have to protect its integrity from partially
 completed transactions, just as we do the account file. However, we can
 always recreate the index file from the account file with a very simple
 batch program (the CICS tape includes the source code of a program called
 ACCTINDX to do this--see Appendix A, "Getting the application into your
 CICS system" in topic A.0) so it isn't necessary to journal the changes to
 it, nor even to make periodic backup copies.

CICS Application Programming Primer
Recovery requirements

© Copyright IBM Corp. 1984, 1991
2.4.2 - 1

 2.5 Refining the transaction design
 We've now looked at several principles that we need to bear in mind when
 working on application programs for online transactions. Next, let's have
 a closer look at what we have to do to accomplish the functions that make
 up our example. Some people just write out, in English, the transaction
 flow. Others prefer flowcharts. You'll find both in this topic.

 Now that we've decided to give the user a "menu" screen, we'll start by
 displaying this menu and analyzing the request entered on it. After that
 we'll describe the requirements according to the type of request (add,
 display, and so on).

 Subtopics
 2.5.1 Request analysis
 2.5.2 Add processing
 2.5.3 Modify processing
 2.5.4 Delete processing
 2.5.5 Display processing
 2.5.6 Print processing
 2.5.7 Name inquiry processing
 2.5.8 Printing the change log
 2.5.9 Printing the error log
 2.5.10 Summary

CICS Application Programming Primer
Refining the transaction design

© Copyright IBM Corp. 1984, 1991
2.5 - 1

 2.5.1 Request analysis

 1. Display the menu screen, (as shown in Figure 11 in topic 2.3.2.1)

 2. Wait for the user to enter a request

 3. Analyze the request, which may be:

 a. To leave the application entirely

 b. To add, modify, delete, display, or print a record

 c. To search on a name

 d. None of the above.

 4. Process according to the type of request.

 � In case a above, simply return control to CICS.

 � In cases b and c, process as described later.

 � If the request cannot be deciphered (case d), send an error
 message to the user. Then go back to step 2 to wait for the user
 to correct the input. (When it arrives, repeat the processing from
 step 3 above.)

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 6 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 15. Request analysis

CICS Application Programming Primer
Request analysis

© Copyright IBM Corp. 1984, 1991
2.5.1 - 1

 2.5.2 Add processing

 1. Check the customer account number that was entered along with the
 request. It must be present, and:

 a. Numeric

 b. In the proper range (we'll assume the Accounting Department
 restricts numbers to the range from 10 000 to 79 999)

 c. Not already used (that is, not already in the file).

 If any of these conditions isn't met, send a message to the user
 saying what is wrong. Then go back to step 2 of "Request analysis" in
 topic 2.5.1 to wait for the corrected input. When it arrives,
 processing will resume at step 3 of that process, so that the user has
 a full range of choices at this point. That is, the user can correct
 the add request, change to a different type of request, or quit the
 application entirely.

 2. If the account number is acceptable, send a skeleton screen (see
 Figure 10 in topic 2.3.1.3) back to the terminal so that the user can
 fill in the fields for the new record.

 3. Wait for the user to enter the data (or to signal a desire to quit by
 using the CLEAR key).

 4. See whether the user wants to continue this operation. (He or she
 might have had trouble entering this particular record or had a change
 of mind.) If the user doesn't want to go on, display the menu screen
 again with a message like "previous request cancelled" and go to step
 2 of "Request Analysis" to wait for the next request to come in.

 5. Otherwise, check the fields read from the filled-in data entry screen
 for reasonableness and consistency. If there are errors, send a
 message back to the terminal saying what the errors are, and go back
 to step 3 to wait for the next input.

 6. If no errors are detected in the input, update the files:

 a. Write an image of the new record to the change log.

 b. Build a new account record using the information from the input
 screen, and add this record to the file.

 c. Build the corresponding name index record and add this to the name
 index file.

 7. Redisplay the menu screen, with a message to say what has just been
 done, and resume at step 2 of "Request Analysis."

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 7 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 16. Add processing

CICS Application Programming Primer
Add processing

© Copyright IBM Corp. 1984, 1991
2.5.2 - 1

 2.5.3 Modify processing

 1. Check the account number that is entered along with the request. It
 must be present, and:

 a. Numeric
 b. In the proper range (10 000 to 79 999)
 c. Already on file.

 Just as in the add processing, if any of these conditions isn't met,
 send a message to the user saying what is wrong, and then go to step 2
 of "Request analysis" in topic 2.5.1 to await corrected (new) input.

 2. Build a display of the current contents of the record from the
 information on file, and send it to the user's screen.

 3. Wait for the user to enter the changes (or to indicate, with the CLEAR
 key, a desire to abandon the transaction).

 4. If the user doesn't want to continue, send a fresh menu screen with a
 message acknowledging the cancellation and then go to step 2 of
 "Request Analysis" to wait for the next request.

 5. Build a new version of the record by applying the changes entered on
 the screen to the old version of the record.

 6. Check that the old record hasn't been updated in the meantime.

 7. Check all items in the new record for reasonableness and consistency
 with each other. If there are errors, send the input screen back to
 the terminal with all the errors noted. Also, if there are no
 differences between the new record and the old one, send a message
 noting this (the user may have made an error and should be notified).
 Treat this situation just like an error in a data item. Return to
 step 3 to await corrected input.

 8. If there are no errors in the input, update the files:

 a. Write a record of the changes (that is, images of the old and new
 records, plus an indication of the changed areas) to the change
 log.

 b. Replace the old record in the file with the new version.

 c. If the changes affected the corresponding index record, replace
 that record, too, with a revised version.

 9. Redisplay the menu screen, with a message to say what has just been
 done, and resume at step 2 of "Request Analysis."

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 8 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 17. Modify processing

CICS Application Programming Primer
Modify processing

© Copyright IBM Corp. 1984, 1991
2.5.3 - 1

 2.5.4 Delete processing

 1. Check the account number entered with the request; the requirements
 and the error processing are the same as for "Modify processing" in
 topic 2.5.3.

 2. Build a display of the contents of the record from the information in
 the account file and send this to the terminal.

 3. Wait for the user to confirm or cancel the delete request.

 4. See if the user has decided to cancel the delete request. If so,
 proceed as in step 4 of "Add processing" in topic 2.5.2.

 5. If the user has not cancelled, see whether he or she has confirmed the
 delete request. If not, send a message asking the user either to
 confirm or cancel, and go back to step 3.

 6. If the delete request is confirmed, update the files:

 a. Write an image of the deleted record to the change log.

 b. Delete the record from the account file.

 c. Delete the corresponding name index record from that file.

 7. Redisplay the menu screen, with a message to say what has just been
 done, and go back to step 2 of "Request analysis" in topic 2.5.1 to
 wait for the next request.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 9 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 18. Delete processing

CICS Application Programming Primer
Delete processing

© Copyright IBM Corp. 1984, 1991
2.5.4 - 1

 2.5.5 Display processing

 1. Check the account number entered with the request; the requirements
 and the error processing are the same as for "Modify processing" in
 topic 2.5.3.

 2. Build a display of the contents of the record from the information in
 the account file, and send it to the screen.

 3. Wait for the next input from the terminal (indicating that the user
 has finished looking at the display), and then go back to step 1 of
 "Request analysis" in topic 2.5.1.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 10 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 19. Display processing

CICS Application Programming Primer
Display processing

© Copyright IBM Corp. 1984, 1991
2.5.5 - 1

 2.5.6 Print processing

 1. Check the account number entered with the request; the requirements
 are the same as for a "modify" request. Also check the name of the
 printer entered with the request. It must be present and must
 correspond to the name of a real printer known to CICS. If either
 input item is in error, send an appropriate message to the terminal
 and return to step 2 of "Request analysis" in topic 2.5.1 to await
 corrected input.

 2. Build a display image of the contents of the record from the
 information in the account file, (printers understand the same data
 streams that displays do).

 3. Send this image to the indicated printer.

 4. Send a message to the terminal, saying that the print request has been
 processed; then go back to step 2 of "Request analysis" in topic 2.5.1
 to await the next request.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 11 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 20. Print processing

CICS Application Programming Primer
Print processing

© Copyright IBM Corp. 1984, 1991
2.5.6 - 1

 2.5.7 Name inquiry processing

 1. Check the name search input:

 � The surname must be present and alphabetic.
 � The first name must be alphabetic, if present.

 If either condition isn't met, send an error message to the terminal
 and go back to step 2 of "Request analysis" in topic 2.5.1 to wait for
 corrected input or another request.

 2. If the names are correct, find the first index file record that has a
 surname that matches the (full or partial) surname specified in the
 input, or which is just higher in the alphabet than the input surname.

 3. Build the search output part of the display, one line at a time.

 a. Read the next record in the index file.

 b. See if this record meets the input criteria for the given name.
 If it does, build an output line from it.

 Repeat this step (building one line at a time, remember) until the
 surname read from the file is higher in the alphabet than any that
 would match the input surname, or the end of the file is reached, or
 all the output lines have been used.

 4. Send the completed output to the screen.

 5. Wait for the user's next request.

 6. If the next input shows that the user wants to continue the search, go
 back to step 2, using as a starting point the last record read in
 producing the previous display.

 7. If the user doesn't want to continue, go to step 3 of "Request
 analysis" in topic 2.5.1 to find out what he or she wants to do
 instead.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 12 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 21. Name inquiry processing

CICS Application Programming Primer
Name inquiry processing

© Copyright IBM Corp. 1984, 1991
2.5.7 - 1

 2.5.8 Printing the change log

 1. Read the first (next) record from the log.

 2. Write the information read to the log printer.

 3. Repeat steps 1 and 2 until there are no more records on the log.

 4. Delete the log records once they have been printed.

 You'll find more information about both this change log and the error log
 in "Program ACCT03: requests for printing" in topic 2.10.4.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 13 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 22. Printing the change log

CICS Application Programming Primer
Printing the change log

© Copyright IBM Corp. 1984, 1991
2.5.8 - 1

 2.5.9 Printing the error log

 1. Read the first (next) record from the log.

 2. Write the information read to the log printer.

 3. Repeat steps 1 and 2 until there are no more records on the log.

 4. Delete the log records once they have been printed.

 You'll find more information about both this error log and the change log
 in "Program ACCT03: requests for printing" in topic 2.10.4.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 14 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 23. Printing the error log

CICS Application Programming Primer
Printing the error log

© Copyright IBM Corp. 1984, 1991
2.5.9 - 1

 2.5.10 Summary

 We've now seen the requirements for the various functions our users can
 perform at (or, in the case of printing, from) their terminals.

 The next thing we need to do is to consider how to break up these
 functions into CICS transactions, and what factors affect program design
 in a CICS environment.

CICS Application Programming Primer
Summary

© Copyright IBM Corp. 1984, 1991
2.5.10 - 1

 2.6 Programming for a CICS environment
 The overall design goals in an online environment are the same as those in
 a batch environment: to provide as much service (do as much useful work)
 as possible while using as little resource as possible.

 Deciding what services to provide is, as we noted in "Defining the
 problem" in topic 2.1.1, the first step in the design. It takes a little
 experience and experimentation in online programming to know what
 additional services you can provide at reasonable cost, beyond simply
 replacing batch services with equivalent online services.

 In our example, for instance, we decided initially to replace the function
 of the old printed account listing with the ability to display individual
 records on the screen. Originally, we had no plans to allow users to
 print individual records, even though it seemed an obvious feature to
 provide, once a user pointed out how useful it would be. This kind of
 interaction with potential users is invaluable in arriving at a design
 that is good from the user's point of view. It should be repeated often
 in the design cycle, as your insight into the application and the
 programming requirements develops.

 Subtopics
 2.6.1 Resources

CICS Application Programming Primer
Programming for a CICS environment

© Copyright IBM Corp. 1984, 1991
2.6 - 1

 2.6.1 Resources

 After deciding what to do, what resources do we have to conserve while
 providing this function? Some of them are the traditional ones that are
 common to both batch programming and online programming:

 � Processor storag
 � Processor tim
 � Auxiliary storage space and transmission capacity to it

 Others are new, and require some new considerations in design. They are:

 � User time and good humo
 � One-user-at-a-time resources, such as terminals, file records
 scratch-pad areas, and so on
 � Line transmission capacity

 Let's take these individually and develop some guidelines for designing
 and programming CICS applications from them. Remember, there's bound to
 be conflict from time to time when trying to save one resource at the
 "cost" of another. The appropriate compromises will vary from one program
 to the next.

 Subtopics
 2.6.1.1 "Traditional" resources
 2.6.1.2 Resources specific to working online

CICS Application Programming Primer
Resources

© Copyright IBM Corp. 1984, 1991
2.6.1 - 1

 2.6.1.1 "Traditional" resources

 First, the resources common to both batch and online programming.

 Subtopics
 2.6.1.1.1 Processor storage
 2.6.1.1.2 Processor time
 2.6.1.1.3 Auxiliary storage

CICS Application Programming Primer
"Traditional" resources

© Copyright IBM Corp. 1984, 1991
2.6.1.1 - 1

 2.6.1.1.1 Processor storage

 Your applications use up processor storage in two ways. First, there are
 the CICS control blocks associated with any transaction being processed,
 and second, there is the program, or programs, being executed to
 accomplish the transaction. The programs, in turn, take up space both for
 executable code and for working storage areas. In an online system, the
 storage needs for these purposes constantly come and go. They exist only
 for at most the duration of a transaction, and so in assessing storage
 needs, we have to consider not only how much, but for how long. The
 trade-off between space and time is complex, but at a minimum we can say:

 +--- Processor storage guidelines (1) -----------------------------------+
 ¦ ¦
 ¦ Keep programs short. ¦
 ¦ ¦
 ¦ Keep WORKING STORAGE short. ¦
 ¦ ¦
 ¦ Keep programs short in duration of use. ¦
 ¦ ¦
 +--+

 How transactions use storage over time is taken up again in
 "Pseudoconversational or not?" in topic 2.7.

 We should also note that CICS is a virtual storage system, and the good
 coding practices (whether COBOL or otherwise) observed in batch
 programming for a virtual storage environment apply equally well to CICS.
 These include:

 +--- Processor storage guidelines (2) -----------------------------------+
 ¦ ¦
 ¦ Keep GOTOs to a minimum. ¦
 ¦ ¦
 ¦ Place subroutines near the code that PERFORMs or otherwise calls them. ¦
 ¦ ¦
 ¦ Avoid long searches for data. ¦
 ¦ ¦
 +--+

 Some remarks about PERFORM: Having mentioned subroutines, let's stay with
 them for a few moments. COBOL programmers learning CICS often ask about
 the pros and cons of using PERFORMs in CICS.

 First of all, using PERFORM to execute a COBOL subroutine is very much
 more efficient than the CICS overheads associated with linking to, or
 transferring control to, another program. However, repeating the
 subroutine in each of your COBOL application programs is going to cost you
 more storage. That is, if you're using PERFORM for repeated code, you're
 trading space against (possible) paging.

 Like earlier COBOL compilers, the VS COBOL II compiler allows a COBOL
 program to use CALLs to external routines, but now the called routines can
 issue CICS commands. This avoids the CICS overheads of transferring
 control between programs, but it does mean link-editing the routines with
 every calling program.

 We've some more to say in the next part of the Primer (in "The COBOL CALL
 statement" in topic 3.6.2.4).

 Secondly, the matter also arises in COBOL loop situations. You see, COBOL
 doesn't let you put the PERFORM which controls the loop physically
 adjacent to the actual code of the loop, unless you cheat and use a GOTO
 rather unnaturally. PERFORMs are OK for loops, but always keep the code
 you PERFORM as near as you can to the controlling PERFORM statement, to

CICS Application Programming Primer
Processor storage

© Copyright IBM Corp. 1984, 1991
2.6.1.1.1 - 1

 minimize the risk of the two things being in separate pages of storage.

 Finally, the question of a PERFORM also crops up with regard to code that
 isn't a true "subroutine" in the old-fashioned sense, and code which the
 programmer never really considered breaking off as a separate
 (sub)routine.

 This kind of PERFORM comes from some of the structured programming rules,
 where you PERFORM blocks of code (often physically distant in the program,
 with attendant paging implications) for reasons of neatness, readability,
 maintainability, and so on. The response time impact of flipping through
 a lot of pages is of course much more critical in a real-time environment
 than in batch, because you have to compete with all those other terminal
 users instead of just a few other jobs.

 +--- Our "PERFORM" guidelines ---+
 ¦ ¦
 ¦ Use PERFORMs to help structure your code (but watch out for increased ¦
 ¦ paging). ¦
 ¦ ¦
 ¦ Keep PERFORMed code as close as possible to the PERFORM statement. ¦
 ¦ ¦
 ¦ Use PERFORM for long code, or code used in a great many places. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Processor storage

© Copyright IBM Corp. 1984, 1991
2.6.1.1.1 - 2

 2.6.1.1.2 Processor time

 In general, we need to conserve processor time in CICS in the same way as
 in a batch program. The major factor is exactly the same: calls for
 operating system services take much longer, relatively speaking, than
 straight application code. This is true whether you are coding in CICS,
 where a call takes the form of a CICS command, or in batch COBOL, where a
 call is implicit in your input-output statements (OPEN, READ, WRITE, and
 so on). So, avoiding unnecessary commands in a CICS design will reduce
 processor time much more than fine tuning your COBOL code, just as
 avoiding a single input/output operation in a regular program will make up
 for many MOVEs and GOTOs.

 It is never desirable to do long calculations (matrix inversion and such)
 in an online program. This is because any online program is sharing the
 processor with many other programs (or occurrences of the same program)
 servicing users who each think they have the full attention of the
 "computer." Fortunately, such long calculations are rarely needed in
 online programs.

 The highest cost of CICS programs is incurred by maintenance. Since
 structured code is easier to maintain, it may well be worth incurring
 higher paging rates because of PERFORMs. For example, one section that
 performs input/output to a file, rather than having 20 copies of the same
 code is much easier to modify if the file organization changes.

 +--- Processor time guidelines --+
 ¦ ¦
 ¦ Avoid unnecessary CICS commands. ¦
 ¦ ¦
 ¦ Avoid excessively long calculations. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Processor time

© Copyright IBM Corp. 1984, 1991
2.6.1.1.2 - 1

 2.6.1.1.3 Auxiliary storage

 Disk space and transfer capacity are optimized in an online system in the
 same way as in a batch system. What differs is the following. In a batch
 system, the system programmer arranges data sets on disk according to what
 jobs might run concurrently. In an online system, however, the system
 programmer arranges data sets according to what transactions might execute
 concurrently. The same techniques are used for tuning: statistics on
 device and channel utilization in combination with knowledge of the
 applications.

CICS Application Programming Primer
Auxiliary storage

© Copyright IBM Corp. 1984, 1991
2.6.1.1.3 - 1

 2.6.1.2 Resources specific to working online

 This brings us to the new considerations.

 Subtopics
 2.6.1.2.1 User time and good humor
 2.6.1.2.2 One-user-at-a-time resources
 2.6.1.2.3 Line transmission capacity

CICS Application Programming Primer
Resources specific to working online

© Copyright IBM Corp. 1984, 1991
2.6.1.2 - 1

 2.6.1.2.1 User time and good humor

 We've already seen (in "Some interface design principles" in topic 2.3.3)
 how user time and aggravation can be minimized. You'll find our
 guidelines there.

CICS Application Programming Primer
User time and good humor

© Copyright IBM Corp. 1984, 1991
2.6.1.2.1 - 1

 2.6.1.2.2 One-user-at-a-time resources

 The next candidates for conservation are a whole class of resources that
 can be used by only one user (one transaction) at a time. A file record
 is a perfect example of this type of resource. As we've noted several
 times, we do not want two transactions updating the same record at the
 same time. CICS provides the enqueue mechanisms to prevent conflicts
 between transactions over such resources. What you have to remember in
 designing a transaction is that when one user has access to such a
 resource, everyone else who wants it will have to wait. Therefore:

 +--- Exclusive-use resource guideline -----------------------------------+
 ¦ ¦
 ¦ Minimize the duration of transactions that require exclusive use of ¦
 ¦ resources. ¦
 ¦ ¦
 +--+

 We'll say some more about these resources in later topics.

CICS Application Programming Primer
One-user-at-a-time resources

© Copyright IBM Corp. 1984, 1991
2.6.1.2.2 - 1

 2.6.1.2.3 Line transmission capacity

 The last new element on our list is line transmission capacity. In an
 online system with terminals located a long way from the processor, the
 signals between them are generally (although not invariably) carried over
 the public voice telephone network. Compared to most of the elements of a
 computing system, telephone lines are very slow indeed. Transmission
 time, especially over a congested line, may be a major component of the
 total response time. Therefore:

 +--- Line transmission guideline --+
 ¦ ¦
 ¦ Avoid sending unnecessary data to and from screens. ¦
 ¦ ¦
 +--+

 For the most part, CICS does this for you automatically, using the 3270
 hardware features explained in "3270 terminals" in topic 2.2. Sometimes,
 however, you can help as well. For example, if you were writing a data
 entry application program in which the operator repeatedly filled in the
 same screen, you would not need to rewrite the constant information on the
 screen (the titles and field labels) after the first display. It would be
 well worth your while to add a little extra program logic, to distinguish
 between the screen for the first entry and that for subsequent entries,
 and thereby reduce line traffic by not resending data that is already on
 the screen.

CICS Application Programming Primer
Line transmission capacity

© Copyright IBM Corp. 1984, 1991
2.6.1.2.3 - 1

 2.7 Pseudoconversational or not?
 Now that we've established guidelines for design, let's return to the
 problem of defining the transactions that make up the example application.
 In "Refining the transaction design" in topic 2.5, we described the
 processing required for the various transaction types that the user sees:
 add, modify, display, and so on. If we were to define our CICS
 transactions along these functional lines, we can foresee several
 problems:

 � There is much repetitive code, which suggests that we should at leas
 use common programs for some of the transactions, if not combine some
 transactions.

 � Every transaction involves a wait for the user to enter data, and th
 update transactions contain two such waits. This means that these
 transactions will be running for a relatively long time, which is a
 violation of the guideline to keep program duration short.

 � The modify and delete transactions will be holding on to
 one-user-at-a-time resource during one of the waits, contradicting the
 guideline to minimize the duration of transactions that use such
 resources.

 Let's dodge the first problem for a moment, and look at the other two,
 which bring up an important issue in CICS design.

 Take, for example, the modify transaction. If programmed as outlined
 earlier, the sequence of major events would be as shown here in Figure 24:

 +--+
 ¦ ¦
 ¦ Operations ¦
 ¦ 1. Display menu screen. ¦
 ¦ 2. Wait for response. ¦
 ¦ 3. Receive menu screen (which is presumed to contain a correct ¦
 ¦ modify request). ¦
 ¦ 4. Read the subject record from the account file. ¦
 ¦ 5. Display the record in formatted form. ¦
 ¦ 6. Wait for the user to enter changes. ¦
 ¦ 7. Receive the changes. ¦
 ¦ 8. Write changes to the printed log. ¦
 ¦ 9. Update the account and index files accordingly. ¦
 ¦ 10. Redisplay the menu screen. ¦
 ¦ ¦
 +--+
 Figure 24. The conversational sequence of the modify transaction

 Subtopics
 2.7.1 Conversational transactions
 2.7.2 Pseudoconversational transactions
 2.7.3 Maintaining file integrity

CICS Application Programming Primer
Pseudoconversational or not?

© Copyright IBM Corp. 1984, 1991
2.7 - 1

 2.7.1 Conversational transactions

 In CICS, this is called a conversational transaction, because the
 program(s) being executed enter into a conversation with the user. A
 nonconversational transaction, by contrast, processes one input (which was
 read by CICS and which was what started the task), responds, and ends
 (disappears). It never pauses to read a second input from the terminal,
 so there is no real conversation.

 There are important differences between the two types: for example,
 duration. Because the time required for a response from a terminal user
 is much longer than the time required for the computer to process the
 input, conversational transactions last that much longer than
 nonconversational transactions. This means, in turn, that conversational
 transactions use storage and other resources much more heavily than
 nonconversational ones, because they hold on to their resources for so
 long. Whenever one of these resources is critical, you have a compelling
 reason for using nonconversational transactions if possible.

CICS Application Programming Primer
Conversational transactions

© Copyright IBM Corp. 1984, 1991
2.7.1 - 1

 2.7.2 Pseudoconversational transactions

 This led to a technique in CICS called pseudoconversational processing, in
 which a series of nonconversational transactions gives the appearance (to
 the user) of a single conversational transaction. In the case we were
 just looking at, the pseudoconversational structure is shown in Figure 25:

 +--+
 ¦ ¦
 ¦ Transaction Operations ¦
 ¦ First 1. Display menu screen. ¦
 ¦ Second 3. Receive menu screen. ¦
 ¦ 4. Read the subject record from the account file. ¦
 ¦ 5. Display the record in formatted form. ¦
 ¦ Third 7. Receive the changes. ¦
 ¦ 8. Write changes to the printed log. ¦
 ¦ 9. Update the account and index files accordingly. ¦
 ¦ 10. Redisplay the menu screen. ¦
 ¦ ¦
 +--+
 Figure 25. The pseudoconversational structure

 Notice that steps 2 and 6 of the conversational version have disappeared.
 No transaction exists during these waits for input; CICS takes care of
 reading the input when the user gets around to sending it.

 A word about "transactions". If we seem to be using the word in two
 different ways, well ... yes we are. We defined the word earlier in the
 way that the user sees a transaction: a single item of business, such as
 an add, a display operation, and so on. This is a correct use of the
 word. However, what the user sees as a transaction isn't necessarily what
 CICS sees.

 To CICS, a transaction is a task that begins (usually on request from a
 terminal), exists for long enough to do the required work, and then
 disappears. It may last milliseconds or it may last hours. As we've just
 explained, you can use either one or several CICS transactions to do what
 the user regards as a single transaction. We're still deciding what we
 should define to CICS as transactions to accomplish the user transactions
 in our example problem. At the moment, the pseudoconversational approach
 seems promising; it will use shorter programs, which are desirable in
 CICS, and although there may be more of them, the programming does not
 look any more complicated.

 There is a second important issue in this choice of techniques, however.
 It brings up a characteristic of the conversational transaction that can
 be both a significant advantage and a serious disadvantage. This
 characteristic is the length of the transaction, and it affects both file
 integrity and the ownership of resources that other transactions may need.

CICS Application Programming Primer
Pseudoconversational transactions

© Copyright IBM Corp. 1984, 1991
2.7.2 - 1

 2.7.3 Maintaining file integrity

 We said earlier (in "Recovery requirements" in topic 2.4.2) that CICS has
 facilities for maintaining the integrity of files and other resources that
 are important enough to protect. CICS does two things:

 1. It makes sure that file modifications for a transaction are either
 executed completely or not at all. For example, if a transaction has
 to update two related files and, after updating the first, finds it
 cannot do the second, then CICS undoes (backs out) the first update.
 We'll make use of this feature in our example application. If the
 application changes the account file and then discovers that someone
 has closed the index file by the time it goes to make the
 corresponding change there, CICS automatically removes the update to
 the account file.

 2. It makes sure that protected resources (records in protected files,
 protected scratchpad areas, and so on) are updated by only one
 transaction at a time, and that any transaction updating such a
 resource finishes completely before a second transaction gets access
 to that resource.

 Let's reexamine the conversational or pseudoconversational issue in view
 of this new information. We've been insisting that we do not want two
 users to update the same record at once. If we use a single
 conversational transaction for our modify, CICS will prevent this from
 happening (that's good). When we issue the read (for update) in this
 sequence, CICS will prevent any other task from writing this record. If a
 second task comes along and requests the same record, for update, CICS
 will suspend that task until the first one is finished.

 However, the program being executed in this second transaction won't be
 notified that it is going to get suspended, and so the user won't know why
 the request is taking longer than usual (that's bad).

 To be honest, it's a little more complicated than that...

 Both CICS and VSAM get involved in protecting the file from concurrent
 updates. VSAM's mechanism is based on the control interval, and has this
 effect: while one transaction is updating a record, no other transaction
 can update any record in the same control interval. Furthermore, other
 transactions may not even be able to read a record in the same CI as the
 one being updated. (3) Moreover, the wait experienced by the second
 transaction may be substantial; it will last as long as it takes the first
 user to enter the modifications on the screen. If he or she should leave
 the terminal before finishing, or go through a lot of error cycles getting
 the input correct, the wait may be very long indeed.

 (3) Whether a second transaction can read a record in the same
 control interval depends on whether the file is using local
 shared resource (LSR) or nonshared resource (NSR). For NSR
 only, a second task can perform a simple read (but not a
 read-for-update) on a record in the same control interval.

 Subtopics
 2.7.3.1 Double updating...
 2.7.3.2 ...and how to avoid it

CICS Application Programming Primer
Maintaining file integrity

© Copyright IBM Corp. 1984, 1991
2.7.3 - 1

 2.7.3.1 Double updating...

 If we choose the pseudoconversational technique, this waiting problem
 disappears, but so does the protection. In this case, the second
 transaction in the pseudoconversational sequence could issue the same
 "read" as in the conversational form. But as soon as this transaction
 ends, CICS releases the record, long before the update process is
 complete. A second user can come along and request the same record. Then
 you have two users making changes on the basis of the same "old" copy of
 the record. Changes made by the first user will go into the file, but
 then changes from the second user will go into the file right over the
 first user's, and the first set of changes will be lost (that's very bad).

 Now clearly, in our application, we can separate off the first part of our
 user transaction (the first transaction in the pseudoconversational
 sequence) because we're not yet dealing with any protected resources.
 Nothing is done in this step that a later failure would have to undo. But
 what about the rest of it? We're caught between two unfortunate
 alternatives. If we use a conversational approach, there will be greater
 use of storage and, worse, occasional unexplained waits. If we use a
 pseudoconversational approach, we may compromise file integrity.

 There's no easy way to get around the unexplained waits of the
 conversational approach, but there are ways to get around the integrity
 problem, with a little extra coding.

 For example, suppose that as soon as a user asked to update an account
 number, we made a note in a scratchpad area. (CICS provides scratchpad
 facilities for keeping track of things between transactions.) We can
 leave the number there until the update is entirely completed and then
 erase it. In our example, this means that we write a scratchpad record in
 the second transaction, and erase it in the third. Before we start any
 update request, we can check to see if the number is in use. If it is, we
 can tell the user this and ask him or her to resubmit the request later.
 Furthermore, we can let the user display the record even if it is in use.

 This isn't quite all, however. Because CICS ensures that transactions are
 either done completely or not at all, we have to make sure that all our
 protected resources get updated in what CICS regards as a single
 transaction to ensure file integrity. In the conversational case, this
 takes care of itself, as there is only one transaction. In the
 pseudoconversational case, the files are all updated in the third
 transaction (good), but the scratchpad is updated in two different
 transactions (not so good). If the second transaction is completed
 successfully, but something happens to the third, the scratchpad record is
 written but not erased. Our files would be okay, which is the main thing,
 but we'd be unable to update the record involved until we could somehow
 reset the scratchpad.

CICS Application Programming Primer
Double updating...

© Copyright IBM Corp. 1984, 1991
2.7.3.1 - 1

 2.7.3.2 ...and how to avoid it

 We'll get around this by designing a slightly more sophisticated
 scratchpad mechanism. We can, for instance, put a limit on the time for
 which a transaction can "own" an account number. Then an accident in the
 third transaction or thoughtless behavior by a user (going to lunch in the
 middle of a modification) will not cause an account record to become
 unusable for more than a short period of time. All this involves extra
 coding and complications, however. Is it worth it?

 In this example, it really isn't obvious whether conversational or
 pseudoconversational is the better choice (after the menu phase, in which
 being pseudoconversational is definitely better). The choice really comes
 down to how many of these transactions we might expect at once. If there
 were a great many, the storage burden of a conversational transaction
 alone might cause us to choose pseudoconversational. If there were only a
 modest number, then we would have to consider how often a user would
 experience the unexplained wait if we chose conversational. If nearly all
 the activity consisted of displaying and printing, with only an occasional
 update, then the conversational approach might still be the correct
 choice.

 We'll assume here, however, that there are enough transactions with enough
 updates to justify choosing the pseudoconversational approach, and we'll
 program our own mechanism for avoiding concurrent updates.

 Double updating is one of those problems you can tackle in a variety of
 ways. We've chosen a scratchpad (partly because it's a reasonable method,
 and partly because it's going to allow us to show you how to use a CICS
 facility called temporary storage). A drawback of our scratchpad,
 however, is that all future (and, as yet, unknown) transactions that
 update the account file will have to refer to this scratchpad. We'll
 mention an alternative solution in "The need for scratchpad and queuing
 facilities" in topic 3.5.1.

CICS Application Programming Primer
...and how to avoid it

© Copyright IBM Corp. 1984, 1991
2.7.3.2 - 1

 2.8 Arranging the processing
 We've now reached the point where we can start to arrange the processing
 described earlier into transactions and programs. Remember, a CICS
 transaction uses one or several programs to do its work. When a
 transaction is invoked, CICS looks in its list of installed transaction
 definitions to find out which program should be executed first to
 accomplish that transaction. However, that program may invoke any number
 of other programs. Several transactions may use the same program or
 programs, in the same order or in a different order.

 Subtopics
 2.8.1 Defining the transactions
 2.8.2 Defining the programs
 2.8.3 Summary

CICS Application Programming Primer
Arranging the processing

© Copyright IBM Corp. 1984, 1991
2.8 - 1

 2.8.1 Defining the transactions

 Let's first look at the transactions we'll need, and then we can assess
 what programs we'll require. Because we're going to use the
 pseudoconversational approach, we need transactions that take an input
 from the screen, process it, and write back either the final result or an
 intermediate result ready for the next transaction.

 Subtopics
 2.8.1.1 Displaying the menu
 2.8.1.2 Analyzing the user's response
 2.8.1.3 Adding a new record
 2.8.1.4 Handling updates and other requests

CICS Application Programming Primer
Defining the transactions

© Copyright IBM Corp. 1984, 1991
2.8.1 - 1

 2.8.1.1 Displaying the menu

 The first thing we need is a very simple transaction that will accept a
 request to get started: that is, one that will put the menu up on the
 screen.

CICS Application Programming Primer
Displaying the menu

© Copyright IBM Corp. 1984, 1991
2.8.1.1 - 1

 2.8.1.2 Analyzing the user's response

 Once the menu is on the screen, we need a transaction to analyze and
 respond to the input request that comes in after the user has completed
 fields on the menu screen. Going back to "Refining the transaction
 design" in topic 2.5, we see that this transaction must do the following
 steps:

 Steps 3-4 of "Request analysis" in topic 2.5.1

 Steps 1-2 of "Add processing" in topic 2.5.2

 Steps 1-2 of "Modify processing" in topic 2.5.3

 Steps 1-2 of "Delete processing" in topic 2.5.4

 Steps 1-2 of "Display processing" in topic 2.5.5

 Steps 1-4 of "Name inquiry processing" in topic 2.5.7

 All steps of "Print processing" in topic 2.5.6.

 Remember, we don't have to do all this processing with a single program.
 We'll decide on the programs we need later, after we've laid out the
 transactions.

CICS Application Programming Primer
Analyzing the user's response

© Copyright IBM Corp. 1984, 1991
2.8.1.2 - 1

 2.8.1.3 Adding a new record

 The next transaction that we need is one to do steps 4 through 7 of "Add
 processing" in topic 2.5.2. We'll use this transaction if the request in
 the previous transaction was to add an account record.

CICS Application Programming Primer
Adding a new record

© Copyright IBM Corp. 1984, 1991
2.8.1.3 - 1

 2.8.1.4 Handling updates and other requests

 Similarly, we'll need four other transactions to do, respectively, the
 steps shown below:

 Steps 4-8 of "Modify processing" in topic 2.5.3

 Steps 4-7 of "Delete processing" in topic 2.5.4

 Steps 6-7 of "Name inquiry processing" in topic 2.5.7

 All steps of "Printing the change log" in topic 2.5.8.

 We might use a separate transaction for each of these requirements, or we
 might combine some of them. We won't make that decision for the time
 being.

CICS Application Programming Primer
Handling updates and other requests

© Copyright IBM Corp. 1984, 1991
2.8.1.4 - 1

 2.8.2 Defining the programs

 Let's look at the programs that we're going to need in support of these
 transactions, because that will help us to decide how many different
 transaction types we need.

 Subtopics
 2.8.2.1 Displaying the menu--ACCT00
 2.8.2.2 Analyzing the user's response, ACCT01
 2.8.2.3 Handling updates (including additions)--ACCT02

CICS Application Programming Primer
Defining the programs

© Copyright IBM Corp. 1984, 1991
2.8.2 - 1

 2.8.2.1 Displaying the menu--ACCT00

 Let's go back to the first transaction, the one that puts up the menu
 screen, and give it a name so that we can refer to it easily. We'll need
 a four-character transaction identifier to define it to CICS anyway, so
 let's call it, say, ACCT. This is what the terminal user will key in to
 see the menu screen for this application. Now ACCT needs a program that
 will display the menu screen. This program is so simple that perhaps it
 should be combined with some other program, but for clarity we'll keep it
 separate. Let's call this program ACCT00.

CICS Application Programming Primer
Displaying the menu--ACCT00

© Copyright IBM Corp. 1984, 1991
2.8.2.1 - 1

 2.8.2.2 Analyzing the user's response, ACCT01

 The next transaction is the one that processes the menu input. Let's also
 give it a name, say, AC01. It's a good idea to use some sort of naming
 convention for both your transactions and programs. You should be able to
 tell which application they belong to just by their names. There's a
 temptation when writing your first application to use names like MENU,
 ADD, and UPDT. These turn out to be unfortunate choices when you get
 around to doing your second application, however, and so names that
 identify the application are generally better.

 ACCT is the only transaction identifier the general user will have to
 remember, so we'll start the others with AC for ease of recognition, and
 just number them from there. Similarly, the programs will start with ACCT
 and be numbered.

 But back to transactions. Let's see the processing that AC01 has to do,
 to help us visualize the programs required. Looking back at the list of
 requirements, one approach would be to write a separate program for each
 item on the list. The first program (the one that did the initial request
 analysis) would transfer control to one of the others, depending on the
 type of request. However, if we look at the content of Steps 1 and 2 of
 "Add Processing," "Display Processing," "Modify Processing," "Delete
 Processing", and "Print Processing," we find that they are very similar.
 They start with the same data and access the same file record, so we
 probably want to combine these into a single program. So we can cut down
 our original list for this transaction to:

 Steps 3-4 of "Request analysis" in topic 2.5.1

 Steps 1-2 for add, modify, delete, display, and print

 Steps 1-4 for "Name inquiry processing" in topic 2.5.7

 Steps 3-4 for "Print processing" in topic 2.5.6.

 None of these is a very long piece of code, so it will probably be most
 convenient to put them in the same program. For the moment we'll call
 this program ACCT01. However, it may turn out later that it's better to
 break out one or more of these segments of code into additional programs.
 Program and transaction structures often become clearer when you start to
 code, and you may find that you can come up with a better structure than
 your original one once you start. Don't worry if everything isn't obvious
 at first; it takes practice.

CICS Application Programming Primer
Analyzing the user's response, ACCT01

© Copyright IBM Corp. 1984, 1991
2.8.2.2 - 1

 2.8.2.3 Handling updates (including additions)--ACCT02

 For the transactions that follow transaction AC01 and finish the
 processing for adds, modifies, and so on, we again might consider a
 separate program for each type of function. Once more, however, it's
 obvious that the processing for adds, modifies and deletes is very
 similar. Most of the steps, in fact, are identical. So, let's combine
 these into a single program, and call it ACCT02. Then we can use a single
 transaction for all three processes. We could use different transactions,
 all using the same program, but it would be pointless in this case. Let's
 assign the identifier AC02 to the transaction that gets executed when the
 user has filled in an update screen (add, modify or delete).

 We still need a transaction that will do the remaining steps of "Name
 inquiry processing" in topic 2.5.7. But this code will be almost
 identical to an initial name search request, so we can probably include it
 in program ACCT01.

CICS Application Programming Primer
Handling updates (including additions)--ACCT02

© Copyright IBM Corp. 1984, 1991
2.8.2.3 - 1

 2.8.3 Summary

 To summarize, so far we've defined three transactions, and three programs
 in support of them, as shown in Figure 26:

 +--+
 ¦ ¦
 ¦ Identifier Transaction Programs Used ¦
 ¦ ACCT Displays menu. ACCT00 ¦
 ¦ AC01 Analyzes requests; ACCT01 ¦
 ¦ Processes name search, ¦
 ¦ display and print requests;* ¦
 ¦ Does first part of update ¦
 ¦ requests ¦
 ¦ AC02 Completes update requests ACCT02 ¦
 ¦ * Almost, as we'll see later ¦
 ¦ ¦
 +--+
 Figure 26. The three transactions and three programs

 The only thing left is the printing of the log. Or is it? In fact, in
 addition to printing, we haven't yet thought much about the business of
 telling the user at the terminal about any error conditions that may
 arise. So before we consider the log, we shall digress to discuss three
 considerations that will bear on our definition of transactions and
 programs.

 These are:

 � Communication between transaction

 � Error handlin

 � The relationship between transactions and terminals

 These bear directly on how we'll handle the last two application
 functions.

CICS Application Programming Primer
Summary

© Copyright IBM Corp. 1984, 1991
2.8.3 - 1

 2.9 Three remaining considerations

 Subtopics
 2.9.1 Communication between transactions
 2.9.2 Handling errors and exceptional conditions
 2.9.3 Transactions and terminals

CICS Application Programming Primer
Three remaining considerations

© Copyright IBM Corp. 1984, 1991
2.9 - 1

 2.9.1 Communication between transactions

 You may have noticed when we were explaining pseudoconversational
 processing that there seemed to be some gaps in control and communication.

 When one transaction of a pseudoconversational sequence has been
 completed, doesn't this task disappear when control goes back to CICS?
 And if so, how can we make sure that the transaction we intend to follow
 this one is actually the one that gets executed? And how will the next
 transaction know what this one was doing? When transaction AC02 is
 supposed to follow AC01, for example, doesn't AC02 need to know what kind
 of an update has been requested and which record was being updated?

 Yes, CICS does indeed effectively erase all the storage associated with a
 transaction when it ends, and it often erases the program as well.
 However, before it passes out of existence, the departing transaction is
 allowed to pass data forward to be used by the next transaction initiated
 from the same terminal, whenever that transaction arrives. It is also
 allowed to specify what that next transaction should be. You can see that
 this is a very useful--indeed, vital--facility for pseudoconversational
 programming. It's what allows us to ensure that transaction AC01 always
 follows ACCT, that AC02 follows AC01 when we're updating, and so on. It's
 called, not surprisingly, the "next transaction identifier" feature.
 We'll shorten this to "next transid."

 The main way one transaction passes data forward to the next is by using
 the COMMAREA (for communication area). The same facility is available to
 pass data between programs within a transaction. We'll see how to use it
 for both purposes in "Application programming" in topic 3.0.

 There are other facilities for storing data between transactions as well.
 One of these is a CICS facility known as Temporary Storage, which can be
 used as a sort of application scratchpad. This facility will do nicely
 for keeping track of the account numbers being updated. We'll see how to
 use it in "Application programming" in topic 3.0.

 A less obvious place to store data between transactions is the screen
 itself. You may recall from our discussion of the 3270 data stream (see
 "3270 terminals" in topic 2.2) that the modified data tag governs whether
 or not a field on the screen is transmitted back to the processor. One
 way to ensure that an item of data gets from one transaction to another,
 then, is simply to store it on the screen, with the modified data tag on
 and the field protected, so that the user cannot change it. You can even
 prevent users from seeing the data (if that might confuse them), by using
 the dark attribute.

 This method isn't appropriate to large amounts of data, of course, because
 we don't want to send much extra data over a communications link.

CICS Application Programming Primer
Communication between transactions

© Copyright IBM Corp. 1984, 1991
2.9.1 - 1

 2.9.2 Handling errors and exceptional conditions

 Before we get down to specifying our programs, we need to say a few
 preliminary words about errors and error recovery. Recovering from errors
 in online programs is a topic given a complete guidance book in the CICS
 library--the &rrgc.. For now, however, we'll just state some guidelines
 here before we start to specify our programs. (We'll return to the topic
 from the point of view of our example application in "Errors and
 exceptional conditions" in topic 3.8.)

 We can divide the errors that can occur in a CICS transaction into five
 categories:

 1. Conditions that aren't normal from CICS's point of view but that are
 expected in the program.

 There's an example in transaction AC01, when we test to be sure the
 record to be added isn't already there and get the "not found"
 response.

 Errors in this category should be handled by explicit logic in the
 program.

 2. Conditions caused by user errors and input data errors.

 We'd have an error of this kind in our example application if a user
 tried to add an account number that already existed, or used the wrong
 key to send the data on the screen.

 Errors in this category should also be handled by explicit logic in
 your program. Ideally, no errors of either of these types should be
 allowed to stop the program, or do anything else to upset the user.

 3. Conditions caused by omissions or errors in the application code.

 These may result in the immediate failure of the transaction (ABEND)
 or simply in a condition that we believed "could not happen" according
 to our program logic. In our example application, a "duplicate
 record" response in AC02, on adding a record to the account file,
 would represent this kind of error. We don't expect it, because we've
 already tested in transaction AC01 to ensure that no record with the
 same key is in the file.

 For errors in this category, you'll want to terminate your transaction
 abnormally, in case CICS doesn't do it for you first. The resulting
 dump should enable you to find out why the condition occurred, and
 we'll give you more guidance on this in the CICS/ESA Problem
 Determination Guide. One of the main goals of the debugging process
 should be to get rid of this type of error.

 4. Errors caused by mismatches between applications and CICS tables,
 generation parameters, and JCL.

 An example is when CICS responds "no such file exists" to your read or
 write request. When you are first debugging an application, these
 problems are almost invariably your fault. (This may sound harsh, but
 we're afraid it's true.) Perhaps the entry got left out of the File
 Control Table, or you spelled a name differently in the table from the
 program, or asked for the wrong set of services in selecting CICS
 modules.

 These conditions sometimes occur after the system has been put into
 use, as well. In this stage they are usually the result of changes to
 a CICS table, or an installed definition, or services parameters, or
 JCL, usually related to some other application.

CICS Application Programming Primer
Handling errors and exceptional conditions

© Copyright IBM Corp. 1984, 1991
2.9.2 - 1

 This category needs the same treatment as the third while you are
 debugging. Once the program is in actual use, however, something more
 is needed when one of these conditions arises. You must give users an
 intelligible message that they or their supervisors can relay to the
 operations staff, to help in identifying and correcting the problem.
 For example, if a machine room operator has disabled a file for some
 reason and forgotten to reopen it, you want a message that says that
 the problem is caused by a disabled file (and which file, of course).
 Moreover, you should program for these eventualities right away, as
 this part of the program will need debugging just as well as the rest.

 5. Errors related to hardware or other system conditions beyond the
 control of an application program.

 The classic example of this is an "input/output error" while accessing
 a file.

 As far as the application programs are concerned, this category needs
 the same treatment as the fourth. Systems or operations personnel
 will still have to analyze the problem and fix it. The only
 differences are that they probably didn't cause it directly, and it
 may take much more effort to put right.

 The need to produce an appropriate message when an error in one of these
 last two categories occurs (or when one in category 3 slips through the
 debugging) will mean an additional program in our example application.

 Subtopics
 2.9.2.1 A "catch-all" error program--ACCT04

CICS Application Programming Primer
Handling errors and exceptional conditions

© Copyright IBM Corp. 1984, 1991
2.9.2 - 2

 2.9.2.1 A "catch-all" error program--ACCT04

 Since there are CICS commands in every program, we'll need this message
 logic in each. Rather than repeat the code in each, we'll put it in a
 separate program (ACCT04). This will not only avoid repetition, but will
 remove a long section of rarely-used code from the mainline programs.
 (The code itself isn't long, but the error message tables are.)

CICS Application Programming Primer
A "catch-all" error program--ACCT04

© Copyright IBM Corp. 1984, 1991
2.9.2.1 - 1

 2.9.3 Transactions and terminals

 There's one additional complication to think about in defining our
 transactions for this application program. This is the relationship
 between transactions and terminals in CICS. As we explained earlier, most
 CICS transactions (tasks) are invoked when CICS receives unsolicited input
 from a terminal. On receiving such input, CICS creates a task to process
 it. Which type of task is determined from the transaction identifier at
 the start of the input or the next transid that was set by the previous
 transaction at this terminal.

 The task and the terminal that invoked it have a special relationship in
 CICS: the task essentially "owns" the terminal for its duration; it can
 write to it and read from it directly, and no other task can do so during
 this time. Conversely, the task owns only this terminal and cannot read
 from or write to any other terminal directly (another task might own that
 terminal at the time, and a sudden message from a second task might
 disrupt the owning task hopelessly).

 You may be asking at this point "how can transaction AC01 in the example
 do all the steps of print processing?" as we proposed earlier, since step
 3 of "Print processing" in topic 2.5.6 (send this image to the indicated
 printer) seems to violate this restriction. The answer is that it can't.
 The same task cannot own the display terminal from which the input was
 received and a printer terminal.

 Subtopics
 2.9.3.1 A printer program--ACCT03

CICS Application Programming Primer
Transactions and terminals

© Copyright IBM Corp. 1984, 1991
2.9.3 - 1

 2.9.3.1 A printer program--ACCT03

 What we do to get around this restriction is to have transaction AC01 do
 the other steps of the print processing and then create a second
 transaction (task), which does own the necessary printer terminal, to do
 step 3. CICS provides a command called START expressly for this purpose,
 as we'll see in "Application programming" in topic 3.0. So we must add
 another transaction to our list, namely the one that does step 3 of "Print
 processing" in topic 2.5.6. Let's call it AC03. We'll also need a
 program to go with it, albeit a very short one; this we'll call ACCT03.

 Now clearly the same problem will arise with printing the log of changes
 to the account file. The input that invokes this transaction is clearly
 not going to come from the terminal required to execute it (printers not
 being strong on input) and so again we'll need two transactions. One will
 accept the request from an input terminal and start a second, which will
 have the necessary printer at its disposal.

 Let's call this first transaction ACLG and the second AC05. (We're
 reverting to a transaction identifier that's easier to remember, because
 the supervisor will have to remember it.)

 Finally, we'll have transactions ACEL and AC06. ACEL will accept the
 input request, and will start AC06 to print the error log.

 We'll also need a program for each of these transactions. We could define
 a separate one for each, but the code required for these functions turns
 out to be so short, in fact, that we'll include it in the little program
 we defined for transaction AC03, and use a single program for four
 different functions.

 Figure 27 shows the program structure we've now arrived at. The five
 programs in support of these transactions are examined one last time in
 "Defining the programs--a final look" in topic 2.10. You can either read
 this topic to consolidate your ideas about the programs, or move straight
 on to the next part of the Primer: "Application programming" in topic 3.0.

 +--+
 ¦ ¦
 ¦ Id Transaction Programs Used ¦
 ¦ ACCT Displays menu ACCT00 ¦
 ¦ AC01 Analyzes requests; processes name ACCT01/04* ¦
 ¦ search and display requests fully; ¦
 ¦ does first part of update and ¦
 ¦ print requests ¦
 ¦ AC02 Completes update requests ACCT02/04* ¦
 ¦ AC03 Completes print requests ACCT03/04* ¦
 ¦ ACLG Invokes AC05 ACCT03/04* ¦
 ¦ AC05 Prints the log ACCT03/04* ¦
 ¦ ACEL Invokes AC06 ACCT03/04* ¦
 ¦ AC06 Prints the error log ACCT03/04* ¦
 ¦ * Note: ACCT04 is used only if an error occurs. ¦
 ¦ ¦
 +--+
 Figure 27. The six transactions and five programs

CICS Application Programming Primer
A printer program--ACCT03

© Copyright IBM Corp. 1984, 1991
2.9.3.1 - 1

 2.10 Defining the programs--a final look
 We've now defined five programs in support of our transactions. In this
 topic, we'll describe briefly what each program does. This material
 repeats that in "Refining the transaction design" in topic 2.5, but it's
 arranged somewhat differently. Feel free to move on to "Application
 programming" in topic 3.0 if you already feel comfortable with the program
 structure that we've defined.

 Subtopics
 2.10.1 Program ACCT00: menu display
 2.10.2 Program ACCT01: initial request processing
 2.10.3 Program ACCT02: update processing
 2.10.4 Program ACCT03: requests for printing
 2.10.5 Program ACCT04: error processing

CICS Application Programming Primer
Defining the programs--a final look

© Copyright IBM Corp. 1984, 1991
2.10 - 1

 2.10.1 Program ACCT00: menu display

 This program is the first one executed when transaction ACCT is entered.
 It displays the menu screen, which prompts the operator for request input,
 and then ends (it returns control to CICS). In returning, it specifies
 that transaction AC01 is to be executed when the next input is received
 from this terminal, which means that program ACCT01 will be invoked to
 process the input from the menu. The processing steps are:

 1. Display the menu on the screen

 2. Go back to CICS, setting the next transid to AC01.

CICS Application Programming Primer
Program ACCT00: menu display

© Copyright IBM Corp. 1984, 1991
2.10.1 - 1

 2.10.2 Program ACCT01: initial request processing

 This program analyzes requests that are entered through the menu screen
 (all requests except those for printing the log). It processes name
 search and record display requests completely, does update requests up to
 the point where the user has to enter more information, and does print
 requests except for the step that requires access to a printer terminal.
 It's the first program invoked when transaction AC01 is executed. The
 main steps in the program are:

 1. Find out what the user wants to do. This involves looking at the
 input, both the actual data and the attention identifier (the key used
 to send the data). The possibilities are:

 a. A request to leave the application (indicated by use of the CLEAR
 key). Here control is returned to CICS, without any next transid.

 b. A request to cancel the previous (partially completed) request and
 start again with a menu screen. This means sending a new menu
 screen and then returning control to CICS with the next transid
 set to AC01 (so that this same program will process the input from
 that menu when it arrives).

 c. A request to continue a name search that produced more matching
 records than would fit on a single screen (indicated by the user
 pressing the PA2 key to move on from the current (full) screen,
 and view more records on the next). In this event, processing
 resumes at step 5, using search control information that was saved
 in the COMMAREA when this transaction was last executed for this
 terminal.

 d. A corrected request or a completely new request.

 2. For a new request, get the input and examine the contents. The first
 decision is whether the user wants a name search or one of the other
 functions.

 3. If the user entered a name, check it for reasonableness. If there's
 an error, write the appropriate error information to the screen and
 return control to CICS. Once again, set the next transid to AC01, so
 that this same program will get invoked to process the corrected
 input.

 4. If the names are correct, build the control information we need to do
 the search, namely:

 � An index file key that is equal to or just before the input in
 alphabetical sequence, so that we know where in the file to start
 reading,

 � A limiting value for that key to tell us when we've read too far
 (alphabetically) in the file, and

 � A range of alphabetical values for the given name, so that we can
 exclude records which do not meet that criterion, if any was
 specified.

 5. Point to the first eligible record in the index file and begin reading
 sequentially. For each record read, check to see if the given name is
 within the required range. If it is, build an output line for the
 screen from the information in the record and then go on reading. If
 not, skip the record and go on reading. Continue this process until
 the surname in the file exceeds the one we're looking for, or the end
 of the file is reached, or there is no more room on the screen.

CICS Application Programming Primer
Program ACCT01: initial request processing

© Copyright IBM Corp. 1984, 1991
2.10.2 - 1

 6. When this happens, send the results back to the user. If we ran out
 of space on the screen, add a message saying that there are more names
 and that they can be seen by using the PA2 key. Then return control
 to CICS, again setting the next transid to AC01. If there are more
 matching names, save the search control information in COMMAREA as
 well.

 7. If the request was other than a name search (display, print, add,
 modify, delete, or even an error), check the request type, account
 number and printer name (if applicable) for correctness. Checking the
 account number involves reading the account file. We check to make
 sure the record isn't there for an add request but that it is there
 for all the other request types. If any of the checks fail, or if the
 request itself is unrecognizable, write the appropriate error
 information back to the screen and return to CICS, once again with the
 next transid set to AC01.

 8. If the request is an update (add, modify or delete), read the
 scratchpad to ensure that no other terminal is currently updating the
 same account number. If one is, treat the situation as an error in
 the account number and proceed as in the previous step. Otherwise,
 write the necessary scratchpad record to reserve the number for this
 terminal.

 9. Build a screen image to send to the user (or the printer). For add
 requests, this will simply be a skeleton screen, with only the account
 number filled in. For the others, however, it will involve moving the
 information from the account file record (read in step 7) into the
 detail screen. Also, the title, message area and certain other items
 in the screen need to be customized to the particular type of request.

 10. For all requests except print requests, send this screen back to the
 input terminal. Then return to CICS. The next transid for display
 requests will be ACCT, as the next thing the user will want after
 looking at the record is a fresh menu screen. For the update
 requests, the next transaction should be AC02.

 11. For print requests, ask CICS to start another task (AC03) with the
 required printer as its terminal. Pass the screen image built in step
 9 as data to that task. Then add a message to the menu currently on
 the screen saying that the printing has been scheduled, and return to
 CICS. Set the next transid to AC01, as the menu is still on the
 screen and therefore the next input should be processed by this same
 program.

CICS Application Programming Primer
Program ACCT01: initial request processing

© Copyright IBM Corp. 1984, 1991
2.10.2 - 2

 2.10.3 Program ACCT02: update processing

 ACCT02 is the first program invoked by transaction AC02. It completes
 update transactions, using the information supplied by the user on the
 detail screen. The main steps are as follows:

 1. Make sure that the user wants to complete the update request. (It is
 important in a situation like this to allow users some means of
 escape, in case they change their mind about a file update they
 started or in case they simply don't have the right information to
 complete it. This application observes the convention that using the
 CLEAR key at any time means that the user wants to cancel the current
 operation.)

 If the user wants to quit, release control of the account number, send
 a fresh menu screen with a message that the previous request has been
 canceled, and return to CICS. Set the next transid to AC01, since the
 next input to be processed will come in on that menu screen.

 2. Otherwise, get the input. If the request is to add a record, build a
 new record from the information on the screen. If the request is a
 modification, read the old record and build a new record by merging it
 with the changes entered on the screen.

 3. Check the input for correctness. For delete requests, the only
 requirement is that the user confirm the deletion with a Y in the
 "verify" field. For add and modify requests, all the fields entered
 must meet their respective edit requirements. If there are any
 errors, send the appropriate error information to the screen. Then
 return control to CICS with the next transid set to AC02, so that this
 same program processes the corrected input.

 4. Read the scratchpad to make sure that the input terminal still has
 control of the account number it is trying to update. (In other
 words, check that the scratchpad has neither been erased nor altered.
 Check back to "...and how to avoid it" in topic 2.7.3.2, if you need
 reminding about the scratchpad.)

 If not, treat the situation in the same way as an input error (see
 step 3 above), but with a different error message, of course.

 5. Otherwise, write the update information to the log of changes. For
 additions, this will be an image of the new record. For
 modifications, it will be both the old and the new versions, and for
 deletions, it will be the record being deleted.

 6. Do the actual updates. For adds, this means adding the new record to
 the account file and the corresponding index record to the index file.
 For deletes, it means removing a record from each file. For
 modifications, it means rewriting the record in the account file. The
 corresponding index record may have to be rewritten as well, depending
 on which fields in the account record changed. If the surname
 changed, for example, the old index record must be deleted and a new
 one added, because the key will have changed. (The first 12
 characters of the surname, together with the account number, form the
 key, remember.)

 7. Release ownership of the account number by erasing it from the
 scratchpad.

 8. Send a fresh menu screen to the input terminal, with a message saying
 that the requested update has been completed. Then return control to
 CICS with the next transid set to AC01.

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
2.10.3 - 1

 2.10.4 Program ACCT03: requests for printing

 ACCT03 does several jobs, all related to printed output (as opposed to
 display output). When it is invoked by transaction AC03, it completes the
 request for printed output of a record in the account file. Transaction
 AC01 processed the initial stages of the print request, checking the
 input, reading the record to be printed, and building the detail screen
 from the information in the file record. It then requested that
 transaction AC03 be started with the required printer as its terminal.
 The processing in AC03 is:

 1. Retrieve the screen image prepared and saved for this purpose in
 transaction AC01.

 2. Send this screen to the terminal owned by this transaction (the
 printer named by the user in the print request).

 3. Return control to CICS. Don't set any next transid because there's no
 need to do so for terminals that never send unsolicited input. Also,
 we don't know what transaction should be executed next at this
 printer.

 Transactions ACLG and AC05 together process a user request to print the
 log of changes to the account file. The user invokes transaction ACLG
 directly, by entering this identifier at a display terminal. When invoked
 by ACLG, the program simply requests CICS to start transaction AC05, with
 the hardcopy printer as its terminal. ACLG then sends a message to the
 user saying that the printing has been scheduled, and returns control to
 CICS. No next transid is set, because we're not controlling the flow of
 transactions at the input terminal, as we do when input requests are
 entered through the menu screen.

 Finally, transaction ACEL is a user request to print the error log. It
 does so by requesting that transaction AC06 be started when the log
 printer is available. AC06 transfers the error log data from temporary
 storage to the printer.

 We'll format our log as follows:

 � For additions, we'll print the new record, using the same format that
 we use on the screen (the "detail" map).

 � For modifications, we'll print both the old version of the record and
 the new one, again using the map format. In the message area of the
 old record we'll note the areas that were changed (name, address, and
 so on), to make it easy for the supervisor to check.

 � For deletions, we'll print the old record.

 � For all types:

 1. We'll note the contents of the screen in the title line of the
 map: NEW RECORD for additions, BEFORE CHANGE and AFTER CHANGE for
 the two images printed on a modification, and DELETION on a
 delete.

 2. We'll show the time and date of the update and the name of the
 terminal at which it was entered. We'll put this information in
 the message area (for modifications, it will be in the "new"
 record image).

 As a result of executing transaction ACLG, CICS starts AC05 as soon as the
 requested printer is available. When invoked in this way, the program
 reads through the data set containing the hard-copy log sequentially,
 transferring each entry to the printer. After the last item is printed,

CICS Application Programming Primer
Program ACCT03: requests for printing

© Copyright IBM Corp. 1984, 1991
2.10.4 - 1

 it deletes the log. Then it returns control to CICS. Again, no next
 transid is set, because there's no need to do so for terminals that never
 send unsolicited input.

CICS Application Programming Primer
Program ACCT03: requests for printing

© Copyright IBM Corp. 1984, 1991
2.10.4 - 2

 2.10.5 Program ACCT04: error processing

 This program is a general-purpose error routine. It isn't invoked
 directly by any transaction, but instead receives control from programs
 ACCT01, ACCT02, and ACCT03 when they meet a condition from which they
 cannot recover. (Program ACCT00 is so simple that no such situation
 arises.)

 The program sends a screen to the terminal user (see Figure 28) with a
 text description of the problem and a request to report it. The text is
 based on the CICS command that failed and the particular error that
 occurred on it. The name of the transaction and the program (and if
 applicable, the file) involved are also shown. The command, error type,
 and program name are passed to ACCT04 from the program which transferred
 control to it; we get the other items from the CICS Exec Interface Block
 (EIB). The EIB is a CICS control block associated with a task, containing
 information accessible to the application program. We'll look at it in
 more detail in "The EXEC Interface Block (EIB)" in topic 3.3.6.1.

 After writing the screen, the program terminates itself abnormally (it
 abends), so that any updates to recoverable resources done in the
 half-completed transaction get backed out.

 You'll see ACCT04 in action in the EDF session described in "A session
 with EDF" in topic 5.1.3.1.7.

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: ERROR REPORT ¦
 ¦ TRANSACTION ____ HAS FAILED IN PROGRAM ________ BECAUSE OF ¦
 ¦ __ ¦
 ¦ COMMAND __________ RESP ____________ ¦
 ¦ ______________________ ¦
 ¦ PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORMATION TO THE ¦
 ¦ OPERATIONS STAFF. ¦
 ¦ THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGER UNDER CONTROL OF ¦
 ¦ THE "ACCT" APPLICATION. ¦
 ¦ ¦
 +--+

 Figure 28. The transaction error screen

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
2.10.5 - 1

 3.0 Application programming

 +--- This part of the Primer: ---+
 ¦ ¦
 ¦ ¦ Describes CICS COBOL application programs ¦
 ¦ ¦
 ¦ ¦ Examines the features of Basic Mapping Support (BMS) ¦
 ¦ ¦
 ¦ ¦ Deals with reading and writing files ¦
 ¦ ¦
 ¦ ¦ Explains a scratchpad mechanism that uses temporary storage ¦
 ¦ ¦
 ¦ ¦ Covers communication and control between application and tasks ¦
 ¦ ¦
 ¦ ¦ Explains how to use CICS commands such as START and RETRIEVE ¦
 ¦ ¦
 ¦ ¦ Covers errors and error recovery. ¦
 ¦ ¦
 +--+

 Subtopics
 3.1 Writing CICS programs in COBOL
 3.2 Defining screens with basic mapping support (BMS)
 3.3 Using BMS: more detail
 3.4 Handling files
 3.5 Saving data and communicating between transactions
 3.6 Program control
 3.7 Starting another task, and other time services
 3.8 Errors and exceptional conditions

CICS Application Programming Primer
Application programming

© Copyright IBM Corp. 1984, 1991
3.0 - 1

 3.1 Writing CICS programs in COBOL
 In this topic we'll begin by explaining the basic differences between
 batch and CICS programs. In later topics, we'll describe, by function,
 the services that CICS provides: first terminal services, then file
 services, and so on.

 To show you how to use these services, we'll be coding parts of our
 example application as we go. In "The COBOL code of our example
 application" in topic 4.0, we list the programs in their entirety, with a
 step-by-step description of what the code does.

 Appendix A, "Getting the application into your CICS system" in topic A.0
 tells you where to find out how to prepare these programs for execution
 under CICS.

 Subtopics
 3.1.1 What's different about CICS programs?
 3.1.2 How to invoke CICS services
 3.1.3 Restrictions in CICS COBOL

CICS Application Programming Primer
Writing CICS programs in COBOL

© Copyright IBM Corp. 1984, 1991
3.1 - 1

 3.1.1 What's different about CICS programs?

 Well, not so much is different. Here, for instance, are the steps a
 typical batch program goes through:

 +--+
 ¦ ¦
 ¦ Operations ¦
 ¦ 1. Initialize for the whole run (set all the counters to zero ¦
 ¦ and open the files). ¦
 ¦ 2. Initialize for the next input. ¦
 ¦ 3. Read it. ¦
 ¦ 4. Process it. ¦
 ¦ 5. Write the related outputs. ¦
 ¦ 6. Repeat Steps 2 to 5 until you run out of input. ¦
 ¦ 7. Finish (add up the counters, print any summary results and ¦
 ¦ close the files). ¦
 ¦ ¦
 +--+
 Figure 29. The steps of a typical batch program

 A typical CICS transaction is very similar, but it includes only steps 2
 through 5. That is, it's like the core of a batch program, where a single
 input is processed. CICS takes care of opening and closing the files for
 you. The reports and summaries associated with batch jobs can often be
 dispensed with in an online environment, or they may be produced
 periodically by a different transaction or even by a batch job.

 The other big differences are:

 � You request "operating system" services, such as file input/output, b
 issuing a CICS command instead of using the corresponding language
 facility (READ, WRITE, and so on).

 � You aren't allowed to use the language facilities for which CICS ha
 provided substitutes.

 � You cannot use language features and compiler options that nee
 operating system services during execution. The SORT and TRACE
 facilities are examples.

CICS Application Programming Primer
What's different about CICS programs?

© Copyright IBM Corp. 1984, 1991
3.1.1 - 1

 3.1.2 How to invoke CICS services

 When you need a CICS system service, for example when reading a record
 from a file, you just include a CICS command in your code. Don't forget:
 throughout this book, we're only dealing with the command-level or
 exec-level programming interface. In COBOL, command-level CICS commands
 look like this:

 +--+
 ¦ ¦
 ¦ EXEC CICS function option option ... END-EXEC. ¦
 ¦ ¦
 +--+

 The "function" is the thing you want to do. Reading a file is READ,
 writing to a terminal is SEND, and so on.

 An "option" is some specification that's associated with the function.
 Options are expressed as keywords, some of which need a value in
 parentheses after the keyword. For example, the options for the READ
 command include FILE, RIDFLD, UPDATE, and others. FILE tells CICS which
 file you want to read, and is always followed by a value indicating or
 pointing to the file name.

 RIDFLD (record identification field, that is, the key) tells CICS which
 record and likewise needs a value. The UPDATE option, on the other hand,
 simply means that you intend to change the record (thereby invoking the
 CICS protections we discussed earlier) and doesn't take any value. So, to
 read, with intent to modify, a record from a file known to CICS as
 ACCTFIL, using a key that we've stored in working storage at ACCTC, we'd
 issue a command that looks like this:

 +--+
 ¦ ¦
 ¦ EXEC CICS READ FILE('ACCTFIL') RIDFLD(ACCTC) ¦
 ¦ UPDATE ... END-EXEC. ¦
 ¦ ¦
 +--+

 When you specify a value, you may either use a literal, as we did for FILE
 above, or you may point to a data area in your program where the value you
 want is stored, as we did for RIDFLD above. In other words, we might have
 written:

 +--+
 ¦ ¦
 ¦ MOVE 'ACCTFIL' TO DSNAME ¦
 ¦ EXEC CICS READ FILE(DSNAME) RIDFLD(ACCTC) ¦
 ¦ UPDATE ... END-EXEC. ¦
 ¦ ¦
 +--+

 instead of our earlier command. If you use a literal, follow the usual
 COBOL rules and put it in quotes unless it's a number. In other types of
 commands, these values may be paragraph names in your program, telling
 CICS where to go if a certain type of exceptional condition arises. Don't
 use quotes around paragraph names.

 You may be curious about what the COBOL compiler does with what is (to it)
 a strange-looking English-like statement like the one above. The answer?
 The compiler doesn't see that statement. Processing a CICS program for
 execution starts with a translation step. The translator converts your
 CICS commands into COBOL, in the form of CALL statements. You then
 compile and link edit this in the normal way. The generated CALL
 statements never contain periods, by the way, unless you include one

CICS Application Programming Primer
How to invoke CICS services

© Copyright IBM Corp. 1984, 1991
3.1.2 - 1

 explicitly after the END-EXEC. This means you can use CICS commands
 within IF statements (by leaving the period out of the command), or you
 can end a sentence with the command (by including the period).

CICS Application Programming Primer
How to invoke CICS services

© Copyright IBM Corp. 1984, 1991
3.1.2 - 2

 3.1.3 Restrictions in CICS COBOL

 1. The biggest difference between batch and CICS COBOL programs is that
 you don't define your files in a CICS program. Instead, they are
 defined using either RDO FILE definitions or DFHFCT macro statements
 that are stored in a CICS table, the file control table, which we
 cover in "Handling files" in topic 3.4. So:

 � You cannot use the entries in the ENVIRONMENT DIVISION and the
 DATA DIVISION that are normally associated with files. In
 particular, the entire FILE SECTION is omitted from the DATA
 DIVISION. Put the record formats that usually appear there in
 either the WORKING-STORAGE or LINKAGE sections.

 � You cannot use the COBOL READ, WRITE, OPEN, and CLOSE statements.

 2. You cannot use compiler features that require the use of operating
 system facilities. For example:

 � Special features of the COBOL compilers, namely:

 ACCEPT DISPLAY EXHIBIT REPORT WRITER
 SEGMENTATION SORT TRACE

 � Features that require an operating system GETMAIN (the most common
 of which is CURRENT-DATE).

 � Certain compiler options:

 COUNT ENDJOB FLOW DYNAM STOP RUN
 SYMDUMP STATE SYST TEST

 3. Your program must be what CICS calls "quasi-reentrant." Technically,
 this means your program must not modify itself between calls for CICS
 services. For this purpose, in command-level CICS, your
 WORKING-STORAGE section is not considered part of the program (neither
 is anything in the LINKAGE section). Consequently, you rarely have a
 chance to break the "quasi-reentrant" rule.

 4. There are significant differences between VS COBOL II and other levels
 of the COBOL language. For example, unless you are using VS COBOL II,
 the following restriction is in force:

 � When separate COBOL programs are link edited together, only the
 first may invoke CICS services.

 These are the major restrictions, and the only ones you are likely to
 encounter using the commands described in this Primer. The CICS/ESA
 Application Programming Reference contains definitive application
 programming interface information on this subject. We'll often cite this
 manual in this part of the Primer.

CICS Application Programming Primer
Restrictions in CICS COBOL

© Copyright IBM Corp. 1984, 1991
3.1.3 - 1

 3.2 Defining screens with basic mapping support (BMS)
 It may be that your DP department currently uses a screen definition
 program product such as Screen Definition Facility, or perhaps the screen
 painting facility of Cross Systems Product. However, we're going to
 assume you'll be using basic mapping support (BMS) and the BMS macros.

 That said, let's now plunge in and try to code our example application.
 If we start at the beginning of the first program we specified (ACCT00),
 the first thing we need is to write a formatted screen to the input
 terminal. This requires the use of CICS terminal input/output services.
 In particular, we'll need to use Basic Mapping Support (BMS).

 First, some background: CICS supports a wide variety of terminals, from
 teletypewriters to subsystems such as intelligent cluster controllers,
 under a variety of communications access methods. In this Primer,
 however, we cover only the most common CICS terminals, those of the IBM
 3270 system. Specifically the 3277 and 3278 display devices (with a
 screen size of 24 lines and 80 columns) and the associated printer
 terminals: 3284, 3286, 3287 and 3289.

 We don't use features that depend on a particular terminal access method,
 and we only cover formatted output. Nor do we cover many of the
 formatting services; instead we concentrate on the basic things you need
 to get an ordinary application going. After we've explained these
 fundamentals, we'll tell you what else you can do when you're feeling
 adventurous, and where to look for guidance on how to do it.

 Subtopics
 3.2.1 What BMS does
 3.2.2 The BMS macros
 3.2.3 Map definitions for the example
 3.2.4 Summary
 3.2.5 Optional exercise

CICS Application Programming Primer
Defining screens with basic mapping support (BMS)

© Copyright IBM Corp. 1984, 1991
3.2 - 1

 3.2.1 What BMS does

 As you read through this topic (and the next) you may start to feel a bit
 overwhelmed by all the detail you'll be learning about BMS. So let's get
 a couple of things straight right from the word "go". BMS simplifies your
 programming job, keeping your code largely independent of any changes in
 your network of terminals and of any changes in the terminal types. And
 after you've written your first few maps, you'll find they aren't so bad!

 Before we start to look at the BMS commands, we need to explain in a
 little more detail what BMS does for you. It's probably easiest to define
 what BMS does by examining the menu screen we need. You can see what it
 looks like in Figure 30.

 To help us in this discussion, we've added row and column numbers to the
 figure and underlined the fields that would otherwise not show unless
 filled in with data. We've also marked the position of the attribute byte
 for the "stopper" fields with a vertical bar (|) and for other fields with
 a plus sign (+). These markers won't show up on the screen we're
 building; it will look just as it did in Figure 12 in topic 2.3.2.3.

 +--+
 ¦ ¦
 ¦ 1 2 3 4 5 6 7 ¦
 ¦ 1234567890123456789012345678901234567890123456789012345678901234567890 ¦
 ¦ 1+ACCOUNT FILE: MENU ¦
 ¦ 2 ¦
 ¦ 3 +TO SEARCH BY NAME, ENTER: +ONLY SURNAME ¦
 ¦ 4 +REQUIRED. EITHER ¦
 ¦ 5 +SURNAME:+_________+ FIRST NAME:+________| +MAY BE PARTIAL. ¦
 ¦ 6 ¦
 ¦ 7 +FOR INDIVIDUAL RECORDS, ENTER: ¦
 ¦ 8 +PRINTER REQUIRED ¦
 ¦ 9 +REQUEST TYPE:+_+ ACCOUNT:+___+ PRINTER:+__+ ONLY FOR PRINT ¦
 ¦ 10 +REQUESTS ¦
 ¦ 11 +REQUEST TYPES: D = DISPLAY A = ADD X = DELETE ¦
 ¦ 12 +P = PRINT M = MODIFY ¦
 ¦ 13 ¦
 ¦ 14 +THEN PRESS "ENTER" +-OR- PRESS "CLEAR" TO EXIT ¦
 ¦ 15 ¦
 ¦ 16+ACCT SURNAME FIRST MI TTL ADDRESS ST LIMIT ¦
 ¦ 17+_____ __________ _______ _ _____ _________________ __ _______¦
 ¦ 18+_____ __________ _______ _ _____ _________________ __ _______¦
 ¦ 19+_____ __________ _______ _ _____ _________________ __ _______¦
 ¦ 20+_____ __________ _______ _ _____ _________________ __ _______¦
 ¦ 21+_____ __________ _______ _ _____ _________________ __ _______¦
 ¦ 22+_____ __________ _______ _ _____ _________________ __ _______¦
 ¦ 23 ¦
 ¦ 24+____________________________(msg area)__________________________ ¦
 ¦ ¦
 +--+

 Figure 30. A detailed look at the menu screen

 You define this screen with BMS macros, which are a form of assembler
 language. When you've defined the whole map, you put some job control
 language (JCL) around it and assemble it. You assemble it twice, in fact.
 One of the assemblies produces the physical map. This gets stored in one
 of the execution-time libraries, just like a program, and CICS uses it
 when it executes a program using this particular screen.

 The physical map contains the information BMS needs to:

CICS Application Programming Primer
What BMS does

© Copyright IBM Corp. 1984, 1991
3.2.1 - 1

 � Build the screen, with all the titles and labels in their prope
 places and all the proper attributes for the various fields.

 � Merge the variable data from your program in the proper places on the
 screen when the screen is sent to the terminal.

 � Extract the variable data for your program when the screen is read.

 The information is in an encoded form comprehensible only to BMS, but
 fortunately we never need to examine this ourselves.

 The other assembly produces a COBOL structure which we call the symbolic
 description map or DSECT (an assembly language term for this type of data
 structure, standing for dummy control section). This structure defines
 all of the variable fields (the ones you might read or write in your
 program), so that you can refer to them by name. The data structure gets
 placed in a library along with similar COPY structures like file record
 layouts, and you simply copy it into your program.

CICS Application Programming Primer
What BMS does

© Copyright IBM Corp. 1984, 1991
3.2.1 - 2

 3.2.2 The BMS macros

 To show you how this works, let's go ahead and define the menu map. We'll
 explain the three map-definition macros as we go. Don't be put off by the
 syntax; it's really quite simple when you get used to it. We'll go from
 the inside out, starting with the individual fields.

 Subtopics
 3.2.2.1 The DFHMDF macro: generate BMS field definition
 3.2.2.2 The DFHMDI macro: generate BMS map definition
 3.2.2.3 The DFHMSD macro: generate BMS map set definition
 3.2.2.4 Rules on macro formats

CICS Application Programming Primer
The BMS macros

© Copyright IBM Corp. 1984, 1991
3.2.2 - 1

 3.2.2.1 The DFHMDF macro: generate BMS field definition

 For each field on the screen, you need one DFHMDF macro, which looks like
 this:

 +--+
 ¦ ¦
 ¦ fldname DFHMDF POS=(line,column),LENGTH=number, ¦
 ¦ INITIAL='text',OCCURS=number, ¦
 ¦ ATTRB=(attr1,attr2,....) ¦
 ¦ (You need a continuation character--any character except a space--in ¦
 ¦ column 72 of each line except the last.) ¦
 ¦ ¦
 +--+

 The items in this macro have the following meanings:

 fldname
 This is the name of the field, as you'll use it in your program (or
 almost so, as we'll explain). Name every field that you intend to
 read or write in your program, but don't name any field that's
 constant (ACCOUNT FILE: MENU... and other labels, or the stopper
 fields in this screen). The name must begin with a letter, contain
 only letters and numbers, and be no more than seven characters long.

 DFHMDF
 This is the macro identifier, which must be present. It shows that
 you are defining a field.

 POS=(line,column)
 This is the position on the screen where the field should appear. (In
 fact, it's the position relative to the beginning of the map. For the
 purposes of this Primer, however, screen and map position are the
 same.) Remember that a field starts with its attribute byte, so if
 you code POS=(1,1), the attribute byte for that field is on line 1 in
 column 1, and the actual data starts in column 2. For the type of
 maps in this Primer, you need this parameter for every field.

 LENGTH=number
 This is the length of the field, not counting the attribute byte.
 You'll have to specify length for the type of maps in this Primer.

 INITIAL='text'
 This is the character data for an output field. It's how we specify
 labels and titles for the screen and keep them independent of the
 program. For the first field in the menu screen, for example, we'll
 code:

 INITIAL='ACCOUNT FILE: MENU'

 ATTRB=(attr1,attr2,...)
 These are the attributes of the field, and there are four different
 characteristics you can specify. The first is the display intensity
 of the field, and your choices are:

 NORM
 Normal display intensity.

 BRT
 Bright (highlighted) intensity.

 DRK
 Dark (not displayed).

 The second characteristic governs what the user can do at the

CICS Application Programming Primer
The DFHMDF macro: generate BMS field definition

© Copyright IBM Corp. 1984, 1991
3.2.2.1 - 1

 keyboard. Here your choices are:

 ASKIP
 The field cannot be keyed into, and the cursor will skip over it
 if the user fills the preceding field.

 PROT
 The field cannot be keyed into, but the cursor will not skip over
 it if the user fills the preceding field.

 UNPROT
 The field can be keyed into.

 NUM
 The field can be keyed into, but only numbers, decimal points and
 minus signs are allowed, if you have the NUM LOCK feature.

 The third characteristic governs the modified data tag that we
 discussed in "3270 input data stream" in topic 2.2.4:

 FSET
 Turns on the modified data tag. This causes the field to be sent
 on the subsequent read whether or not the user keys into it. If
 you don't specify this, the field is sent only if the user changes
 it.

 The fourth characteristic that you can specify as part of the
 "attributes" has nothing to do with the attribute byte on the screen.
 It gives you a way of specifying that you want the cursor to be in
 this field. To do so, code:

 IC
 Places the cursor under the first position of the field. Since
 there is only one cursor, you should specify IC for only one
 field. If you specify it for more than one, the last one
 specified will be the one used.

 You don't need the ATTRB parameter. If you omit it, the field will be
 ASKIP and NORM, with no FSET and no IC specified. If you specify
 either the protection or the intensity characteristics, however, it
 will be clearer if you specify both, because the specification of one
 can change the default for the other.

 OCCURS=number
 This parameter gives you a way to specify several fields at once,
 provided they all have the same characteristics and are adjacent. If
 you specify a field of length 10 at position (4,1) that is ASKIP and
 NORM with OCCURS=3, you'll get three fields of length 10, autoskip and
 normal intensity, at positions (4,1), (4,12), and (4,23). This is an
 exception to the "one DFHMDF macro for every field" rule we gave you
 earlier.

 Now we can define the fields in our menu map. We'll "do" the fields in
 order. Although this is no longer required in CICS, it's a good idea for
 clarity. Figure 31 shows the DFHMDF macros for the menu map.

 +--+
 ¦ ¦
 ¦ Col Col Col Col ¦
 ¦ 1 9 16 72 ¦
 ¦ * MENU MAP. ¦
 ¦ ACCTMNU DFHMDI SIZE=(24,80),CTRL=(PRINT,FREEKB) ¦
 ¦ DFHMDF POS=(1,1),ATTRB=(ASKIP,NORM),LENGTH=18, X ¦
 ¦ INITIAL='ACCOUNT FILE: MENU' ¦
 ¦ DFHMDF POS=(3,4),ATTRB=(ASKIP,NORM),LENGTH=25, X ¦

CICS Application Programming Primer
The DFHMDF macro: generate BMS field definition

© Copyright IBM Corp. 1984, 1991
3.2.2.1 - 2

 ¦ INITIAL='TO SEARCH BY NAME, ENTER:' ¦
 ¦ DFHMDF POS=(3,63),ATTRB=(ASKIP,NORM),LENGTH=12, X ¦
 ¦ INITIAL='ONLY SURNAME' ¦
 ¦ DFHMDF POS=(4,63),ATTRB=(ASKIP,NORM),LENGTH=16, X ¦
 ¦ INITIAL='REQUIRED. EITHER' ¦
 ¦ DFHMDF POS=(5,7),ATTRB=(ASKIP,BRT),LENGTH=8, X ¦
 ¦ INITIAL='SURNAME:' ¦
 ¦ SNAMEM DFHMDF POS=(5,16),ATTRB=(UNPROT,NORM,IC),LENGTH=12 ¦
 ¦ DFHMDF POS=(5,29),ATTRB=(PROT,BRT),LENGTH=13, X ¦
 ¦ INITIAL=' FIRST NAME:' ¦
 ¦ FNAMEM DFHMDF POS=(5,43),ATTRB=(UNPROT,NORM),LENGTH=7 ¦
 ¦ DFHMDF POS=(5,51),ATTRB=(PROT,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(5,63),ATTRB=(ASKIP,NORM),LENGTH=15, X ¦
 ¦ INITIAL='MAY BE PARTIAL.' ¦
 ¦ DFHMDF POS=(7,4),ATTRB=(ASKIP,NORM),LENGTH=30, X ¦
 ¦ INITIAL='FOR INDIVIDUAL RECORDS, ENTER:' ¦
 ¦ DFHMDF POS=(8,63),ATTRB=(ASKIP,NORM),LENGTH=16, X ¦
 ¦ INITIAL='PRINTER REQUIRED' ¦
 ¦ DFHMDF POS=(9,7),ATTRB=(ASKIP,BRT),LENGTH=13, X ¦
 ¦ INITIAL='REQUEST TYPE:' ¦
 ¦ REQM DFHMDF POS=(9,21),ATTRB=(UNPROT,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(9,23),ATTRB=(ASKIP,BRT),LENGTH=10, X ¦
 ¦ INITIAL=' ACCOUNT: ' ¦
 ¦ ACCTM DFHMDF POS=(9,34),ATTRB=(NUM,NORM),LENGTH=5 ¦
 ¦ DFHMDF POS=(9,40),ATTRB=(ASKIP,BRT),LENGTH=10, X ¦
 ¦ INITIAL=' PRINTER:' ¦
 ¦ PRTRM DFHMDF POS=(9,51),ATTRB=(UNPROT,NORM),LENGTH=4 ¦
 ¦ DFHMDF POS=(9,56),ATTRB=(ASKIP,NORM),LENGTH=21, X ¦
 ¦ INITIAL=' ONLY FOR PRINT' ¦
 ¦ DFHMDF POS=(10,63),ATTRB=(ASKIP,NORM),LENGTH=9, X ¦
 ¦ INITIAL='REQUESTS.' ¦
 ¦ DFHMDF POS=(11,7),ATTRB=(ASKIP,NORM),LENGTH=53, X ¦
 ¦ INITIAL='REQUEST TYPES: D = DISPLAY A = ADD X = X ¦
 ¦ DELETE' ¦
 ¦ DFHMDF POS=(12,23),ATTRB=(ASKIP,NORM),LENGTH=25, X ¦
 ¦ INITIAL='P = PRINT M = MODIFY' ¦
 ¦ DFHMDF POS=(14,4),ATTRB=(ASKIP,NORM),LENGTH=18, X ¦
 ¦ INITIAL='THEN PRESS "ENTER"' ¦
 ¦ DFHMDF POS=(14,35),ATTRB=(ASKIP,NORM),LENGTH=28, X ¦
 ¦ INITIAL='-OR- PRESS "CLEAR" TO EXIT' ¦
 ¦ SUMTTLM DFHMDF POS=(16,1),ATTRB=(ASKIP,DRK),LENGTH=79, X ¦
 ¦ INITIAL='ACCT SURNAME FIRST MI TTL ADDRESS¦
 ¦ ST LIMIT' ¦
 ¦ SUMLNM DFHMDF POS=(17,1),ATTRB=(ASKIP,NORM),LENGTH=79,OCCURS=6 ¦
 ¦ MSGM DFHMDF POS=(24,1),ATTRB=(ASKIP,BRT),LENGTH=60 ¦
 ¦ ¦
 +--+
 Figure 31. The DFHMDF macros for the menu map

CICS Application Programming Primer
The DFHMDF macro: generate BMS field definition

© Copyright IBM Corp. 1984, 1991
3.2.2.1 - 3

 3.2.2.2 The DFHMDI macro: generate BMS map definition

 Now that we've sorted out the middle of the map (all the fields) we need
 to wrap some control information around it. To start any map, you need a
 different kind of macro:

 +--+
 ¦ ¦
 ¦ mapname DFHMDI SIZE=(line,column), ¦
 ¦ CTRL=(ctrl1,ctrl2,...) ¦
 ¦ ¦
 +--+

 The items in this macro are:

 mapname
 This is the map's name, which you'll use when you issue a CICS command
 to read or write the map. It's required. Like a field name, it must
 start with a letter, contain only letters and numbers, and be no more
 than seven characters long.

 DFHMDI
 This is the macro identifier, also required. It shows that you're
 starting a new map.

 SIZE=(line,column)
 This parameter gives the size of the map. You need it for the type of
 maps we're using. BMS allows you to build a screen using several
 maps, and this parameter becomes important when you are doing that.
 In this Primer, however, we'll keep to the simpler situation where
 there's only one map per screen. In this case, there's no point in
 using a size other than the screen capacity (that is, SIZE=(24,80) for
 a 3276, 3277, 3278, or 3279 Model 2).

 CTRL=(ctrl1,ctrl2,...)
 This parameter shows the screen and keyboard control information that
 you want sent along with a map. You can specify any combination of
 the following:

 PRINT
 Specify this for any map that might be sent to a printer terminal.

 Since it costs nothing to add this (and it can cause a lot of
 grief if you accidentally omit it when you do need it), we always
 try to remember to specify it.

 FREEKB
 This means "free the keyboard."

 The keyboard locks automatically as soon as the user sends any
 input to the processor, and it stays locked until some transaction
 unlocks it, or the user presses the RESET key. So you'll almost
 always want to specify FREEKB when you send a screen to the
 terminal, to save the user from having to press RESET before
 making the next entry.

 ALARM
 This parameter sounds the audible alarm at the terminal (if the
 terminal has this feature; otherwise it does nothing). You might
 want to use this when displaying an error map, for example. We
 chose not to.

 The DFHMDI macro we need to start our menu map, which we'll call ACCTMNU,
 is shown in Figure 32:

CICS Application Programming Primer
The DFHMDI macro: generate BMS map definition

© Copyright IBM Corp. 1984, 1991
3.2.2.2 - 1

 +--+
 ¦ ¦
 ¦ ACCTMNU DFHMDI SIZE=(24,80),CTRL=(PRINT,FREEKB) ¦
 ¦ ¦
 +--+
 Figure 32. The DFHMDI macro for the menu map

CICS Application Programming Primer
The DFHMDI macro: generate BMS map definition

© Copyright IBM Corp. 1984, 1991
3.2.2.2 - 2

 3.2.2.3 The DFHMSD macro: generate BMS map set definition

 You can put several maps together into a map set and assemble them all
 together. In fact, all maps (even a single map) must form a map set. For
 efficiency reasons, it's a good idea to put related maps that are
 generally used in the same transactions in the same map set. All the maps
 in a map set get assembled together, and they're loaded together at
 execution time as well.

 When you've defined all the maps for a set, you put another macro in front
 of all the others to define the map set. This is the DFHMSD macro:

 +--+
 ¦ ¦
 ¦ setname DFHMSD TYPE=type,MODE=mode,LANG=COBOL, ¦
 ¦ STORAGE=AUTO,TIOAPFX=YES, ¦
 ¦ CTRL=(ctrl1,ctrl2,...) ¦
 ¦ ¦
 +--+

 The items in this macro have the following meanings:

 setname
 This is the name of the map set. You'll use it when you issue a CICS
 command to read or write one of the maps in the set. It's required.
 Like a field name, it must start with a letter, consist of only
 letters and numbers, and be no more then seven characters long.

 Because this name goes into the list of installed program definitions,
 make sure your system programmer (or whoever maintains these lists)
 knows what the name is, and that neither of you changes it without
 telling the other. It's the load module name.

 DFHMSD
 This is the macro identifier, also required. It shows that you're
 starting a map set.

 TYPE=type
 TYPE governs whether the assembly produces the physical map or the
 symbolic description (DSECT). As we pointed out in "What BMS does" in
 topic 3.2.1, you do your assembly twice, once with TYPE=MAP specified
 and once with TYPE=DSECT specified. The TYPE parameter is required.
 See "Symbolic description maps (DSECT structures)" in topic 3.3.1.

 MODE=mode
 This shows whether the maps are used only for input (MODE=IN), only
 for output (MODE=OUT), or for both (MODE=INOUT).

 LANG=COBOL
 This decides the language of the DSECT structure, for copying into the
 application program. For the examples in this Primer, the language
 will always be COBOL. However, you can program in PL/I as well (in
 which case you would code LANG=PLI), or in assembler (LANG=ASM).

 STORAGE=AUTO
 For a COBOL program, this operand causes the DSECT structures for
 different maps in a map set not to overlay each other. If you omit
 it, storage for each successive map in a map set redefines that for
 the first map. If you don't use these maps at the same time, you
 should omit STORAGE=AUTO to cut down the size of your WORKING-STORAGE.
 However, when several maps are in the same map set, they're most
 likely to be used at the same time, and then you should specify
 STORAGE=AUTO. This is the case in the example application, where we
 use the menu and other maps in the same transaction.

CICS Application Programming Primer
The DFHMSD macro: generate BMS map set definition

© Copyright IBM Corp. 1984, 1991
3.2.2.3 - 1

 CTRL=(ctrl1,ctrl2,...)
 This parameter has the same meaning as in the DFHMDI macro. Control
 specifications in the DFHMSD macro apply to all the maps in the set;
 those on the DFHMDI macro apply only to that particular map, so you
 can use the DFHMDI options to override, temporarily, those of the
 DFHMSD macro.

 TIOAPFX=YES
 Always use this parameter in command-level programs, such as the ones
 we're writing in this Primer. See the paragraph beginning "The first
 12 characters" in topic 3.3.1.2.

 Since all the maps in the example application are used together in one
 transaction or another, we'll put them all into a single map set, and call
 it ACCTSET. The DFHMSD macro we need, then, is:

 +--+
 ¦ ¦
 ¦ ACCTSET DFHMSD TYPE=MAP,MODE=INOUT,LANG=COBOL, ¦
 ¦ STORAGE=AUTO,TIOAPFX=YES ¦
 ¦ ¦
 +--+

 The only thing now missing from our map definition is the control
 information to show where the map set ends. This is very simple: It's
 another macro, DFHMSD TYPE=FINAL, followed by the assembler END statement:

 +--+
 ¦ ¦
 ¦ DFHMSD TYPE=FINAL ¦
 ¦ END ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
The DFHMSD macro: generate BMS map set definition

© Copyright IBM Corp. 1984, 1991
3.2.2.3 - 2

 3.2.2.4 Rules on macro formats

 When you write assembler language (which is what you are doing when using
 these macros) you have to observe some syntax rules. Here's a simple set
 of format rules that works. This is by no means the only acceptable
 format.

 � Start the map set, map, or field name (if any) in column 1

 � Put the macro name DFHMDF, DFHMDI, or DFHMSD) in columns 9 through 14
 (END goes in 9 through 11).

 � Start your parameters in column 16. You can put them in any order yo
 like.

 � Separate the parameters by one comma (no spaces), but do not put
 comma after the last one.

 � If you cannot get everything into 71 columns, stop after the comm
 that follows the last parameter that fits on the line, and resume in
 column 16 of the next line.

 � The INITIAL parameter is an exception to the rule just stated, because
 the text portion may be very long. Be sure you can get the word
 INITIAL, the equal sign, the first quote mark, and at least one
 character of text in by column 71. If you can't, start a new line in
 column 16, as you would with any other parameter. Once you've started
 the INITIAL parameter, continue across as many lines as you need,
 using all the columns from 16 to 71. After the last character of your
 text, put a final quote mark.

 � Where you have more than one line for a single macro (because o
 initial values or any other parameters), put an X (or any character
 except a space) in column 72 of all lines except the last. This
 continuation character is very important. It's easy to forget, but
 this upsets the assembler.

 � Always surround initial values by single quote marks. If you need
 single quote within your text, use two successive single quotes, and
 the assembler will know you want just one. Similarly with a single
 "&" character. For example:

 +--+
 ¦ ¦
 ¦ INITIAL='MRS. O''LEARY''S COW && BULL' ¦
 ¦ ¦
 +--+

 � If you want to put a comment into your map, use a separate line. Pu
 an asterisk (*) in column 1, and use any part of columns 2 through 71
 for your text. Do not go beyond 71.

CICS Application Programming Primer
Rules on macro formats

© Copyright IBM Corp. 1984, 1991
3.2.2.4 - 1

 3.2.3 Map definitions for the example

 Now that we've all the information we need for building maps, and now that
 we've done the menu map, let's define the other maps and the map set we
 need for our example application.

 Subtopics
 3.2.3.1 Defining the account detail map
 3.2.3.2 Defining the error map
 3.2.3.3 Defining the message map
 3.2.3.4 The map set

CICS Application Programming Primer
Map definitions for the example

© Copyright IBM Corp. 1984, 1991
3.2.3 - 1

 3.2.3.1 Defining the account detail map

 Figure 33 shows the map for displaying the detail in an account record.
 It's used for displaying and printing the record, and for additions,
 modifications, and deletions. As you can see, the attribute bytes are
 marked, and we've added line and column numbers as before.

 +--+
 ¦ ¦
 ¦ 1 2 3 4 5 6 7 ¦
 ¦ 1234567890123456789012345678901234567890123456789012345678901234567890 ¦
 ¦ 1+ACCOUNT FILE:+RECORD DISPLAY ¦
 ¦ 2 ¦
 ¦ 3+ACCOUNT NO:+____ SURNAME: +______________| ¦
 ¦ 4 FIRST: +________+ MI:+_+ TITLE:+____| ¦
 ¦ 5+TELEPHONE:+______ ADDRESS: +___________________| ¦
 ¦ 6 +___________________| ¦
 ¦ 7 +___________________| ¦
 ¦ 8+OTHERS WHO MAY CHARGE: ¦
 ¦ 9+_________________________| +__________________________| ¦
 ¦ 10+_________________________| +__________________________| ¦
 ¦ 11 ¦
 ¦ 12+NO. CARDS ISSUED:+_+ DATE ISSUED:+__+__+__+ REASON:+_| ¦
 ¦ 13+CARD CODE: C APPROVED BY:+___| +SPECIAL CODES:+_+_+_| ¦
 ¦ 14 ¦
 ¦ 15+ACCOUNT STATUS:+__+ CHARGE LIMIT:+_________| ¦
 ¦ 16 ¦
 ¦ 17+HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT ¦
 ¦ 18 +________ __/__/__ ________ __/__/__ ________ ¦
 ¦ 19 +________ __/__/__ ________ __/__/__ ________ ¦
 ¦ 20 +________ __/__/__ ________ __/__/__ ________ ¦
 ¦ 21 ¦
 ¦ 22+________________________(message area) _____________________ ¦
 ¦ ¦
 +--+

 Figure 33. The account detail map

 Figure 34 shows the map definition for this screen; after the code there
 are notes on some of the macros.

 +--+
 ¦ ¦
 ¦ Col Col Col Col¦
 ¦ 1 9 16 72 ¦
 ¦ * DETAIL MAP. ¦
 ¦ ACCTDTL DFHMDI SIZE=(24,80),CTRL=(FREEKB,PRINT) ¦
 ¦ DFHMDF POS=(1,1),ATTRB=(ASKIP,NORM),LENGTH=13, X ¦
 ¦ INITIAL='ACCOUNT FILE: ' ¦
 ¦ TITLED DFHMDF POS=(1,15),ATTRB=(ASKIP,NORM),LENGTH=14, 1 X ¦
 ¦ INITIAL='RECORD DISPLAY' 2 ¦
 ¦ DFHMDF POS=(3,1),ATTRB=(ASKIP,NORM),LENGTH=11, X ¦
 ¦ INITIAL='ACCOUNT NO:' ¦
 ¦ ACCTD DFHMDF POS=(3,13),ATTRB=(ASKIP,NORM),LENGTH=5 ¦
 ¦ DFHMDF POS=(3,25),ATTRB=(ASKIP,NORM),LENGTH=10, X ¦
 ¦ INITIAL='SURNAME: ' 3 ¦
 ¦ SNAMED DFHMDF POS=(3,36),ATTRB=(UNPROT,NORM,IC), 4 X ¦
 ¦ LENGTH=18 ¦
 ¦ DFHMDF POS=(3,55),ATTRB=(PROT,NORM),LENGTH=1 5 ¦
 ¦ DFHMDF POS=(4,25),ATTRB=(ASKIP,NORM),LENGTH=10, X ¦
 ¦ INITIAL='FIRST: ' ¦
 ¦ FNAMED DFHMDF POS=(4,36),ATTRB=(UNPROT,NORM),LENGTH=12 ¦
 ¦ DFHMDF POS=(4,49),ATTRB=(PROT,NORM),LENGTH=6, 6 X ¦

CICS Application Programming Primer
Defining the account detail map

© Copyright IBM Corp. 1984, 1991
3.2.3.1 - 1

 ¦ INITIAL=' MI:' ¦
 ¦ MID DFHMDF POS=(4,56),ATTRB=(UNPROT,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(4,58),ATTRB=(ASKIP,NORM),LENGTH=7, X ¦
 ¦ INITIAL=' TITLE:' ¦
 ¦ TTLD DFHMDF POS=(4,66),ATTRB=(UNPROT,NORM),LENGTH=4 ¦
 ¦ DFHMDF POS=(4,71),ATTRB=(PROT,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(5,1),ATTRB=(ASKIP,NORM),LENGTH=10, X ¦
 ¦ INITIAL='TELEPHONE:' ¦
 ¦ TELD DFHMDF POS=(5,12),ATTRB=(NUM,NORM),LENGTH=10 ¦
 ¦ DFHMDF POS=(5,23),ATTRB=(ASKIP,NORM),LENGTH=12, X ¦
 ¦ INITIAL=' ADDRESS: ' ¦
 ¦ ADDR1D DFHMDF POS=(5,36),ATTRB=(UNPROT,NORM),LENGTH=24 ¦
 ¦ DFHMDF POS=(5,61),ATTRB=(PROT,NORM),LENGTH=1 ¦
 ¦ ADDR2D DFHMDF POS=(6,36),ATTRB=(UNPROT,NORM),LENGTH=24 ¦
 ¦ DFHMDF POS=(6,61),ATTRB=(PROT,NORM),LENGTH=1 ¦
 ¦ ADDR3D DFHMDF POS=(7,36),ATTRB=(UNPROT,NORM),LENGTH=24 ¦
 ¦ DFHMDF POS=(7,61),ATTRB=(PROT,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(8,1),ATTRB=(ASKIP,NORM),LENGTH=22, X ¦
 ¦ INITIAL='OTHERS WHO MAY CHARGE:' ¦
 ¦ AUTH1D DFHMDF POS=(9,1),ATTRB=(UNPROT,NORM),LENGTH=32 ¦
 ¦ DFHMDF POS=(9,34),ATTRB=(PROT,NORM),LENGTH=1 ¦
 ¦ AUTH2D DFHMDF POS=(9,36),ATTRB=(UNPROT,NORM),LENGTH=32 ¦
 ¦ DFHMDF POS=(9,69),ATTRB=(PROT,NORM),LENGTH=1 ¦
 ¦ AUTH3D DFHMDF POS=(10,1),ATTRB=(UNPROT,NORM),LENGTH=32 ¦
 ¦ DFHMDF POS=(10,34),ATTRB=(PROT,NORM),LENGTH=1 ¦
 ¦ AUTH4D DFHMDF POS=(10,36),ATTRB=(UNPROT,NORM),LENGTH=32 ¦
 ¦ DFHMDF POS=(10,69),ATTRB=(PROT,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(12,1),ATTRB=(ASKIP,NORM),LENGTH=17, X ¦
 ¦ INITIAL='NO. CARDS ISSUED:' ¦
 ¦ Col Col Col Col¦
 ¦ 1 9 16 72 ¦
 ¦ CARDSD DFHMDF POS=(12,19),ATTRB=(NUM,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(12,21),ATTRB=(ASKIP,NORM),LENGTH=16, X ¦
 ¦ INITIAL=' DATE ISSUED:' ¦
 ¦ IMOD DFHMDF POS=(12,38),ATTRB=(UNPROT,NORM),LENGTH=2 7 ¦
 ¦ IDAYD DFHMDF POS=(12,41),ATTRB=(UNPROT,NORM),LENGTH=2 ¦
 ¦ IYRD DFHMDF POS=(12,44),ATTRB=(UNPROT,NORM),LENGTH=2 ¦
 ¦ DFHMDF POS=(12,47),ATTRB=(ASKIP,NORM),LENGTH=12, X ¦
 ¦ INITIAL=' REASON:' ¦
 ¦ RSND DFHMDF POS=(12,60),ATTRB=(UNPROT,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(12,62),ATTRB=(ASKIP,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(13,1),ATTRB=(ASKIP,NORM),LENGTH=10, X ¦
 ¦ INITIAL='CARD CODE:' ¦
 ¦ CCODED DFHMDF POS=(13,12),ATTRB=(UNPROT,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(13,14),ATTRB=(ASKIP,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(13,25),ATTRB=(ASKIP,NORM),LENGTH=12, X ¦
 ¦ INITIAL='APPROVED BY:' ¦
 ¦ APPRD DFHMDF POS=(13,38),ATTRB=(UNPROT,NORM),LENGTH=3 ¦
 ¦ DFHMDF POS=(13,42),ATTRB=(ASKIP,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(13,52),ATTRB=(ASKIP,NORM),LENGTH=14, X ¦
 ¦ INITIAL='SPECIAL CODES:' ¦
 ¦ SCODE1D DFHMDF POS=(13,67),ATTRB=(UNPROT,NORM),LENGTH=1 ¦
 ¦ SCODE2D DFHMDF POS=(13,69),ATTRB=(UNPROT,NORM),LENGTH=1 ¦
 ¦ SCODE3D DFHMDF POS=(13,71),ATTRB=(UNPROT,NORM),LENGTH=1 ¦
 ¦ DFHMDF POS=(13,73),ATTRB=(ASKIP,NORM),LENGTH=1 ¦
 ¦ STATTLD DFHMDF POS=(15,1),ATTRB=(ASKIP,NORM),LENGTH=15, X ¦
 ¦ INITIAL='ACCOUNT STATUS:' ¦
 ¦ STATD DFHMDF POS=(15,17),ATTRB=(ASKIP,NORM),LENGTH=2 ¦
 ¦ LIMTTLD DFHMDF POS=(15,20),ATTRB=(ASKIP,NORM),LENGTH=18, X ¦
 ¦ INITIAL=' CHARGE LIMIT:' ¦
 ¦ LIMITD DFHMDF POS=(15,39),ATTRB=(ASKIP,NORM),LENGTH=8 ¦
 ¦ HISTTLD DFHMDF POS=(17,1),ATTRB=(ASKIP,NORM),LENGTH=71, 8 X ¦
 ¦ INITIAL='HISTORY: BALANCE BILLED AMOUNT X ¦
 ¦ PAID AMOUNT' 9 ¦
 ¦ HIST1D DFHMDF POS=(18,11),ATTRB=(ASKIP,NORM),LENGTH=61 10 ¦

CICS Application Programming Primer
Defining the account detail map

© Copyright IBM Corp. 1984, 1991
3.2.3.1 - 2

 ¦ HIST2D DFHMDF POS=(19,11),ATTRB=(ASKIP,NORM),LENGTH=61 ¦
 ¦ HIST3D DFHMDF POS=(20,11),ATTRB=(ASKIP,NORM),LENGTH=61 ¦
 ¦ MSGD DFHMDF POS=(22,1),ATTRB=(ASKIP,BRT),LENGTH=60 ¦
 ¦ VFYD DFHMDF POS=(22,62),ATTRB=(ASKIP,NORM),LENGTH=1 11 ¦
 ¦ ¦
 +--+
 Figure 34. The account detail map definition

 Subtopics
 3.2.3.1.1 Notes on the detail map

CICS Application Programming Primer
Defining the account detail map

© Copyright IBM Corp. 1984, 1991
3.2.3.1 - 3

 3.2.3.1.1 Notes on the detail map

 The N comments are not part of the code.

 1 We've put a suffix on each of the labels to tell us which map the
 field is from; in this map the suffix is D, for detail. We did the same
 thing in the menu (M)--see Figure 31 in topic 3.2.2.1--and will do so in
 subsequent maps. Thus, the account number is ACCTM in the menu map and
 ACCTD in the detail map. This is simply for clarity and to avoid having
 to use COBOL qualifiers to distinguish between fields with the same name.
 We could just as easily have used a prefix instead of a suffix; neither is
 a BMS requirement.

 2 In this field, we've specified the value for the most common
 situation: record displays. This initial value is not a constant, as it
 is in the fields without labels, but a default. The field will be set to
 a different value by the program for adds, modifies, and other uses of the
 screen.

 Notice that it has a label, so that the program has access to it.

 3 Where you have a data field following a constant field, and there are
 three or fewer space characters between the end of the constant and the
 attribute byte for the data field, it's a good idea to fill out the
 constant to meet the data field. This allows BMS to omit the address for
 the data field (since it is adjacent to the previous field).

 You cut down the length of the transmitted datastream this way, although
 the definition works perfectly well without this nicety, of course.

 This field could have a length of 8 and an initial value of SURNAME: the
 appearance of the map would be exactly the same.

 4 This is normally the first field into which the user is to enter data,
 and so we've specified that the cursor should be here. This is a default
 specification; the program can and often will override it.

 5 We've defined this stopper field as protected, rather than autoskip,
 because the preceding field is of variable length.

 As we said earlier, this choice warns users who try to key too many
 characters for the field, because the keyboard locks as soon as they get
 to the protected field.

 6 We've combined a stopper field with the label field following it here.
 Since any field that begins right after the input field can act as a
 stopper, we've simply lengthened the field following the input field (the
 label MI here) with leading spaces, to combine our stopper and label in
 one field.

 Generally, if there are fewer than four characters between the end of one
 field and the start of another, and they are constant (unlabeled) fields
 with the same attributes, it's better to combine them. The resulting data
 stream is shorter, and there's less BMS code.

 7 You don't need a stopper field for an input field if another input
 field follows immediately.

 8 These title fields are supposed to appear on all the displays except
 the skeleton screen for adding new records. It's easiest to put them in
 the map, therefore, and simply knock them out (not allow them to appear)
 for an add operation.

 We'll do this by setting the attribute byte to "nondisplay" in that one
 case. To enable the program to access the attribute bytes, we have to put

CICS Application Programming Primer
Notes on the detail map

© Copyright IBM Corp. 1984, 1991
3.2.3.1.1 - 1

 labels on the fields.

 9 This field is an example of a long INITIAL value parameter, for which
 two lines are required.

 10 These are composite fields. If we wanted, we could define each of
 the "history" lines on the bottom of the screen as seven different fields,
 one for each item of data, and we'd do this if data was being entered on
 this line. However, since it's only being displayed, we don't need the
 attribute and cursor control that separate fields would provide.

 It's easier to treat these seven items as a composite field, formatting
 the line within the program. If you look back at Figure 31 in
 topic 3.2.2.1, you'll notice that we used the same technique for the name
 search output in the menu map.

 11 This field is used only for deletions, so the default value for the
 attribute byte will be autoskip. That way the user won't even be aware of
 the field when using the map for other transactions. For deletions, the
 program will change the attribute byte to be unprotected.

CICS Application Programming Primer
Notes on the detail map

© Copyright IBM Corp. 1984, 1991
3.2.3.1.1 - 2

 3.2.3.2 Defining the error map

 Next is the error map, to produce the screen shown in Figure 28 in
 topic 2.10.5. Figure 35 shows the error screen map, with row and column
 numbers added.

 +--+
 ¦ ¦
 ¦ 1 2 3 4 5 6 ¦
 ¦ 12345678901234567890123456789012345678901234567890123456789012345678 ¦
 ¦ 1 ¦
 ¦ 2 ¦
 ¦ 3 ¦
 ¦ 4 ACCOUNT FILE: ERROR REPORT ¦
 ¦ 5 ¦
 ¦ 6 TRANSACTION ____ HAS FAILED IN PROGRAM ______ BECAUSE OF ¦
 ¦ 7 ¦
 ¦ 8 __ ¦
 ¦ 9 ¦
 ¦ 10 COMMAND __________ RESP __________ ¦
 ¦ 11 ¦
 ¦ 12 ______________________ ¦
 ¦ 13 ¦
 ¦ 14 PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORMATION TO THE ¦
 ¦ 15 OPERATIONS STAFF. ¦
 ¦ 16 ¦
 ¦ 17 THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGER UNDER CONTROL OF ¦
 ¦ 18 THE "ACCT" APPLICATION. ¦
 ¦ ¦
 +--+

 Figure 35. The error screen map

 When CICS abends our transaction, the ABEND message appears towards the
 foot of this screen. It normally appears at the current cursor position,
 although your system programmer can override this. (If you examine the
 ACCT behavior under EDF in "Execution diagnostic facility (EDF)" in
 topic 5.1.3.1, you'll see an example of this.)

 Figure 36 shows the macro definition we need to produce this error screen.

 +--+
 ¦ ¦
 ¦ Col Col Col Col ¦
 ¦ 1 9 16 72 ¦
 ¦ * ERROR MAP. ¦
 ¦ ACCTERR DFHMDI SIZE=(24,80),CTRL=FREEKB ¦
 ¦ DFHMDF POS=(4,1),ATTRB=(ASKIP,NORM),LENGTH=26, X ¦
 ¦ INITIAL='ACCOUNT FILE: ERROR REPORT' ¦
 ¦ DFHMDF POS=(6,1),ATTRB=(ASKIP,NORM),LENGTH=12, X ¦
 ¦ INITIAL='TRANSACTION ' ¦
 ¦ TRANE DFHMDF POS=(6,14),ATTRB=(ASKIP,BRT),LENGTH=4 ¦
 ¦ DFHMDF POS=(6,19),ATTRB=(ASKIP,NORM),LENGTH=23, X ¦
 ¦ INITIAL=' HAS FAILED IN PROGRAM ' ¦
 ¦ PGME DFHMDF POS=(6,43),ATTRB=(ASKIP,BRT),LENGTH=8 ¦
 ¦ DFHMDF POS=(6,52),ATTRB=(ASKIP,NORM),LENGTH=11, X ¦
 ¦ INITIAL=' BECAUSE OF' ¦
 ¦ RSNE DFHMDF POS=(8,1),ATTRB=(ASKIP,BRT),LENGTH=60 ¦
 ¦ DFHMDF POS=(10,1),ATTRB=(ASKIP,NORM),LENGTH=8, X ¦
 ¦ INITIAL='COMMAND ' ¦
 ¦ CMDE DFHMDF POS=(10,10),ATTRB=(ASKIP,BRT),LENGTH=20 ¦
 ¦ DFHMDF POS=(10,31),ATTRB=(ASKIP,NORM),LENGTH=5, X ¦
 ¦ INITIAL='RESP ' ¦

CICS Application Programming Primer
Defining the error map

© Copyright IBM Corp. 1984, 1991
3.2.3.2 - 1

 ¦ RESPE DFHMDF POS=(10,37),ATTRB=(ASKIP,BRT),LENGTH=12 ¦
 ¦ FILEE DFHMDF POS=(12,1),ATTRB=(ASKIP,BRT),LENGTH=22 ¦
 ¦ DFHMDF POS=(14,1),ATTRB=(ASKIP,NORM),LENGTH=60, X ¦
 ¦ INITIAL='PLEASE ASK YOUR SUPERVISOR TO CONVEY ¦
 ¦ THIS INFORMATION TO THE' X ¦
 ¦ DFHMDF POS=(15,1),ATTRB=(ASKIP,NORM),LENGTH=17, X ¦
 ¦ INITIAL='OPERATIONS STAFF.' ¦
 ¦ DFHMDF POS=(17,1),ATTRB=(ASKIP,NORM),LENGTH=64, X ¦
 ¦ INITIAL='THEN PRESS "CLEAR". THIS TERMINAL IS ¦
 ¦ NO LONGER UNDER CONTROL OF' X ¦
 ¦ DFHMDF POS=(18,1),ATTRB=(ASKIP,NORM),LENGTH=23, X ¦
 ¦ INITIAL='THE "ACCT" APPLICATION.' ¦
 ¦ ¦
 +--+
 Figure 36. The error screen map definition

CICS Application Programming Primer
Defining the error map

© Copyright IBM Corp. 1984, 1991
3.2.3.2 - 2

 3.2.3.3 Defining the message map

 Finally, there's the message map, which has just a single field, in which
 to send a message to the user.

 We need this map in program ACCT03, to confirm (at the input terminal)
 that a request to print the log of changes to the account file has been
 processed. In other words, it's for the response to an ACLG (log print)
 transaction entered by the supervisor. Figure 37 shows the definition:

 +--+
 ¦ ¦
 ¦ Col Col Col Col ¦
 ¦ 1 9 16 72 ¦
 ¦ * MESSAGE MAP. ¦
 ¦ ACCTMSG DFHMDI SIZE=(24,80),CTRL=FREEKB ¦
 ¦ MSG DFHMDF POS=(1,1),ATTRB=(ASKIP,NORM),LENGTH=79 ¦
 ¦ ¦
 +--+
 Figure 37. The message map definition

 After we've executed:

 +--+
 ¦ ¦
 ¦ MOVE 'PRINTING OF LOG HAS BEEN SCHEDULED' TO MSGO. ¦
 ¦ ¦
 +--+

 we send this message back to the requesting terminal, confirming that the
 requested work has been scheduled. Unlike all the other types of requests
 that make up this application, a request to print the log isn't entered
 through the menu screen. So it isn't appropriate to use the message area
 of the menu screen, which is why we need our separate message map to send
 this message. As you can see, ACCTMSG is simply a one-line map consisting
 of an area for a message.

CICS Application Programming Primer
Defining the message map

© Copyright IBM Corp. 1984, 1991
3.2.3.3 - 1

 3.2.3.4 The map set

 If we put together the four maps that we've now defined (the menu map,
 detail map, error map, and message map), Figure 38 shows the result.

 +--+
 ¦ ¦
 ¦ ACCTSET DFHMSD TYPE=MAP,MODE=INOUT,LANG=COBOL, ¦
 ¦ STORAGE=AUTO,TIOAPFX=YES ¦
 ¦ * MENU MAP. ¦
 ¦ ACCTMNU DFHMDI SIZE=(24,80),CTRL=(PRINT,FREEKB) ¦
 ¦ DFHMDF ... (all macros for the menu map) ¦
 ¦ * ¦
 ¦ * DETAIL MAP. ¦
 ¦ ACCTDTL DFHMDI SIZE=(24,80),CTRL=(FREEKB,PRINT) ¦
 ¦ DFHMDF ... (all macros for the detail map) ¦
 ¦ * ¦
 ¦ * ERROR MAP. ¦
 ¦ ACCTERR DFHMDI SIZE=(24,80),CTRL=FREEKB ¦
 ¦ DFHMDF ... (all macros for the error map) ¦
 ¦ * ¦
 ¦ * MESSAGE MAP. ¦
 ¦ ACCTMSG DFHMDI SIZE=(24,80),CTRL=FREEKB ¦
 ¦ MSG DFHMDF POS=(1,1),ATTRB=(ASKIP,NORM),LENGTH=79 ¦
 ¦ DFHMSD TYPE=FINAL ¦
 ¦ END ¦
 ¦ ¦
 +--+
 Figure 38. All four maps

CICS Application Programming Primer
The map set

© Copyright IBM Corp. 1984, 1991
3.2.3.4 - 1

 3.2.4 Summary

 +--+
 ¦ ¦
 ¦ Item Comments ¦
 ¦ ¦
 ¦ fldname Use only on fields your program will access ¦
 ¦ mapname 1-7 characters, starting alpha, no special characters ¦
 ¦ setname As mapname. Co-ordinate setname with the entry in the ¦
 ¦ list of installed program definitions ¦
 ¦ POS Gives position of attribute byte, not first data character ¦
 ¦ LENGTH Does not include attribute byte. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Summary

© Copyright IBM Corp. 1984, 1991
3.2.4 - 1

 3.2.5 Optional exercise

 For those of you with a terminal, the CICS COBOL sample programs, and a
 running CICS system.

 You can use the CICS command interpreter CECI (not covered in this Primer)
 to see what a map looks like on the screen:

 +--+
 ¦ ¦
 ¦ CECI SEND MAP ('DFH$AGA') MAPONLY ¦
 ¦ ¦
 +--+

 This will display the operator instructions menu for the assembler
 language version of the File A sample that's supplied with CICS as part of
 its own sample transaction set. Don't worry about trying to decipher the
 map now, though--wait until you've read the next topic.

 Alternatively, you can get a rough idea of how the ACCT example
 application behaves by skimming through the EDF session shown in
 "Execution diagnostic facility (EDF)" in topic 5.1.3.1.

CICS Application Programming Primer
Optional exercise

© Copyright IBM Corp. 1984, 1991
3.2.5 - 1

 3.3 Using BMS: more detail

 Subtopics
 3.3.1 Symbolic description maps (DSECT structures)
 3.3.2 Sending a map to a terminal
 3.3.3 Positioning the cursor
 3.3.4 Sending control information without data
 3.3.5 Receiving input from a terminal
 3.3.6 Finding out what key the operator pressed
 3.3.7 Errors on BMS commands
 3.3.8 Other features of BMS

CICS Application Programming Primer
Using BMS: more detail

© Copyright IBM Corp. 1984, 1991
3.3 - 1

 3.3.1 Symbolic description maps (DSECT structures)

 As we said earlier, assembling the macros with TYPE=MAP specified in the
 DFHMSD macro produces the physical map that CICS uses at execution time.
 After you've done this assembly, you do it all over again, this time
 specifying TYPE=DSECT. This second assembly produces the symbolic
 description map, a COBOL structure that you copy into your program. It's
 stored in the copybook library specified in the JCL, and its name in that
 library is the map set name specified in the DFHMSD macro.

 This structure is a set of data definitions for all the display fields on
 the screen, plus information about those fields. It allows your program
 to refer to these display data fields by name and to manipulate the way in
 which they are displayed, without worrying about their size or position on
 the screen.

 Subtopics
 3.3.1.1 Copying the map DSECT into a program
 3.3.1.2 The generated subfields

CICS Application Programming Primer
Symbolic description maps (DSECT structures)

© Copyright IBM Corp. 1984, 1991
3.3.1 - 1

 3.3.1.1 Copying the map DSECT into a program

 To copy the DSECT structures for the maps in a map set into a program, you
 write a COPY statement like this:

 +--+
 ¦ ¦
 ¦ COPY setname. ¦
 ¦ ¦
 +--+

 Here, "setname" is the name of the map set. This COPY statement usually
 appears in WORKING-STORAGE, although later you may find reasons to put it
 in the LINKAGE SECTION. We'll cover only the WORKING-STORAGE situation.
 To get the symbolic descriptions for our maps in a program, we'll write:

 +--+
 ¦ ¦
 ¦ COPY ACCTSET. ¦
 ¦ ¦
 +--+

 Figure 39 shows you the first few lines of what is copied into your
 program as a result of this COPY statement. The part shown is generated
 by the first map in the set, the menu map. It's followed by similar
 structures for the other maps. We've not shown all of them here because
 they're very long and very similar in form. They're all in "The result of
 the SYSPARM=DSECT assembly" in topic A.2.1.

 +--+
 ¦ ¦
 ¦ 01 ACCTMNUI. ¦
 ¦ 02 FILLER PIC X(12). ¦
 ¦ 02 SNAMEML COMP PIC S9(4). ¦
 ¦ 02 SNAMEMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES SNAMEMF. ¦
 ¦ 03 SNAMEMA PICTURE X. ¦
 ¦ 02 SNAMEMI PIC X(12). ¦
 ¦ 02 FNAMEML COMP PIC S9(4). ¦
 ¦ 02 FNAMEMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES FNAMEMF. ¦
 ¦ 03 FNAMEMA PICTURE X. ¦
 ¦ 02 FNAMEMI PIC X(7). ¦
 ¦ 02 REQML COMP PIC S9(4). ¦
 ¦ 02 REQMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES REQMF. ¦
 ¦ 03 REQMA PICTURE X. ¦
 ¦ 02 REQMI PIC X(1). ¦
 ¦ 02 ACCTML COMP PIC S9(4). ¦
 ¦ 02 ACCTMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES ACCTMF. ¦
 ¦ 03 ACCTMA PICTURE X. ¦
 ¦ 02 ACCTMI PIC X(5). ¦
 ¦ 02 PRTRML COMP PIC S9(4). ¦
 ¦ 02 PRTRMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES PRTRMF. ¦
 ¦ . ¦
 ¦ . ¦
 ¦ . ¦
 ¦ ¦
 +--+
 Figure 39. Copying the menu map into your program

 Because we asked for a map to be used for both input and output (by coding
 MODE=INOUT in the DFHMSD macro), the resulting structure has two parts.

CICS Application Programming Primer
Copying the map DSECT into a program

© Copyright IBM Corp. 1984, 1991
3.3.1.1 - 1

 The first part corresponds to the input screen, and is always labelled (at
 the 01 level) with the map name, suffixed by the letter I (for "input").
 The second part corresponds to the output screen, and is labeled with the
 map name followed by the letter O. The output map always redefines the
 input map. If we'd specified MODE=IN, only the input part would have been
 generated, and similarly, MODE=OUT would've produced only the output part.

CICS Application Programming Primer
Copying the map DSECT into a program

© Copyright IBM Corp. 1984, 1991
3.3.1.1 - 2

 3.3.1.2 The generated subfields

 We gave names to eight field definitions in the menu map: SNAMEM, FNAMEM,
 REQM, ACCTM, PRTRM, SUMTTLM, SUMLNM, and MSGM. (One of these, SUMLNM,
 has an OCCURS clause causing it to define six different fields, but we'll
 get to that shortly.) Notice that for each of these map fields, five data
 subfields are generated. Each subfield has a name consisting of the field
 name in the map and a one-letter suffix. (We're using "subfields" to
 distinguish them from the single "map" field from which they originate.)

 We can explain the contents of the subfields better by using a specific
 set of data. Suppose someone has filled in the menu screen, as shown in
 Figure 40:

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: MENU ¦
 ¦ TO SEARCH BY NAME, ENTER: ONLY SURNAME ¦
 ¦ REQUIRED. EITHER ¦
 ¦ SURNAME: SMITH FIRST NAME: J MAY BE PARTIAL. ¦
 ¦ FOR INDIVIDUAL RECORDS, ENTER: ¦
 ¦ PRINTER REQUIRED ¦
 ¦ REQUEST TYPE: ACCOUNT: PRINTER: ONLY FOR PRINT ¦
 ¦ REQUESTS ¦
 ¦ REQUEST TYPES: D = DISPLAY A = ADD X = DELETE ¦
 ¦ P = PRINT M = MODIFY ¦
 ¦ THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT ¦
 ¦ ¦
 +--+

 Figure 40. The menu screen at work

 Ultimately, BMS puts the user's data into our program's WORKING-STORAGE,
 along with some control information. Look at Figure 39 as you study what
 follows.

 The first 12 characters in the DSECT (FILLER) are there because we said
 TIOAPFX=YES when we defined the map set. They're reserved for CICS
 control information, and are of no concern to the application program.

 The first suffix is L, which stands for "length." SNAMEML is the number
 of characters that the user keyed into the SNAMEM field (or, if the
 program put some data there and turned on the modified data tag, the
 length of that data). In the example shown above, SNAMEML will be 5 (the
 length of "SMITH"), FNAMEML will be 1, and REQML, ACCTML and all the
 others will be zero.

 The second suffix is F (meaning "flag"), and this subfield tells you
 whether or not the user changed the corresponding field on the screen by
 erasing it (setting it to nulls with the ERASE EOF key). Such a subfield
 of course always has a length (L subfield) of zero; the flag allows you to
 tell whether it was written on the screen that way or whether the user
 erased something that was there. A flag value of X'80' shows that the
 field was changed by erasing; otherwise the flag value is X'00' (nulls, or
 LOW-VALUE in COBOL). In the filled-in menu screen, all the flag fields
 will contain X'00', because there was no field sent which could be erased.

 Pressing ERASE EOF causes the flag to be set even if the field was empty
 to start with, and whether or not you type in some data before changing
 your mind and erasing the field.

 The flag value becomes important in connection with modifications, as
 we'll see later. The other suffix is I, for "input." This is the actual

CICS Application Programming Primer
The generated subfields

© Copyright IBM Corp. 1984, 1991
3.3.1.2 - 1

 content of the field on the screen, provided that the modified data tag is
 on for the field. The tag will be on if the user changed the field or if
 it was sent with the FSET attribute specified. If the tag isn't on, the
 program doesn't read what's on the screen, and the I subfield will contain
 nulls.

 The I subfield is defined as a character string of the length you specify
 in the map. Because the SNAMEM field in the menu map has a length of 12,
 the SNAMEMI subfield is given a PICTURE value of X(12) in the symbolic map
 description. (BMS provides a parameter called PICIN that you can use in
 the DFHMDF macro for a field that changes the picture generated, however,
 if you wish to do so.)

 If the user doesn't fill in the whole field, as in the case of the two
 name fields here, BMS pads out the field to its maximum length. If a
 field has the NUM attribute, it's filled on the left with leading
 (decimal) zeros; otherwise it's filled on the right with spaces. In this
 screen, then, SNAMEMI would equal "SMITH ", and FNAMEMI would be J--the
 unkeyed part of each field being filled with spaces.

 The remaining two data fields for a map field concern output rather than
 input, even though one of them appears in the "input" part of an INOUT
 map. This is the one suffixed by A (for "attribute"). When you're
 sending a map, and you want a field to have a different set of attributes
 than you specified in the map, you can override the map specification by
 setting this field. For example, suppose the user had typed SM1TH instead
 of SMITH. We'd want to bounce the menu screen straight back to the user
 with the surname field highlighted, to show our displeasure at finding the
 numeric character 1 there. To do so, we'd simply need to move the
 character that represented the attributes we wanted to SNAMEMA.

 The character we need to do this is the one actually used in the 3270
 output data stream. These character representations are quite hard to
 remember, so CICS provides you with a library member containing most of
 the useful combinations, defined with meaningful names. To get access to
 it, you simply put the statement:

 +--+
 ¦ ¦
 ¦ COPY DFHBMSCA ¦
 ¦ ¦
 +--+

 in your WORKING-STORAGE. This generates a list of definitions like the
 one shown in Figure 41:

 +--+
 ¦ ¦
 ¦ 01 DFHBMSCA. ¦
 ¦ 02 DFHBMPEM PICTURE X VALUE IS ' '. ¦
 ¦ 02 DFHBMPNL PICTURE X VALUE IS ' '. ¦
 ¦ 02 DFHBMASK PICTURE X VALUE IS '0'. ¦
 ¦ 02 DFHBMUNP PICTURE X VALUE IS ' '. ¦
 ¦ 02 DFHBMUNN PICTURE X VALUE IS '&'. ¦
 ¦ 02 DFHBMPRO PICTURE X VALUE IS '-'. ¦
 ¦ 02 DFHBMBRY PICTURE X VALUE IS 'H'. ¦
 ¦ 02 DFHBMDAR PICTURE X VALUE IS '<'. ¦
 ¦ 02 DFHBMFSE PICTURE X VALUE IS 'A'. ¦
 ¦ 02 DFHBMPRF PICTURE X VALUE IS '/'. ¦
 ¦ . . . ¦
 ¦ ¦
 +--+
 Figure 41. Attribute values for the IBM 3270 data stream

 You'll find a complete list of these definitions in the CICS/ESA

CICS Application Programming Primer
The generated subfields

© Copyright IBM Corp. 1984, 1991
3.3.1.2 - 2

 Application Programming Reference. The values which appear to be spaces
 are not; they are bit combinations that do not represent a printed
 character, although they are all valid EBCDIC characters. The definitions
 generated (that apply to this Primer) are shown in Figure 42.

 +--+
 ¦ ¦
 ¦ Variable Protection Intensity Modified ¦
 ¦ Data Tag ¦
 ¦ DFHBMUNP Unprotected Normal Off ¦
 ¦ DFHBMUNN Numeric Normal Off ¦
 ¦ DFHBMPRO Protected Normal Off ¦
 ¦ DFHBMASK Autoskip Normal Off ¦
 ¦ DFHBMBRY Unprotected Bright Off ¦
 ¦ DFHPROTI Protected Bright Off ¦
 ¦ DFHBMASB Autoskip Bright Off ¦
 ¦ DFHBMDAR Unprotected Non-display Off ¦
 ¦ DFHPROTN Protected Non-display Off ¦
 ¦ DFHBMFSE Unprotected Normal On ¦
 ¦ DFHUNNUM Numeric Normal On ¦
 ¦ DFHBMPRF Protected Normal On ¦
 ¦ DFHBMASF Autoskip Normal On ¦
 ¦ DFHUNIMD Unprotected Bright On ¦
 ¦ DFHUNINT Numeric Bright On ¦
 ¦ DFHUNNOD Unprotected Non-display On ¦
 ¦ DFHUNNON Numeric Non-display On ¦
 ¦ ¦
 +--+
 Figure 42. Attribute values used in the Primer

 Referring back to our example, to highlight the surname we:

 +--+
 ¦ ¦
 ¦ MOVE DFHBMBRY TO SNAMEMA ¦
 ¦ ¦
 +--+

 before sending the map back to the terminal. We're using DFHBMBRY, rather
 than one of the other "bright" variables because, unlike some other
 high-intensity values, DFHBMBRY leaves the field unprotected, so the user
 will be able to rekey the name properly. It also sets the modified data
 tag off (a choice we'll discuss later).

 The last of the five data subfields for a map field is named with a suffix
 of O (for "output"). It's the data that you want displayed in the map
 field when you send it. Like the input subfield, the output subfield
 defaults to a character string of the length specified in the map; you can
 specify some other PICTURE by using the PICOUT parameter in the DFHMDF
 macro that defines the field. For programming interface information on
 PICOUT and PICIN, see the section on the DFHMDF macro in the CICS/ESA
 Application Programming Reference.

 Subtopics
 3.3.1.2.1 Fields defined with the OCCURS= parameter
 3.3.1.2.2 Some things to keep in mind about these DSECTs

CICS Application Programming Primer
The generated subfields

© Copyright IBM Corp. 1984, 1991
3.3.1.2 - 3

 3.3.1.2.1 Fields defined with the OCCURS= parameter

 The only field on the screen that has generated a slightly different
 structure from what we've just described is the SUMLNM field, and this is
 because we've said it OCCURS six times.

 Have another look at the DSECT. This time, you'll need to look at the
 full version, in "The result of the SYSPARM=DSECT assembly" in
 topic A.2.1.

 For the SUMLNM field there's another level to the COBOL structure, a group
 named SUMLNMD, with an OCCURS value of 6. This group contains the
 SUMLNML, SUMLNMF, and SUMLNMI fields, which represent the length, flag
 value, and input for SUMLNM, just as you'd expect. The attribute field
 appears in the output section, where an extra group level is also
 introduced. This one's called DFHMS1 (an arbitrarily generated name); it,
 too, OCCURS six times and contains the SUMLNMA and SUMLNMO fields. So you
 refer to the attribute value of the fourth occurrence of this field as
 SUMLNMA(4), the input for the second occurrence as SUMLNMI(2), and so on.

CICS Application Programming Primer
Fields defined with the OCCURS= parameter

© Copyright IBM Corp. 1984, 1991
3.3.1.2.1 - 1

 3.3.1.2.2 Some things to keep in mind about these DSECTs

 � Because of the way the input and output parts of the map structur
 overlay each other, the -I and the -O subfields for a given map field
 always redefine each other. That is, SNAMEMI and SNAMEMO occupy the
 same storage, FNAMEMI and FNAMEMO do also, and so on. This turns out
 to be convenient in coding.

 � The attribute and flag subfields occupy the same space REQMF overlays
 REQMA, ACCTMF overlays ACCTMA, and so on). You don't have to worry
 about removing these flags when you're sending output, however. Since
 the two input flag values (X'80' and X'00') don't represent acceptable
 output attribute byte values, BMS can distinguish on output between a
 leftover flag and a new attribute.

 � When you write a map, you don't have to put anything in the lengt
 field. BMS knows how long the field is from the information in the
 physical map. The only time you use the length field for an output
 field is to set the cursor position, a matter we'll explain shortly.

CICS Application Programming Primer
Some things to keep in mind about these DSECTs

© Copyright IBM Corp. 1984, 1991
3.3.1.2.2 - 1

 3.3.2 Sending a map to a terminal

 Now that we've defined our maps, we can think about writing them to the
 terminal.

 The terminal to which we'll write, of course, is the one that sent the
 input and thereby invoked the transaction. This is the only terminal to
 which a transaction can write directly, as mentioned in "Transactions and
 terminals" in topic 2.9.3.

 Subtopics
 3.3.2.1 The SEND MAP command
 3.3.2.2 Using SEND MAP in the ACCT example

CICS Application Programming Primer
Sending a map to a terminal

© Copyright IBM Corp. 1984, 1991
3.3.2 - 1

 3.3.2.1 The SEND MAP command

 The SEND MAP command writes formatted output to a terminal. It looks like
 this:

 +--+
 ¦ ¦
 ¦ EXEC CICS SEND MAP(mapname) MAPSET(setname) ¦
 ¦ option option ... END-EXEC. ¦
 ¦ ¦
 +--+

 mapname
 is the name of the map you want to send. It's required. Put it in
 quotes if it's a literal.

 setname
 is the name of the map set that contains the mapname. Put the name in
 quotes if it's a literal. The map set name is needed unless it's the
 same as the map name. Code it for documentation purposes, anyway.

 Note: It's inadvisable to use the same name for the map and the map
 set. (If you generate the map set with the suffix for ALL of
 3270--the default--the map suffix used is a blank. This means the map
 name and map set name are identical, and causes the subsequent
 assembly to fail because two labels in the code are the same.)

 option
 There are a number of options that you can specify; they affect what's
 sent and how it is sent. Except where noted, you can use any
 combination of them. The possibilities are:

 MAPONLY
 means that no data from your program is to be merged into the map;
 only the information in the map is transmitted. In our example
 application, we'll use this option when we send the menu map the
 first time, because we'll have no information to put into it.

 DATAONLY
 is the logical opposite of MAPONLY. You use it to modify the
 variable data in a display that's already been created. Only the
 data from your program is sent to the screen. The constants in
 the map aren't sent; so you can use this option only after you've
 sent the same map without using the DATAONLY option. We'll see an
 example when we send the results of a name search to the terminal
 in program ACCT01.

 ERASE
 causes the entire screen to be erased before what you're sending
 is shown.

 ERASEAUP
 (erase all unprotected fields), in contrast to ERASE, causes just
 the unprotected fields on the screen (those with either the UNPROT
 or NUM attribute) to be erased before your output is placed on the
 screen. It's most often used in preparing to read new data from a
 map that's already on the screen. Don't use it at the same time
 as ERASE; ERASE makes ERASEAUP meaningless.

 FRSET
 (flag reset) turns off the modified data tag in the attribute
 bytes for all the fields on the screen before what you're sending
 is placed there. (Once set on, whether by the user or the
 program, a modified data tag stays on until turned off explicitly,
 even over several transmissions of the screen. It can be turned

CICS Application Programming Primer
The SEND MAP command

© Copyright IBM Corp. 1984, 1991
3.3.2.1 - 1

 off by the program sending a new attribute byte, an FRSET option,
 or an ERASE, or an ERASEAUP, or by the user pressing the CLEAR
 key.) Like ERASEAUP, the FRSET option is most often used in
 preparing to read new data from a map already on the screen. It
 can also reduce the amount of data re-sent on an error cycle, as
 we'll explain in coding our example.

 CURSOR
 can be used in two ways to position the cursor. If you specify a
 value after CURSOR, it's the relative position on the screen where
 the cursor is to be put. Use a single number, such as CURSOR(81)
 for line 2, column 2 (counting starts at zero and goes across the
 lines, which on an IBM 3270-system display Model 2 are 80
 characters wide). Why column 2? Because the attribute byte goes
 in column 1, and we want the cursor to appear under the first
 character of data.

 Some people prefer to put the attribute at the end of the previous
 line (for example, POS=(1,80)) to let the data in the field start
 in screen column 1.

 Alternatively, you can specify CURSOR without a value, and use the
 length subfields in the output map to show which field is to get
 the cursor. See "Positioning the cursor" in topic 3.3.3. In
 general, we recommend you to position the cursor in this second
 manner, rather than the first, so that changes in the map layout
 don't lead to changes in the program. Both kinds of CURSOR
 specification override the cursor placement specified in the map.

 ALARM
 means the same thing in the SEND command as it does in the DFHMSD
 and DFHMDI macros for the map: it causes the audible alarm to be
 sounded. The alarm will sound if you specify ALARM in either the
 map definition or the SEND command.

 FREEKB
 likewise means the same thing as it does in the map definition:
 the keyboard is unlocked if you specify FREEKB in either the map
 or the SEND command.

 PRINT
 allows the output of a SEND command to be printed on a printer,
 just as it does in the map definition. It is in force if
 specified in either the map or the command.

 FORMFEED
 causes the printer to restore the paper to the top of the next
 page before the output is printed. This specification has no
 effect on maps sent to a display, to printers without the features
 which allow sensing the top of the form, or to printers for which
 the "formfeed" feature is not specified in the CICS Terminal
 Control Table.

CICS Application Programming Primer
The SEND MAP command

© Copyright IBM Corp. 1984, 1991
3.3.2.1 - 2

 3.3.2.2 Using SEND MAP in the ACCT example

 The first time we need to send a map to a terminal occurs in program
 ACCT00, where we display the menu screen. The command we need is:

 +--+
 ¦ ¦
 ¦ EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') MAPONLY ¦
 ¦ ERASE FREEKB END-EXEC. ¦
 ¦ ¦
 +--+

 This is a very simple situation. Because we don't have any variable data
 to put in the map, we can use the MAPONLY option, and we don't have to
 worry about preparing variable data for merging with the physical map.

 If we were sending some data to the screen with the map, we could not use
 MAPONLY, and CICS would expect the data to be used for filling in the map
 to be in a structure whose name is the map name (as specified in the MAP
 option) suffixed with the letter O. So, when we issue the command:

 +--+
 ¦ ¦
 ¦ EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') ¦
 ¦ END-EXEC. ¦
 ¦ ¦
 +--+

 CICS expects the data for the map to be in a structure within the program
 (of exactly the sort generated by the DSECT assembly) named ACCTMNUO.
 This structure is usually in your WORKING-STORAGE Section, but it might be
 in a LINKAGE area instead. (There's an option on the SEND MAP command
 that lets you specify a data structure other than the one assumed by CICS.
 We won't cover it here, but you can find guidance on using it in the
 CICS/ESA Application Programming Guide. under "Sending Data to a
 Display.")

 Let's look at the more common situation in which we're merging program
 data into the map. In program ACCT01, we're supposed to build a detail
 display map for one record and send it to the screen. Since the contents
 of the screen vary somewhat with the type of request, and we're using the
 same screen for all types, this will entail the following:

 1. Putting the appropriate title on the map (add, modify, or whatever it
 happens to be).

 2. Moving the data from the file record to the symbolic map (except for
 adds).

 3. Adjusting the attribute bytes. The input fields must be protected in
 a display or delete operation; the "verify" field must be unprotected
 for deletes, and the titles at the bottom of the screen must be made
 nondisplay for adds.

 4. Putting the appropriate user instructions (about what to do next) into
 the message area.

 5. Putting the cursor in the right place.

 Figure 43 shows how the necessary code might look.

 +--+
 ¦ ¦
 ¦ Col Col ¦
 ¦ 7 12 ¦

CICS Application Programming Primer
Using SEND MAP in the ACCT example

© Copyright IBM Corp. 1984, 1991
3.3.2.2 - 1

 ¦ BUILD-MAP. ¦
 ¦ IF REQC = 'X' MOVE 'DELETION' TO TITLEDO, ¦
 ¦ MOVE -1 TO VFYDL, MOVE DFHBMUNP TO VFYDA, ¦
 ¦ MOVE 'ENTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL' ¦
 ¦ TO MSGDO, ¦
 ¦ ELSE MOVE -1 TO SNAMEDL. ¦
 ¦ IF REQC = 'A' MOVE 'NEW RECORD' TO TITLEDO, ¦
 ¦ MOVE DFHPROTN TO STATTLDA, LIMTTLDA, HISTTLDA, ¦
 ¦ MOVE ACCTC TO ACCTDI, ¦
 ¦ MOVE 'FILL IN AND PRESS "ENTER," OR "CLEAR" TO CANCEL' ¦
 ¦ TO MSGDO, ¦
 ¦ GO TO SEND-DETAIL. ¦
 ¦ IF REQC = 'M' MOVE 'RECORD CHANGE' TO TITLEDO, ¦
 ¦ MOVE 'MAKE CHANGES AND "ENTER" OR "CLEAR" TO CANCEL' ¦
 ¦ TO MSGDO, ¦
 ¦ ELSE IF REQC = 'D', ¦
 ¦ MOVE 'PRESS "CLEAR" OR "ENTER" WHEN FINISHED' ¦
 ¦ TO MSGDO. ¦
 ¦ MOVE CORRESPONDING ACCTREC TO ACCTDTLO. ¦
 ¦ MOVE CORRESPONDING PAY-HIST (1) TO PAY-LINE. ¦
 ¦ MOVE PAY-LINE TO HIST1DO. ¦
 ¦ MOVE CORRESPONDING PAY-HIST (2) TO PAY-LINE. ¦
 ¦ MOVE PAY-LINE TO HIST2DO. ¦
 ¦ MOVE CORRESPONDING PAY-HIST (3) TO PAY-LINE. ¦
 ¦ MOVE PAY-LINE TO HIST3DO. ¦
 ¦ IF REQC = 'M' GO TO SEND-DETAIL, ¦
 ¦ ELSE IF REQC = 'P' GO TO PRINT-PROC. ¦
 ¦ MOVE DFHBMASK TO ¦
 ¦ SNAMEDA, FNAMEDA, MIDA, TTLDA, TELDA, ADDR1DA, ¦
 ¦ ADDR2DA, ADDR3DA, AUTH1DA, AUTH2DA, AUTH3DA, ¦
 ¦ AUTH4DA, CARDSDA, IMODA, IDAYDA, IYRDA, RSNDA, ¦
 ¦ CCODEDA, APPRDA, SCODE1DA, SCODE2DA, SCODE3DA. ¦
 ¦ * SEND THE RECORD DETAIL MAP TO THE TERMINAL. ¦
 ¦ SEND-DETAIL. ¦
 ¦ EXEC CICS SEND MAP('ACCTDTL') MAPSET('ACCTSET') ERASE FREEKB ¦
 ¦ CURSOR END-EXEC. ¦
 ¦ ¦
 +--+
 Figure 43. Building the detail display map

 Here are some explanatory notes.

 REQC (request code) was moved to a working-storage field earlier in the
 program. It holds the user's "request code."

 What is happening in this code is as follows:

 � If the user request is to delete a record IF REQC = X):

 1. The map title is changed from its default to DELETION.

 2. The cursor is placed under the "verify" field (MOVE -1 TO VFYDL)
 by a technique we'll explain shortly.

 3. The attribute byte for that field is changed from its map default
 of autoskip to unprotected.

 4. Instructions for what to do next are put in the message area.

 � The cursor is placed under the surname field for all other types o
 user requests (ELSE MOVE -1 to SNAMEDL).

 � If the request is for an addition

CICS Application Programming Primer
Using SEND MAP in the ACCT example

© Copyright IBM Corp. 1984, 1991
3.3.2.2 - 2

 1. The title is made NEW RECORD.
 2. The titles at the bottom of the screen are given a nondisplay
 attribute.
 3. The account field (from the request input) is placed in the output
 map.
 4. Instructions are put into the message area.

 � If the request is a modification, the title and the message area ar
 set appropriately.

 � If the request is a display, instructions for what to do after th
 display are put in the message area.

 � For all types of requests except adds, the display is built from th
 record on file (MOVE CORRESPONDING ACCTREC ... through ... MOVE
 PAY-LINE TO HIST3DO).

 � If the request is to print a record, control goes to code a
 PRINT-PROC that will do the special processing required to write to a
 terminal other than the input terminal.

 � If the request is to display or delete, the attribute bytes of all th
 data fields that can be entered or changed on an addition or a
 modification are changed to autoskip. This makes it clear to users
 that they cannot change these fields in the current transaction.

 � For all request types except printing, the map is sent to the inpu
 terminal.

 We need to use a somewhat different type of SEND MAP command later in the
 same program, when we have to redisplay the input (menu) map because of
 some error, or to put a message on the screen. Because the map is already
 on the screen, it is unnecessary (and wasteful of line capacity) to send
 what is already there again. So we use the DATAONLY option, and we do not
 erase the screen:

 +--+
 ¦ ¦
 ¦ EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') ¦
 ¦ CURSOR DATAONLY FRSET ERASEAUP FREEKB END-EXEC. ¦
 ¦ ¦
 +--+

 We also specify FRSET in this command. This prevents fields that were
 entered during the previous terminal interaction, and not rekeyed, from
 being sent on the next transmission. That is, only fields that the user
 changes (probably because of an error) will be transmitted the next time
 the terminal sends. This reduces line transmission, but it requires the
 transaction to save the input from the previous execution for the next
 one. We've a bit more to say about how to use FRSET in the notes that
 accompany Line 163 of the program source code of ACCT01. You'll find
 these in "Program ACCT01: initial request processing" in topic 2.10.2.

CICS Application Programming Primer
Using SEND MAP in the ACCT example

© Copyright IBM Corp. 1984, 1991
3.3.2.2 - 3

 3.3.3 Positioning the cursor

 We said earlier how vital it is to put the cursor where the user will want
 to start entering data on the screen. One small piece of source code from
 you can save hundreds of users a couple of seconds each and every time
 they use your application.

 In the first SEND MAP example, we relied on the cursor position specified
 in the map definition. This puts the cursor under the first data position
 of the surname field, which is where we want it. In the second and third
 examples, however, we don't necessarily want the cursor where the map
 definition puts it. In the second example, where we're using the detail
 map, we want to use the map default (the SNAMED field) for adds and
 modifies. For display operations, it doesn't much matter, since there are
 no fields into which the user may key. For deletes, however, the cursor
 should be under the verify (VFY) field. In the third example, we want the
 cursor under the first field where the user entered incorrect information.

 As we said, there are two ways to override the position specified by the
 IC specification in the map definition:

 1. You can specify a screen position, relative to line 1, column 1 (that
 is, position 0) in the CURSOR option on the SEND MAP command (the
 procedure we advised against earlier).

 2. You can show that you want the cursor placed under a particular field
 by setting the associated length subfield to minus one (-1) and
 specifying CURSOR without a value in your SEND MAP command. This
 causes BMS to place the cursor under the first data position of the
 field with this length value. If several fields are flagged by this
 special length subfield value, the cursor is placed under the first
 one (as opposed to the last one with ATTRB=IC).

 The second procedure is called symbolic cursor positioning, and is a very
 handy method of positioning the cursor for, say, correcting errors. As
 the program checks the input, it sets the length subfield to -1 for every
 field found to be in error. Then, when the map is redisplayed for
 corrections, BMS automatically puts the cursor under the first field that
 the user will have to correct.

 To place the cursor under the verify field on a delete, therefore, all we
 have to do is:

 +--+
 ¦ ¦
 ¦ MOVE -1 TO VFYDL ¦
 ¦ ¦
 +--+

 and specify CURSOR in our SEND MAP command.

CICS Application Programming Primer
Positioning the cursor

© Copyright IBM Corp. 1984, 1991
3.3.3 - 1

 3.3.4 Sending control information without data

 In addition to the SEND MAP command, there is another terminal output
 command called SEND CONTROL. It allows you to send control information to
 the terminal without sending any data. That is, you can open the
 keyboard, erase all the unprotected fields, and so on, without sending a
 map.

 Subtopics
 3.3.4.1 The SEND CONTROL command

CICS Application Programming Primer
Sending control information without data

© Copyright IBM Corp. 1984, 1991
3.3.4 - 1

 3.3.4.1 The SEND CONTROL command

 The SEND CONTROL command looks like this:

 +--+
 ¦ ¦
 ¦ EXEC CICS SEND CONTROL option option ... END-EXEC. ¦
 ¦ ¦
 +--+

 The options you can use are the same as on a SEND MAP command: ERASE,
 ERASEAUP, FRSET, ALARM, FREEKB, CURSOR, PRINT, and FORMFEED.

 There's an example of this command in program ACCT01. The terminal user
 has just cleared the screen (of the menu map) to indicate that he or she
 wants to exit from the control of the online account application. The
 program is supposed to open the keyboard before returning control to CICS.

 Normally, you would do this when writing a message to the terminal. But
 since we're not doing that at this point, we must unlock the keyboard by
 an explicit command, instead. The command is:

 +--+
 ¦ ¦
 ¦ EXEC CICS SEND CONTROL FREEKB END-EXEC. ¦
 ¦ ¦
 +--+

 If we didn't know the user had just cleared the screen, we'd probably want
 to add the ERASE option to the command above, so that the user would be
 all ready to start a new transaction.

CICS Application Programming Primer
The SEND CONTROL command

© Copyright IBM Corp. 1984, 1991
3.3.4.1 - 1

 3.3.5 Receiving input from a terminal

 Subtopics
 3.3.5.1 The RECEIVE MAP command

CICS Application Programming Primer
Receiving input from a terminal

© Copyright IBM Corp. 1984, 1991
3.3.5 - 1

 3.3.5.1 The RECEIVE MAP command

 When you want to receive input from a terminal, you use the RECEIVE MAP
 command, which looks like this:

 +--+
 ¦ ¦
 ¦ EXEC CICS RECEIVE MAP(mapname) MAPSET(setname) ¦
 ¦ END-EXEC. ¦
 ¦ ¦
 +--+

 The MAP and MAPSET parameters have exactly the same meaning as for the
 SEND MAP command. MAP is required and so is MAPSET, unless it is the same
 as the map name. Again, it does no harm to include it for documentation
 purposes.

 We're showing you a form of the RECEIVE MAP command that does not specify
 where the input data is to be placed. This causes CICS to bring the data
 into a structure whose name is the map name suffixed with the letter I,
 which is assumed to be in either your WORKING-STORAGE or LINKAGE Section.

 For example, program ACCT02 requires that we receive the filled-in detail
 map. The command to do this:

 +--+
 ¦ ¦
 ¦ EXEC CICS RECEIVE MAP('ACCTDTL') MAPSET('ACCTSET') ¦
 ¦ RESP(RESPONSE) END-EXEC. ¦
 ¦ ¦
 +--+

 will bring the input data into a data area named ACCTDTLI, which is
 expected to have exactly the format produced by the DSECT for map ACCTDTL
 (We'll explain RESP(RESPONSE) in "Errors and exceptional conditions" in
 topic 3.8.)

 As soon as the map is read in, we have access to all the data subfields
 associated with the map fields. For example, we can test whether the user
 made any entry in the request field of the menu map:

 +--+
 ¦ ¦
 ¦ IF REQML > 0, MOVE ... ¦
 ¦ ¦
 +--+

 Or we could examine the input in that field:

 +--+
 ¦ ¦
 ¦ IF REQMI = 'A' GO TO ... ¦
 ¦ ¦
 +--+

 Note: Although it generally will not affect your program logic, you
 should be aware that the first time in a transaction that you use the
 RECEIVE MAP command, it has a slightly different effect from subsequent
 times. Since it is input from the terminal that causes a transaction to
 get started in the first place, CICS has always read the first input by
 the time the transaction starts to execute. Therefore, on this first
 RECEIVE MAP command, CICS simply arranges the input it already has into
 the format dictated by your map, and puts the results in a place
 accessible to your program.

CICS Application Programming Primer
The RECEIVE MAP command

© Copyright IBM Corp. 1984, 1991
3.3.5.1 - 1

 On subsequent RECEIVE MAP commands in the same task, CICS actually waits
 for and reads input from the terminal. These subsequent RECEIVE MAPs are
 what make a task conversational. By contrast, a pseudoconversational task
 executes at most one RECEIVE MAP command.

CICS Application Programming Primer
The RECEIVE MAP command

© Copyright IBM Corp. 1984, 1991
3.3.5.1 - 2

 3.3.6 Finding out what key the operator pressed

 There is another technique you may wish to use for processing input from a
 terminal. As we pointed out in "3270 input data stream" in topic 2.2.4,
 the 3270 input stream contains an indication of what attention key caused
 the input to be transmitted (ENTER, CLEAR, or one of the PA or PF keys).

 You can use the EIBAID field to cause your program to change the flow of
 control in your program based on which of these attention keys was used.
 (AID stands for attention identifier.)

 Subtopics
 3.3.6.1 The EXEC Interface Block (EIB)

CICS Application Programming Primer
Finding out what key the operator pressed

© Copyright IBM Corp. 1984, 1991
3.3.6 - 1

 3.3.6.1 The EXEC Interface Block (EIB)

 Before we explain how to find out what key was used to send the input, we
 need to introduce one CICS control block. This is the EIB, which stands
 for EXEC Interface Block, and it is the only one that you need to know
 anything about for the type of applications described in this Primer.

 You can write programs without using even this one, but it contains
 information that can be very useful and is worth knowing about.

 There is one EIB for each task, and it exists for the duration of the
 task. Every program that executes as part of the task has access to the
 same EIB. You can address the fields in it directly in your COBOL
 program, without any preliminaries. You should only read these fields,
 however, not try to modify them. All of the EIB fields are discussed in
 detail in the CICS/ESA Application Programming Reference manual, but the
 ones that apply to the commands and options in this Primer are:

 EIBAID
 The attention identifier (AID), which tells you which keyboard key was
 used to transmit the last input. This field is one byte long ("PIC
 X(1)"). It is encoded as shown in "AID byte definitions" in
 topic 3.3.6.1.1.

 EIBCALEN
 The length of the communication area (COMMAREA) that has been passed
 to this program, either from a program that invoked it using a CICS
 command (LINK or XCTL--see "Commands for passing program control" in
 topic 3.6.2), or from a previous transaction in a pseudoconversational
 sequence. It is in halfword binary form (PIC S9(4) COMP). See
 "Program control" in topic 3.6 and "Saving data and communicating
 between transactions" in topic 3.5 for more information on COMMAREA.

 EIBCPOSN
 The position of the cursor at the time of the last input command, for
 3270-like devices only. This position is expressed as a single number
 relative to position zero on the screen (row 1, column 1), in the same
 way that you specify the CURSOR parameter on a SEND MAP command. It's
 also in halfword binary form ("PIC S9(4) COMP").

 After a RECEIVE MAP command, your program can find the inbound cursor
 position by inspecting the value held in EIBCPOSN.

 EIBDATE
 The date on which the current task started, in Julian form, with two
 leading zeros. The COBOL "PICTURE" for the field is "S9(7) COMP-3",
 and the format is: "00YYDDD+".

 EIBDS
 The name of the last file used in a file command (for example, read a
 record, write a record). This field is eight characters long ("PIC
 X(8)") and is the value in the "FILE" parameter of the most recent
 file command.

 EIBFN
 A code indicating the last command that was issued by the task, in
 "PIC X(2)" form. The first byte of this two-byte field indicates the
 type of command. File commands have a code of X'06', BMS commands are
 18, and so on. The second byte tells which particular command: 0602
 means READ, 0604 means WRITE, and so on. A full list of the codes
 appears in the CICS/ESA Application Programming Reference , and the
 subset that applies to the command and option combinations we use also
 appears in "Program ACCT04: error processing" in topic 2.10.5. The
 codes involved appear in the table HEX-LIST (line 27). in "Program
 ACCT04: error processing" in topic 2.10.5 of this Primer. The codes

CICS Application Programming Primer
The EXEC Interface Block (EIB)

© Copyright IBM Corp. 1984, 1991
3.3.6.1 - 1

 involved appear in the table HEX-LIST (line 27).

 EIBRCODE
 The response code resulting from executing the last command. This is
 a six-byte field ("PIC X(6)"), but for the command types covered in
 this Primer, you need concern yourself only with the first byte. The
 HEX-LIST table we mentioned above also contains a list of all the
 codes that can result from our subset of commands and options. The
 CICS/ESA Application Programming Reference contains a full list of the
 possibilities.

 EIBRESP
 This contains a number corresponding to the condition that has been
 raised. DFHRESP, which you'll see in "Program ACCT04: error
 processing" in topic 2.10.5, contains the numbers and their meanings.
 There is a complete list of these numbers in the CICS/ESA Application
 Programming Reference.

 EIBRESP2
 This contains more detailed information that may help explain why the
 RESP condition has been raised. This field contains meaningful values
 (as decimal numbers) for specific commands. Values relating to
 general-usage programming interface commands such as INQUIRE, SET, and
 JES spooler commands are in the CICS/ESA System Programming Reference.
 Values relating to product-sensitive programming interface commands
 are in the in the CICS/ESA Application Programming Reference.

 EIBRSRCE
 The name of the resource used in the most recent command that used
 such a resource. For file commands, this value is the FILE parameter,
 so that EIBRSRCE has the same value as EIBDS after such a command.
 For temporary storage commands, it is the name of the queue (the QUEUE
 parameter), and for BMS commands it is the name of the terminal (the
 four-character name of the input terminal, or EIBTRMID in the context
 of this Primer). Eight characters are provided for this information
 ("PIC X(8)"), although some names, like those of terminals, fill only
 the first four positions.

 EIBTASKN
 The task number, as a seven-digit packed decimal number ("PIC S9(7)
 COMP-3"). CICS assigns a sequential number to each task it executes,
 and this number is used to identify entries for the task in the Trace
 Table (for further guidance, see the sections on dump and trace in the
 CICS/ESA Problem Determination Guide).

 EIBTIME
 The time at which the current task started, also in "PIC S9(7) COMP-3"
 form, with one leading zero: "0HHMMSS+".

 EIBTRMID
 The name of the terminal associated with the task (the input terminal,
 usually, or sometimes a printer, as in our AC03 and AC05 transaction
 types). This name is four characters long, and the COBOL "PICTURE" is
 "X(4)".

 EIBTRNID
 The transaction identifier of the current task, four characters long
 ("PIC X(4)").

 Subtopics
 3.3.6.1.1 AID byte definitions

CICS Application Programming Primer
The EXEC Interface Block (EIB)

© Copyright IBM Corp. 1984, 1991
3.3.6.1 - 2

 3.3.6.1.1 AID byte definitions

 Getting back to the attention identifier, we can also tell what key was
 used to send the input by looking at the EIBAID field, as noted above.

 When a transaction is started, EIBAID is set according to the key used to
 send the input that caused the transaction to get started. It retains
 this value through the first RECEIVE command, which only formats the input
 already read, until after a subsequent RECEIVE, at which time it is set to
 the value used to send that input from the terminal.

 EIBAID is one byte long and holds the actual attention identifier value
 used in the 3270 input stream. As it is hard to remember these values and
 hard to understand code containing them, it is a good idea to use symbolic
 rather than absolute values when testing EIBAID. CICS provides you with a
 precoded set which you simply copy into your program by writing:

 +--+
 ¦ ¦
 ¦ COPY DFHAID ¦
 ¦ ¦
 +--+

 Figure 44 shows some of the definitions this brings into your program:

 +--+
 ¦ ¦
 ¦ 01 DFHAID. ¦
 ¦ 02 DFHNULL PIC X VALUE IS ' '. ¦
 ¦ 02 DFHENTER PIC X VALUE IS ''''. ¦
 ¦ 02 DFHCLEAR PIC X VALUE IS '_'. ¦
 ¦ 02 DFHCLRP PIC X VALUE IS ' '. ¦
 ¦ 02 DFHPEN PIC X VALUE IS '='. ¦
 ¦ 02 DFHOPID PIC X VALUE IS 'W'. ¦
 ¦ 02 DFHMSRE PIC X VALUE IS 'X'. ¦
 ¦ 02 DFHSTRF PIC X VALUE IS ' '. ¦
 ¦ 02 DFHTRIG PIC X VALUE IS '"'. ¦
 ¦ 02 DFHPA1 PIC X VALUE IS '%'. ¦
 ¦ 02 DFHPA2 PIC X VALUE IS '>'. ¦
 ¦ 02 DFHPA3 PIC X VALUE IS ','. ¦
 ¦ 02 DFHPF1 PIC X VALUE IS '1'. ¦
 ¦ 02 DFHPF2 PIC X VALUE IS '2'. ¦
 ¦ . . . ¦
 ¦ . . . ¦
 ¦ 02 DFHPF23 PIC X VALUE IS '.'. ¦
 ¦ 02 DFHPF24 PIC X VALUE IS '<'. ¦
 ¦ ¦
 +--+
 Figure 44. The standard attention identifier values

 DFHENTER is the ENTER key, DFHPA1 is Program Access (PA) Key 1, DFHPF1 is
 Program Function Key 1, and so on. As in the case of the DFHBMSCA macro,
 any values above that appear to be spaces are not; they correspond to bit
 patterns for which there is no printable character.

CICS Application Programming Primer
AID byte definitions

© Copyright IBM Corp. 1984, 1991
3.3.6.1.1 - 1

 3.3.7 Errors on BMS commands

 As we cover each group of commands in this Primer, we'll discuss what can
 go wrong. We'll classify errors according to the categories described in
 "Handling errors and exceptional conditions" in topic 2.9.2, and suggest
 how you might want to handle them in your coding. Later, in "Passing
 control to a specified label" in topic 3.8.2, we'll explain how to branch
 when an error occurs.

 There are two types of errors that can occur in the subset of BMS commands
 and map options that we've covered here. They are known as MAPFAIL and
 INVMPSZ. (Others may occur if you use the additional features of BMS
 outlined in the next section. They are all listed in the CICS/ESA
 Application Programming Reference .)

 Subtopics
 3.3.7.1 MAPFAIL errors
 3.3.7.2 INVMPSZ errors

CICS Application Programming Primer
Errors on BMS commands

© Copyright IBM Corp. 1984, 1991
3.3.7 - 1

 3.3.7.1 MAPFAIL errors

 MAPFAIL occurs on a RECEIVE MAP command when there are no fields at all on
 the screen for BMS to map for you. This will happen if you issue a
 RECEIVE MAP after the user has used one of the "short-read" keys (CLEAR or
 a program access key) that we discussed in "3270 input data stream" in
 topic 2.2.4. It can also occur even if the user does not use a short-read
 key. If, for example, you send a screen to be filled in (without any
 fields in which the map or the program turns on the modified-data tag),
 and the user presses the ENTER key or one of the program function keys
 without keying any data into the screen, you'll get MAPFAIL.

 The reason for the failure is essentially the same in both cases. With
 the short read, the terminal does not send any screen data; hence no
 fields. In the other case, there are no fields to send, because no
 modified-data tags have been turned on.

 MAPFAIL is almost invariably a user error (or an expected program
 condition). It may occur on almost any RECEIVE MAP, and therefore you
 should handle it explicitly in the program. For instance, Figure 45 shows
 the code that the example application contains to deal with a MAPFAIL that
 occurs when the menu map is received:

 +--+
 ¦ ¦
 ¦ MENU-RESEND. ¦
 ¦ MOVE REQC TO REQMI. ¦
 ¦ MOVE ACCTC TO ACCTMI. ¦
 ¦ MOVE PRTRC TO PRTRMI. ¦
 ¦ MOVE SNAMEC TO SNAMEMI. ¦
 ¦ MOVE FNAMEC TO FNAMEMI. ¦
 ¦ MOVE MSG-TEXT (MSG-NO) TO MSGMO. ¦
 ¦ EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') ¦
 ¦ CURSOR DATAONLY FRSET ERASEAUP FREEKB END-EXEC. ¦
 ¦ . . . ¦
 ¦ NO-MAP. ¦
 ¦ MOVE 2 TO MSG-NO, MOVE -1 TO SNAMEML, GO TO MENU-RESEND. ¦
 ¦ . . . ¦
 ¦ NEW-MENU. ¦
 ¦ EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') ¦
 ¦ FREEKB ERASE END-EXEC. ¦
 ¦ ¦
 +--+
 Figure 45. Code to handle MAPFAIL

 This code is executed if the MAPFAIL condition is raised because the test
 of the RESP value brings us here. It first tests what key was used to
 send. (We know it isn't the CLEAR key, having checked that point earlier,
 to find out if the user wanted to "escape" from the current procedure.)
 If it was one of the other short-read keys, or if it was ENTER without any
 data, we know that the screen is still intact and we simply write a
 message into the message area of the screen reminding the user to use only
 ENTER or CLEAR, and to key some data in unless he or she is using the
 CLEAR key to escape. If the failure has some other cause, the program
 writes the whole map back to the screen, including a similar message, to
 ensure that the user is looking at a good screen and knows what to do
 next.

CICS Application Programming Primer
MAPFAIL errors

© Copyright IBM Corp. 1984, 1991
3.3.7.1 - 1

 3.3.7.2 INVMPSZ errors

 INVMPSZ usually results from a coding error. It occurs on either SEND MAP
 or RECEIVE MAP if the size of the map specified is too wide for the
 screen. Therefore, you usually do not need to write code to handle it.
 If it occurs during debugging, the transaction will end abnormally with a
 code indicating this error. The cause is either that the SIZE parameter
 on the DFHMDI macro is wrong, or the terminal is defined incorrectly, or
 the application is being used from a terminal it does not support. Note
 that if the last-mentioned cause was a possibility, you might want to
 write code to send the user a message explaining the problem.

CICS Application Programming Primer
INVMPSZ errors

© Copyright IBM Corp. 1984, 1991
3.3.7.2 - 1

 3.3.8 Other features of BMS

 BMS is a very powerful component of CICS and offers many facilities beyond
 those we've discussed so far. We'll list some of the more interesting
 ones here. You can find guidance on more of the features of BMS in the
 CICS/ESA Application Programming Guide , and a list of all its macros,
 commands, and options in the CICS/ESA Application Programming Reference.
 These features of BMS let you do the following:

 � Copy what is on a screen to a printer. You can use the ISSUE PRINT
 command or the local copy facilities of CICS to do this.

 � Send formatted data to printers in other formats. In this Primer, we
 discuss only one method of formatting the data for a printer, which is
 to use a map just like the display screen for the printer, in
 combination with the PRINT option. However, there are other ways to
 control the format of printed output, by inserting new-line characters
 where you want them, and so on.

 � Build a single screen with a series of SEND MAP commands, using more
 than one map in the process. This is done with the ACCUM option of
 SEND MAP.

 � Build output messages of more than one screen. You can send output
 messages that consist of a series of screens, which can be stored away
 by BMS until the entire sequence is complete. Then BMS provides a
 method for the user to display these screens and page backward and
 forward through them at will, without any support from your program.
 Multiple-screen outputs use the PAGING option of SEND MAP. The PAGING
 and ACCUM options can be used together, incidentally.

 � Partition a single screen into sections, and treat each of these areas
 as a separate screen. This needs a terminal with the appropriate
 partition support, of course. You can write to and read from one of
 these mini-screens (or partitions, as the devices call them) without
 affecting any of the others.

 � Send output to terminals other than the one associated with the
 transaction. This is called routing. It provides a second way,
 different from the technique we'll use, to deal with the requirement
 in the example application of sending output to a printer.

 � Switch messages. The routing facility provides a basis for a
 transaction that can be used to send a message from one terminal to
 another. Not surprisingly, this is called message switching. CICS
 provides the transaction, which has the identifier CMSG. Any CICS
 system that includes full-function BMS can make this transaction
 available.

 � Write formatted data to terminals without using maps (the SEND TEXT
 command).

 � Support additional 3270 features, such as color, the extended
 attributes (extended color, programmed symbols, extended highlighting,
 data validation), light pen, cursor select key, and magnetic slot
 reader.

 � Support special facilities provided by VTAM, such as outboard
 formatting and logical device controls. Guidance information on these
 facilities is the in sections of the same name in the CICS/ESA
 Application Programming Guide.

 � Support a wide variety of terminals with different physical
 characteristics. BMS even provides facilities for limiting the
 dependence of the program on the device characteristics; for guidance,

CICS Application Programming Primer
Other features of BMS

© Copyright IBM Corp. 1984, 1991
3.3.8 - 1

 see the section on map set suffixing in the CICS/ESA Application
 Programming Guide.

 Now that you know how to talk to a terminal, the next thing you need to
 know about is how to get something worthwhile to talk about. This means
 accessing files, and is the next category of CICS services that we'll
 cover.

CICS Application Programming Primer
Other features of BMS

© Copyright IBM Corp. 1984, 1991
3.3.8 - 2

 3.4 Handling files
 CICS allows you to access file data in a variety of ways. In an online
 system, most file accesses are random, because the transactions to be
 processed aren't batched and sorted into any kind of order. Therefore
 CICS supports the usual direct access methods: VSAM, and DAM. It also
 allows you to access data using database managers.

 Of these, we'll cover only VSAM key-sequenced data sets, accessed by key,
 in this Primer. Most of the material applies to DAM and other forms of
 VSAM, however. CICS also supports sequential access in several forms; one
 of these, browsing, we'll cover in the coming section. The others we'll
 touch on later.

 Before describing how you read and write files, we should explain briefly
 about an important CICS table, the File Control Table (FCT). This table
 contains one entry for each file used in any application in the system.
 (The entries in the FCT can come from RDO FILE definitions that are
 installed in the CICS system, or from DFHFCT macro statements.) The most
 important information kept for each file is the symbolic file name. This
 must match the MVS DDNAME that you use in the JCL defining the file. The
 JCL statement, in turn, is what connects the name with a real file. When
 a CICS program makes a file request, it always uses the symbolic file
 name. CICS looks up this name in the FCT, and from the information there
 makes the appropriate request of the operating system. This technique
 keeps CICS programs independent not only of specific data sets (the JCL
 does that), but of the JCL as well. Usually the symbolic file names are
 assigned by the CICS systems staff.

 In the examples which follow we'll use the symbolic file name "ACCTFIL"
 for the account file and "ACCTIX" for its index.

 Subtopics
 3.4.1 Read commands
 3.4.2 Write commands
 3.4.3 Errors on file commands
 3.4.4 Other file services

CICS Application Programming Primer
Handling files

© Copyright IBM Corp. 1984, 1991
3.4 - 1

 3.4.1 Read commands

 The read commands that you can use are READ and READNEXT.

 Subtopics
 3.4.1.1 Reading a file record
 3.4.1.2 Browsing a file
 3.4.1.3 Using the browse commands in the example application

CICS Application Programming Primer
Read commands

© Copyright IBM Corp. 1984, 1991
3.4.1 - 1

 3.4.1.1 Reading a file record

 The command to read a single record from a file is:

 +--+
 ¦ ¦
 ¦ EXEC CICS READ FILE(filename) INTO(recarea) ¦
 ¦ LENGTH(length) RIDFLD(keyarea) option ¦
 ¦ option ... END-EXEC. ¦
 ¦ ¦
 +--+

 filename
 is the name of the file from which you wish to read. It is required
 in all READ commands. This is the CICS symbolic file name which
 identifies the FCT entry for the file. File names can be up to 8
 characters long and, like any parameter value, should be enclosed in
 quotes if they are literals.

 recarea
 is the name of the data area into which the record is to be read,
 usually a structure in working storage. The INTO is required for the
 uses of the READ command discussed in this Primer.

 length
 is the maximum number of characters that may be read into the data
 area specified. The LENGTH parameter is required for the uses of the
 READ command we're covering in this Primer, and it must be a halfword
 binary value (that is, it must have a PICTURE of "S9(4) COMP"). After
 the READ command is completed, CICS replaces the maximum value you
 specify with the true length of the record. For this reason, you must
 specify LENGTH as the name of a data area rather than a literal. For
 the same reason, you must re-initialize this data area if you use it
 for LENGTH more than once in the program. An overlength record will
 raise an error condition.

 keyarea
 is the name of the data area containing the key of the record you wish
 to read. This parameter is also required.

 option
 can be any of the following options which apply to this command.
 Except where noted, you can use them in any combination.

 UPDATE
 means that you intend to update the record in the current
 transaction. Specifying UPDATE gives your transaction exclusive
 control of the requested record (possibly the whole control
 interval in the case of VSAM) and invokes the file protection
 mechanisms we discussed in "Pseudoconversational or not?" in
 topic 2.7. Consequently, you should use it only when you actually
 need it; that is, when you are ready to modify and rewrite the
 record.

 EQUAL
 means that you want only the record whose key exactly matches that
 specified by RIDFLD. This is a default option, which you get if
 you either specify it or fail to specify GTEQ.

 GTEQ
 means that you want the first record whose key is greater than or
 equal to the key you specified. You cannot use this option at the
 same time as EQUAL. It provides one means of doing a generic read
 (a read where only the first part of the key is required to match)
 and we use it for this purpose in our application.

CICS Application Programming Primer
Reading a file record

© Copyright IBM Corp. 1984, 1991
3.4.1.1 - 1

 So, how do we read an account file record? Well, in program ACCT01, we
 need to read the account file to find out whether the requested record is
 there or not. The command we need is:

 +--+
 ¦ ¦
 ¦ EXEC CICS READ FILE('ACCTFIL') RIDFLD(ACCTC) RESP(RESPONSE) ¦
 ¦ INTO(ACCTREC) LENGTH(ACCT-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 Here ACCTC is where we've stored the account number taken from the menu
 map, and ACCT-LNG is a constant in working storage defined as the expected
 length of a record in the account file:

 +--+
 ¦ ¦
 ¦ 02 ACCT-LNG PIC S9(4) COMP VALUE +383. ¦
 ¦ ¦
 +--+

 We've asked that the record be placed in the data area named "ACCTREC," so
 ACCTREC should be a data structure corresponding to the file record. We
 could define this structure directly in the program, but we'll also need
 it in program ACCT02. So we'll put the record definition into a library
 and copy it into this program instead:

 +--+
 ¦ ¦
 ¦ 01 ACCTREC. COPY ACCTREC. ¦
 ¦ ¦
 +--+

 In any application, in fact, it is a good idea to keep your record layouts
 in a library and copy them into the programs that need them. Even in the
 simplest of applications, the same record is usually used by several
 programs, and this procedure prevents programs from using different
 definitions of the same thing.

 This argument applies equally well to any structure used in common by
 multiple programs. Map DSECTs are a prime example, as are parameter lists
 and communication areas, which we'll discuss later. Apart from its value
 in the initial programming stage of an application, this technique greatly
 reduces the effort and hazards associated with any change to a record or
 map format. You can make the changes in just one place (your library) and
 then simply recompile all the affected programs.

 Subtopics
 3.4.1.1.1 The account file record format
 3.4.1.1.2 The index file record format

CICS Application Programming Primer
Reading a file record

© Copyright IBM Corp. 1984, 1991
3.4.1.1 - 2

 3.4.1.1.1 The account file record format

 Figure 46 shows the COBOL record definition we need for the account file
 in the example application.

 +--+
 ¦ ¦
 ¦ * ACCTREC - ACCOUNT FILE RECORD ¦
 ¦ 02 ACCTDO PIC X(5). ¦
 ¦ 02 SNAMEDO PIC X(18). ¦
 ¦ 02 FNAMEDO PIC X(12). ¦
 ¦ 02 MIDO PIC X. ¦
 ¦ 02 TTLDO PIC X(4). ¦
 ¦ 02 TELDO PIC X(10). ¦
 ¦ 02 ADDR1DO PIC X(24). ¦
 ¦ 02 ADDR2DO PIC X(24). ¦
 ¦ 02 ADDR3DO PIC X(24). ¦
 ¦ 02 AUTH1DO PIC X(32). ¦
 ¦ 02 AUTH2DO PIC X(32). ¦
 ¦ 02 AUTH3DO PIC X(32). ¦
 ¦ 02 AUTH4DO PIC X(32). ¦
 ¦ 02 CARDSDO PIC X. ¦
 ¦ 02 IMODO PIC X(2). ¦
 ¦ 02 IDAYDO PIC X(2). ¦
 ¦ 02 IYRDO PIC X(2). ¦
 ¦ 02 RSNDO PIC X. ¦
 ¦ 02 CCODEDO PIC X. ¦
 ¦ 02 APPRDO PIC X(3). ¦
 ¦ 02 SCODE1DO PIC X. ¦
 ¦ 02 SCODE2DO PIC X. ¦
 ¦ 02 SCODE3DO PIC X. ¦
 ¦ 02 STATDO PIC X(2). ¦
 ¦ 02 LIMITDO PIC X(8). ¦
 ¦ 02 PAY-HIST OCCURS 3. ¦
 ¦ 04 BAL PIC X(8). ¦
 ¦ 04 BMO PIC 9(2). ¦
 ¦ 04 BDAY PIC 9(2). ¦
 ¦ 04 BYR PIC 9(2). ¦
 ¦ 04 BAMT PIC X(8). ¦
 ¦ 04 PMO PIC 9(2). ¦
 ¦ 04 PDAY PIC 9(2). ¦
 ¦ 04 PYR PIC 9(2). ¦
 ¦ 04 PAMT PIC X(8). ¦
 ¦ ¦
 +--+
 Figure 46. The COBOL record definition for the account file

 We'll not dwell on the naming conventions of the data items that we're
 leaving to our assumed batch processing system. Nor shall we have
 anything much to say about the behavior of this batch system. In other
 words, don't worry about it!

CICS Application Programming Primer
The account file record format

© Copyright IBM Corp. 1984, 1991
3.4.1.1.1 - 1

 3.4.1.1.2 The index file record format
 We also need a record definition for the index file records. See
 Figure 47.

 +--+
 ¦ ¦
 ¦ * ACIXREC - INDEX FILE RECORD ¦
 ¦ 02 SNAMEDO PIC X(12). ¦
 ¦ 02 ACCTDO PIC 9(5). ¦
 ¦ 02 FNAMEDO PIC X(7). ¦
 ¦ 02 MIDO PIC X. ¦
 ¦ 02 TTLDO PIC X(4). ¦
 ¦ 02 ADDR1DO PIC X(24). ¦
 ¦ 02 STATDO PIC X(2). ¦
 ¦ 02 LIMITDO PIC X(8). ¦
 ¦ ¦
 +--+
 Figure 47. The COBOL record definition for the index file records

 You may notice that we've chosen many of the field names in the account
 record to match the output subfields in the detail map. We did this
 because when we display a record from the file on the screen, we have to
 move many fields from the record to the symbolic description map. This
 choice of names allows us to use MOVE CORRESPONDING instead of writing out
 the individual moves. It allows us to do the same thing going from the
 screen to the file, because the input and output fields on the screen
 overlay each other exactly, as we noted earlier.

CICS Application Programming Primer
The index file record format

© Copyright IBM Corp. 1984, 1991
3.4.1.1.2 - 1

 3.4.1.2 Browsing a file

 In program ACCT01, when we search by name, we need to point to a
 particular record in the file, based on a random key. Then we start
 reading the file sequentially from that point on. The need for this
 combination of random and sequential file access, called browsing, arises
 frequently in online applications. Consequently, CICS provides a special
 set of browse commands: STARTBR, READNEXT, and ENDBR.

 Before we look at these commands, a few words about the performance
 implications of browsing. Transactions that produce lots of output
 screens can monopolize system resources. A file browse is often guilty of
 this. Just having a long browse can put a severe load on the system,
 locking out other transactions and increasing overall response time.

 You see, CICS assumes the terminal operator initiates a transaction that
 accesses a few data records, processes the information, and returns the
 results to the operator. This process involves numerous waits that allow
 CICS to do some multitasking. However, CICS is not an interrupt-driven
 multitasking system; tasks that involve small amounts of I/O relative to
 processing can monopolize the system regardless of priority. A browse of
 a highly-blocked file is just such a transaction.

 You can issue DELAY or SUSPEND commands from time to time, so that other
 tasks can get control. If the browse does indeed produce paged output,
 you should probably break the transaction up in one of the ways suggested
 in the topic on designing efficient applications in the CICS/ESA
 Application Programming Guide.

 Subtopics
 3.4.1.2.1 Starting the browse operation
 3.4.1.2.2 Reading the next record
 3.4.1.2.3 Finishing the browse operation

CICS Application Programming Primer
Browsing a file

© Copyright IBM Corp. 1984, 1991
3.4.1.2 - 1

 3.4.1.2.1 Starting the browse operation

 The STARTBR (start browse) command gets the process started. It tells
 CICS where in the file you want to start reading. The format is:

 +--+
 ¦ ¦
 ¦ EXEC CICS STARTBR FILE(filename) ¦
 ¦ RIDFLD(keyarea) option END-EXEC. ¦
 ¦ ¦
 +--+

 The FILE and RIDFLD parameters are the same as in a READ command. The
 options allowed are GTEQ and EQUAL; you cannot use them both. They are
 defined as for READ, except that this time GTEQ is assumed by default.
 UPDATE isn't allowed; file browsing is strictly a read-only operation.

CICS Application Programming Primer
Starting the browse operation

© Copyright IBM Corp. 1984, 1991
3.4.1.2.1 - 1

 3.4.1.2.2 Reading the next record

 Starting a browse does not make the first eligible record available to
 your program; it merely tells CICS where you want to start when you begin
 issuing the sequential read commands.

 To get the first record, and for each one in sequence after that, you use
 the READNEXT command:

 +--+
 ¦ ¦
 ¦ EXEC CICS READNEXT FILE(filename) ¦
 ¦ INTO(recarea) LENGTH(length) ¦
 ¦ RIDFLD(fdbkarea) END-EXEC. ¦
 ¦ ¦
 +--+

 The FILE, INTO and LENGTH parameters are defined in the same way as they
 are in the READ command. You only need the FILE parameter because CICS
 allows you to browse several files at once, and this tells which one you
 want to read next. Note, however, that you cannot name a file in a
 READNEXT command unless you've first issued a STARTBR command for it.

 The RIDFLD parameter is used in a somewhat different way. On the READ and
 STARTBR commands, RIDFLD carries information from the program to CICS; on
 READNEXT, the flow is primarily in the other direction: RIDFLD points to a
 data area into which CICS will "feed back" the key of the record it just
 read. Do make sure that RIDFLD points to an area large enough to contain
 the full key; otherwise the adjacent field(s) in storage will be
 overwritten. Don't change it, either, because you'll interrupt the
 sequential flow of the browse operation.

 (There is a way to do what is called "skip sequential" processing in VSAM
 by altering the contents of this key area between READNEXT commands.
 Although we won't be covering this here, we mention it only to explain why
 you should not inadvertently change the contents of "fdbkarea" while
 browsing the file.)

CICS Application Programming Primer
Reading the next record

© Copyright IBM Corp. 1984, 1991
3.4.1.2.2 - 1

 3.4.1.2.3 Finishing the browse operation

 When you've finished reading a file sequentially, you terminate the browse
 with the ENDBR command:

 +--+
 ¦ ¦
 ¦ EXEC CICS ENDBR FILE(filename) END-EXEC. ¦
 ¦ ¦
 +--+

 Here FILE functions as it did in the READNEXT command; it tells CICS which
 browse is being terminated, and it must name a file for which a STARTBR
 has been issued earlier.

CICS Application Programming Primer
Finishing the browse operation

© Copyright IBM Corp. 1984, 1991
3.4.1.2.3 - 1

 3.4.1.3 Using the browse commands in the example application

 Let's write the code we need to do the example. The first thing we have
 to do is construct a key that will start the browse in the right place.
 The key of the index file consists of the first 12 characters of the
 surname followed by an account number. We want to build a key that
 consists of the characters the user keyed in as the surname, followed by
 something smaller than any file key that starts out the same way. Then we
 can use the GTEQ option on our STARTBR command to get the first qualifying
 record. If we define:

 +--+
 ¦ ¦
 ¦ 04 BRKEY. ¦
 ¦ 06 BRKEY-SNAME PIC X(12). ¦
 ¦ 06 BRKEY-ACCT PIC X(5). ¦
 ¦ ¦
 +--+

 Then writing:

 +--+
 ¦ ¦
 ¦ MOVE SNAMEC TO BRKEY-SNAME. ¦
 ¦ MOVE LOW-VALUES TO BRKEY-ACCT. ¦
 ¦ ¦
 +--+

 should do the trick. SNAMEC is where we saved the surname from the input
 menu (SNAMEMI) earlier in the code. Because CICS pads what the user keys
 with spaces to produce SNAMEMI, and spaces are lower in the collating
 sequence than any letter, we can be sure that BRKEY will be smaller than
 the key of any eligible record in the file.

 We also need to know where to stop the browse.

 Certainly we'll stop when we overflow the display capacity of the screen,
 but we may run out of eligible names before that. So we need to construct
 a surname value that is the highest alphabetically that could meet our
 match criteria. If the surname in the record exceeds this value, we will
 know that we've read all the (possibly) eligible records. If this
 limiting value is named MAX-SNAME and has a picture of "X(12)," then:

 +--+
 ¦ ¦
 ¦ MOVE SNAMEC TO MAX-SNAME. ¦
 ¦ TRANSFORM MAX-SNAME FROM SPACES TO HIGH-VALUES. ¦
 ¦ ¦
 +--+

 should give the right cutoff.

 Finally, as we read, we need to test whether the first name matches
 sufficiently to display the record on the screen or not. If we define
 MIN-FNAME as the smallest allowable value and MAX-FNAME as the largest,
 and if FNAMEC is where we held the first name from the input screen, then
 we need the following code:

 +--+
 ¦ ¦
 ¦ MOVE FNAMEC TO MIN-FNAME, MAX-FNAME. ¦
 ¦ TRANSFORM MIN-FNAME FROM SPACES TO LOW-VALUES. ¦
 ¦ TRANSFORM MAX-FNAME FROM SPACES TO HIGH-VALUES. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Using the browse commands in the example application

© Copyright IBM Corp. 1984, 1991
3.4.1.3 - 1

 Thus, Figure 48 in topic 3.4.1.3 shows the code we need to produce the
 name summary.

 +--+
 ¦ ¦
 ¦ SRCH-RESUME. ¦
 ¦ EXEC CICS STARTBR FILE('ACCTIX') RIDFLD(BRKEY) GTEQ ¦
 ¦ RESP(RESP) END-EXEC. ¦
 ¦ IF RESP = DFHRESP(NOTFND) GO TO SRCH-ANY. ¦
 ¦ IF RESP NOT = DFHRESP(NORMAL) GO TO OTHER-ERRORS. ¦
 ¦ BUILD NAME DISPLAY. ¦
 ¦ SRCH-LOOP. ¦
 ¦ EXEC CICS READNEXT FILE('ACCTIX') INTO(ACIXREC) ¦
 ¦ LENGTH(ACIX-LNG) RIDFLD(BRKEY) RESP(RESP) END-EXEC. ¦
 ¦ IF RESP = DFHRESP(ENDFILE) GO TO SRCH-DONE. ¦
 ¦ IF RESP NOT = DFHRESP(NORMAL) GO TO OTHER-ERRORS. ¦
 ¦ IF SNAMEDO IN ACIXREC > MAX-SNAME GO TO SRCH-DONE. ¦
 ¦ IF FNAMEDO IN ACIXREC < MIN-FNAME OR ¦
 ¦ FNAMEDO IN ACIXREC > MAX-FNAME, GO TO SRCH-LOOP. ¦
 ¦ ADD 1 TO LINE-CNT. ¦
 ¦ IF LINE-CNT > MAX-LINES, ¦
 ¦ MOVE MSG-TEXT (15) TO MSGMO, ¦
 ¦ MOVE DFHBMBRY TO MSGMA, GO TO SRCH-DONE. ¦
 ¦ MOVE CORRESPONDING ACIXREC TO SUM-LINE. ¦
 ¦ MOVE SUM-LINE TO SUMLNMO (LINE-CNT). ¦
 ¦ GO TO SRCH-LOOP. ¦
 ¦ SRCH-DONE. ¦
 ¦ EXEC CICS ENDBR FILE('ACCTIX') END-EXEC. ¦
 ¦ ¦
 +--+
 Figure 48. The name summary search code

 This code first starts a browse on the index file. Then it begins a loop
 in which it:

 1. Reads the next sequential record in the file.

 This may result in an ENDFILE condition, causing a transfer to
 paragraph SRCH-DONE.

 2. Tests whether the surname in the record is beyond the last in the file
 that might qualify, and exits the loop to SRCH-DONE if so.

 3. Otherwise, determines if the record is eligible on the basis of first
 name and, if not, returns to the beginning of the loop to check the
 next record.

 4. Determines, if the record is eligible, if it will still fit on the
 screen. (We need to read one "hit" beyond the point of using up all
 the space on the screen so that we can tell the user whether there are
 going to be more names or not.)

 5. Adds a message to the output map if the current name won't fit, saying
 there are more names and how to get them, and then exits the loop at
 SRCH-DONE.

 6. Builds an output line for the map if the name will fit, and returns to
 the beginning of the loop to check for more hits.

 After the loop, at SRCH-DONE, when all eligible names have been read or
 the screen is full, the program terminates the browse. At this point, the
 name search output is essentially ready to be sent back to the user.

 There are two other browse commands. We'll not cover them here, but you

CICS Application Programming Primer
Using the browse commands in the example application

© Copyright IBM Corp. 1984, 1991
3.4.1.3 - 2

 can find a complete list of them in the CICS/ESA Application Programming
 Reference. The READPREV command is almost like READNEXT, except that it
 lets you proceed backward through a data set instead of forward. The
 RESETBR command allows you to reset your starting point in the middle of a
 browse.

CICS Application Programming Primer
Using the browse commands in the example application

© Copyright IBM Corp. 1984, 1991
3.4.1.3 - 3

 3.4.2 Write commands

 There are three file output commands: REWRITE modifies a record that is
 already on a file, WRITE adds a new record, DELETE deletes an existing
 record from a file.

 Subtopics
 3.4.2.1 Rewriting a file record
 3.4.2.2 Adding (writing) a file record
 3.4.2.3 Deleting a file record
 3.4.2.4 Using the write commands in the example application

CICS Application Programming Primer
Write commands

© Copyright IBM Corp. 1984, 1991
3.4.2 - 1

 3.4.2.1 Rewriting a file record

 The REWRITE command updates the record you've just read. You can use it
 only after you've performed a "read for update" by executing a READ
 command for the same record with UPDATE specified. REWRITE looks like
 this:

 +--+
 ¦ ¦
 ¦ EXEC CICS REWRITE FILE(filename) ¦
 ¦ FROM(recarea) LENGTH(length) END-EXEC. ¦
 ¦ ¦
 +--+

 filename
 has the same meaning as in the READ command: it is the CICS name of
 the file you are updating. You must specify it.

 recarea
 is the name of the data area that contains the updated version of the
 record to be written to the file. This parameter is also required.

 length
 is the length of the (updated) version of the record. You must
 specify length, as in a READ command, and it must be a halfword binary
 value.

CICS Application Programming Primer
Rewriting a file record

© Copyright IBM Corp. 1984, 1991
3.4.2.1 - 1

 3.4.2.2 Adding (writing) a file record

 The WRITE command adds a new record to the file. The parameters for WRITE
 are almost the same as for REWRITE, except that you have to identify the
 record with the RIDFLD option. (You do not do this with the REWRITE
 command because the record was identified by the previous READ operation
 on the same data set.) The format of the WRITE command is:

 +--+
 ¦ ¦
 ¦ EXEC CICS WRITE FILE(filename) FROM(recarea) ¦
 ¦ LENGTH(length) RIDFLD(keyarea) END-EXEC. ¦
 ¦ ¦
 +--+

 keyarea
 is the data area containing the key of the record to be written. The
 RIDFLD parameter is required on the WRITE command.

CICS Application Programming Primer
Adding (writing) a file record

© Copyright IBM Corp. 1984, 1991
3.4.2.2 - 1

 3.4.2.3 Deleting a file record

 The DELETE command deletes a record from the file, and looks like this:

 +--+
 ¦ ¦
 ¦ EXEC CICS DELETE FILE(filename) ¦
 ¦ RIDFLD(keyarea) END-EXEC. ¦
 ¦ ¦
 +--+

 The parameters are defined in the same way as for the WRITE and REWRITE
 commands. You can delete a record directly, without reading it for update
 first. When you do this you must specify the key of the record to be
 deleted by using RIDFLD. Alternatively, you can decide to delete a record
 after you've read it for update. In this case, you must omit RIDFLD.

CICS Application Programming Primer
Deleting a file record

© Copyright IBM Corp. 1984, 1991
3.4.2.3 - 1

 3.4.2.4 Using the write commands in the example application

 Program ACCT02 uses all three of the file output commands. For add
 requests, the program first constructs a new record in a structure named
 NEW-ACCTREC. It then issues the command:

 +--+
 ¦ ¦
 ¦ EXEC CICS WRITE FILE('ACCTFIL') FROM(NEW-ACCTREC) ¦
 ¦ RIDFLD(ACCTC) LENGTH(ACCT-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 (The variables ACCTC and ACCT-LNG have the same definition as they did in
 the example of the READ command in "Reading a file record" in
 topic 3.4.1.1.)

 For a modification, the program first reads the record in question, with
 UPDATE specified:

 +--+
 ¦ ¦
 ¦ IF REQC NOT = 'A', ¦
 ¦ EXEC CICS READ FILE('ACCTFIL') INTO(OLD-ACCTREC) ¦
 ¦ RIDFLD(ACCTC) UPDATE LENGTH(ACCT-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 Then it builds a new version of the record, again at NEW-ACCTREC, by
 combining the new data from the screen with the old record. Finally it
 replaces the old record with the new one, in the command:

 +--+
 ¦ ¦
 ¦ EXEC CICS REWRITE FILE('ACCTFIL') FROM (NEW-ACCTREC) ¦
 ¦ LENGTH(ACCT-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 For a deletion, the program uses the same READ command as in a
 modification. Therefore the key (RIDFLD) isn't specified in the DELETE
 command, which is:

 +--+
 ¦ ¦
 ¦ EXEC CICS DELETE FILE('ACCTFIL') END-EXEC. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Using the write commands in the example application

© Copyright IBM Corp. 1984, 1991
3.4.2.4 - 1

 3.4.3 Errors on file commands

 In contrast to the situation with BMS commands, a wide variety of things
 can go wrong on the file commands. Here are the errors that can arise
 when you use the subset of file commands that we've just described.

 DISABLED
 occurs if a file is disabled. A file may be disabled because:

 � It was initially defined as disabled and has not been enabled
 since

 � It has been disabled by an EXEC CICS SET command or by the CEMT
 transaction.

 DUPKEY
 means that if a VSAM record is retrieved by way of an alternate index
 with the NONUNIQUEKEY attribute, and another alternate index record
 with the same key follows. It does not occur as a result of a
 READNEXT command that reads the last of the records having the
 nonunique key.

 DUPREC
 means that there is already a record in the file with the same key as
 the one that you are trying to add with a WRITE command. This
 condition may result from a user error or may be expected by the
 program. In either of these cases, there should be specific code to
 handle the situation.

 It can also fall into the "should-not-occur" category, the third type
 in the list under "Handling errors and exceptional conditions" in
 topic 2.9.2, as it would in our example application. In this case no
 special code is required beyond identifying the problem to the user.
 The message to the user should tell him or her what to say to the
 supervisor (or to the operations staff) and what he or she is allowed
 to do next.

 ENDFILE
 means that you've attempted to read sequentially beyond the end of the
 file in a browse (using the READNEXT command). This is a condition
 that you should program for in any browse. In the example
 application, for instance, a search on "Zuckerman" or a similar name
 might cause ENDFILE, and we'll code for it explicitly by sending
 control to SRCH-DONE when it occurs.

 FILENOTFOUND
 means that the symbolic file name in a file command cannot be found in
 the File Control Table. This is usually a coding error; look for a
 difference in spelling between the command and the FCT entry. If it
 happens after the program is put into actual use ("in production"),
 look for an accidental change to the entry for that file in the FCT.

 ILLOGIC
 is a catch-all class for errors detected by VSAM that don't fall into
 one of the other categories that CICS recognizes. The RESP2 value
 will tell you the specific error.

 Note: Before CICS/VS 1.7, by far the most common cause used to be
 trying to read from or write into a brand-new (empty) VSAM
 key-sequenced data set (KSDS). In order to use a KSDS in CICS, you
 had to batch load at least one record into it, because VSAM does not
 build the index component until the first record arrives, and CICS was
 unable to cope with a KSDS whose index isn't built.

 INVREQ

CICS Application Programming Primer
Errors on file commands

© Copyright IBM Corp. 1984, 1991
3.4.3 - 1

 means that CICS regards your command as an invalid request for one of
 the following reasons:

 � You requested a type of operation (add, update, browse, and so on)
 that wasn't included in the "service requests" (SERVREQ) parameter
 of the FCT entry for the file in question.

 � You tried to REWRITE a record without first reading it for update.

 � You issued a DELETE command without specifying a key (RIDFLD), and
 without first reading the target record for update.

 � You issued a DELETE command specifying a key (RIDFLD) for a VSAM
 file when a read for update command is outstanding.

 � After one read for update, you issued another read for update for
 another record in the same file without disposing of the first
 record (by a REWRITE, UNLOCK, or DELETE command).

 � You issued a READNEXT or an ENDBR command without first doing a
 STARTBR on the same file.

 Almost all of these INVREQ situations result from program logic errors
 and should disappear during the course of debugging. The first one,
 however, can also result from an inadvertent change to the "service
 requests" parameter in the FCT entry for the file.

 IOERR
 means that the operating system is unable to read or write the file,
 presumably because of physical damage. This can happen at any time,
 and there is usually nothing to do in the program except to abend the
 transaction and inform the user of the problem.

 ISCINVREQ
 means that the remote system indicates a failure which does not
 correspond to a known condition.

 LENGERR
 could mean one of the following:

 � You omitted the LENGTH parameter from a READ, READNEXT, WRITE or
 REWRITE command.

 � The length you specified on a WRITE or REWRITE operation was
 greater than the maximum record size for the file. (See the
 description of LENGTH options in the CICS/ESA Application
 Programming Reference for a description of a safe upper limit.)

 � You specified a length shorter than the actual record length on a
 READ operation to a file of variable length records.

 � You indicated a wrong length on a READ, READNEXT, WRITE or REWRITE
 command to a file containing fixed-length records.

 LENGERR is usually caused by a coding error.

 NOSPACE
 means that there's no space in the file to fit the record you've just
 tried to put there with a WRITE or REWRITE command. This doesn't mean
 that there's no space at all in the data set; it simply means that the
 record with the particular key you specified will not fit until the
 file is extended or reorganized. Like IOERR, this condition may occur
 at any time, and should be handled accordingly.

 NOTAUTH

CICS Application Programming Primer
Errors on file commands

© Copyright IBM Corp. 1984, 1991
3.4.3 - 2

 means that a resource or command security check has failed.

 NOTFND condition
 means that there is no record in the file with the key specified in
 the RIDFLD, parameter on a READ, READNEXT, STARTBR, or DELETE
 command. (4) NOTFND may result from a user error, may be expected by
 the program, or may indicate an error in the program logic. In our
 example application, we provide code to handle all three of these
 situations.

 In program ACCT01, when we check to see if the requested account
 record is on file, we expect NOTFND if the request is to add a record.
 However, it shows a user error (in the account number) if it happens
 on any other type of request. For both these cases, we need to
 provide recovery code. On the other hand, by the time we get to
 program ACCT02, we should have removed all the possibilities for
 getting a "not found" response on a read. So its occurrence here
 would signal an error in our logic, to be handled like any other
 unexpected error.

 NOTOPEN
 occurs if:

 � The requested file is CLOSED and UNENABLED. The CLOSED, UNENABLED
 state is reached after a close request has been received against
 an OPEN ENABLED file and the file is no longer in use.

 � The requested file is still open and in use by other requests, but
 a close request against the file has been received. Existing
 users are allowed to complete.

 This condition can occur only during the execution of the following
 commands:

 � READ
 � WRITE
 � The first command in a WRITE MASSINSERT sequence
 � DELETE
 � The first command in a DELETE GENERIC sequence
 � STARTBR.

 Other commands cannot raise this condition because they are part of an
 active request.

 This condition does not occur if the request is made to either a
 CLOSED, ENABLED file or a CLOSED, DISABLED file. In the first case,
 the file is opened as part of executing the request. In the second
 case, the DISABLED condition is raised.

 This condition may also occur when a file control command refers to a
 file defined as REMOTE, where the remote system is a release of CICS
 earlier than 1.7. The condition can then occur in response to any
 file control command.

 As you have probably gathered from this description, NOTOPEN usually
 results from an operations problem, and you may want to notify the
 operations staff of the problem, or send a message to the user to do
 so.

 SYSIDERR
 means that the SYSID option specifies either a name that is not
 defined in the intersystem table or a system to which the link is
 closed.

 (4) It is possible to raise NOTFND on a READNEXT command, but

CICS Application Programming Primer
Errors on file commands

© Copyright IBM Corp. 1984, 1991
3.4.3 - 3

 only in connection with skip sequential processing--and
 that's beyond the scope of the Primer.

CICS Application Programming Primer
Errors on file commands

© Copyright IBM Corp. 1984, 1991
3.4.3 - 4

 3.4.4 Other file services

 Before leaving the topic of file commands, we'll list some of the other
 facilities that are available. You can find guidance information on using
 file control in the CICS/ESA Application Programming Guide , and a full
 list of commands, options, and exceptional conditions in the CICS/ESA
 Application Programming Reference.

 � You can use relative-record VSAM files (RRDS) as well as key-sequence
 files (KSDS), and you can access a KSDS by relative byte address (RBA)
 instead of a key.

 � You can use VSAM files with alternate indexes

 � You can use BDAM files

 � You can specify a partial generic) key for a VSAM KSDS. The effect
 is similar, but not identical, to what we did in the browse example,
 where we used a full-key filled out with spaces and low-values in
 combination with the GTEQ option.

 � You can release a record that you've read for update if you decide no
 to update after all. The UNLOCK command is the means of doing this.

 � You can access records without moving them into your program by usin
 the SET option on the READ command.

 � You can delete a whole block of adjacent records in a VSAM file with
 single command (using the "generic delete" option).

 � You can insert a whole block of records at once into a VSAM fil
 ("mass insert" option).

 � You also can use VSAM entry-sequenced data sets (ESDS)

 ESDS is another type of sequentially organized data for which support is
 provided in CICS (the first was browsing). Two other forms of sequential
 support are also available, but they aren't considered to be part of
 CICS's file services. One of these is the extrapartition transient data
 facility, which allows you to read or write SAM files. In addition, the
 intrapartition transient data and temporary storage facilities provide a
 means for reading and writing data in queues, providing another form of
 sequential support. See "Saving data and communicating between
 transactions" in topic 3.5.

CICS Application Programming Primer
Other file services

© Copyright IBM Corp. 1984, 1991
3.4.4 - 1

 3.5 Saving data and communicating between transactions

 Subtopics
 3.5.1 The need for scratchpad and queuing facilities
 3.5.2 Temporary storage
 3.5.3 Transient data

CICS Application Programming Primer
Saving data and communicating between transactions

© Copyright IBM Corp. 1984, 1991
3.5 - 1

 3.5.1 The need for scratchpad and queuing facilities

 Most of the sequential file facilities we mentioned in the previous topic
 are provided because we need to save data from the execution of one
 transaction, passing it on to another that occurs later. We've already
 seen two instances of this requirement in our example application.

 The first resulted from our decision to use pseudoconversational
 transactions; we need to save data from one interaction with the terminal
 to the next, even though no task exists for that terminal for most of the
 intervening time. For this we need some sort of scratchpad facility.

 The second requirement came from our need to log the changes to the
 account file. Here we require some sort of queuing facility: a way to add
 items to a list (one in each update transaction) and read them later (in
 the log-print transaction).

 There are several different scratchpad areas in CICS that you can use to
 transfer and save data, within or between transactions. One of them is
 temporary storage, which we'll cover in a moment. Others are listed
 below. The CICS/ESA Application Programming Reference gives you a
 complete list of the commands you can use to get access to these areas.

 � A Communication Area or COMMAREA. This is an area used for passing
 data both between programs within a transaction and between
 transactions at a given terminal. We'll describe it in connection
 with the program control commands in "Program control" in topic 3.6.
 The COMMAREA is the recommended scratchpad area.

 It's the COMMAREA that offers an alternative solution to our double
 updating problem. For example, it would be perfectly feasible for
 ACCT01 to pass the contents of the account file record over to ACCT02
 in the COMMAREA. ACCT02 could then re-retrieve the account record for
 update and compare it with the version passed in COMMAREA. Any
 difference would show that some other task had changed the account
 record.

 Although this solution may be easier to code, it isn't as good from
 the user's point of view. You see, with this scheme, we don't find
 out about any conflict over the record until we're ready to update it.
 Unfortunately, that means we then have to tell one user that his or
 her update cannot be made, but we can't tell them until they've keyed
 in all the changed data.

 � The Common Work Area (known as the CWA). Any transaction can access
 the CWA, and since there's only one CWA for the whole system, the
 format and use of this area must be agreed upon by all transactions in
 all applications that use it.

 � The Transaction Work Area (TWA). The TWA exists only for the duration
 of a transaction. Consequently, you can use it to pass data among
 programs executed in the same transaction (like COMMAREA), but not
 between transactions (unlike COMMAREA). The TWA isn't commonly used
 in command level programs.

CICS Application Programming Primer
The need for scratchpad and queuing facilities

© Copyright IBM Corp. 1984, 1991
3.5.1 - 1

 3.5.2 Temporary storage

 CICS provides two queuing facilities: temporary storage and transient
 data. The following paragraphs tell you how to use temporary storage,
 both for queuing and as a scratchpad. Later, in "Transient data" in
 topic 3.5.3, we give a brief description of transient data, outline the
 differences between the two facilities, and suggest when you might use one
 or the other.

 Temporary storage is just a sequential file; a VSAM data set on a disk, or
 an area of main storage.

 The CICS temporary storage facilities allow a task to create a queue of
 items, stored under a name selected by the task. This queue, which you
 can think of as a miniature sequential file, exists until some task
 deletes it. The task that deletes it isn't usually the same task that
 created it, although of course it could be. The queue can hold any number
 of items (from just one to 32767) and any number of different tasks can
 add to it, read it, or change the contents of items in it.

 When there is just one item in a queue, we think of this facility as a
 scratchpad; when there is more than one, we think of it as a queuing
 facility. The items can be of almost any length, and they can be of
 different lengths for the same queue. If you are using the queue as a
 temporary sequential file, you can think of the items in it as records.

 Subtopics
 3.5.2.1 Adding to, and creating, a temporary storage queue
 3.5.2.2 Replacing items in a temporary storage queue
 3.5.2.3 Reading temporary storage queues
 3.5.2.4 Deleting temporary storage queues
 3.5.2.5 Naming temporary storage queues
 3.5.2.6 Using temporary storage in the example application
 3.5.2.7 Errors on temporary storage commands

CICS Application Programming Primer
Temporary storage

© Copyright IBM Corp. 1984, 1991
3.5.2 - 1

 3.5.2.1 Adding to, and creating, a temporary storage queue

 The command to add one item to an existing temporary storage queue, or to
 create a brand new queue with one item in it, looks like this:

 +--+
 ¦ ¦
 ¦ EXEC CICS WRITEQ TS QUEUE(qname) FROM(recarea) ¦
 ¦ LENGTH(length) option option ... END-EXEC. ¦
 ¦ ¦
 +--+

 qname
 is the name of the queue to which an item is to be added. If there is
 no queue with the name you specify, CICS will create one, with the
 item you specified as the first (and only) item in the queue. Queue
 names are up to eight characters long. CICS imposes no restrictions
 on what names may be used, but there are some things to be considered
 in choosing names, as we will point out later. You should put this
 name in quotes if it is a literal.

 recarea
 is the name of the data area containing the item to be added.

 length
 is the length of that item (record). As in the file commands, length
 is given as a halfword binary value ("PIC S9(4) COMP").

 option
 may be any of the following:

 MAIN
 causes the item to be written to an area of main storage rather
 than to disk. Only use this option for queues of small size and
 very short lifetimes.

 AUXILIARY
 is the opposite of MAIN and causes the item to be written to a
 special VSAM data set on disk. This is the default (you get it if
 you specify AUXILIARY or if you fail to specify MAIN) and is what
 you should use in most circumstances.

 ITEM(itemno)
 causes CICS to feed back the number of items held in the queue
 after completion of the command. This number is placed in the
 "itemno" data area, and you can check the contents after issuing
 the command. Like the length, the item number is always a
 halfword binary value.

 The MAIN or AUXILIARY option is effective only on the initial write that
 creates a new queue because a single temporary storage queue cannot be
 split between main storage and auxiliary storage. It is ignored on
 subsequent writes.

CICS Application Programming Primer
Adding to, and creating, a temporary storage queue

© Copyright IBM Corp. 1984, 1991
3.5.2.1 - 1

 3.5.2.2 Replacing items in a temporary storage queue

 Besides adding items to a queue, you can also replace any item in an
 existing queue by specifying the REWRITE option. The command:

 +--+
 ¦ ¦
 ¦ EXEC CICS WRITEQ TS QUEUE(qname) FROM(recarea) ¦
 ¦ LENGTH(length) ITEM(itemno) REWRITE END-EXEC. ¦
 ¦ ¦
 +--+

 replaces the item whose number is stored in the "itemno" data area.
 Notice that the function of the ITEM option is quite different from its
 function when you write a new item. On a REWRITE, it is required, and
 passes information from your program to CICS. When you are adding new
 items to a queue, it is optional, and is used to return information from
 CICS to your program. The other parameters have the same meanings as
 above.

CICS Application Programming Primer
Replacing items in a temporary storage queue

© Copyright IBM Corp. 1984, 1991
3.5.2.2 - 1

 3.5.2.3 Reading temporary storage queues

 To read an item from a temporary storage queue, you use:

 +--+
 ¦ ¦
 ¦ EXEC CICS READQ TS QUEUE(qname) INTO(recarea) ¦
 ¦ LENGTH(length) option END-EXEC. ¦
 ¦ ¦
 +--+

 qname
 is the name of the queue you want to read. Put qname in quotes if it
 is a literal.

 recarea
 is the name of the data area into which you want to read the item.

 length
 is the name of a data area (defined as a binary halfword) with two
 functions:

 1. Before issuing the command, you place in this area the maximum
 length of record that the program will accept (that is, the length
 of "recarea"), so that storage overlay will not occur if you read
 an unexpectedly long record. If the record is longer than this
 length, CICS will truncate it to this size and also turn on the
 LENGERR condition (about which more later).

 2. CICS also returns the true length of the record (before any
 truncation) in this area at the completion of the command.

 option
 may be either of two choices to indicate which record you want:

 ITEM(itemno)
 indicates that the number of the item to be read is stored at
 "itemno" (in halfword binary form).

 NEXT
 means that the next item on the queue is to be read. The first
 time a READQ TS NEXT is issued for a queue by any transaction, the
 first item is provided. The next time this command is issued, by
 any transaction, the second item is provided, and so on.
 Moreover, the use of the ITEM option by any transaction resets
 what CICS considers the "next" item to the one following that
 specified in the ITEM option. Therefore, if more than one
 transaction can be reading a single queue, you may want to use the
 ITEM option to ensure that you read the intended item. NEXT is
 the default, if you do not indicate either NEXT or ITEM.

 You can read temporary storage queues, wholly or in part, any number of
 times. So, reading the queue does not affect the contents of the queue.

CICS Application Programming Primer
Reading temporary storage queues

© Copyright IBM Corp. 1984, 1991
3.5.2.3 - 1

 3.5.2.4 Deleting temporary storage queues

 Once a temporary storage queue has been created, it stays in existence
 until explicitly deleted by some transaction. The command to delete a
 queue is:

 +--+
 ¦ ¦
 ¦ EXEC CICS DELETEQ TS QUEUE(qname) END-EXEC. ¦
 ¦ ¦
 +--+

 where "qname" has the same meaning as on a READQ or WRITEQ command.

 Notice that you cannot delete individual items from a temporary storage
 queue; you have to delete the whole queue.

CICS Application Programming Primer
Deleting temporary storage queues

© Copyright IBM Corp. 1984, 1991
3.5.2.4 - 1

 3.5.2.5 Naming temporary storage queues

 In writing any application that uses temporary storage, you should choose
 your queue names with care. First of all, you should follow a convention
 for constructing names to ensure that unrelated transactions don't
 inadvertently use the same queue name. For this reason, many
 installations insist that all queue names begin with characters that
 identify the application involved. Usually two to four characters are
 reserved for this purpose, depending on the installation. In our example,
 for instance, we start all our temporary storage queue names with the
 letters AC.

 Queue names in CICS also provide a means of random access to scratchpad
 information. In our example, we're interested in keeping information
 about account numbers in a scratchpad area. If we include the account
 number in the queue name, we can read the scratchpad information
 concerning that account number directly, without any need to search the
 scratchpad.

 Another example of using the queue name as an index occurs when you store
 data between transactions for a particular terminal. In this case, the
 first of two transactions stores the data to be passed in a queue whose
 name is formed from the terminal name plus some constant. The last four
 letters of the queue name are most often used for the terminal identifier.
 Then the second transaction can find the data for its terminal directly,
 by constructing the queue name from the name of its own input terminal
 plus the same constant.

CICS Application Programming Primer
Naming temporary storage queues

© Copyright IBM Corp. 1984, 1991
3.5.2.5 - 1

 3.5.2.6 Using temporary storage in the example application

 Let's see how we'll use temporary storage in the example application for
 our scratchpad requirements. In program ACCT01, we need to find out
 whether any other task is currently updating the account record that our
 terminal has asked to update.

 We want to observe the house rule that all temporary storage for this
 particular application should start with the letters "AC", and at the same
 time take advantage of the indexing aspect of temporary storage names; so
 we'll do as follows: we'll have one temporary storage queue for each
 account number in use. The name of the queue will be "AC0" followed by
 the account number, defined as follows in working storage. (The 0 merely
 fills out the queue name to the allowed eight characters.)

 +--+
 ¦ ¦
 ¦ 02 USE-QID. ¦
 ¦ 04 USE-QID1 PIC X(3) VALUE 'AC0'. ¦
 ¦ 04 USE-QID2 PIC X(5). ¦
 ¦ ¦
 +--+

 The queue will contain just one item, which will tell what terminal is
 updating the record for that account number, and the date and time at
 which it started doing so. The definition of this record, also in working
 storage, will be:

 +--+
 ¦ ¦
 ¦ 02 USE-REC. ¦
 ¦ 04 USE-TERM PIC X(4) VALUE SPACES. ¦
 ¦ 04 USE-TIME PIC S9(7) COMP-3. ¦
 ¦ 04 USE-DATE PIC S9(7) COMP-3. ¦
 ¦ ¦
 +--+

 We include the date and time along with the terminal name in the
 scratchpad entry, so that we can find out whether the account number is
 currently in use, or whether the scratchpad record is there because of an
 earlier update attempt that wasn't completed properly. See
 "Pseudoconversational or not?" in topic 2.7 for a discussion of this
 possibility.

 The first test to check whether the record is in use, then, is:

 +--+
 ¦ ¦
 ¦ MOVE ACCTC TO USE-QID2. ¦
 ¦ EXEC CICS READQ TS QUEUE(USE-QID) INTO(USE-REC) ¦
 ¦ ITEM(USE-ITEM) LENGTH(USE-LNG) RESP(RESPONSE) END-EXEC. ¦
 ¦ ¦
 +--+

 Here USE-ITEM and USE-LNG are defined in working storage and have initial
 values of 1 and 12, respectively.

 The response we're hoping for on this command is that the read failed
 because no such queue exists. This will raise the QIDERR exception
 condition. If we do not get this response, we'll have to look at the
 scratchpad entry that we read to see whether this is a recent entry or an
 old, expired one. To do this we'll simply compare the time and date in
 the scratchpad entry with the time and date when the current transaction
 started (information that is available in the EIB).

CICS Application Programming Primer
Using temporary storage in the example application

© Copyright IBM Corp. 1984, 1991
3.5.2.6 - 1

 If we find out that the account number is not in use, then the next step
 is to claim it for the terminal that entered the input. If there is no
 scratchpad record for this number, then we need:

 +--+
 ¦ ¦
 ¦ MOVE EIBTRMID TO USE-TERM, MOVE EIBTIME TO USE-TIME. ¦
 ¦ MOVE EIBDATE TO USE-DATE. ¦
 ¦ EXEC CICS WRITEQ TS QUEUE(USE-QID) FROM(USE-REC) ¦
 ¦ LENGTH(12) END-EXEC. ¦
 ¦ ¦
 +--+

 If, on the other hand, there was an old, expired record in temporary
 storage for this number, then the code required is:

 +--+
 ¦ ¦
 ¦ MOVE EIBTRMID TO USE-TERM, MOVE EIBTIME TO USE-TIME. ¦
 ¦ MOVE EIBDATE TO USE-DATE. ¦
 ¦ EXEC CICS WRITEQ TS QUEUE(USE-QID) FROM(USE-REC) ¦
 ¦ LENGTH(12) ITEM(USE-ITEM) REWRITE END-EXEC. ¦
 ¦ ¦
 +--+

 Here again USE-ITEM is defined to be a halfword binary value of 1, because
 we want to rewrite the first (and presumably only) item in the queue.

 This same scratchpad entry gets erased in program ACCT02 when we've
 finished updating, with the command:

 +--+
 ¦ ¦
 ¦ EXEC CICS DELETEQ TS QUEUE(USE-QID) END-EXEC. ¦
 ¦ ¦
 +--+

 where the data area USE-QID has been defined and set up in the same way as
 it was in program ACCT01.

CICS Application Programming Primer
Using temporary storage in the example application

© Copyright IBM Corp. 1984, 1991
3.5.2.6 - 2

 3.5.2.7 Errors on temporary storage commands

 You can experience six different types of error on the temporary storage
 commands that we've described:

 INVREQ
 means that the record length you specified is invalid (zero or
 negative). This is almost always the result of a problem in the code.

 IOERR
 means the same thing on a temporary storage command as it does on a
 file command. It means that there is an unrecoverable input/output
 error, in this case on the temporary storage file, a VSAM
 entry-sequenced data set (ESDS).

 ISCINVREQ
 means that the remote system indicates a failure that does not
 correspond to a known condition.

 ITEMERR
 means that you specified an item number that does not exist. This can
 happen on either a READQ TS command or a WRITEQ TS with REWRITE
 specified. ITEMERR may be a condition the program expects, such as
 when a program reads until it exhausts a queue, or it may result from
 an error in the program logic.

 LENGERR
 occurs when you read an item that is longer than the maximum specified
 in the LENGTH parameter. It usually means a problem in the program
 logic.

 NOSPACE
 means that there isn't enough space left in the temporary storage data
 set, or in main storage (if MAIN is specified) for the record you just
 wrote. Unlike what happens with most other error conditions, CICS
 does not terminate your task when this occurs. If you provide code to
 handle the possibility, CICS sends control there, as it does for any
 unusual condition. If you don't, CICS simply suspends the task until
 some other task in the system releases enough temporary storage space
 for your record to fit.

 NOTAUTH
 means that a resource or command security check has failed. There is
 a complete list of reasons for such failures in the section on NOTAUTH
 in the CICS/ESA Application Programming Reference.

 QIDERR
 means that the queue that you've named in a READQ command, or in a
 WRITEQ with REWRITE specified, does not exist. It might indicate a
 program error, or it might be a condition expected by the program.
 When we read temporary storage to find out whether a particular
 account number is in use, for example, QIDERR is the expected response
 and indicates that the account number in question is not in use.

 SYSIDERR
 means that the SYSID option specifies either a name which is not
 defined in the intersystem table, or a system to which the link is
 closed.

CICS Application Programming Primer
Errors on temporary storage commands

© Copyright IBM Corp. 1984, 1991
3.5.2.7 - 1

 3.5.3 Transient data

 There is another facility in CICS, called transient data, one form of
 which is very similar to temporary storage. It comes in two
 flavors--intrapartition and extrapartition--and it is intrapartition
 transient data that is so much like temporary storage. Both temporary
 storage and transient data allow you to write and read queues of data
 items, which are often essentially small sequential files. Like temporary
 storage queues, intrapartition transient data queues are kept in a single
 VSAM data set managed by CICS.

 There are some important differences, however:

 � You must define the name and certain other characteristics of ever
 transient data queue to CICS in the Destination Control Table (DCT).
 This means that the names must be known before CICS is brought up, so
 you cannot just create a transient data queue with an arbitrary name,
 as we did for temporary storage in the example.

 � You cannot modify an item in a transient data queue; you can only ad
 new items to the end of the queue. The Write Transient Data command
 has nothing corresponding to the ITEM option.

 � Transient data queues must be read sequentially. That is, the Rea
 Transient Data command has nothing corresponding to the ITEM option.

 Furthermore, a read operation on transient data is a destructive read.
 That is, once a transaction has read an item on the queue, that item
 cannot be read again by that transaction or by any other.

 � Transient data comes with a very useful mechanism known as a trigger.
 You can request, in the DCT, that CICS initiate a transaction whenever
 the number of items in a transient data queue reaches a certain value.
 The DCT entry for the queue tells what this critical number of items
 is (the "trigger level"), and the name of the transaction to be
 initiated. You can also specify that a particular terminal must be
 available to this transaction. (You do this simply by giving the same
 name to both the terminal and the queue.) In this case, the
 transaction doesn't start until both the trigger level is reached and
 the terminal in question is available.

 This can be very useful for printing, as you'll soon see.

 � Transient data queues are always written to a file; there is n
 counterpart to the MAIN option that is used in temporary storage
 commands.

 � The recovery options for transient data are more varied

 Extrapartition transient data is the means by which CICS supports standard
 sequential (SAM) files. The commands used for extrapartition queues are
 the same as for intrapartition queues, and each queue requires a DCT
 entry. In this case, however, a read or write operation is actually a
 read or write to a sequential file, and each queue is a file. You can
 either read or write an extrapartition queue, but not both. The trigger
 mechanism and the recovery options mentioned above do not apply to
 extrapartition queues.

 In the example application, we could have used transient data instead of
 temporary storage for our log of changes, and it would have been a natural
 choice. If we had chosen an intrapartition queue, then we'd still need a
 transaction to print the log (very similar to the one we defined using
 temporary storage). We might even have specified in the DCT that we
 wanted that transaction started every time the number of items logged (the
 length of the queue) reached 100, or some other limit.

CICS Application Programming Primer
Transient data

© Copyright IBM Corp. 1984, 1991
3.5.3 - 1

 Alternatively, we might have selected an extrapartition queue. In this
 case we'd be creating a SAM file, which could be printed by a batch
 program. In fact, if you need to use or create SAM files in a CICS
 application, you must use transient data.

 On the other hand, transient data isn't appropriate for our scratchpad use
 of temporary storage. Because all the queue names have to be defined
 beforehand, we could not use the trick of including the account number in
 the name to get direct access to the scratchpad item we want. Moreover,
 the fact that an item on the queue can be read only once would have caused
 us trouble.

CICS Application Programming Primer
Transient data

© Copyright IBM Corp. 1984, 1991
3.5.3 - 2

 3.6 Program control
 As we explained earlier, a transaction (task) may execute several programs
 in the course of completing its work.

 Subtopics
 3.6.1 Associating programs and transactions
 3.6.2 Commands for passing program control
 3.6.3 Passing control and data between programs and transactions
 3.6.4 Errors on the program control commands
 3.6.5 Abending a transaction
 3.6.6 Other program control commands

CICS Application Programming Primer
Program control

© Copyright IBM Corp. 1984, 1991
3.6 - 1

 3.6.1 Associating programs and transactions

 The installed program definition contains one entry for every program used
 by any application in the CICS system. Each entry holds, among other
 things, three particularly important pieces of information:

 1. The language in which the program is written, which CICS needs to know
 in order to set up its linkages and control blocks properly

 2. How many tasks are using the program at the moment

 3. Where the program is (in main storage and/or on disk).

 In addition to the executable programs, anything that CICS must load in
 order to respond to a command needs an entry in this installed program
 definition. For example, a physical map.

 The installed transaction definition has an entry for every transaction
 identifier in the system (using "transaction" in the CICS sense of the
 word). The important information kept about each transaction is the
 transaction identifier and the name of the first program to be executed on
 behalf of the transaction.

 You can see how these two sets of definitions work in concert:

 1. The user types in a transaction identifier at the terminal (or the
 previous transaction determined it).

 2. CICS looks up this identifier in the list of installed program
 definitions.

 3. This tells CICS which program to invoke first.

 4. CICS looks up this program in the list of installed transaction
 definitions, finds out where it is, and loads it if it isn't already
 in main storage.

 5. CICS builds the control blocks necessary for this particular
 combination of transaction and terminal, using information from both
 sets of definitions. For programs in command-level COBOL, like ours,
 this includes making a private copy of working storage for this
 particular execution of the program.

 6. CICS passes control to the program, which begins running using the
 control blocks for this terminal. This program may pass control to
 any other program in the list of installed program definitions, if
 necessary, in the course of completing the transaction.

CICS Application Programming Primer
Associating programs and transactions

© Copyright IBM Corp. 1984, 1991
3.6.1 - 1

 3.6.2 Commands for passing program control

 There are two CICS commands for passing control from one program to
 another. One is the LINK command, which is similar to a CALL statement in
 COBOL. The other is the XCTL (transfer control) command, which has no
 COBOL counterpart. When one program links to another, the first program
 stays in main storage. When the second (linked-to) program finishes and
 gives up control, the first program resumes at the point after the LINK.
 The linked-to program is considered to be operating at one logical level
 lower than the program that does the linking.

 +--+
 ¦ ¦
 ¦ Level+----------------+ ¦
 ¦ 0 ¦ CICS ¦ ¦
 ¦ CICS ¦ ¦ ¦<--+ ¦
 ¦ +----+-----------+ ¦ ¦
 ¦ (1) ¦ (7)¦ ¦
 ¦ ¦ ¦ ¦
 ¦ +----V-----------+ ¦ ¦
 ¦ Level¦ Program 1 +--+---+ ¦
 ¦ 1 ¦ LINK ¦ ¦ ¦
 ¦ ¦ ¦...RETURN ¦<------------------------+ ¦
 ¦ +----+-----------+ (6) ¦ ¦
 ¦ (2) ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ +----V-----------+ +----------------+ ¦ ¦
 ¦ Level¦ Program 2 ¦ ¦ Program 3 +--+--+ ¦
 ¦ 2 ¦ XCTL-----------+---->¦ LINK ¦ ¦ ¦
 ¦ +----------------+ (3) ¦ ¦ ...RETURN ¦<-+ ¦
 ¦ +---+------------+ ¦ ¦
 ¦ (4) ¦ (5) ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ +---V------------+ ¦ ¦
 ¦ Level ¦ Program 4 +--+--+ ¦
 ¦ 3 ¦ ¦ ¦ ¦
 ¦ ¦ ...RETURN ¦ ¦
 ¦ +----------------+ ¦
 ¦ ¦
 +--+
 Figure 49. Transferring control between programs (normal returns)

 In contrast, when one program transfers control to another, the first
 program is considered terminated, and the second program operates at the
 same level as the first. When the second program finishes, control is
 returned not to the first program, but to whatever program last issued a
 LINK command.

 Some people like to think of CICS itself as the highest program level in
 this process, with the first program in the transaction as the next level
 down, and so on. If you look at it from this point of view, CICS links to
 the program named in the list of installed transaction definitions when it
 initiates the transaction. When the transaction is complete, this program
 (or another one operating at the same level) returns control to the next
 higher level, which happens to be CICS itself. Figure 49 may help.

 Subtopics
 3.6.2.1 The LINK command
 3.6.2.2 The XCTL command
 3.6.2.3 The RETURN command
 3.6.2.4 The COBOL CALL statement
 3.6.2.5 Subroutines revisited

CICS Application Programming Primer
Commands for passing program control

© Copyright IBM Corp. 1984, 1991
3.6.2 - 1

 3.6.2.1 The LINK command

 The LINK command looks like this:

 +--+
 ¦ ¦
 ¦ EXEC CICS LINK PROGRAM(pgmname) ¦
 ¦ COMMAREA (commarea) LENGTH(length) END-EXEC. ¦
 ¦ ¦
 +--+

 pgmname
 is the name of the program to which you wish to link. If the name is
 a literal, enclose it in quotes. Program names can be up to eight
 characters long.

 commarea
 is an optional parameter. It is the name of the area containing the
 data to be passed and/or the area to which results are to be returned.
 You use it only if you want to pass information to or receive
 information from the program being linked to.

 length
 is the length of "commarea." This parameter is required only if
 COMMAREA is present. Otherwise don't use it. Like the length
 parameter in other commands, it must be a halfword binary value.

CICS Application Programming Primer
The LINK command

© Copyright IBM Corp. 1984, 1991
3.6.2.1 - 1

 3.6.2.2 The XCTL command

 The XCTL command to transfer control is identical to the LINK command
 except for the command verb itself:

 +--+
 ¦ ¦
 ¦ EXEC CICS XCTL PROGRAM(pgmname) ¦
 ¦ COMMAREA(commarea) LENGTH(length) END-EXEC. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
The XCTL command

© Copyright IBM Corp. 1984, 1991
3.6.2.2 - 1

 3.6.2.3 The RETURN command

 The command to return control to the next higher level within a
 transaction is simply:

 +--+
 ¦ ¦
 ¦ EXEC CICS RETURN END-EXEC. ¦
 ¦ ¦
 +--+

 When the program at the highest level for the transaction (Level 1 in the
 diagram) returns control to CICS, however, there are two additional
 options that you can specify:

 1. You can say what transaction is to be executed when the next input
 comes from the same terminal. (This is how we get into
 pseudoconversational mode.)

 2. You can specify data that's to be passed on to that next transaction.

 In this case the RETURN command has a slightly different form:

 +--+
 ¦ ¦
 ¦ EXEC CICS RETURN TRANSID(nextid) ¦
 ¦ COMMAREA(commarea) LENGTH(length) END-EXEC. ¦
 ¦ ¦
 +--+

 nextid
 is the identifier of the next transaction (next transid) to be
 executed from the terminal associated with the current transaction.
 This next transaction is the one that gets executed the next time the
 terminal sends input, regardless of any transaction identifier in that
 input. (Here's a way of overriding any user's input.) The identifier
 should be enclosed in quotes if it is a literal. TRANSID is an
 optional parameter.

 commarea
 is the name of the data area containing the data to be passed to the
 next transaction. COMMAREA is also optional.

 length
 is the length of "commarea." LENGTH is required if COMMAREA is
 present, and must not be there if COMMAREA was not specified.

CICS Application Programming Primer
The RETURN command

© Copyright IBM Corp. 1984, 1991
3.6.2.3 - 1

 3.6.2.4 The COBOL CALL statement

 As well as passing control to other programs by means of LINK and XCTL
 commands, a CICS COBOL program can invoke another program with a COBOL
 CALL statement. Although there's somewhat less system overhead (in other
 words, a shorter path length) with this method, there are some
 considerations that may count against it. For example:

 � A CALLed program remains in its last-used state after it return
 control, so a second CALL finds the program in this state. LINK and
 XCTL commands, on the other hand, always find the "new" program in its
 initial state.

 � With static calls, you must link-edit the calling and called program
 together and present them to CICS as a single unit, with one name and
 one entry in the list of installed program definitions. This has two
 consequences:

 - It may result in a module that is quite large
 - It prevents two programs that call the same program from sharing a
 copy of the called program.

CICS Application Programming Primer
The COBOL CALL statement

© Copyright IBM Corp. 1984, 1991
3.6.2.4 - 1

 3.6.2.5 Subroutines revisited

 Now, the answer to that problem we met earlier--whether and how to break
 off a substantial routine. For single-task efficiency, generally in-line
 code is best, PERFORM next, straight CALL third, XCTL next, and LINK last.
 However, any of the first three choices may make for a very long load
 unit, and that can impact system behavior and response to other users.

 Always use XCTL if it will do, of course, rather than LINK. That's just a
 program logic issue; you either need control back or you don't. In our
 example, as you'll see, we've broken our own rule and used a LINK (rather
 than an XCTL) to the error-handling program. However, we do have an
 excuse ready.... See "Errors within the example application" in
 topic 3.8.3.

 The probability of the code getting used is another issue. If you have a
 long complex routine for calculating withholding tax for veterans in a
 payroll system, but you use it only if salary or dependents change and you
 have hardly any veterans, then by all means put it in a separate routine
 and LINK to it.

 Finally, how about breaking code into two parts? For example, let's take
 a standard "edit and update if OK" module, like ACCT02 in our application.
 Figure 50 shows the outline logic.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 ¦ PICTURE 15 ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 50. Outline logic of a standard "edit and update" module.

 If the edit and update logic are short, then it makes sense for the whole
 thing to be one module. If both are rather long, on the other hand,
 there's a natural break after the edit has been declared okay; the first
 program does up to point "A" and then there's an XCTL to a second program.

CICS Application Programming Primer
Subroutines revisited

© Copyright IBM Corp. 1984, 1991
3.6.2.5 - 1

 3.6.3 Passing control and data between programs and transactions

 Now that we've explained how to pass data from one transaction to another,
 you may be wondering how the receiving program accesses this data. To
 show this, let's code a few program control commands for the example
 application.

 In several of the programs, when we meet an error from which we cannot
 recover, we transfer control to the general-purpose error program, ACCT04.
 We pass three items of information to ACCT04:

 1. The name of the program that passed control (and where the error was
 detected)

 2. The function that failed

 3. The return code from the command that failed.

 Figure 51 shows how this information looks in program ACCT01's working
 storage:

 +--+
 ¦ ¦
 ¦ 02 COMMAREA-FOR-ACCT04. ¦
 ¦ 04 ERR-PGRMID PIC X(8) VALUE 'ACCT01'. ¦
 ¦ 04 ERR-FN PIC X. ¦
 ¦ 04 ERR-RCODE PIC X. ¦
 ¦ 04 ERR-COMMAND PIC XX. ¦
 ¦ 04 ERR-RESPONSE PIC 99. ¦
 ¦ ¦
 +--+
 Figure 51. Passing information to the error program

 The code in ACCT01 to pass control to ACCT04 is:

 +--+
 ¦ ¦
 ¦ EXEC CICS LINK PROGRAM('ACCT04') ¦
 ¦ COMMAREA(COMMAREA-FOR-ACCT04) LENGTH(14) END-EXEC. ¦
 ¦ ¦
 +--+

 Notes:

 1. VS COBOL II avoids the need for the programmer to compute LENGTH.

 2. We'll discuss the use of LINK rather than XCTL in "Errors within the
 example application" in topic 3.8.3.

 The program receiving control, ACCT04 in this case, defines this same area
 in its Linkage Section, as shown in Figure 52.

 +--+
 ¦ ¦
 ¦ LINKAGE SECTION. ¦
 ¦ 01 DFHCOMMAREA. ¦
 ¦ 02 ERR-PGRMID PIC X(8). ¦
 ¦ 02 ERR-CODE. ¦
 ¦ 04 ERR-FN PIC X. ¦
 ¦ 04 ERR-RCODE PIC X. ¦
 ¦ 02 ERR-COMMAND PIC XX. ¦
 ¦ 02 ERR-RESPONSE PIC 99. ¦
 ¦ ¦
 +--+
 Figure 52. Receiving information in the error program

CICS Application Programming Primer
Passing control and data between programs and transactions

© Copyright IBM Corp. 1984, 1991
3.6.3 - 1

 This area must be the first 01 level in the Linkage Section, and you must
 call it DFHCOMMAREA as shown in the example. You can then use the
 contents directly, as follows:

 +--+
 ¦ ¦
 ¦ MOVE ERR-PGRMID TO PGMEO. ¦
 ¦ ¦
 +--+

 Subtopics
 3.6.3.1 Communicating between transactions in the example application

CICS Application Programming Primer
Passing control and data between programs and transactions

© Copyright IBM Corp. 1984, 1991
3.6.3 - 2

 3.6.3.1 Communicating between transactions in the example application

 Apart from the LINK to our error-handling program, ACCT04, which is
 something of a special case, there's no instance of one program linking to
 another in the example application, and so no instance of return to a
 higher level within the transaction either.

 However, there are several different types of return to CICS. The
 simplest occurs in program ACCT01, after the user has indicated a wish to
 exit from the application. No next transid is set, and no data is passed
 forward to the next transaction. The return command is just:

 +--+
 ¦ ¦
 ¦ EXEC CICS RETURN END-EXEC. ¦
 ¦ ¦
 +--+

 In program ACCT00, in contrast, we need to indicate that the next
 transaction to be executed from the same terminal is AC01, so the RETURN
 command is written:

 +--+
 ¦ ¦
 ¦ EXEC CICS RETURN TRANSID('AC01') END-EXEC. ¦
 ¦ ¦
 +--+

 Later, in program ACCT01, after we complete the initial processing of an
 update request, we need to show that the next transaction to be executed
 is AC02. Not only that, but we need to pass data to it as well. The data
 is the request-type code and the account number that came in on the
 original map. The communications area in Working-Storage where we've
 stored this information looks like this:

 +--+
 ¦ ¦
 ¦ 04 IN-REQ. ¦
 ¦ 06 REQC PIC X VALUE SPACES. ¦
 ¦ 06 ACCTC PIC X(5) VALUE SPACES. ¦
 ¦ 06 PRTRC PIC X(4) VALUE SPACES. ¦
 ¦ ¦
 +--+

 And the code needed is:

 +--+
 ¦ ¦
 ¦ EXEC CICS RETURN TRANSID('AC02') ¦
 ¦ COMMAREA(IN-REQ) LENGTH(6) END-EXEC. ¦
 ¦ ¦
 +--+

 When program ACCT02 is invoked, it finds the data passed to it in the same
 way as a program to which control is passed by means of an XCTL or LINK
 command. That is, the area is defined in the first 01 level in the
 Linkage Section, which is named DFHCOMMAREA and has the same format as it
 did in the passing program. (We happened to use the same names in these
 programs for the items passed, but that, of course, isn't required.) So
 program ACCT02 contains the following:

 +--+
 ¦ ¦
 ¦ LINKAGE SECTION. ¦
 ¦ 01 DFHCOMMAREA. ¦

CICS Application Programming Primer
Communicating between transactions in the example application

© Copyright IBM Corp. 1984, 1991
3.6.3.1 - 1

 ¦ 02 REQC PIC X. ¦
 ¦ 02 ACCTC PIC X(5). ¦
 ¦ ¦
 +--+

 These variables are directly available to the program (the translator
 generates the code necessary to make this happen).

 Incidentally, if you wanted to pass a communications area from, say,
 program 1 to program 3, you can simply define the area in the linkage
 section of program 2, even though it's not used in that program, and pass
 it as COMMAREA on the LINK (or XCTL) to program 3.

CICS Application Programming Primer
Communicating between transactions in the example application

© Copyright IBM Corp. 1984, 1991
3.6.3.1 - 2

 3.6.4 Errors on the program control commands

 CICS recognizes the following exceptional conditions on program control
 commands:

 INVREQ
 means that one of two things happened. Either (1) you specified
 COMMAREA or LENGTH on a RETURN command in a program that was not at
 the highest level (that is, a RETURN that would not terminate the
 transaction by returning control to CICS), or (2) you specified the
 TRANSID option on a RETURN from a task that had no terminal associated
 with it. (There are such tasks; see "Starting another task, and other
 time services" in topic 3.7.) In either form, INVREQ usually means a
 programming error.

 LENGERR
 means that the length of the data, specified using the RETURN command
 with the length option, is outside the valid range of 1 to 32763.

 NOTAUTH
 means that a resource or command security check has failed. There is
 a complete list of reasons for such failures in the section on NOTAUTH
 in the CICS/ESA Application Programming Reference.

 PGMIDERR
 means that the program to which control was passed, on a LINK or an
 XCTL command, cannot be found in the list of installed program
 definitions or isn't in the library, or has been disabled. It
 corresponds to FILENOTFOUND on a file command, and has similar causes.
 If it occurs during the testing phase, look for a spelling mismatch;
 if it occurs once the system has been put into actual use ("in
 production"), have your systems people check the list of installed
 program definitions for damage.

CICS Application Programming Primer
Errors on the program control commands

© Copyright IBM Corp. 1984, 1991
3.6.4 - 1

 3.6.5 Abending a transaction

 In addition to the normal return sequences that we've described, there is
 another command that you use in abnormal circumstances. This is the ABEND
 command. It returns control to CICS directly. Figure 49 showed a normal
 return from program 4 to program 3, and from program 3 to program 1. If,
 in contrast, an ABEND command had been issued in program 4, the picture
 would then be as shown in Figure 53:

 +--+
 ¦ ¦
 ¦ Level+----------------+ ¦
 ¦ 0 ¦ CICS ¦ ¦
 ¦ CICS ¦ ¦ ¦<------------------------+ ¦
 ¦ +----+-----------+ ¦ ¦
 ¦ (1) ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ +----V-----------+ ¦ ¦
 ¦ Level¦ Program 1 ¦ ¦ ¦
 ¦ 1 ¦ LINK ¦ ¦ ¦
 ¦ ¦ ¦ ...RETURN ¦ (5) ¦ ¦
 ¦ +----+-----------+ ¦ ¦
 ¦ (2) ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ +----V-----------+ +----------------+ ¦ ¦
 ¦ Level¦ Program 2 ¦ ¦ Program 3 ¦ ¦ ¦
 ¦ 2 ¦ XCTL-----------+---->¦ LINK ¦ ¦ ¦
 ¦ +----------------+ (3) ¦ ¦ ...RETURN ¦ ¦ ¦
 ¦ +---+------------+ ¦ ¦
 ¦ (4) ¦ ¦ ¦
 ¦ ¦ ¦ ¦
 ¦ +---V------------+ ¦ ¦
 ¦ Level ¦ Program 4 ¦ ¦ ¦
 ¦ 3 ¦ ...ABEND---+--+ ¦
 ¦ +----------------+ ¦
 ¦ ¦
 +--+
 Figure 53. Transferring control between programs (after an abend)

 Use the ABEND command when a situation arises that the program cannot
 handle. This may be a condition beyond control of the program, such as an
 input/output error on a file, or it may simply be a combination of
 circumstances that "should not occur" if the program logic is correct. In
 either case, ABEND is the right command to terminate the transaction. The
 format is:

 +--+
 ¦ ¦
 ¦ EXEC CICS ABEND ABCODE(abcode) END-EXEC. ¦
 ¦ ¦
 +--+

 abcode
 is simply a four-character code identifying the particular ABEND
 command. It does two jobs: it tells CICS that you want a dump of your
 transaction, and it identifies the dump. Enclose it in quotes if it
 is a literal.

 In addition to returning control to CICS, the ABEND command has another
 very important property: it causes CICS to back out all of the changes
 made by this transaction to recoverable resources (see "Maintaining file
 integrity" in topic 2.7.3 if you've forgotten what "back out" means).

 In our example application, we use this command at the end of program
 ACCT04, where we send control when we've encountered a situation which

CICS Application Programming Primer
Abending a transaction

© Copyright IBM Corp. 1984, 1991
3.6.5 - 1

 prevents us from continuing the requested transaction. The code is:

 +--+
 ¦ ¦
 ¦ EXEC CICS ABEND ABCODE('EACC') END-EXEC. ¦
 ¦ ¦
 +--+

 Suppose, for example, that program ACCT02 successfully adds a new record
 to the account file, but meets a "no-space" condition when trying to add
 the corresponding new record to the index file. The resulting ABEND
 command issued in program ACCT04 will:

 � Produce a dump of all the main storage areas related to th
 transaction

 � Remove the new record from the account file, so that the two files ar
 still synchronized with each other, even after the failure

 � Return control to CICS

CICS Application Programming Primer
Abending a transaction

© Copyright IBM Corp. 1984, 1991
3.6.5 - 2

 3.6.6 Other program control commands

 There are two other program control commands that we'll mention here, but
 not cover in detail.

 The LOAD command brings a "program" (any phase or load module in the list
 of installed program definitions) into main storage but doesn't give it
 control. This is useful for tables of the type that are assembled and
 stored in a program library, but that don't contain executable code.

 The RELEASE command tells CICS that you've finished using such a
 "program".

CICS Application Programming Primer
Other program control commands

© Copyright IBM Corp. 1984, 1991
3.6.6 - 1

 3.7 Starting another task, and other time services
 CICS allows one transaction (task) to start another one, as we noted in
 our discussion about printed output. The usual reason for doing this is
 the one that arose in our example: the originating task needs access to
 some facility it does not own, usually a terminal other than the input
 terminal. In our case, we needed a printer to print the log of account
 file changes.

 There are sometimes other reasons as well. You might want a task to be
 executed at a particular time, or you might want it to run at a different
 priority from the original task, for instance.

 Subtopics
 3.7.1 Starting another task
 3.7.2 Retrieving data passed in the START command
 3.7.3 Using the START and RETRIEVE commands in the example application
 3.7.4 Errors on the START and RETRIEVE commands
 3.7.5 Other time services

CICS Application Programming Primer
Starting another task, and other time services

© Copyright IBM Corp. 1984, 1991
3.7 - 1

 3.7.1 Starting another task

 The command to start another task is:

 +--+
 ¦ ¦
 ¦ EXEC CICS START TRANSID(transid) TERMID(termid) ¦
 ¦ FROM(recarea) LENGTH(length) option END-EXEC. ¦
 ¦ ¦
 +--+

 transid
 is the identifier of the transaction that is to be started. This
 parameter is required. If the identifier is a literal, enclose it in
 quotes.

 termid
 is the identifier of the terminal that must be made available to the
 task being started. This parameter is optional, and should only be
 specified if the transaction requires a terminal. Again, if it is a
 literal, it must be enclosed in quotes.

 You may have to get this name from your systems people. It's the name
 they put in the Terminal Control Table (TCT).

 recarea
 is the name of the data area that contains data to be passed to the
 transaction being started. This parameter is optional.

 length
 is the length of the data being passed (that is, the length of
 RECAREA), in halfword binary form. The LENGTH parameter is required
 if FROM is present, but should not be present otherwise.

 option
 can be either INTERVAL or TIME:

 INTERVAL(hhmmss)
 tells CICS to start the transaction in hh hours, mm minutes and ss
 seconds from the current time. The hours may be from 0 to 99, but
 the minutes and seconds should not exceed 59. To start a task in
 40 hours and 10 minutes, you would write "INTERVAL(401000)" in
 your START command.

 TIME(hhmmss)
 tells CICS to start the transaction at a specific time, namely
 "hh:mm:ss." Write the start time in the same format as the
 interval, using 24-hour military time.

 Note: Whereas an INTERVAL always specifies a time in the future
 (the current time plus the interval specified), the time given in
 a TIME parameter may be in either the future or the past relative
 to the time at which the command is executed. The rules that CICS
 uses are as follows:

 � If the current time is 060000 (6 a.m.) or later, and the TIME
 value is less than 6 hours before the current time, CICS
 assumes that you mean a time in the past, and so the
 transaction is started as soon as possible, just as if you had
 specified INTERVAL(0).

 � If the current time is less than 060000, and the expiration
 time is less than the current time, then the TIME is also
 considered to be in the past. Note, however, that the TIME
 given is never taken to be before midnight of the current day.

CICS Application Programming Primer
Starting another task

© Copyright IBM Corp. 1984, 1991
3.7.1 - 1

 � Otherwise, CICS assumes that the time is in the future.

 � If you specify a time with an hours component greater than 23,
 you are specifying a time on a day following the current one.
 That is: a TIME of 250000 means 1 a.m. on the day following
 the current one, and 490000 means 1 a.m. on the day after
 that.

 If you don't specify either INTERVAL or TIME, CICS assumes that
 you would like INTERVAL(0), which means right away.

CICS Application Programming Primer
Starting another task

© Copyright IBM Corp. 1984, 1991
3.7.1 - 2

 3.7.2 Retrieving data passed in the START command

 If data is passed in the START command, the transaction that gets started
 uses the RETRIEVE command to get access to this data. The RETRIEVE
 command looks like this:

 +--+
 ¦ ¦
 ¦ EXEC CICS RETRIEVE INTO(recarea) LENGTH(length) ¦
 ¦ END-EXEC. ¦
 ¦ ¦
 +--+

 Notice the difference between this RETRIEVE command and the RECEIVE
 command described in "The RECEIVE MAP command" in topic 3.3.5.1. Both
 commands may be used to get the initial input to a transaction, but they
 aren't interchangeable: RECEIVE must be used in transactions that are
 initiated by input from a terminal, and RETRIEVE must be used in
 transactions that were STARTed by another transaction.

 recarea
 is the name of the data area into which the data is to be placed.
 This parameter is required.

 length
 is the maximum length of data that can be read into recarea (that is,
 the length of recarea). LENGTH is also required, and must be a
 halfword binary value.

CICS Application Programming Primer
Retrieving data passed in the START command

© Copyright IBM Corp. 1984, 1991
3.7.2 - 1

 3.7.3 Using the START and RETRIEVE commands in the example application

 In our example application, program ACCT01 uses the START command when a
 user asks for a record to be printed:

 +--+
 ¦ ¦
 ¦ EXEC CICS START TRANSID('AC03') FROM(ACCTDTLO) ¦
 ¦ LENGTH(DTL-LNG) TERMID(PRTRC) RESP(RESPONSE) END-EXEC. ¦
 ¦ ¦
 +--+

 This START command tells CICS to start transaction AC03 as soon as
 possible after the printer whose name is in data area PRTRC is available
 to be its terminal.

 Program ACCT03, running on behalf of this transaction, in turn issues the
 following RETRIEVE command to retrieve the data passed from program
 ACCT01:

 +--+
 ¦ ¦
 ¦ EXEC CICS RETRIEVE INTO(ACCTDTLI) LENGTH(TS-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 ACCTDTLO and ACCTDTLI refer to the symbolic map structure, located in
 Working-Storage in both programs. The map, of course, contains the data
 read by transaction AC01. This data is to be printed by AC03. DTL-LNG is
 in the Working-Storage of program ACCT01 and is defined to be

 PIC S9(4) COMP VALUE +751

 which happens to be the length of the symbolic map area. TS-LNG has the
 same definition in the Working-Storage of program ACCT03.

CICS Application Programming Primer
Using the START and RETRIEVE commands in the example application

© Copyright IBM Corp. 1984, 1991
3.7.3 - 1

 3.7.4 Errors on the START and RETRIEVE commands

 A number of different problems may arise in connection with the START and
 RETRIEVE commands that we've described.

 INVTSREQ
 means that the CICS system support for temporary storage, which is
 required for START commands that specify the FROM option, was not
 present when a RETRIEVE command was issued. This error is an example
 of the system/application mismatch (category 4) described in "Handling
 errors and exceptional conditions" in topic 2.9.2.

 IOERR
 on a RETRIEVE or START command means exactly what it does on a
 temporary storage command: an input/output error on the temporary
 storage data set where the data to be passed is stored.

 LENGERR
 occurs when the length of the data retrieved by a RETRIEVE command
 exceeds the value specified in the LENGTH parameter for the command.
 LENGERR usually means an error in the program logic.

 NOTFND
 on a RETRIEVE command means that the requested data could not be found
 in temporary storage. If a task issuing a RETRIEVE command was not
 started by a START command, or if it was started by a START command
 with no FROM parameter (in other words, no data), this condition will
 occur. Again, it usually means a programming error.

 TERMIDERR
 occurs when the terminal specified in the TERMID parameter in a START
 command cannot be found in the Terminal Control Table. TERMIDERR is
 like FILENOTFOUND for files and PGMIDERR on Program Control commands.
 During the test phase it usually indicates a problem in the program
 logic; on a production system, it usually means that something has
 happened to the TCT.

 TRANSIDERR
 means that the transaction identifier specified in a START command
 cannot be found in the list of installed transaction definitions.
 Like TERMIDERR, it usually means a programming error during the
 development of an application, or table damage if it occurs on a
 production system.

CICS Application Programming Primer
Errors on the START and RETRIEVE commands

© Copyright IBM Corp. 1984, 1991
3.7.4 - 1

 3.7.5 Other time services

 CICS provides a number of other time services, as well as some extra bits
 and pieces on the START and RETRIEVE commands. Among other things, a
 transaction in execution can:

 � Synchronize its operations with those of other tasks. Three differen
 commands are provided for this purpose:

 - The DELAY command suspends the processing of the issuing task
 until some specified time or for a specified interval.
 - The POST command requests that the issuing task be notified when a
 particular interval of time has elapsed or when some event has
 occurred.
 - The WAIT command suspends the issuing task until some specified
 event occurs.

 � Cancel the request issued in a previous START command, or in a POS
 command, through the use of the CANCEL command.

 � Ask for the time and date to be updated in the EIB (through the use o
 the ASKTIME command).

 � Assign a name to the data to be passed from the originating task t
 the started task, through the use of the REQID option on the START and
 RETRIEVE commands.

 � Queue up multiple items of data for a single task to be started
 through the use of the QUEUE option on the START command.

 We don't use any of these in our example application, but at least you now
 know they exist.

CICS Application Programming Primer
Other time services

© Copyright IBM Corp. 1984, 1991
3.7.5 - 1

 3.8 Errors and exceptional conditions
 Throughout the previous sections, we've cited ways in which CICS commands
 may produce results other than those you intended (what CICS cheerfully
 calls "exceptional conditions"). These are passed back by the CICS Exec
 interface program to your application. By looking at the condition
 raised, you'll be able to tell what failed, and possibly why it failed.

 Commands are checked for validity as far as possible by the CICS
 translator. If errors are detected at translate time the translator
 issues a suitable diagnostic and gives a return code greater than 4. Such
 commands are said to be "syntactically invalid." Programs containing
 syntactically invalid commands should never be executed and we'll not
 discuss them any further.

 Commands which are syntactically valid may nevertheless fail to execute
 successfully for a variety of reasons. (And how!)

 If a CICS command executes successfully, the command is said to have a
 normal response. Unless you take special action, CICS will check that a
 command executes normally. If it doesn't, CICS will take some appropriate
 action and will not, in general, return control to the application. The
 special action is called "system default action" and is usually to abend
 ("abnormally end") the transaction. As we pointed out in "Handling errors
 and exceptional conditions" in topic 2.9.2, this is almost never what you
 want in these situations.

 For many applications the CICS system default action will be inappropriate
 and you'll need to write some special code to be invoked in the event of
 non-normal response. What sort of code?

 Basically, you have three choices when an exceptional condition arises:

 1. Let the program continue

 2. Pass control to a specified label

 3. Do nothing, and rely on the system default action.

 CICS provides you with a number of programming options applicable to each
 choice, and the CICS/ESA Application Programming Guide gives you full
 details of all these options. To save you reading through the whole of
 the relevant topic in that book, however (although you'll probably need to
 study that book when you come to write your own application programs),
 here's the information that specifically relates to the example
 application programs in this book.

 When you look through the example COBOL programs described in this book to
 find out what they do when an exceptional condition arises, you'll find
 that only the first two choices have been used: to let the program
 continue, or to pass control to a specified label.

 Subtopics
 3.8.1 Letting the program continue
 3.8.2 Passing control to a specified label
 3.8.3 Errors within the example application
 3.8.4 Other facilities for exceptional conditions

CICS Application Programming Primer
Errors and exceptional conditions

© Copyright IBM Corp. 1984, 1991
3.8 - 1

 3.8.1 Letting the program continue

 Letting the program continue means allowing control to return from CICS to
 the next instruction in the program immediately following the one that has
 failed. At the same time, CICS sets a return code in EIBRESP so that you
 can test for particular conditions right after each command. (This
 approach is particularly useful when you are structuring your code,
 incidentally.)

 CICS makes it very easy to test the RESP value by supplying a built-in
 function called DFHRESP for you to use. So you can execute each CICS
 command and then immediately find out what the RESP value was for it. If
 the RESP value is NORMAL, this means the command worked. (Even if the
 value isn't NORMAL, this may be both expected and acceptable.)

 And that's not all. Your code can also examine RESP values by their
 symbolic names (for example, DFHRESP(LENGERR) when testing for a condition
 by the symbolic name of LENGERR). This avoids having to mess around with
 hexadecimal values.

 Let's have a look at a section of the ACCT02 code where we've used the
 RESP option:

 +--+
 ¦ ¦
 ¦ 110 * ¦
 ¦ 111 * GET INPUT AND BUILD NEW RECORD. ¦
 ¦ 112 EXEC CICS RECEIVE MAP('ACCTDTL') MAPSET('ACCTSET') ¦
 ¦ 113 RESP(RESPONSE) END-EXEC. ¦
 ¦ 114 IF RESPONSE = DFHRESP(MAPFAIL) GO TO NO-MAP. ¦
 ¦ 115 IF RESPONSE NOT = DFHRESP(NORMAL) GO TO NO-GOOD. ¦
 ¦ ¦
 +--+

 A MAPFAIL condition can be raised on this command, as indeed can several
 other conditions. So we've specified the RESP option to find out, after
 execution, what condition has been raised on the RECEIVE MAP. The program
 can then check the value of RESP in the RESPONSE variable (defined earlier
 in the program) to see if any errors have occurred.

 What conditions can we provide for? Well, there are six exceptional
 conditions that we've chosen to deal with in this way:

 1. A no input (MAPFAIL) condition when we read the input map.

 This generally results from a keying error, and we would certainly
 annoy the user if we allowed CICS to abend the transaction for this
 comparatively minor slip. Therefore, we want to send a message to let
 the user correct the input instead.

 (In the section of the ACCT02 code given above, we start by looking
 explicitly for the MAPFAIL condition, because this condition can occur
 without there being any serious error (if, for example, the user
 presses CLEAR at this point in the application). If the MAPFAIL
 condition is raised, control will go to NO-MAP. If there is some
 other sort of error (any NOT NORMAL condition), control will go to
 NO-GOOD.)

 2. A record not found (NOTFND) condition when we read the index file for
 a customer name entered by the user.

 This situation isn't an error; it simply means that there are no
 customers with that particular name, and so we'll inform the user.

 3. A record not found (NOTFND) condition when we try to read the account

CICS Application Programming Primer
Letting the program continue

© Copyright IBM Corp. 1984, 1991
3.8.1 - 1

 file record named in the input.

 NOTFND in this instance may actually be correct (if the user is trying
 to add a record) and is at worst an error in the account number, to be
 treated like any other input error.

 4. An end of file (ENDFILE) condition when we're browsing through the
 index file looking for all the matching records on a name search.

 This isn't an error either, just a sign that we've run out of
 candidate names.

 5. A no such entry (QIDERR) response to reading the scratchpad.

 This is the expected result when we read temporary storage to see if
 anyone else is updating the record we want to update. It means no one
 is using "our" record.

 6. A terminal id error (TERMIDERR) when we start the AC03 transaction to
 print a record.

 This condition means that the user entered a printer name that is
 unknown to CICS. We'll treat it like any other type of input error.

CICS Application Programming Primer
Letting the program continue

© Copyright IBM Corp. 1984, 1991
3.8.1 - 2

 3.8.2 Passing control to a specified label

 There are two ways you can do this:

 � HANDLE CONDITION condition(label) command

 where condition is the name of the condition you want to handle.
 � HANDLE CONDITION ERROR(label) command.

 The only HANDLE CONDITION command that we use in the example COBOL program
 is the HANDLE CONDITION ERROR(label) command, however, so that's the one
 we'll be concentrating on.

 The HANDLE CONDITION command tells CICS where to go when an exceptional
 condition occurs. It looks like this:

 +--+
 ¦ ¦
 ¦ EXEC CICS HANDLE CONDITION condition(label) ¦
 ¦ condition(label) ... ¦
 ¦ condition condition ... END-EXEC. ¦
 ¦ ¦
 +--+

 condition
 is the CICS name of the unusual condition for which you wish to
 establish special processing (or return to default processing, as
 explained below). It can be any of the exceptions that we've
 described in this part: IOERR, LENGERR, NOTFND, and so on, and you can
 name up to 16 conditions in one HANDLE CONDITION command.

 label
 is the name of the paragraph in your program to which CICS is to pass
 control when the condition occurs. The paragraph name following a
 condition is optional; if you specify it, you are saying that you want
 to deal with the condition in question with code in the program. If
 you omit it, you are saying that you want CICS to use its default
 procedure for the condition (or, more likely, that you want to
 reestablish the CICS default action after you had specified other
 handling for the condition earlier).

 For the handling code to take effect, a HANDLE CONDITION command must be
 issued before you execute any command on which one of the conditions you
 list might arise. Nothing visible happens when you execute the HANDLE
 CONDITION command, although CICS updates its table of conditions, of
 course. The effects are seen later, when a command is executed that
 produces one of the exceptional conditions now covered by the HANDLE
 CONDITION.

 The ERROR condition in this command covers all exceptional conditions,
 except:

 � Those cited by name in this command or another HANDLE CONDITION
 command executed previously in the program, and

 � Those for which the CICS default action is not abnormal termination of
 the program.

 We've specified ERROR here because there are many other exceptional
 conditions that can arise on the commands that we'll issue in this
 program, besides those listed above. (Figure 54 in topic 3.8.3 shows
 which conditions apply to each command.) These conditions are all serious
 enough to prevent successful completion of the transaction, and we don't
 want to deal with each one individually, but we do want our program to
 regain control long enough to send the user a message saying what happened

CICS Application Programming Primer
Passing control to a specified label

© Copyright IBM Corp. 1984, 1991
3.8.2 - 1

 and what to do next.

 Subtopics
 3.8.2.1 Changing the HANDLE CONDITION "destinations"

CICS Application Programming Primer
Passing control to a specified label

© Copyright IBM Corp. 1984, 1991
3.8.2 - 2

 3.8.2.1 Changing the HANDLE CONDITION "destinations"

 Making control go to different places on different occasions is no problem
 if you use the RESP option. It can also be managed, albeit somewhat more
 awkwardly, with HANDLE CONDITION commands. With these, if we wanted
 control to go to different places on different occasions, we'd have to do
 one of two things:

 � Issue a single HANDLE CONDITION command and test which file was
 involved at, for example, the beginning of the paragraph named to deal
 with the NOTFND condition. The EIBDS field in the EIB tells which data
 set was used most recently in a command and can be used for such a
 test.

 � Issue a HANDLE CONDITION command appropriate for a NOTFND on the first
 command issued that may encounter it (in our case, the READ of the
 index file) and then, before the next command on which we want to
 specify a different paragraph name for that same condition, issue
 another HANDLE CONDITION command.

CICS Application Programming Primer
Changing the HANDLE CONDITION "destinations"

© Copyright IBM Corp. 1984, 1991
3.8.2.1 - 1

 3.8.3 Errors within the example application

 To summarize, we've designed our error handling as follows:

 1. Using RESP, we specifically deal with exceptional conditions if they
 are expected and can be dealt with in the application's logic.

 For example, we expect a NOTFND condition when the user tries to add a
 new customer account--we read the account record just to make sure
 that it's not already in the file.

 2. We use a HANDLE CONDITION ERROR (whatever) command as a catch-all to
 deal with unexpected exceptional conditions. We've put this command
 near the start of ACCT01, ACCT02, and ACCT03.

 3. If and when something unexpected happens, CICS passes control to our
 error routine (either as a result of an IF RESPONSE NOT =
 DFHRESP(NORMAL) GO TO... test or to the paragraph named in the HANDLE
 CONDITION ERROR "catch-all" code). The first thing the error routine
 must do is issue another HANDLE CONDITION ERROR, but without a label,
 to prevent a possible error handling loop.

 Next, the error routine gives control to ACCT04, passing the first
 byte of EIBFN and EIBRCODE. We use a LINK, rather than an XCTL, so
 that we'll get the failing program and its Working-Storage in the
 transaction dump. (If we use XCTL, CICS releases the storage
 associated with the program we're "XCTLing" from.)

 ACCT04 finds out what's wrong, builds and displays an appropriate
 error screen, and finally issues an ABEND command with a code of EACC,
 telling CICS to produce the transaction dump.

 So the dump will contain a predictable sequence of actions between
 the occurrence of the actual error and ACCT04's last act. We'll show
 you how to follow this sequence of events in "A session with EDF" in
 topic 5.1.3.1.7.

 There is a way of using XCTL rather than LINK when transferring
 control to our error-handling program. It's also a perfectly
 reasonable alternative: put an EXEC DUMP command immediately before
 each appropriate XCTL command in programs ACCT01, ACCT02, and ACCT03.

 Of course, you'd probably want to remove these DUMP commands before
 putting the system into production.

 Our solution manages with just one ABEND command (a side effect of
 which is the transaction dump we want) but has to use a LINK instead
 of the more efficient XCTL.

 Because of our "catch-all" HANDLE CONDITION ERROR command, we should be
 protected against the results of an unexpected CICS abend.

 Figure 54 lists which unusual conditions may occur for the commands and
 options covered in this Primer. Note that other exceptions may arise if
 you use options or facilities of CICS beyond the scope of this Primer.

 +--+
 ¦ ¦
 ¦ Command Conditions ¦
 ¦ SEND MAP INVMPSZ ¦
 ¦ SEND CONTROL (none) ¦
 ¦ RECEIVE MAP INVMPSZ, MAPFAIL ¦
 ¦ HANDLE AID (none) ¦
 ¦ READ FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ¦
 ¦ LENGERR, NOTFND, NOTOPEN ¦

CICS Application Programming Primer
Errors within the example application

© Copyright IBM Corp. 1984, 1991
3.8.3 - 1

 ¦ REWRITE, WRITE FILENOTFOUND, DUPREC, ILLOGIC, IOERR, ¦
 ¦ INVREQ, LENGERR, NOSPACE, NOTOPEN ¦
 ¦ DELETE, STARTBR FILENOTFOUND, ILLOGIC, INVREQ, IOERR, ¦
 ¦ NOTFND, NOTOPEN ¦
 ¦ READNEXT FILENOTFOUND, ENDFILE, ILLOGIC, IOERR, ¦
 ¦ INVREQ, LENGERR, NOTOPEN ¦
 ¦ ENDBR FILENOTFOUND, ILLOGIC, INVREQ, NOTOPEN ¦
 ¦ WRITEQ TS INVREQ, IOERR, ITEMERR, QIDERR, ¦
 ¦ NOSPACE (See below.) ¦
 ¦ READQ TS IOERR, ITEMERR, LENGERR, QIDERR ¦
 ¦ DELETEQ TS QIDERR ¦
 ¦ LINK, XCTL PGMIDERR ¦
 ¦ RETURN INVREQ ¦
 ¦ ABEND (none) ¦
 ¦ START INVREQ, IOERR, TERMIDERR, ¦
 ¦ TRANSIDERR ¦
 ¦ RETRIEVE INVREQ, INVTSREQ, IOERR, LENGERR, ¦
 ¦ NOTFND ¦
 ¦ HANDLE CONDITION (none) ¦
 ¦ ¦
 +--+
 Figure 54. The exception conditions for the Primer's subset of CICS
 commands

 Of all these conditions, NOSPACE on the WRITEQ TS command is the only one
 for which CICS default processing is not to terminate the transaction.
 When this condition is encountered, the default processing is for CICS to
 suspend the transaction until space becomes available. (The theory is
 that since many transactions use temporary storage, others will eventually
 give up enough space for this one to continue.)

CICS Application Programming Primer
Errors within the example application

© Copyright IBM Corp. 1984, 1991
3.8.3 - 2

 3.8.4 Other facilities for exceptional conditions

 As mentioned at the start of the topic, CICS provides other means to
 control the processing sequence when exception conditions occur:

 � There's a command to intercept control directly when CICS determine
 that a transaction should be terminated abnormally (the HANDLE ABEND
 command). This is rather a last-ditch method in most cases.

 � The set of paragraph names specified to deal with exceptiona
 conditions in a program can be suspended temporarily (the PUSH HANDLE
 command), replaced by others (with HANDLE CONDITION commands) and then
 restored (with a POP HANDLE command). This is useful for closed
 subroutines within a program, especially if they contain
 error-processing code.

 PUSH HANDLE and POP HANDLE apply to the paragraph names specified on
 HANDLE AID and HANDLE ABEND conditions, as well as those specified
 with HANDLE CONDITION.

 These facilities are all described in the CICS/ESA Application Programming
 Guide.

CICS Application Programming Primer
Other facilities for exceptional conditions

© Copyright IBM Corp. 1984, 1991
3.8.4 - 1

 4.0 The COBOL code of our example application

 +--- This part of the Primer lists: -------------------------------------+
 ¦ ¦
 ¦ ¦ ACCT00--menu display ¦
 ¦ ¦
 ¦ ¦ ACCT01--initial request analysis ¦
 ¦ ¦
 ¦ ¦ ACCT02--update processing ¦
 ¦ ¦
 ¦ ¦ ACCT03--requests for printing ¦
 ¦ ¦
 ¦ ¦ ACCT04--error processing ¦
 ¦ ¦
 ¦ ¦ Other items. ¦
 ¦ ¦
 +--+

 Subtopics
 4.1 Program ACCT00: menu display
 4.2 Program ACCT01: initial request analysis
 4.3 Program ACCT02: update processing
 4.4 Program ACCT03: requests for printing
 4.5 Program ACCT04: error processing

CICS Application Programming Primer
The COBOL code of our example application

© Copyright IBM Corp. 1984, 1991
4.0 - 1

 4.1 Program ACCT00: menu display
 +--+
 ¦ ¦
 ¦ 001 IDENTIFICATION DIVISION. ¦
 ¦ 002 PROGRAM-ID. ACCT00. ¦
 ¦ 003 *REMARKS. THIS PROGRAM IS THE FIRST INVOKED BY THE 'ACCT' ¦
 ¦ 004 * TRANSACTION. IT DISPLAYS A MENU SCREEN FOR THE ONLINE ¦
 ¦ 005 * ACCOUNT FILE APPLICATION, WHICH PROMPTS THE USER FOR ¦
 ¦ 006 * INPUT. TRANSACTION 'AC01' IS INVOKED WHEN THAT INPUT ¦
 ¦ 007 * IS RECEIVED. ¦
 ¦ 008 ENVIRONMENT DIVISION. ¦
 ¦ 009 DATA DIVISION. ¦
 ¦ 010 PROCEDURE DIVISION. ¦
 ¦ 011 INITIAL-MAP. ¦
 ¦ 012 EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') MAPONLY ¦
 ¦ 013 ERASE FREEKB END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 12 through 13 (INITIAL-MAP): This command sends the menu map to the
 input terminal. We use the MAPONLY option because the map itself is the
 only thing being sent; we have no variable data from the program to merge
 into it. We also specify the ERASE option, to clear the screen of the
 input and anything else left over from previous activity.

 FREEKB unlocks the keyboard for the user's next input. We're specifying
 it just for documentation purposes.

 +--+
 ¦ ¦
 ¦ 014 EXEC CICS RETURN TRANSID('AC01') END-EXEC. ¦
 ¦ ¦
 +--+

 Line 14: After sending the map, we return control to CICS. In doing so,
 we specify that the next transaction to be executed from the terminal that
 sent this one should be AC01, which analyzes inputs sent through the menu
 map.

 +--+
 ¦ ¦
 ¦ 015 GOBACK. ¦
 ¦ ¦
 +--+

 Line 15: This COBOL statement is never executed, because control does not
 return to a CICS program after it executes a RETURN command. However, the
 translator expands all CICS commands to COBOL CALL statements, and
 although CICS does not return to the program from this call, the compiler
 does expect control to be returned. Consequently, you need this logical
 "end of program" to keep the compiler happy.

CICS Application Programming Primer
Program ACCT00: menu display

© Copyright IBM Corp. 1984, 1991
4.1 - 1

 4.2 Program ACCT01: initial request analysis
 +--+
 ¦ ¦
 ¦ 001 IDENTIFICATION DIVISION. ¦
 ¦ 002 PROGRAM-ID. ACCT01. ¦
 ¦ 003 *REMARKS. THIS PROGRAM IS THE FIRST INVOKED BY THE 'AC01' ¦
 ¦ 004 * TRANSACTION. IT ANALYZES ALL REQUESTS, AND COMPLETES ¦
 ¦ 005 * THOSE FOR NAME INQUIRIES AND RECORD DISPLAYS. FOR ¦
 ¦ 006 * UPDATE TRANSACTIONS, IT SENDS THE APPROPRIATE DATA ENTRY¦
 ¦ 007 * SCREEN AND SETS THE NEXT TRANSACTION IDENTIFIER TO ¦
 ¦ 008 * 'AC02', WHICH COMPLETES THE UPDATE OPERATION. FOR PRINT ¦
 ¦ 009 * REQUESTS, IT STARTS TRANSACTION 'AC03' TO DO THE ACTUAL ¦
 ¦ 010 * PRINTING. ¦
 ¦ 011 ENVIRONMENT DIVISION. ¦
 ¦ 012 DATA DIVISION. ¦
 ¦ 013 WORKING STORAGE SECTION. ¦
 ¦ 014 01 MISC. ¦
 ¦ 015 02 RESPONSE PIC S9(8) COMP. ¦
 ¦ 016 02 MSG-NO PIC S9(4) COMP VALUE +0. ¦
 ¦ 017 02 ACCT-LNG PIC S9(4) COMP VALUE +383. ¦
 ¦ 018 02 ACIX-LNG PIC S9(4) COMP VALUE +63. ¦
 ¦ 019 02 DTL-LNG PIC S9(4) COMP VALUE +751. ¦
 ¦ 020 02 STARS PIC X(12) VALUE '************'. ¦
 ¦ 021 02 USE-QID. ¦
 ¦ 022 04 USE-QID1 PIC X(3) VALUE 'AC0'. ¦
 ¦ 023 04 USE-QID2 PIC X(5). ¦
 ¦ 024 02 USE-REC. ¦
 ¦ 025 04 USE-TERM PIC X(4) VALUE SPACES. ¦
 ¦ 026 04 USE-TIME PIC S9(7) COMP-3. ¦
 ¦ 027 04 USE-DATE PIC S9(7) COMP-3. ¦
 ¦ 028 02 USE-LIMIT PIC S9(7) COMP-3 VALUE +1000. ¦
 ¦ 029 02 USE-ITEM PIC S9(4) COMP VALUE +1. ¦
 ¦ 030 02 USE-LNG PIC S9(4) COMP VALUE +12. ¦
 ¦ 031 02 IN-AREA. ¦
 ¦ 032 04 IN-TYPE PIC X VALUE 'R'. ¦
 ¦ 033 04 IN-REQ. ¦
 ¦ 034 06 REQC PIC X VALUE SPACES. ¦
 ¦ 035 06 ACCTC PIC X(5) VALUE SPACES. ¦
 ¦ 036 06 PRTRC PIC X(4) VALUE SPACES. ¦
 ¦ 037 04 IN-NAMES. ¦
 ¦ 038 06 SNAMEC PIC X(18) VALUE SPACES. ¦
 ¦ 039 06 FNAMEC PIC X(12) VALUE SPACES. ¦
 ¦ 040 02 COMMAREA-FOR-ACCT04. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 041 04 ERR-PGRMID PIC X(8) VALUE 'ACCT01'. ¦
 ¦ 042 04 ERR-FN PIC X. ¦
 ¦ 043 04 ERR-RCODE PIC X. ¦
 ¦ 044 04 ERR-COMMAND PIC XX. ¦
 ¦ 045 04 ERR-RESP PIC 99. ¦
 ¦ 046 02 LINE-CNT PIC S9(4) COMP VALUE +0. ¦
 ¦ 047 02 MAX-LINES PIC S9(4) COMP VALUE +6. ¦
 ¦ 048 02 IX PIC S9(4) COMP. ¦
 ¦ 049 02 SRCH-CTRL. ¦
 ¦ 050 04 FILLER PIC X VALUE 'S'. ¦
 ¦ 051 04 BRKEY. ¦
 ¦ 052 06 BRKEY-SNAME PIC X(12). ¦
 ¦ 053 06 BRKEY-ACCT PIC X(5). ¦
 ¦ 054 04 MAX-SNAME PIC X(12). ¦
 ¦ 055 04 MAX-FNAME PIC X(7). ¦
 ¦ 056 04 MIN-FNAME PIC X(7). ¦
 ¦ 057 02 SUM-LINE. ¦

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 1

 ¦ 058 04 ACCTDO PIC X(5). ¦
 ¦ 059 04 FILLER PIC X(3) VALUE SPACES. ¦
 ¦ 060 04 SNAMEDO PIC X(12). ¦
 ¦ 061 04 FILLER PIC X(2) VALUE SPACES. ¦
 ¦ 062 04 FNAMEDO PIC X(7). ¦
 ¦ 063 04 FILLER PIC X(2) VALUE SPACES. ¦
 ¦ 064 04 MIDO PIC X(1). ¦
 ¦ 065 04 FILLER PIC X(2) VALUE SPACES. ¦
 ¦ 066 04 TTLDO PIC X(4). ¦
 ¦ 067 04 FILLER PIC X(2) VALUE SPACES. ¦
 ¦ 068 04 ADDR1DO PIC X(24). ¦
 ¦ 069 04 FILLER PIC X(2) VALUE SPACES. ¦
 ¦ 070 04 STATDO PIC X(2). ¦
 ¦ 071 04 FILLER PIC X(3) VALUE SPACES. ¦
 ¦ 072 04 LIMITDO PIC X(8). ¦
 ¦ 073 02 PAY-LINE. ¦
 ¦ 074 04 BAL PIC X(8). ¦
 ¦ 075 04 FILLER PIC X(6) VALUE SPACES. ¦
 ¦ 076 04 BMO PIC 9(2). ¦
 ¦ 077 04 FILLER PIC X VALUE '/'. ¦
 ¦ 078 04 BDAY PIC 9(2). ¦
 ¦ 079 04 FILLER PIC X VALUE '/'. ¦
 ¦ 080 04 BYR PIC 9(2). ¦
 ¦ 081 04 FILLER PIC X(4) VALUE SPACES. ¦
 ¦ 082 04 BAMT PIC X(8). ¦
 ¦ 083 04 FILLER PIC X(7) VALUE SPACES. ¦
 ¦ 084 04 PMO PIC 9(2). ¦
 ¦ 085 04 FILLER PIC X VALUE '/'. ¦
 ¦ 086 04 PDAY PIC 9(2). ¦
 ¦ 087 04 FILLER PIC X VALUE '/'. ¦
 ¦ 088 04 PYR PIC 9(2). ¦
 ¦ 089 04 FILLER PIC X(4) VALUE SPACES. ¦
 ¦ 090 04 PAMT PIC X(8). ¦
 ¦ ¦
 +--+

 Lines 13 through 90: These lines are the working storage area of the
 program. Individual variables will be explained in the comments below, as
 they are used.

 +--+
 ¦ ¦
 ¦ 091 COPY DFHBMSCA. ¦
 ¦ 092 COPY DFHAID. ¦
 ¦ ¦
 +--+

 Lines 91 through 92: These two lines bring in the definitions of the
 attribute bytes and attention identifiers that CICS provides for COBOL
 programmers. See "Symbolic description maps (DSECT structures)" in
 topic 3.3.1 and "Finding out what key the operator pressed" in
 topic 3.3.6.

 +--+
 ¦ ¦
 ¦ 093 01 ACCTREC. COPY ACCTREC. ¦
 ¦ ¦
 +--+

 Line 93: This line fetches the record format for the account file,
 copying it from the library in which it was stored.

 +--+
 ¦ ¦
 ¦ 094 01 ACIXREC. COPY ACIXREC. ¦

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 2

 ¦ ¦
 +--+

 Line 94: Similarly, this line fetches the record format for the index
 file, copying it from the library in which it was stored.

 +--+
 ¦ ¦
 ¦ 095 COPY ACCTSET. ¦
 ¦ ¦
 +--+

 Line 95: This line copies in the symbolic map structure (DSECT) for the
 BMS maps for the application.

 We created the library member that we're copying here by assembling the
 map with TYPE=DSECT specified. (See "Symbolic description maps (DSECT
 structures)" in topic 3.3.1.)

 +--+
 ¦ ¦
 ¦ 096 01 MSG-LIST. ¦
 ¦ 097 02 FILLER PIC X(60) VALUE ¦
 ¦ 098 'NAMES MUST BE ALPHABETIC, AND SURNAME IS REQUIRED.'. ¦
 ¦ 099 02 FILLER PIC X(60) VALUE ¦
 ¦ 100 'ENTER SOME INPUT AND PRESS "CLEAR" OR "ENTER".'. ¦
 ¦ 101 02 FILLER PIC X(60) VALUE ¦
 ¦ 102 'REQUEST TYPE REQUIRED; MUST BE "D", "P", "A", "M" OR "X".'. ¦
 ¦ 103 02 FILLER PIC X(60) VALUE ¦
 ¦ 104 'PRINTER NAME REQUIRED ON PRINT REQUESTS'. ¦
 ¦ 105 02 FILLER PIC X(60) VALUE ¦
 ¦ 106 'ACCOUNT NUMBER REQUIRED (BETWEEN 10000 AND 79999)'. ¦
 ¦ 107 02 FILLER PIC X(60) VALUE ¦
 ¦ 108 'ACCOUNT NO. MUST BE NUMERIC AND FROM 10000 TO 79999'. ¦
 ¦ 109 02 FILLER PIC X(60) VALUE ¦
 ¦ 110 'NO NAMES ON FILE MATCHING YOUR REQUEST'. ¦
 ¦ 111 02 FILLER PIC X(60) VALUE ¦
 ¦ 112 'ENTER EITHER NAME OR A REQUEST TYPE AND ACCOUNT NUMBER'.¦
 ¦ 113 02 FILLER PIC X(60) VALUE ¦
 ¦ 114 'THIS ACCOUNT NUMBER ALREADY EXISTS'. ¦
 ¦ 115 02 FILLER PIC X(60) VALUE ¦
 ¦ 116 'NO RECORD OF THIS ACCOUNT NUMBER'. ¦
 ¦ 117 02 FILLER PIC X(47) VALUE ¦
 ¦ 118 'THIS ACCOUNT NUMBER ALREADY IN USE AT TERMINAL '. ¦
 ¦ 119 02 MSG-TERM PIC X(13). ¦
 ¦ 120 02 FILLER PIC X(60) VALUE ¦
 ¦ 121 'PRINT REQUEST SCHEDULED'. ¦
 ¦ 122 02 FILLER PIC X(60) VALUE ¦
 ¦ 123 'PRINTER NAME NOT RECOGNIZED'. ¦
 ¦ 124 02 FILLER PIC X(60) VALUE ¦
 ¦ 125 'INVALID KEY PRESSED - USE ONLY "CLEAR" OR "ENTER" KEY'. ¦
 ¦ 126 02 FILLER PIC X(60) VALUE ¦
 ¦ 127 'THERE ARE MORE MATCHING NAMES. PRESS PA2 TO CONTINUE.'. ¦
 ¦ 128 01 FILLER REDEFINES MSG-LIST. ¦
 ¦ 129 02 MSG-TEXT PIC X(60) OCCURS 15. ¦
 ¦ ¦
 +--+

 Lines 96 through 129: These lines are more of the working storage of the
 program, in this case constants (messages) used by the program.

 Note: All of these message constants will be physically repeated for each
 concurrent task, because each task gets its own copy of working storage.
 One way to avoid this would be to have the message constants as literals
 in the program.

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 3

 +--+
 ¦ ¦
 ¦ 130 LINKAGE SECTION. ¦
 ¦ 131 01 DFHCOMMAREA. ¦
 ¦ 132 02 SRCH-COMM. ¦
 ¦ 133 03 IN-COMM. ¦
 ¦ 134 04 CTYPE PIC X. ¦
 ¦ 135 88 REPEAT-MAP VALUE 'R'. ¦
 ¦ 136 88 SEARCH-CONTINUE VALUE 'S'. ¦
 ¦ 137 04 FILLER PIC X(40). ¦
 ¦ 138 03 FILLER PIC X(3). ¦
 ¦ ¦
 +--+

 Lines 130 through 138: The structure defined here and named DFHCOMMAREA
 describes the data passed to this program by means of COMMAREA (See
 "Saving data and communicating between transactions" in topic 3.5 and
 "Passing control and data between programs and transactions" in
 topic 3.6.3.) It must have this particular name and it must be the first
 "01" level in the Linkage Section.

 The two level 88 items are value clauses specifying the initial contents
 of data items REPEAT-MAP and SEARCH-CONTINUE. (The value of
 SEARCH-CONTINUE is eventually tested in line 158, for example.)

 +--+
 ¦ ¦
 ¦ 139 * ¦
 ¦ 140 PROCEDURE DIVISION. ¦
 ¦ 141 * ¦
 ¦ 142 * ¦
 ¦ 143 * INITIALIZE. ¦
 ¦ 144 * TRAP ANY UNEXPECTED ERRORS. ¦
 ¦ 145 EXEC CICS HANDLE CONDITION ERROR(OTHER-ERRORS) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 139 through 145: These statements tell CICS where control should go
 if unexpected errors are encountered. Specific conditions that might
 result from user errors and conditions that CICS regards as unusual, but
 that the program expects, are handled with explicit code later in the
 program by the RESP option. Examples of these are MAPFAIL, NOTFND,
 ENDFILE, TERMIDERR and QIDERR. The program does not attempt to recover
 from other unusual conditions, and therefore all of these are passed, by
 means of this HANDLE CONDITION ERROR command, to a single point in the
 program (OTHER-ERRORS at Line 408), from which control is sent to an error
 program. This program in turn sends a message to the user and abends the
 task.

 Nothing happens, as the result of executing this HANDLE CONDITION ERROR
 command, that immediately affects the flow of the program or the data
 available to it. Instead, this command causes CICS to record information
 for processing exceptional conditions in this particular program, should
 they occur subsequently.

 You'll be able to find more detailed guidance in the CICS/ESA Application
 Programming Guide.

 +--+
 ¦ ¦
 ¦ 146 * ¦
 ¦ 147 MOVE LOW-VALUES TO ACCTMNUI, ACCTDTLI. ¦
 ¦ 148 MOVE SPACES TO SUMLNMO (1) SUMLNMO (2) SUMLNMO (3) ¦
 ¦ 149 SUMLNMO (4) SUMLNMO (5) SUMLNMO (6). ¦

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 4

 ¦ 150 MOVE SPACES TO MSGMO. ¦
 ¦ ¦
 +--+

 Lines 146 through 150: Both symbolic map structures are set to nulls. We
 do this to the menu map because when you issue a RECEIVE MAP command, BMS
 sets the length and flag subfields for every field in the map, but it does
 not set the input subfields unless the corresponding map field was
 transmitted from the screen. (As we explained earlier, transmission
 occurs if either the user changes the field or the modified-data tag was
 set on in the program or the map.) Therefore if you do not clear the
 symbolic map before you receive, you cannot distinguish between input data
 and data left over from a previous transaction, unless you check the
 length subfield first.

 The reason for clearing the output (detail) map is to prevent any
 attribute or length subfields being unintentionally overwritten, and to
 avoid sending unintended data to a map field not otherwise set by the
 program. Specifying ACTION CLEAR in the linkage editor clears all parts
 of working storage that aren't otherwise initialized to nulls, and
 therefore has the same effect on ACCTMNUI and ACCTDTLI as these two moves.

 (Failure either to move nulls (X'00', LOW-VALUES) in or to specify ACTION
 CLEAR is a common cause of BMS trouble. The OS equivalent of ACTION CLEAR
 occurs automatically.)

 +--+
 ¦ ¦
 ¦ 151 * ¦
 ¦ 152 * CHECK BASIC REQUEST TYPE. ¦
 ¦ 153 IF EIBAID = DFHCLEAR ¦
 ¦ 154 IF EIBCALEN = 0, ¦
 ¦ ¦
 +--+

 Lines 151 through 154: This begins the analysis of what the user wants to
 do in this transaction. We first test for the CLEAR key. In our
 particular application, we've defined its use to mean either:

 � The user wants to escape from the application

 � The user has finished (or given up trying to finish) a request starte
 in a previous transaction, and now wants a fresh menu screen to enter
 a new request.

 If the user has pressed the CLEAR key, we've now got to find out which of
 these situations applies. That, in turn, depends on what the user did
 last at the terminal.

 Whenever a user enters a request that cannot be completed in the course of
 the current transaction, this program saves information about the request
 in COMMAREA to pass to the next transaction at the same terminal. (Our
 reason for writing the program in this way is discussed in connection with
 Line 163.) In the case of input errors or of a name search whose results
 will not fit on a single screen, the next transaction is the same as this
 one, and this same program processes it. For an update request, the next
 transaction is AC02, and so this information is passed to program ACCT02
 with an EXEC CICS RETURN command. (See Lines 237, 365, and 396 for the
 commands that pass on this information.)

 Therefore, we can distinguish between the two uses of the CLEAR key listed
 above by finding out whether the previous transaction from this terminal
 has passed data to this one through COMMAREA. There is a COMMAREA if it
 has a positive length (EIBCALEN greater than zero).

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 5

 +--+
 ¦ ¦
 ¦ 155 EXEC CICS SEND CONTROL FREEKB END-EXEC. ¦
 ¦ 156 EXEC CICS RETURN END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 155 through 156: If the user wants to exit the application, we use
 a SEND CONTROL command with the FREEKB option to open the keyboard. (The
 keyboard locks on every send operation, including CLEAR. Usually, the
 program needs to write something back to the terminal, in which case the
 FREEKB option can be included on the SEND MAP command. However, here we
 do not want to write anything, and therefore if we fail to unlock the
 keyboard by this other means, the user will have to use the RESET key
 before he or she can make the next entry. This isn't a disaster, but it
 is annoying, especially because the user will get no other notification
 that he or she has left control of the application and the terminal is
 free for the next transaction.)

 +--+
 ¦ ¦
 ¦ 157 ELSE GO TO NEW-MENU. ¦
 ¦ ¦
 +--+

 Line 157: If a request was in progress, however, we pass control to code
 at NEW-MENU (Line 402) which puts out a fresh menu screen (and returns to
 CICS with no COMMAREA, indicating no request in progress).

 +--+
 ¦ ¦
 ¦ 158 IF EIBAID = DFHPA2 AND EIBCALEN > 0 AND SEARCH-CONTINUE ¦
 ¦ ¦
 +--+

 Line 158: After testing for the CLEAR key, the next possibility we test
 for is that the previous request was for a name search on which not all
 the eligible names could fit on the screen, and that the user has asked to
 see more names. If this is the case, the user will have sent the request
 by pressing PA2, and the previous execution of the program will have saved
 information in COMMAREA for the current execution. COMMAREA will contain:

 1. An indicator that the last request was a name search (variable CTYPE,
 set to S by Line 50)

 2. The name limits required to control the search

 3. The key for the next eligible name.

 +--+
 ¦ ¦
 ¦ 159 MOVE SRCH-COMM TO SRCH-CTRL, GO TO SRCH-RESUME. ¦
 ¦ ¦
 +--+

 Line 159: If all requirements for continuing a name search are met, the
 name limits and starting key are restored from COMMAREA, and the search
 resumes at SRCH-RESUME (Line 203).

 +--+
 ¦ ¦
 ¦ 160 MOVE DFHBMDAR TO SUMTTLMA. ¦
 ¦ 161 IF EIBAID NOT = DFHENTER MOVE 14 TO MSG-NO ¦
 ¦ 162 GO TO MENU-RESEND. ¦
 ¦ ¦

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 6

 +--+

 Lines 160 through 162: The SUMTTLMA field will not be displayed because
 the attribute byte has now been set to "dark".

 If the ENTER key has not been pressed, MSG-NO is set to 14 (this
 represents the message in MSG-LIST.

 'INVALID KEY PRESSED - USE ONLY "CLEAR" OR "ENTER" KEY'

 Control is passed to MENU-RESEND to redisplay the menu.

 +--+
 ¦ ¦
 ¦ 163 IF EIBCALEN > 0 AND REPEAT-MAP, MOVE IN-COMM TO IN-AREA. ¦
 ¦ ¦
 +--+

 Line 163: The next step in determining what the user wants to do is to
 look at COMMAREA, to see if this transaction is a resubmission of a
 previous transaction on which the user made an error. As we explained in
 connection with Lines 152-153, COMMAREA will be present if a previous
 request was in progress. This request might have been one on which the
 user entered bad data, or it might have been a name search for which there
 were more matches than would fit on the screen. In order to distinguish
 between these two cases, the program saves a variable in COMMAREA which is
 initialized to S if the request was a name search and R otherwise (see
 Lines 32 and 50). This variable becomes CTYPE (Line 138) on the
 subsequent execution of the transaction.

 If the previous transaction was other than a name search and COMMAREA is
 present, then we can assume that this is a resubmission after an error.
 We therefore restore information saved from the previous execution to an
 area in which we save the input, about which more in a moment. If
 COMMAREA isn't present, on the other hand, this transaction isn't a
 resubmission of a previous request. The input save area is left as it was
 initialized, in Lines 31-39, reflecting a new request. Similarly, if the
 previous transaction was a name search, we ignore the information in
 COMMAREA, if any. Because the PA2 key was not pressed, the user doesn't
 want to continue the search. So the current entry is an entirely new
 request.

 At this point, an explanation of the input save area, called IN-AREA in
 the program, would be helpful. In all but the very simplest applications,
 you have to expect that the user will sometimes key in bad data. The
 customary procedure, on receiving such data, is to send back a message or
 some other indication of what's wrong.

 If you're programming in pseudoconversational mode, as we've chosen to do
 in our example application, the transaction that detects the error usually
 sends the error information back to the screen. It then returns control
 to CICS with the next transid pointing to itself. When the user corrects
 the data, the same transaction is invoked and starts all over again, this
 time (we hope) with good input. If the input still has errors, the cycle
 is repeated until it is error-free or the user quits trying.

 This is the simplest method, in that the good input fields from the first
 entry don't have to be forwarded to the next execution of the transaction.
 That's because once the modified-data tag of a screen field is turned on
 (by the user entering data in the field), it remains on until turned off
 by the program. Thus, all the input fields are sent on each entry,
 regardless of how many times the user changes and resends the same screen.

 The disadvantage to this approach is that line traffic increases because
 all the input fields are transmitted every time. This is not a

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 7

 significant problem, and you need try to avoid it only if all of the
 following are true:

 � The screen is very ful
 � Line traffic is heav
 � The incidence of errors and correction cycles is high

 However, for the times when increased line traffic would be a significant
 problem, there's a second technique. In this method, the transaction
 checking the input moves the input fields to a save area. If it detects
 errors, it passes this copy of the original input along to the next
 execution of the transaction. COMMAREA is the handiest place to do this,
 but you can also use temporary storage. The transaction then turns off
 all the modified-data tags on the screen, by specifying FRSET when it
 writes the error message(s). Only the fields that have actually changed
 are sent. On this second time through (and any subsequent ones, if the
 user still makes mistakes) the transaction merges the new data with that
 saved from previous rounds.

 We've used this second method in the AC01 transaction, which this program
 (ACCT01) supports. For this reason, we collect all the input in IN-AREA.
 If the user makes a mistake, we pass the input from IN-AREA, through
 COMMAREA (in Line 396), to the next execution of the transaction. In
 program ACCT02, however, we use the more customary technique. We show
 both methods just to illustrate the difference; there isn't enough data in
 the menu screen used in ACO1 to worry about resending it on an error
 cycle.

 +--+
 ¦ ¦
 ¦ 164 * ¦
 ¦ 165 * GET INPUT AND CHECK REQUEST TYPE FURTHER. ¦
 ¦ 166 EXEC CICS RECEIVE MAP('ACCTMNU') ¦
 ¦ 167 MAPSET('ACCTSET') RESP(RESPONSE) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 164 through 167: This statement causes CICS to rearrange the input
 into the symbolic map format dictated by map ACCTMNU, and to place this
 information in working storage at ACCTMNUI. (CICS had already read this
 input, as we noted earlier; it was the arrival of this input that caused
 the current transaction to start.)

 A MAPFAIL condition can be raised on this command, as indeed can several
 other conditions. So we've specified the RESP option to find out, after
 execution, what condition has been raised on the RECEIVE MAP. The program
 can then check the value of RESP in the RESPONSE variable (defined on line
 15) to see if any errors have occurred.

 The RESP option allows processing to continue with the next COBOL
 statement.

 +--+
 ¦ ¦
 ¦ 168 IF RESPONSE = DFHRESP(MAPFAIL) GO TO NO-MAP. ¦
 ¦ 169 IF RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER-ERRORS. ¦
 ¦ ¦
 +--+

 Lines 168 through 169: After issuing the RECEIVE command with the RESP
 option, the response is checked. First the program checks for the MAPFAIL
 condition and, if this has occurred, transfers control to NO-MAP.
 Otherwise the program just checks to see if a NORMAL response has not been
 produced; if this is the case, it transfers control to OTHER-ERRORS.

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 8

 The use of the RESP option on a CICS command followed by the explicit test
 of the key field has the same effect as EXEC CICS HANDLE CONDITION
 (label), but improves the structure of the program as well as making it
 easier to understand and follow.

 +--+
 ¦ ¦
 ¦ 170 IF REQML > 0 MOVE REQMI TO REQC. ¦
 ¦ ¦
 +--+

 Line 170: If the user keyed a request code, we save it in IN-AREA at
 REQC. (REQC was initialized to a space, so we can tell later whether or
 not such a code has been entered by checking REQC to see if it still
 contains a space.)

 +--+
 ¦ ¦
 ¦ 171 IF REQMF NOT = LOW-VALUE, MOVE SPACE TO REQC. ¦
 ¦ ¦
 +--+

 Line 171: Next we check whether the user has erased a request code that
 was entered on an earlier transaction. The length field of the request
 subfield will be zero, meaning no input, but the old code will have been
 restored to REQC at Line 163. So we need to test the flag subfield as
 well as the length. If the flag is on, we need to erase the value in
 REQC. This check of the flag is an extra step associated with the second
 technique for handling errors described before Lines 166-167. If all the
 input fields come in fresh every time, as in the first approach, the
 length will tell you whether there is data there or not.

 +--+
 ¦ ¦
 ¦ 172 IF ACCTML > 0 MOVE ACCTMI TO ACCTC. ¦
 ¦ 173 IF ACCTMF NOT = LOW-VALUE, MOVE SPACES TO ACCTC. ¦
 ¦ 174 IF PRTRML > 0 MOVE PRTRMI TO PRTRC. ¦
 ¦ 175 IF PRTRMF NOT = LOW-VALUE, MOVE SPACES TO PRTRC. ¦
 ¦ 176 IF SNAMEML > 0 MOVE SNAMEMI TO SNAMEC. ¦
 ¦ 177 IF SNAMEMF NOT = LOW-VALUE, MOVE SPACES TO SNAMEC. ¦
 ¦ 178 IF FNAMEML > 0 MOVE FNAMEMI TO FNAMEC. ¦
 ¦ 179 IF FNAMEMF NOT = LOW-VALUE, MOVE SPACES TO FNAMEC. ¦
 ¦ ¦
 +--+

 Lines 172 through 179: These statements process the other input fields in
 the same way as Lines 170-171 process the request code.

 +--+
 ¦ ¦
 ¦ 180 MOVE LOW-VALUES TO ACCTMNUI. ¦
 ¦ ¦
 +--+

 Line 180: We clear the symbolic map area for the menu map to nulls again.
 We do this in case any new information (error messages or name search
 output) has to be sent using the same map. Clearing prevents information
 that is on the screen and not changed from being retransmitted, because
 BMS does not send null fields.

 +--+
 ¦ ¦
 ¦ 181 IF IN-NAMES = SPACES GO TO CK-ANY. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 9

 Line 181: Here we find out whether we have a name search request (by
 checking for the presence of some name input). If not, we skip to
 statement CK-ANY at Line 242.

 +--+
 ¦ ¦
 ¦ 182 * ¦
 ¦ 183 * NAME INQUIRY PROCESSING. ¦
 ¦ 184 * VALIDATE NAME INPUT. ¦
 ¦ 185 IF FNAMEC NOT ALPHABETIC, MOVE 1 TO MSG-NO, ¦
 ¦ 186 MOVE -1 TO FNAMEML, MOVE DFHBMBRY TO FNAMEMA. ¦
 ¦ ¦
 +--+

 Lines 182 through 186: At this point, we know that the user wants a name
 search and we check the input name(s) for mistakes. In this program we'll
 indicate errors in the names, and other fields as well, as follows:

 � The field(s) in error will be highlighted MOVE DFHBMBRY TO FNAMEA to
 set the bright attribute, for example).

 � The cursor will be placed under the first field that is in erro
 (we'll move -1 to the length subfield for every such field, and CICS
 will find the first one for us).

 � A message explaining the particular error or combination of error
 will be placed in the message area of the screen (MOVE 1 TO MSG-NO in
 combination with Lines 393-395). The message number is used as an
 index to the actual error message. Message number 1 produces the
 error message:

 NAMES MUST BE ALPHABETIC, AND SURNAME IS REQUIRED

 (see Line 98).

 � If the user fails to fill in a required field, we'll place asterisk
 in the field as a convention to warn the user that we want him or her
 to fill it in:

 MOVE STARS TO SNAMEMO

 +--+
 ¦ ¦
 ¦ 187 IF SNAMEC ALPHABETIC AND SNAMEC NOT = SPACES GO TO CK-NAME. ¦
 ¦ 188 MOVE 1 TO MSG-NO. ¦
 ¦ 189 MOVE -1 TO SNAMEML, MOVE DFHBMBRY TO SNAMEMA. ¦
 ¦ 190 CK-NAME. ¦
 ¦ 191 IF MSG-NO > 0 GO TO MENU-RESEND. ¦
 ¦ ¦
 +--+

 Lines 187 through 191: These statements complete the validating of the
 names on which a search is requested. The surname is required and must be
 alphabetic; the first name is optional but must be alphabetic if present.
 At the end of these tests, we look at MSG-NO to see if there were any
 errors. It will be zero if there were none, because we initialized it
 that way in Line 15, and we'll continue at the next statement. Otherwise
 it will be the number of the error message to be put in the message area
 when the menu is redisplayed (at MENU-RESEND, Line 387).

 +--+
 ¦ ¦
 ¦ 192 * ¦
 ¦ 193 * BUILD KEY AND LIMITING NAME VALUES FOR SEARCH. ¦

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 10

 ¦ 194 SRCH-INIT. ¦
 ¦ 195 MOVE SNAMEC TO BRKEY-SNAME, MAX-SNAME. ¦
 ¦ 196 MOVE LOW-VALUES TO BRKEY-ACCT. ¦
 ¦ 197 INSPECT MAX-SNAME REPLACING ALL SPACES BY HIGH-VALUES. ¦
 ¦ 198 MOVE FNAMEC TO MIN-FNAME, MAX-FNAME. ¦
 ¦ 199 INSPECT MIN-FNAME REPLACING ALL SPACES BY LOW-VALUES. ¦
 ¦ 200 INSPECT MAX-FNAME REPLACING ALL SPACES BY HIGH-VALUES. ¦
 ¦ ¦
 +--+

 Lines 192 through 200 (SRCH-INIT): These statements initialize for the
 name search, as explained in connection with the STARTBR command in
 "Browsing a file" in topic 3.4.1.2.

 � MAX-SNAME is just higher in the alphabetical sequence than any surname
 that is eligible on the search.

 � MIN-FNAME and MAX-FNAME are the lowest and highest first names that
 are eligible on the search.

 � BRKEY is just lower than the key of the first eligible record in the
 index file.

 +--+
 ¦ ¦
 ¦ 201 * ¦
 ¦ 202 * INITIALIZE FOR SEQUENTIAL SEARCH. ¦
 ¦ 203 SRCH-RESUME. ¦
 ¦ 204 EXEC CICS STARTBR FILE('ACCTIX') RIDFLD(BRKEY) GTEQ ¦
 ¦ 205 RESP(RESPONSE) END-EXEC. ¦
 ¦ 206 IF RESPONSE = DFHRESP(NOTFND) GO TO SRCH-ANY. ¦
 ¦ 207 IF RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER-ERRORS. ¦
 ¦ ¦
 +--+

 Lines 201 through 206 (SRCH-RESUME): At this point we've either computed
 all the values we need to perform a name search, or we've restored them
 from COMMAREA, where they were put by the previous execution of this
 transaction for this terminal (see Line 159).

 We now begin the search of the file by pointing to the first eligible
 record in the index file with a STARTBR command, asking for the first
 record with a key equal to or greater than BRKEY.

 Of the several unusual results that can occur on this command, we've
 concerned ourselves only with NOTFND, which occurs if we've constructed a
 starting key that is larger than the largest key in the file. This
 situation does not indicate a user or program error; it simply means that
 the user tried to search for a name not in the file and very late in the
 alphabet. So, if this happens, we send control to the same place that it
 goes after checking all the possibly eligible records in the file (namely,
 SRCH-ANY at Line 227).

 +--+
 ¦ ¦
 ¦ 208 * ¦
 ¦ 209 * BUILD NAME DISPLAY. ¦
 ¦ 210 SRCH-LOOP. ¦
 ¦ 211 EXEC CICS READNEXT FILE('ACCTIX') INTO(ACIXREC) ¦
 ¦ 212 LENGTH(ACIX-LNG) RIDFLD(BRKEY) RESP(RESPONSE) END-EXEC. ¦
 ¦ 213 IF RESPONSE = DFHRESP(ENDFILE) GO TO SRCH-DONE. ¦
 ¦ 214 IF RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER-ERRORS. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 11

 Lines 211 through 214 (SRCH-LOOP): This command brings in the first (or
 next) record from the index file, starting at the point established in the
 STARTBR command. The only unusual conditions that we need to deal with on
 this command are ENDFILE, which will occur if the last name in the file
 isn't greater than the largest surname we allow, and anything other than a
 normal response to the command. So these are the only conditions we
 explicitly test RESP for. If an ENDFILE condition has arisen, we pass
 control to the same place that finding a name larger than the largest
 allowable surname would take us, (namely, SRCH-DONE at Line 225).

 +--+
 ¦ ¦
 ¦ 215 IF SNAMEDO IN ACIXREC > MAX-SNAME GO TO SRCH-DONE. ¦
 ¦ ¦
 +--+

 Line 215: If the surname in the index record is higher in the alphabetic
 sequence than the largest surname we allow, then we've read all the
 records that might be matches. We therefore go to SRCH-DONE (Line 225) to
 investigate the results of the search.

 +--+
 ¦ ¦
 ¦ 216 IF FNAMEDO IN ACIXREC < MIN-FNAME OR ¦
 ¦ 217 FNAMEDO IN ACIXREC > MAX-FNAME, GO TO SRCH-LOOP. ¦
 ¦ ¦
 +--+

 Lines 216 through 217: If the surname is in range, we test whether the
 first name is also in range. If it is not, we simply loop back to Line
 211 to read the next record.

 +--+
 ¦ ¦
 ¦ 218 ADD 1 TO LINE-CNT. ¦
 ¦ ¦
 +--+

 Line 218: If both names match, we add one to our count of matches in
 LINE-CNT.

 +--+
 ¦ ¦
 ¦ 219 IF LINE-CNT > MAX-LINES, ¦
 ¦ 220 MOVE MSG-TEXT (15) TO MSGMO, ¦
 ¦ 221 MOVE DFHBMBRY TO MSGMA, GO TO SRCH-DONE. ¦
 ¦ ¦
 +--+

 Lines 219 through 221: Next we work out if there's any room on the screen
 for the latest match. If there isn't (if LINE-CNT is greater than
 MAX-LINES, a constant that indicates how many search output lines there
 are on the menu screen), we know that we have to tell the user that there
 are more matches. We therefore move the appropriate text to the message
 area of the map.

 +--+
 ¦ ¦
 ¦ 222 MOVE CORRESPONDING ACIXREC TO SUM-LINE. ¦
 ¦ 223 MOVE SUM-LINE TO SUMLNMO (LINE-CNT). ¦
 ¦ 224 GO TO SRCH-LOOP. ¦
 ¦ ¦
 +--+

 Lines 222 through 224: On the other hand, if there is room on the screen

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 12

 for the current name, we format the information in the record into a
 display line and move it to the next available line in the map. Then we
 go back to continue reading the index file at SRCH-LOOP (Line 211).

 +--+
 ¦ ¦
 ¦ 225 SRCH-DONE. ¦
 ¦ 226 EXEC CICS ENDBR FILE('ACCTIX') END-EXEC. ¦
 ¦ ¦
 +--+

 Line 225 through 226 (SRCH-DONE): This is the end of the loop for reading
 index records, which we reach if:

 1. We've no more room on the screen
 2. We've read beyond the largest allowable surname
 3. We've reached the end of the file.

 All of the candidate records have been read at this point, so we end the
 browse.

 +--+
 ¦ ¦
 ¦ 227 SRCH-ANY. ¦
 ¦ 228 IF LINE-CNT = 0, MOVE 7 TO MSG-NO, ¦
 ¦ 229 MOVE -1 TO SNAMEML, GO TO MENU-RESEND. ¦
 ¦ ¦
 +--+

 Lines 228 through 229 (SRCH-ANY): Next we check whether there were any
 matches at all to the name search. If not, we send a message to this
 effect to the user. Even though this isn't really an error, the
 processing is similar to error processing and so we use the code at
 MENU-RESEND (Line 393).

 +--+
 ¦ ¦
 ¦ 230 * ¦
 ¦ 231 * SEND THE NAME SEARCH RESULTS TO TERMINAL. ¦
 ¦ 232 MOVE DFHBMASB TO MSGMA, SUMTTLMA. ¦
 ¦ ¦
 +--+

 Lines 230 through 232: We change some attribute bytes in the menu map in
 preparation for sending the results of the search to the terminal, for
 reasons explained in the next paragraph. Specifically, we first change
 the attributes of both the search output lines and the message field from
 their default in the map (autoskip) to unprotected. We also change the
 search output header line, which we want to show only in name search
 output, from nondisplay to autoskip. (This header and the message field
 are brightened at the same time, for emphasis.)

 +--+
 ¦ ¦
 ¦ 233 EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') ¦
 ¦ 234 FREEKB ERASE END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 233 through 234: Finally we send out results. FREEKB unlocks the
 keyboard for the user's next input, and appears on all of the SEND MAP
 commands in this application (see Lines 155 to 157). We specify ERASE to
 erase anything that may have been left on the screen from a previous
 execution of this transaction.

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 13

 +--+
 ¦ ¦
 ¦ 235 IF LINE-CNT NOT > MAX-LINES, ¦
 ¦ 236 EXEC CICS RETURN TRANSID('AC01') END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 235 through 236: If all the eligible names fit on the current
 screen, we return control to CICS, requesting that this same transaction
 be the next one executed. Nothing is saved in COMMAREA, because the
 current request is complete and the next one will be entirely new.

 +--+
 ¦ ¦
 ¦ 237 ELSE EXEC CICS RETURN TRANSID('AC01') COMMAREA(SRCH-CTRL) ¦
 ¦ 238 LENGTH(44) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 237 through 238: If, however, there are eligible names remaining,
 we save all the search variables and the request type in COMMAREA so that
 the next transaction can resume the search if the user so requests.

 +--+
 ¦ ¦
 ¦ 239 * ¦
 ¦ 240 * DISPLAY, PRINT, ADD, MODIFY AND DELETE PROCESSING. ¦
 ¦ 241 * CHECK ACCOUNT NUMBER. ¦
 ¦ 242 CK-ANY. ¦
 ¦ 243 IF IN-REQ = SPACES, MOVE -1 TO SNAMEML, ¦
 ¦ 244 MOVE 8 TO MSG-NO, GO TO MENU-RESEND. ¦
 ¦ ¦
 +--+

 Lines 239 through 244 (CK-ANY): By this point in the code, we've found
 out that the user doesn't want a name search (because he or she didn't
 fill in a name), and we begin checking for other request types. First we
 ensure that we got some input. If we didn't, we set the cursor to its
 normal position, set the error message accordingly, and go to send it at
 MENU-RESEND (Line 393).

 +--+
 ¦ ¦
 ¦ 245 CK-ACCTNO-1. ¦
 ¦ 246 IF ACCTC = SPACES ¦
 ¦ 247 MOVE 5 TO MSG-NO, GO TO ACCT-ERR. ¦
 ¦ 248 IF (ACCTC < '10000' OR ACCTC > '79999' OR ACCTC NOT NUMERIC),¦
 ¦ 249 MOVE 6 TO MSG-NO, GO TO ACCT-ERR. ¦
 ¦ ¦
 +--+

 Lines 245 through 249 (CK-ACCTNO-1): Next we make sure the input is
 valid. All the remaining request types require an account number, which
 must be numeric and between 10 000 and 79 999. We use the same diagnostic
 conventions for this and the remaining fields as for the name fields:
 highlighting (done in Line 262), asterisks if the field was omitted but is
 required (Line 246), cursor under the first error (Line 262), and an
 appropriate error message (Lines 247 and 249).

 +--+
 ¦ ¦
 ¦ 250 CK-ACCTNO-2. ¦
 ¦ 251 EXEC CICS READ FILE('ACCTFIL') RIDFLD(ACCTC) RESP(RESPONSE) ¦
 ¦ 252 INTO(ACCTREC) LENGTH(ACCT-LNG) END-EXEC. ¦
 ¦ ¦

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 14

 +--+

 Lines 250 through 252: This command reads the account file record
 indicated by the account number in the input.

 +--+
 ¦ ¦
 ¦ 253 IF RESPONSE = DFHRESP(NOTFND) GO TO NO-ACCT-RECORD. ¦
 ¦ 254 IF RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER-ERRORS. ¦
 ¦ 255 IF REQC = 'A', ¦
 ¦ 256 MOVE 9 TO MSG-NO, GO TO ACCT-ERR, ¦
 ¦ 257 ELSE GO TO CK-REQ. ¦
 ¦ ¦
 +--+

 Lines 253 through 257: We explicitly test RESP for two conditions. If
 there is no such record (the NOTFND condition), control will go to
 NO-ACCT-RECORD (Line 258), because of the command just executed in Line
 253. If there is some other sort of error (any NOT NORMAL condition),
 control will go to OTHER-ERRORS at Line 408.

 On the other hand, if we reach statement 255, we know that we've
 successfully read the record with the key in ACCTC into the area ACCTREC.
 We next test to see whether this is the result we expected. If the
 request was to add a record, the user has made an error, because there is
 already a record in the file with this number. In this case, therefore,
 we save the message number assigned to represent this particular error
 situation (to use as an index to the actual error message) and go to
 ACCT-ERR (Line 261) to diagnose an error in the account number. For other
 request types, however, this is the response we expect, and we continue
 processing at CK-REQ (Line 265).

 +--+
 ¦ ¦
 ¦ 258 NO-ACCT-RECORD. ¦
 ¦ 259 IF REQC = 'A', GO TO CK-REQ. ¦
 ¦ ¦
 +--+

 Lines 258 through 259 (NO-ACCT-RECORD): This statement is executed only
 if the record that we try to read in line 251 isn't in the account file.
 If the user has asked to add a record, this is the only correct response
 to the READ command, and we continue processing at CK-REQ, line 265.

 +--+
 ¦ ¦
 ¦ 260 MOVE 10 TO MSG-NO. ¦
 ¦ ¦
 +--+

 Line 260: If the user has asked to display, print, modify or delete,
 however, this not-found response means that the account number is wrong.
 We set the message number accordingly, and continue at the next line to
 complete diagnosing an error in the account number.

 +--+
 ¦ ¦
 ¦ 261 ACCT-ERR. ¦
 ¦ 262 MOVE -1 TO ACCTML, MOVE DFHBMBRY TO ACCTMA. ¦
 ¦ ¦
 +--+

 Line 261 (ACCT-ERR): Control reaches these statements from several points
 earlier in the program, after an error in the account number has been
 detected and the appropriate message number set. The statements complete

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 15

 the processing of an error in the account number, by brightening the field
 and positioning the cursor.

 +--+
 ¦ ¦
 ¦ 263 * ¦
 ¦ 264 * CHECK REQUEST TYPE. ¦
 ¦ 265 CK-REQ. ¦
 ¦ 266 IF REQC = 'D' OR 'P' OR 'A' OR 'M' OR 'X', ¦
 ¦ 267 IF MSG-NO = 0 GO TO CK-USE, ELSE GO TO MENU-RESEND. ¦
 ¦ ¦
 +--+

 Lines 263 through 267 (CK-REQ): The next input field we check is the
 request type. If it is one of the types permitted, we look at MSG-NO,
 which tells us whether there was an error detected earlier (in the account
 field). If it is zero (no error), we continue checking the input at
 CK-USE (line 273); otherwise we go to MENU-RESEND (line 387) to send out
 the diagnostic information.

 +--+
 ¦ ¦
 ¦ 268 MOVE -1 TO REQML, MOVE DFHBMBRY TO REQMA, ¦
 ¦ 269 MOVE 3 TO MSG-NO. ¦
 ¦ 270 GO TO MENU-RESEND. ¦
 ¦ ¦
 +--+

 Lines 268 through 270: Control reaches this point when we do not have a
 good request type. We process an error in this field in the same way as
 one in the account field (see explanation for lines 245-249), and then go
 to MENU-RESEND (Line 387) to send the error information.

 +--+
 ¦ ¦
 ¦ 271 * ¦
 ¦ 272 * TEST IF ACCOUNT NUMBER IN USE, ON UPDATES ONLY. ¦
 ¦ 273 CK-USE. ¦
 ¦ 274 IF REQC = 'P' OR 'D' GO TO BUILD-MAP. ¦
 ¦ ¦
 +--+

 Line 273 (CK-USE): At this point we have a good request for a good
 account number. If the request is for an update, however, we need to make
 a further check to ensure that no one else is updating this record at the
 moment. This test isn't required for a display or print request, however,
 and this statement skips the check on these types of requests.

 +--+
 ¦ ¦
 ¦ 275 MOVE ACCTC TO USE-QID2. ¦
 ¦ 276 EXEC CICS READQ TS QUEUE(USE-QID) INTO(USE-REC) ¦
 ¦ 277 ITEM(USE-ITEM) LENGTH(USE-LNG) RESP(RESPONSE) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 275 through 277: This command begins the test to ensure that the
 account number is available for update. We read the temporary storage
 queue whose name is AC0 followed by the account number in question (see
 lines 21 to 23 for the structure and initialization of this name).

 +--+
 ¦ ¦
 ¦ 278 IF RESPONSE = DFHRESP(QIDERR) GO TO RSRV-1. ¦
 ¦ 279 IF RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER-ERRORS. ¦

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 16

 ¦ ¦
 +--+

 Lines 278 through 279: We explicitly test RESP for two conditions. If
 there is no temporary storage queue with that name (the QIDERR condition)
 which, in turn, means that the number isn't in use, control will go to
 RSRV-1 (Line 296), where we'll reserve the number for ourselves. If there
 is some other sort of error (any NOT NORMAL condition), control will go to
 OTHER-ERRORS at Line 408.

 +--+
 ¦ ¦
 ¦ 280 ADD USE-LIMIT TO USE-TIME. ¦
 ¦ 281 IF USE-TIME > 236000, ADD 1 TO USE-DATE, ¦
 ¦ 282 SUBTRACT 236000 FROM USE-TIME. ¦
 ¦ 283 IF USE-DATE > EIBDATE OR ¦
 ¦ 284 (USE-DATE = EIBDATE AND USE-TIME NOT < EIBTIME) ¦
 ¦ 285 MOVE USE-TERM TO MSG-TERM, MOVE 11 TO MSG-NO, ¦
 ¦ 286 MOVE -1 TO ACCTML, MOVE DFHBMBRY TO ACCTMA, ¦
 ¦ 287 GO TO MENU-RESEND. ¦
 ¦ ¦
 +--+

 Lines 280 through 287: On a normal response to our READQ TS command
 (normal in the CICS sense, that is), control comes to this statement, the
 one following the command. This response means either that the number is
 in use or that a scratchpad entry for it has been left in temporary
 storage because of an accident on an earlier update against the same
 record. (See "Pseudoconversational or not?" in topic 2.7 for a discussion
 of how this might occur.)

 As we explained earlier, we'll distinguish between the two cases by
 comparing the time in the scratchpad record (USE-TIME on USE-DATE) with
 the time that the current transaction started (EIBTIME on EIBDATE). If
 more than a certain amount of time has passed, we'll go ahead and claim
 the number for ourselves at RSRV in Line 290. Otherwise we tell the user
 that the account number is in use. In the code, we treat the latter
 situation as an error in the account number (Lines 285-287); the only
 difference is that we customize the error message by moving in the name of
 the terminal using the number (stored at USE-TERM in the temporary storage
 record). The allowed time is stored in the constant USE-LIMIT, defined in
 Line 28 to be 10 minutes and 00 seconds. (The code in Line 281 takes care
 of the possibility that the scratchpad was written just before midnight,
 assuming that USE-LIMIT is less than an hour.)

 +--+
 ¦ ¦
 ¦ 288 * ¦
 ¦ 289 * RESERVE ACCOUNT NUMBER. ¦
 ¦ 290 RSRV. ¦
 ¦ 291 MOVE EIBTRMID TO USE-TERM, MOVE EIBTIME TO USE-TIME. ¦
 ¦ 292 MOVE EIBDATE TO USE-DATE. ¦
 ¦ 293 EXEC CICS WRITEQ TS QUEUE(USE-QID) FROM(USE-REC) ¦
 ¦ 294 LENGTH(12) ITEM(USE-ITEM) REWRITE END-EXEC. ¦
 ¦ 295 GO TO BUILD-MAP. ¦
 ¦ ¦
 +--+

 Lines 288 through 295 (RSRV): These statements are executed if there was
 an old scratchpad record for the account number whose time has expired.
 They reserve the account number for use by the current terminal. The
 scratchpad record is built from the name of the current input terminal and
 the time and date that the current transaction started. This record is
 then written to temporary storage, replacing the expired record. The
 REWRITE option causes replacement of the queue record whose number is in

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 17

 USE-ITEM. This number, defined at Line 29, is always 1, because we've
 designed our scratchpad to use single-item queues. If there are any
 errors in executing this command, control will go to OTHER-ERRORS, (Line
 408), as dictated by Line 143. Otherwise we pass control to BUILD-MAP, in
 Line 303, where we build the output screen for the impending update.

 +--+
 ¦ ¦
 ¦ 296 RSRV-1. ¦
 ¦ 297 MOVE EIBTRMID TO USE-TERM, MOVE EIBTIME TO USE-TIME. ¦
 ¦ 298 MOVE EIBDATE TO USE-DATE. ¦
 ¦ 299 EXEC CICS WRITEQ TS QUEUE(USE-QID) FROM(USE-REC) ¦
 ¦ 300 LENGTH(12) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 296 through 300 (RSRV-1): These statements are executed if there
 was no scratchpad record for the account number. They serve the same
 purpose as Lines 290-295 (reserving the account number for the current
 input terminal), but a different form of the WRITEQ TS command is needed,
 because we're creating a new queue.

 +--+
 ¦ ¦
 ¦ 301 * ¦
 ¦ 302 * BUILD THE RECORD DISPLAY. ¦
 ¦ 303 BUILD-MAP. ¦
 ¦ 304 IF REQC = 'X' MOVE 'DELETION' TO TITLEDO, ¦
 ¦ 305 MOVE -1 TO VFYDL, MOVE DFHBMUNP TO VFYDA, ¦
 ¦ 306 MOVE 'ENTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL' ¦
 ¦ 307 TO MSGDO, ¦
 ¦ 308 ELSE MOVE -1 TO SNAMEDL. ¦
 ¦ 309 IF REQC = 'A' MOVE 'NEW RECORD' TO TITLEDO, ¦
 ¦ 310 MOVE DFHPROTN TO STATTLDA, LIMTTLDA, HISTTLDA, ¦
 ¦ 311 MOVE ACCTC TO ACCTDI, ¦
 ¦ 312 MOVE 'FILL IN AND PRESS "ENTER," OR "CLEAR" TO CANCEL' ¦
 ¦ 313 TO MSGDO, ¦
 ¦ 314 GO TO SEND-DETAIL. ¦
 ¦ 315 IF REQC = 'M' MOVE 'RECORD CHANGE' TO TITLEDO, ¦
 ¦ 316 MOVE 'MAKE CHANGES AND "ENTER" OR "CLEAR" TO CANCEL' ¦
 ¦ 317 TO MSGDO, ¦
 ¦ 318 ELSE IF REQC = 'D', ¦
 ¦ 319 MOVE 'PRESS "CLEAR" OR "ENTER" WHEN FINISHED' ¦
 ¦ 320 TO MSGDO. ¦
 ¦ 321 MOVE ACCTDO IN ACCTREC TO ACCTDO IN ACCTDTLO. ¦
 ¦ 322 MOVE SNAMEDO IN ACCTREC TO SNAMEDO IN ACCTDTLO. ¦
 ¦ 323 MOVE FNAMEDO IN ACCTREC TO FNAMEDO IN ACCTDTLO. ¦
 ¦ 324 MOVE MIDO IN ACCTREC TO MIDO IN ACCTDTLO. ¦
 ¦ 325 MOVE TTLDO IN ACCTREC TO TTLDO IN ACCTDTLO. ¦
 ¦ 326 MOVE TELDO IN ACCTREC TO TELDO IN ACCTDTLO. ¦
 ¦ 327 MOVE ADDR1DO IN ACCTREC TO ADDR1DO IN ACCTDTLO. ¦
 ¦ 328 MOVE ADDR2DO IN ACCTREC TO ADDR2DO IN ACCTDTLO. ¦
 ¦ 329 MOVE ADDR3DO IN ACCTREC TO ADDR3DO IN ACCTDTLO. ¦
 ¦ 330 MOVE AUTH1DO IN ACCTREC TO AUTH1DO IN ACCTDTLO. ¦
 ¦ 331 MOVE AUTH2DO IN ACCTREC TO AUTH2DO IN ACCTDTLO. ¦
 ¦ 332 MOVE AUTH3DO IN ACCTREC TO AUTH3DO IN ACCTDTLO. ¦
 ¦ 333 MOVE AUTH4DO IN ACCTREC TO AUTH4DO IN ACCTDTLO. ¦
 ¦ 334 MOVE CARDSDO IN ACCTREC TO CARDSDO IN ACCTDTLO. ¦
 ¦ 335 MOVE IMODO IN ACCTREC TO IMODO IN ACCTDTLO. ¦
 ¦ 336 MOVE IDAYDO IN ACCTREC TO IDAYDO IN ACCTDTLO. ¦
 ¦ 337 MOVE IYRDO IN ACCTREC TO IYRDO IN ACCTDTLO. ¦
 ¦ 338 MOVE RSNDO IN ACCTREC TO RSNDO IN ACCTDTLO. ¦
 ¦ 339 MOVE CCODEDO IN ACCTREC TO CCODEDO IN ACCTDTLO. ¦
 ¦ 340 MOVE APPRDO IN ACCTREC TO APPRDO IN ACCTDTLO. ¦
 ¦ 341 MOVE SCODE1DO IN ACCTREC TO SCODE1DO IN ACCTDTLO. ¦

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 18

 ¦ 342 MOVE SCODE2DO IN ACCTREC TO SCODE2DO IN ACCTDTLO. ¦
 ¦ 343 MOVE SCODE3DO IN ACCTREC TO SCODE3DO IN ACCTDTLO. ¦
 ¦ 344 MOVE STATDO IN ACCTREC TO STATDO IN ACCTDTLO. ¦
 ¦ 345 MOVE LIMITDO IN ACCTREC TO LIMITDO IN ACCTDTLO. ¦
 ¦ 346 MOVE CORRESPONDING PAY-HIST (1) TO PAY-LINE. ¦
 ¦ 347 MOVE PAY-LINE TO HIST1DO. ¦
 ¦ 348 MOVE CORRESPONDING PAY-HIST (2) TO PAY-LINE. ¦
 ¦ 349 MOVE PAY-LINE TO HIST2DO. ¦
 ¦ 350 MOVE CORRESPONDING PAY-HIST (3) TO PAY-LINE. ¦
 ¦ 351 MOVE PAY-LINE TO HIST3DO. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 352 IF REQC = 'M' GO TO SEND-DETAIL, ¦
 ¦ 353 ELSE IF REQC = 'P' GO TO PRINT-PROC. ¦
 ¦ 354 MOVE DFHBMASK TO ¦
 ¦ 355 SNAMEDA, FNAMEDA, MIDA, TTLDA, TELDA, ADDR1DA, ¦
 ¦ 356 ADDR2DA, ADDR3DA, AUTH1DA, AUTH2DA, AUTH3DA, ¦
 ¦ 357 AUTH4DA, CARDSDA, IMODA, IDAYDA, IYRDA, RSNDA, ¦
 ¦ 358 CCODEDA, APPRDA, SCODE1DA, SCODE2DA, SCODE3DA. ¦
 ¦ ¦
 +--+

 Lines 304 through 348 (BUILD-MAP): At this point we're ready to build the
 output screen. Since we're using the same map for all types of requests,
 we have to make certain adjustments, depending on the type of request.
 Specifically, we must:

 1. Put a text description of the request type in the title line. (Lines
 304, 309, 315 do this for delete, add, and modify requests,
 respectively. The default in the map takes care of the most common
 case, a display request, and also applies to print requests.)

 2. Arrange for the cursor to be under the proper field. For a deletion,
 this is the verify field (see line 305, first part). For other
 requests, it is the surname field (line 308).

 3. For deletions, change the attribute of the verify field (VFYDA) from
 autoskip to unprotected (line 305, second part).

 4. Tell the user, in the message area, what to do next after completing
 the screen. Lines 306 through 307 do this for deletes; Lines 312
 through 313 are for adds, 314 through 315 for modifications and 318
 through 320 for display requests. We do not want any such message in
 the output for a print request, so the message area is left empty in
 this case.

 5. For additions, darken the title lines for the payment history at the
 bottom of the screen, since this part of the screen does not apply to
 add requests (line 310).

 6. Also for additions, put the account number in the input request into
 the screen (line 311). This is the only field that can be filled in
 on an addition; we put the account number there for two reasons: to
 save the user the trouble, and to make sure he or she doesn't change
 it. (Having gone to some lengths to ensure that it was a good number
 and not in use at another terminal, we cannot let the user change it
 now.)

 7. For requests other than additions, move the contents of the account
 file record for the requested account number into the map (lines 321
 to 327).

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 19

 8. For display and delete requests, protect all of the fields from the
 record that aren't protected by default in the map. This reminds
 users that they cannot change the record in display or delete
 operations (Lines 354 to 358).

 +--+
 ¦ ¦
 ¦ 359 * ¦
 ¦ 360 * SEND THE RECORD DETAIL MAP TO THE TERMINAL. ¦
 ¦ 361 SEND-DETAIL. ¦
 ¦ 362 EXEC CICS SEND MAP('ACCTDTL') MAPSET('ACCTSET') ERASE FREEKB ¦
 ¦ 363 CURSOR END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 359 through 363 (SEND-DETAIL): This command sends the output map
 (prepared in the preceding statements) to the (input) terminal, for all
 types of requests except print requests. The ERASE option is used,
 because a new map is being displayed. We specify CURSOR without a value,
 to tell CICS to put the cursor in the first field with a length value of
 -1.

 +--+
 ¦ ¦
 ¦ 364 IF REQC = 'D', EXEC CICS RETURN TRANSID('ACCT') END-EXEC, ¦
 ¦ ¦
 +--+

 Line 364: Now we return control to CICS, after sending output to the
 terminal. If the request was to display a record (that is, REQC=D), the
 request is complete at this point. The requested record is on the screen,
 and the user has been instructed to use either the CLEAR or ENTER key
 after inspecting the record. Since the next thing the user will want to
 see is a menu screen, we set the next transaction identifier to ACCT,
 which will display the menu screen, whatever key is next used to send
 input. We do not specify a COMMAREA, because there is no information
 about the current transaction that needs to be passed to the next one.

 +--+
 ¦ ¦
 ¦ 365 ELSE EXEC CICS RETURN TRANSID('AC02') ¦
 ¦ 366 COMMAREA(IN-REQ) LENGTH(6) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 365 through 366: On the other hand, if the request was an add,
 modify or delete, we set the next transaction identifier to AC02, which
 does the second part of an update request, and we pass the account number
 and the request type to that transaction through COMMAREA.

 +--+
 ¦ ¦
 ¦ 367 * ¦
 ¦ 368 * START UP A TASK TO PRINT THE RECORD. ¦
 ¦ 369 PRINT-PROC. ¦
 ¦ 370 IF PRTRC = SPACES ¦
 ¦ 371 MOVE 4 TO MSG-NO, GO TO TERMID-ERR1. ¦
 ¦ ¦
 +--+

 Lines 369 through 372 (PRINT-PROC): This code applies only to print
 requests. Control is brought here by the test in Line 353, because output
 to be printed cannot be sent to the input terminal. We've not checked, up
 to this point, whether the user has given us a good printer name. We
 didn't do this with the earlier validating because doing so requires

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 20

 interrogation of the terminal control table (TCT). You can do this in
 CICS, but not with the type of commands included in the Primer. However,
 you get the same check automatically with the START command, so we've
 waited until now to make this test.

 If the printer name is omitted or is all spaces, you know you have
 trouble, because spaces aren't an acceptable terminal identifier. So we
 check for this error first. If we find it, we fill the field with
 asterisks to show that it is required, and we reinforce this with an
 appropriate message. Then we go directly to the code that completes
 noting an error in this field (TERMID-ERR1 at Line 382).

 +--+
 ¦ ¦
 ¦ 372 EXEC CICS START TRANSID('AC03') FROM(ACCTDTLO) ¦
 ¦ 373 LENGTH(DTL-LNG) TERMID(PRTRC) RESP(RESPONSE) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 372 through 373: Otherwise we issue the START command to initiate
 the transaction that will do the printing. The name of this transaction
 is AC03, and the data that we'll pass it consists of the detail map we
 built (at ACCTDTLO) in Lines 304 to 353. The length of this data,
 DTL-LNG, is stored at a constant defined in Line 19. The name of the
 terminal that must be available to the transaction before it can be
 started is at PRTRC. Because we didn't specify any TIME or INTERVAL
 parameter, CICS will start the transaction as soon as it can after the
 required terminal is free.

 +--+
 ¦ ¦
 ¦ 374 IF RESPONSE = DFHRESP(TERMIDERR) GO TO TERMID-ERR. ¦
 ¦ 375 IF RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER-ERRORS. ¦
 ¦ ¦
 +--+

 Lines 374 through 375: We explicitly test RESP for two conditions. The
 most probable result of this read will be TERMIDERR, meaning that there is
 no terminal identifier corresponding to the one that has been entered. In
 this case, control will go to TERMID-ERR (Line 380). If there is some
 other sort of error (any NOT NORMAL condition), control will go to
 OTHER-ERRORS at Line 408.

 +--+
 ¦ ¦
 ¦ 376 MOVE MSG-TEXT (12) TO MSGMO. ¦
 ¦ 377 EXEC CICS SEND MAP('ACCTMNU') MAPSET ('ACCTSET') DATAONLY ¦
 ¦ 378 ERASEAUP FREEKB END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 376 through 378: If the START command is successful, control falls
 through to this statement. We need to send a message, saying that the
 user's print request has been scheduled. We use the DATAONLY option, so
 that the only thing we send is the message itself. And we use ERASEAUP to
 erase the print request input, so that the user is all set to enter the
 next request.

 +--+
 ¦ ¦
 ¦ 379 EXEC CICS RETURN TRANSID('AC01') END-EXEC. ¦
 ¦ ¦
 +--+

 Line 379: Finally we return control to CICS. The next transaction

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 21

 identifier is set to AC01, because the menu is still on the screen.
 However, there is no COMMAREA, because the current request has been
 completed.

 +--+
 ¦ ¦
 ¦ 380 TERMID-ERR. ¦
 ¦ 381 MOVE 13 TO MSG-NO. ¦
 ¦ 382 TERMID-ERR1. ¦
 ¦ 383 MOVE -1 TO PRTRML, MOVE DFHBMBRY TO PRTRMA. ¦
 ¦ ¦
 +--+

 Lines 380 through 383 (TERMID-ERR): If, on the other hand, the terminal
 to which we attempted to START a transaction isn't in the TCT, control is
 sent here (see Lines 145 and 370 through 371). In this case, we choose a
 message appropriate to the situation and flag the error in the usual
 fashion.

 +--+
 ¦ ¦
 ¦ 384 * ¦
 ¦ 385 * ERROR PROCESSING, FOR ALL REQUESTS. ¦
 ¦ 386 * RESEND MENU SCREEN. ¦
 ¦ 387 MENU-RESEND. ¦
 ¦ 388 MOVE REQC TO REQMI. ¦
 ¦ 389 MOVE ACCTC TO ACCTMI. ¦
 ¦ 390 MOVE PRTRC TO PRTRMI. ¦
 ¦ 391 MOVE SNAMEC TO SNAMEMI. ¦
 ¦ 392 MOVE FNAMEC TO FNAMEMI. ¦
 ¦ 393 MOVE MSG-TEXT (MSG-NO) TO MSGMO. ¦
 ¦ ¦
 +--+

 Lines 384 through 393 (MENU-RESEND): This statement begins the code used
 to display input errors. It first moves the applicable error message to
 the menu map, using the message number that was set earlier in the
 program.

 +--+
 ¦ ¦
 ¦ 394 EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') ¦
 ¦ 395 CURSOR DATAONLY FRSET ERASEAUP FREEKB END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 394 through 395: This command sends the changes and additions to
 the screen. We cleared the map to nulls (Line 147) before the editing
 began, and we specify DATAONLY here. So the only data that will be sent
 is:

 1. The changed attribute bytes
 2. Any fields we filled with asterisks
 3. The message field (if any).

 This is where we specify FRSET, so that only changed fields are sent on
 the next transmission, as we explained at Line 163.

 +--+
 ¦ ¦
 ¦ 396 EXEC CICS RETURN TRANSID('AC01') COMMAREA(IN-AREA) ¦
 ¦ 397 LENGTH(41) END-EXEC. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 22

 Lines 396 through 397: After we've added to the menu display, we return
 control to CICS. Because the menu screen is on display, we set the next
 transaction identifier to this same transaction, AC01. And because some
 sort of error occurred on this request, we also save the input from the
 current execution in COMMAREA for use in the next execution of the
 transaction.

 +--+
 ¦ ¦
 ¦ 398 * ¦
 ¦ 399 * PROCESSING FOR MAP FAILURES, CLEARS. ¦
 ¦ 400 NO-MAP. ¦
 ¦ 401 MOVE 2 TO MSG-NO, MOVE -1 TO SNAMEML, GO TO MENU-RESEND. ¦
 ¦ ¦
 +--+

 Lines 400 through 401 (NO-MAP): Control reaches this point if MAPFAIL
 occurs when we RECEIVE the input map. MAPFAIL could happen in this
 situation if the user pressed the ENTER key, or one of the PF keys,
 without keying anything into the screen. This is because no modified-data
 tags are turned on by the program or the map, so that if the user does
 this, there will be no fields sent (MAPFAIL by definition). It could also
 happen if one of the short-read keys that we've not already tested for is
 used. So the first thing we do is find out whether the user pressed ENTER
 or one of these short-read keys. If so, we send a message pointing out
 that he or she has to enter some data and use either the ENTER or CLEAR
 keys, once again using the error code at Lines 393 through 397.

 +--+
 ¦ ¦
 ¦ 402 NEW-MENU. ¦
 ¦ 403 EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') ¦
 ¦ 404 FREEKB ERASE END-EXEC. ¦
 ¦ 405 EXEC CICS RETURN TRANSID ('AC01') END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 402 through 405: If the user managed to get a MAPFAIL in some other
 way, we send a message saying there has been an input error and inviting
 another attempt, using only the CLEAR and ENTER keys. We send this on an
 entirely fresh map, since we cannot be sure what's on the screen at this
 point. Then we return control to CICS. The next transid is AC01, because
 we've just put the menu on the screen. There is no COMMAREA, because we
 want a fresh start.

 +--+
 ¦ ¦
 ¦ 406 * ¦
 ¦ 407 * PROCESSING FOR UNEXPECTED ERRORS. ¦
 ¦ 408 OTHER-ERRORS. ¦
 ¦ 409 MOVE EIBFN TO ERR-FN, MOVE EIBRCODE TO ERR-RCODE. ¦
 ¦ 410 MOVE EIBFN TO ERR-COMMAND, MOVE EIBRESP TO ERR-RESP. ¦
 ¦ ¦
 +--+

 Lines 408 through 410 (OTHER-ERRORS): This statement begins the code that
 is executed on any unusual response to a CICS command except MAPFAIL,
 NOTFND, ENDFILE, QIDERR, and TERMIDERR. CICS sends control here, rather
 than abending the task, because of the ERROR(OTHER-ERRORS) option on our
 HANDLE CONDITION ERROR command in Line 145. The first thing we do is save
 the type of command we were trying to execute at the time of the error
 (which is at EIBFN) and the response code we got (which is at EIBRCODE).
 We must do this before we issue any other CICS command, or this vital
 information will be overwritten.

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 23

 +--+
 ¦ ¦
 ¦ 411 EXEC CICS HANDLE CONDITION ERROR END-EXEC. ¦
 ¦ ¦
 +--+

 Line 411: Next we disable the HANDLE CONDITION ERROR request that brought
 us to this paragraph. We do so to prevent any possibility of a loop. If
 we did not, and we experienced some unusual condition on the LINK command
 that follows, the program would loop.

 Note: We would also "unhandle" any other specifically handled conditions
 that could occur at this point, if there was any possibility of them
 occurring on the LINK command that's coming up next. (However, there are
 none as we've instead chosen to test RESP options on our CICS commands.)

 +--+
 ¦ ¦
 ¦ 412 EXEC CICS LINK PROGRAM('ACCT04') ¦
 ¦ 413 COMMAREA(COMMAREA-FOR-ACCT04) LENGTH(14) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 412 through 413: Finally, we transfer control to program ACCT04,
 which will send the user a message about the nature of the error. Notice
 we're using LINK rather than XCTL -- see "Errors within the example
 application" in topic 3.8.3.

 We pass three items of information along to this program, in the area
 named COMMAREA-FOR-ACCT04 (see Lines 40-45). These items are the function
 and response codes just saved and the name of the current program
 (ACCT01).

 +--+
 ¦ ¦
 ¦ 414 GOBACK. ¦
 ¦ ¦
 +--+

 Line 414: This GOBACK statement is actually never executed, because
 control doesn't return from our error handling program, ACCT04. However,
 this logical "end of program" keeps the compiler happy.

CICS Application Programming Primer
Program ACCT01: initial request analysis

© Copyright IBM Corp. 1984, 1991
4.2 - 24

 4.3 Program ACCT02: update processing
 +--+
 ¦ ¦
 ¦ 001 IDENTIFICATION DIVISION. ¦
 ¦ 002 PROGRAM-ID. ACCT02. ¦
 ¦ 003 *REMARKS. THIS PROGRAM IS THE FIRST INVOKED BY THE 'AC02' ¦
 ¦ 004 * TRANSACTION. IT COMPLETES REQUESTS FOR ACCOUNT FILE ¦
 ¦ 005 * UPDATES (ADDS, MODIFIES, AND DELETES), AFTER THE USER ¦
 ¦ 006 * ENTERED THE UPDATE INFORMATION. ¦
 ¦ 007 ENVIRONMENT DIVISION. ¦
 ¦ 008 DATA DIVISION. ¦
 ¦ 009 WORKING STORAGE SECTION. ¦
 ¦ 010 01 MISC. ¦
 ¦ 011 02 RESPONSE PIC S9(8) COMP. ¦
 ¦ 012 02 OWN-FLAG PIC 9. ¦
 ¦ 013 02 MENU-MSGNO PIC S9(4) COMP VALUE +1. ¦
 ¦ 014 02 DTL-MSGNO PIC S9(4) COMP VALUE +0. ¦
 ¦ 015 02 ACCT-LNG PIC S9(4) COMP VALUE +383. ¦
 ¦ 016 02 ACIX-LNG PIC S9(4) COMP VALUE +63. ¦
 ¦ 017 02 DTL-LNG PIC S9(4) COMP VALUE +751. ¦
 ¦ 018 02 DUMMY PIC S9(4) COMP VALUE +128. ¦
 ¦ 019 02 FILLER REDEFINES DUMMY. ¦
 ¦ 020 04 FILLER PIC X. ¦
 ¦ 021 04 HEX80 PIC X. ¦
 ¦ 022 02 STARS PIC X(12) VALUE '************'. ¦
 ¦ 023 02 USE-QID. ¦
 ¦ 024 04 USE-QID1 PIC X(3) VALUE 'AC0'. ¦
 ¦ 025 04 USE-QID2 PIC X(5). ¦
 ¦ 026 02 USE-REC. ¦
 ¦ 027 04 USE-TERM PIC X(4). ¦
 ¦ 028 04 USE-TIME PIC S9(7) COMP-3. ¦
 ¦ 029 04 USE-DATE PIC S9(7) COMP-3. ¦
 ¦ 030 02 USE-LNG PIC S9(4) COMP VALUE +12. ¦
 ¦ 031 02 OLD-IXKEY. ¦
 ¦ 032 04 IXOLD-SNAME PIC X(12). ¦
 ¦ 033 04 IXOLD-ACCT PIC X(5). ¦
 ¦ 034 02 COMMAREA-FOR-ACCT04. ¦
 ¦ 035 04 ERR-PGRMID PIC X(8) VALUE 'ACCT02'. ¦
 ¦ 036 04 ERR-FN PIC X. ¦
 ¦ 037 04 ERR-RCODE PIC X. ¦
 ¦ 038 04 ERR-COMMAND PIC XX. ¦
 ¦ 039 04 ERR-RESP PIC 99. ¦
 ¦ 040 02 PAY-INIT PIC X(36) VALUE ¦
 ¦ 041 ' 0.00000000 0.00000000 0.00'. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 042 * MESSAGES DISPLAYED ON MENU SCREEN ¦
 ¦ 043 02 MENU-MSG-LIST. ¦
 ¦ 044 04 FILLER PIC X(60) VALUE ¦
 ¦ 045 'PREVIOUS REQUEST CANCELLED AS REQUESTED'. ¦
 ¦ 046 04 FILLER PIC X(60) VALUE ¦
 ¦ 047 'REQUESTED ADDITION COMPLETED'. ¦
 ¦ 048 04 FILLER PIC X(60) VALUE ¦
 ¦ 049 'REQUESTED MODIFICATION COMPLETED'. ¦
 ¦ 050 04 FILLER PIC X(60) VALUE ¦
 ¦ 051 'REQUESTED DELETION COMPLETED'. ¦
 ¦ 052 * MESSAGES DISPLAYED ON DETAIL SCREEN ¦
 ¦ 053 02 MENU-MSG REDEFINES MENU-MSG-LIST PIC X(60) OCCURS 4. ¦
 ¦ 054 02 DTL-MSG-LIST. ¦
 ¦ 055 04 FILLER PIC X(60) VALUE ¦
 ¦ 056 'EITHER ENTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL'. ¦
 ¦ 057 04 FILLER PIC X(60) VALUE ¦

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 1

 ¦ 058 'YOUR REQUEST WAS INTERRUPTED; PLEASE CANCEL AND RETRY'. ¦
 ¦ 059 04 FILLER PIC X(60) VALUE ¦
 ¦ 060 'CORRECT HIGHLIGHTED ITEMS (STARS MEAN ITEM REQUIRED)'. ¦
 ¦ 061 04 FILLER PIC X(60) VALUE ¦
 ¦ 062 'USE ONLY "ENTER" (TO PROCEED) OR "CLEAR" (TO CANCEL)'. ¦
 ¦ 063 04 FILLER PIC X(60) VALUE ¦
 ¦ 064 'MAKE SOME ENTRIES AND "ENTER" OR "CLEAR" TO CANCEL'. ¦
 ¦ 065 02 DTL-MSG REDEFINES DTL-MSG-LIST PIC X(60) OCCURS 5. ¦
 ¦ 066 02 MOD-LINE. ¦
 ¦ 067 04 FILLER PIC X(25) VALUE ¦
 ¦ 068 '==========> CHANGES TO: '. ¦
 ¦ 069 04 MOD-NAME PIC X(6) VALUE SPACES. ¦
 ¦ 070 04 MOD-TELE PIC X(5) VALUE SPACES. ¦
 ¦ 071 04 MOD-ADDR PIC X(6) VALUE SPACES. ¦
 ¦ 072 04 MOD-AUTH PIC X(6) VALUE SPACES. ¦
 ¦ 073 04 MOD-CARD PIC X(6) VALUE SPACES. ¦
 ¦ 074 04 MOD-CODE PIC X(5) VALUE SPACES. ¦
 ¦ 075 02 UPDT-LINE. ¦
 ¦ 076 04 FILLER PIC X(30) VALUE ¦
 ¦ 077 '==========> UPDATED AT TERM: '. ¦
 ¦ 078 04 UPDT-TERM PIC X(4). ¦
 ¦ 079 04 FILLER PIC X(6) VALUE ' AT '. ¦
 ¦ 080 04 UPDT-TIME PIC 9(7). ¦
 ¦ 081 04 FILLER PIC X(6) VALUE ' ON '. ¦
 ¦ 082 04 UPDT-DATE PIC 9(7). ¦
 ¦ ¦
 +--+

 Lines 10 through 82: These lines are the working storage area of the
 program. Individual variables will be explained in the comments below as
 they are used.

 +--+
 ¦ ¦
 ¦ 083 01 NEW-ACCTREC. COPY ACCTREC. ¦
 ¦ 084 01 OLD-ACCTREC. COPY ACCTREC. ¦
 ¦ 085 01 NEW-ACIXREC. COPY ACIXREC. ¦
 ¦ 086 01 OLD-ACIXREC. COPY ACIXREC. ¦
 ¦ ¦
 +--+

 Lines 83 through 86: These lines copy in the record formats for the
 account and index files. There's space for two records for each file--one
 for the old version of the record (before modification or deletion) and
 one for the new version (for modifications and additions).

 See "The account file record format" in topic 3.4.1.1.1 and "The index
 file record format" in topic 3.4.1.1.2. for the source code of ACCTREC
 and ACIXREC.

 +--+
 ¦ ¦
 ¦ 087 COPY ACCTSET. ¦
 ¦ ¦
 +--+

 Line 87: This line brings in a copy of the symbolic description map
 structure.

 +--+
 ¦ ¦
 ¦ 088 COPY DFHAID. ¦
 ¦ 089 COPY DFHBMSCA. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 2

 Lines 88 through 89: These lines bring in the definitions of the
 attention identifiers and attribute bytes that CICS provides for COBOL
 programmers (See "Finding out what key the operator pressed" in
 topic 3.3.6 and "Symbolic description maps (DSECT structures)" in
 topic 3.3.1.)

 +--+
 ¦ ¦
 ¦ 090 LINKAGE SECTION. ¦
 ¦ 091 01 DFHCOMMAREA. ¦
 ¦ 092 02 REQC PIC X. ¦
 ¦ 093 02 ACCTC PIC X(5). ¦
 ¦ ¦
 +--+

 Lines 90 through 93: The structure defined here and named DFHCOMMAREA
 describes the data passed to this program by means of COMMAREA.

 +--+
 ¦ ¦
 ¦ 094 * ¦
 ¦ 095 PROCEDURE DIVISION. ¦
 ¦ 096 * ¦
 ¦ 097 MAIN SECTION. ¦
 ¦ 098 * INITIALIZE. ¦
 ¦ 099 MOVE LOW-VALUES TO ACCTDTLI. ¦
 ¦ ¦
 +--+

 Line 99: This MOVE statement initializes the symbolic map structure for
 the detail map to nulls, in preparation for receiving input (see notes for
 Line 143 in program ACCT01).

 +--+
 ¦ ¦
 ¦ 100 MOVE SPACES TO OLD-ACCTREC, NEW-ACCTREC, ¦
 ¦ 101 OLD-ACIXREC, NEW-ACIXREC. ¦
 ¦ ¦
 +--+

 Lines 100 through 101: The areas in which new account and index file
 records will be built (and read) are initialized to spaces.

 +--+
 ¦ ¦
 ¦ 102 * CATER FOR UNEXPECTED ERRORS ¦
 ¦ 103 EXEC CICS HANDLE CONDITION ERROR(NO-GOOD) END-EXEC. ¦
 ¦ ¦
 +--+

 Line 103: This command tells CICS where control should go if unexpected
 errors are encountered. Specific conditions that might result from user
 errors and conditions that CICS regards as unusual, but that the program
 expects, are handled with explicit code later in the program by the RESP
 option. Examples of these are MAPFAIL, LENGERR, and QIDERR. The program
 does not attempt to recover from other unusual conditions, and therefore
 all of these are passed, by means of this HANDLE CONDITION ERROR command,
 to a single point in the program (NO-GOOD at Line 172), from which control
 is sent to an error program. This program in turn sends a message to the
 user and abends the task.

 Nothing happens, as the result of executing this HANDLE CONDITION ERROR
 command, that immediately affects the flow of the program or the data
 available to it. Instead, this command causes CICS to record information

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 3

 for processing exceptional conditions in this particular program, should
 they occur subsequently.

 See the preface for some general comments about error handling in the ACCT
 application for this edition of the Primer. You'll also be able to find
 more detailed guidance in the CICS/ESA Application Programming Guide.

 +--+
 ¦ ¦
 ¦ 104 IF EIBAID = DFHCLEAR THEN ¦
 ¦ 105 PERFORM CK-OWN ¦
 ¦ 106 IF OWN-FLAG = 1 GO TO NO-OWN ELSE ¦
 ¦ 107 GO TO RELEASE-ACCT. ¦
 ¦ 108 IF EIBAID NOT = DFHENTER THEN ¦
 ¦ 109 GO TO PA-KEY. ¦
 ¦ ¦
 +--+

 Lines 104 through 109: If the user has pressed the CLEAR key, control
 passes to CK-OWN in Line 317. If the user has not pressed the ENTER key,
 control passes to PA-KEY in Line 168.

 +--+
 ¦ ¦
 ¦ 110 * ¦
 ¦ 111 * GET INPUT AND BUILD NEW RECORD. ¦
 ¦ 112 EXEC CICS RECEIVE MAP('ACCTDTL') MAPSET('ACCTSET') ¦
 ¦ 113 RESP(RESPONSE) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 110 through 113: This command tells CICS:

 1. To convert the terminal input (whose arrival caused the current
 transaction to be initiated) into the symbolic map format required by
 map ACCTDTL

 2. To place this information in working storage at ACCTDTLI.

 A MAPFAIL condition can be raised on this command, as indeed can several
 other conditions. So we've specified the RESP option to find out, after
 execution, what condition has been raised on the RECEIVE MAP. The program
 can then check the value of RESP in the RESPONSE variable (defined on line
 11) to see if any errors have occurred.

 The RESP option allows processing to continue with the next COBOL
 statement.

 +--+
 ¦ ¦
 ¦ 114 IF RESPONSE = DFHRESP(MAPFAIL) GO TO NO-MAP. ¦
 ¦ 115 IF RESPONSE NOT = DFHRESP(NORMAL) GO TO NO-GOOD. ¦
 ¦ ¦
 +--+

 Lines 114 through 115: We explicitly test RESP for two conditions. The
 most probable error condition arising from this read will be MAPFAIL, in
 which case control will go to NO-MAP (Line 163). If there is some other
 sort of error (any NOT NORMAL condition), control will go to NO-GOOD at
 Line 172.

 +--+
 ¦ ¦
 ¦ 116 IF REQC NOT = 'A', ¦
 ¦ 117 EXEC CICS READ FILE('ACCTFIL') INTO(OLD-ACCTREC) ¦

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 4

 ¦ 118 RIDFLD(ACCTC) UPDATE LENGTH(ACCT-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 116 through 118: Next we test to find out what kind of request
 we're processing. The request code, you'll remember, has been passed from
 the previous transaction, AC01, to this one in COMMAREA in the variable
 REQC. If the request is to modify or delete a record, as opposed to
 adding one, we read the target record from the account file. (The key for
 this record was also passed through COMMAREA, in the variable ACCTC.) The
 record is placed in the structure OLD-ACCTREC. Notice that we specify
 UPDATE, since that is what we're about to do. We must also specify a
 maximum length, which we do with the constant in ACCT-LNG.

 Unlike program ACCT01, this program does not expect, and has no code to
 handle, any of the many irregularities possible on a file read. So, if
 anything unusual happens during this read, CICS will pass control to
 paragraph NO-GOOD at Line 172 (because of the HANDLE CONDITION ERROR
 command at Line 103).

 +--+
 ¦ ¦
 ¦ 119 MOVE OLD-ACCTREC TO NEW-ACCTREC, ¦
 ¦ ¦
 +--+

 Line 119: After a successful read, a new version of the account record is
 initialized to the contents of the old record.

 +--+
 ¦ ¦
 ¦ 120 MOVE SNAMEDO IN OLD-ACCTREC TO IXOLD-SNAME, ¦
 ¦ 121 MOVE ACCTC TO IXOLD-ACCT. ¦
 ¦ ¦
 +--+

 Lines 120 through 121: We also build the key of the index file record
 associated with this account record, defined in Lines 31 to 33, for use
 later in the program.

 +--+
 ¦ ¦
 ¦ 122 IF REQC = 'X', ¦
 ¦ 123 IF VFYDI = 'Y', GO TO NO-EDIT ¦
 ¦ 124 ELSE MOVE -1 TO VFYDL, MOVE DFHUNIMD TO VFYDA, ¦
 ¦ 125 MOVE 1 TO DTL-MSGNO, ¦
 ¦ 126 GO TO INPUT-REDISPLAY. ¦
 ¦ ¦
 +--+

 Lines 122 through 126: These statements do the simple verification
 checking we need for delete requests.

 If the user has confirmed the requested deletion by putting "Y" in the
 "verify" field, then the only test requirement is met, and the program
 goes on to ensure that there has been no lapse in control of the account
 number in question (in other words, the user still "owns" that account
 record) at CK-OWN (Line 317). However, if this field contains anything
 else, the program assumes an error ("Y" in the "verify" field or a CLEAR
 are the only acceptable responses in this situation).

 +--+
 ¦ ¦
 ¦ 127 * ¦
 ¦ 128 PERFORM EDIT. ¦

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 5

 ¦ 129 IF DTL-MSGNO = 3 OR DTL-MSGNO = 5 ¦
 ¦ 130 GO TO INPUT-REDISPLAY. ¦
 ¦ ¦
 +--+

 Lines 128 through 130 (PERFORM EDIT): The same diagnostic conventions are
 used in this program as in ACCT01 (see discussion of Lines 172-173 in that
 program). DTL-MSGNO is the number of the error message that is sent to
 the screen (which is displaying the detail map).

 +--+
 ¦ ¦
 ¦ 131 * ¦
 ¦ 132 NO-EDIT. ¦
 ¦ 133 PERFORM CK-OWN. ¦
 ¦ 134 IF OWN-FLAG = 1 GO TO NO-OWN. ¦
 ¦ ¦
 +--+

 Lines 132 through 134 (NO-EDIT): We go to CK-OWN (Lines 320-321) to check
 the ownership of the account number, otherwise if we do not have exclusive
 control of the account number we're trying to update, we go to NO-OWN
 (Line 160).

 +--+
 ¦ ¦
 ¦ 135 * ¦
 ¦ 136 PERFORM UPDTE. ¦
 ¦ ¦
 +--+

 Line 136 (PERFORM UPDTE): This is where the program carries out the
 PERFORM UPDTE operation on the files.

 +--+
 ¦ ¦
 ¦ 137 * ¦
 ¦ 138 * RELEASE OWNERSHIP OF ACCOUNT NUMBER. ¦
 ¦ 139 RELEASE-ACCT. ¦
 ¦ 140 EXEC CICS DELETEQ TS QUEUE(USE-QID) END-EXEC. ¦
 ¦ ¦
 +--+

 Line 140 (RELEASE-ACCT): At this point, the files have been updated, and
 we can release exclusive control of the account number. We do this by
 deleting the corresponding scratchpad record.

 +--+
 ¦ ¦
 ¦ 141 * ¦
 ¦ 142 * SEND MENU MAP BACK TO TERMINAL. ¦
 ¦ 143 MENU-REFRESH. ¦
 ¦ 144 MOVE LOW-VALUES TO ACCTMNUO. ¦
 ¦ 145 MOVE MENU-MSG (MENU-MSGNO) TO MSGMO. ¦
 ¦ 146 EXEC CICS SEND MAP('ACCTMNU') MAPSET('ACCTSET') ERASE FREEKB ¦
 ¦ 147 END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 143 through 147 (MENU-REFRESH): The final step in processing an
 update is to redisplay the menu screen, with a message in the message area
 confirming that the requested update has been completed. Line 145 moves
 in the appropriate message, based on the message number set up in Line
 412, 421, or 442; and the next two lines send the screen. We send an
 entirely new map and use the ERASE option, since another map (the detail

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 6

 map) is currently on the screen.

 +--+
 ¦ ¦
 ¦ 148 EXEC CICS RETURN TRANSID('AC01') END-EXEC. ¦
 ¦ ¦
 +--+

 Line 148: Then we return control to CICS. The next transid is set to
 AC01 because the menu map is on the screen, ready for a new request to be
 entered.

 +--+
 ¦ ¦
 ¦ 149 * ¦
 ¦ 150 * FOR INPUT ERRORS, RESEND DETAIL MAP. ¦
 ¦ 151 INPUT-REDISPLAY. ¦
 ¦ 152 MOVE DTL-MSG (DTL-MSGNO) TO MSGDO. ¦
 ¦ ¦
 +--+

 Line 152 (INPUT-REDISPLAY): This statement begins a block of code that is
 executed if the program detects any errors in the input. First, the
 appropriate error message is moved to the message area of the map.

 +--+
 ¦ ¦
 ¦ 153 IF DTL-MSGNO = 2 OR 4 OR 5, MOVE -1 TO SNAMEDL. ¦
 ¦ ¦
 +--+

 Line 153: Next, if the error isn't one that would place the cursor
 elsewhere, the cursor is placed under the surname field. (The errors that
 place the cursor elsewhere are field errors and failures to confirm
 deletions.)

 +--+
 ¦ ¦
 ¦ 154 EXEC CICS SEND MAP('ACCTDTL') MAPSET('ACCTSET') DATAONLY ¦
 ¦ 155 CURSOR FREEKB END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 154 through 155: Then the error information is sent. As in the
 corresponding code in program ACCT01 (Lines 377-378 there), we use the
 DATAONLY option to send as little as possible to the screen. We also
 specify CURSOR without a value, so that CICS will place the cursor under
 the first field with a -1 in the length subfield. This will be the first
 field in error if there has been a field error.

 We don't specify FRSET as we did in ACCT01, however. If we did so, we'd
 have to save the input from this execution of the AC02 transaction,
 because only the fields changed after this SEND MAP command would be
 returned on the next RECEIVE command, as we explained in connection with
 Line 155 of program ACCT01.

 +--+
 ¦ ¦
 ¦ 156 EXEC CICS RETURN TRANSID('AC02') COMMAREA(DFHCOMMAREA) ¦
 ¦ 157 LENGTH(6) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 156 through 157: Having written the error information to the
 screen, we return control to CICS. We request that this same transaction

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 7

 be the next one executed (to process the user's corrected input). We also
 have to save the information passed by transaction AC01 for this execution
 of AC02 for when we execute AC02 again. So we forward the COMMAREA passed
 to the current execution of this transaction to its next execution.

 +--+
 ¦ ¦
 ¦ 158 * ¦
 ¦ 159 * PROCESSING FOR RECOVERABLE ERRORS. ¦
 ¦ 160 NO-OWN. ¦
 ¦ 161 IF EIBAID = DFHCLEAR OR MENU-MSGNO = 5 GO TO MENU-REFRESH. ¦
 ¦ 162 MOVE 2 TO DTL-MSGNO, GO TO INPUT-REDISPLAY. ¦
 ¦ ¦
 +--+

 Lines 161 through 162 (NO-OWN): This is the code that is executed if we
 find that we do not have exclusive control of the account number we're
 trying to update. It may be that the user has cancelled a request, or a
 MAPFAIL of unexplained origin has occurred (so that we're not sure about
 the condition of the screen). In either case, we simply refresh the menu
 screen at Line 143 (MENU-REFRESH) with the applicable message (the message
 number is set in Line 13 or Line 167).

 Otherwise, however, we must treat the situation as an error. We tell the
 user what has happened in the message area and indicate that he or she
 must cancel and start again (see the discussion in connection with Line
 321).

 +--+
 ¦ ¦
 ¦ 163 NO-MAP. ¦
 ¦ 164 * IF MAPFAIL OCCURRED THEN REDISPLAY WITH APPROPRIATE MESSAGE. ¦
 ¦ 165 IF REQC = 'X' MOVE 1 TO DTL-MSGNO, MOVE -1 TO VFYDL ¦
 ¦ 166 ELSE MOVE 5 TO DTL-MSGNO. ¦
 ¦ 167 GO TO INPUT-REDISPLAY. ¦
 ¦ ¦
 +--+

 Lines 164 through 166 (NO-MAP): This statement begins the code that is
 executed if a MAPFAIL condition occurs when we receive the input map. If
 the ENTER key was used, we assume that the user didn't enter any data into
 the detail map. We send a message saying that at least some entry is
 necessary, using the code for other types of errors at INPUT-REDISPLAY
 (Line 152).

 If the ENTER key was not used, and if we know from Lines 104 and 108 that
 neither CLEAR nor one of the PA keys was used either, then the cause of
 the MAPFAIL is more obscure. In this unlikely event, we proceed as if the
 user had cleared the screen, except that we use a different message on the
 menu screen when we display it. We therefore go to CK-OWN (Lines 320-321)
 to release the account number.

 +--+
 ¦ ¦
 ¦ 168 PA-KEY. ¦
 ¦ 169 MOVE 4 TO DTL-MSGNO, GO TO INPUT-REDISPLAY. ¦
 ¦ ¦
 +--+

 Line 169 (PA-KEY): This line is executed if a PA key is used to send the
 input. We handle the situation in the same way as the ENTER key without
 data, except for a different error message (see Lines 164-165).

 +--+
 ¦ ¦

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 8

 ¦ 170 * ¦
 ¦ 171 * PROCESSING FOR UNRECOVERABLE ERRORS. ¦
 ¦ 172 NO-GOOD. ¦
 ¦ 173 MOVE EIBFN TO ERR-FN, MOVE EIBRCODE TO ERR-RCODE. ¦
 ¦ 174 MOVE EIBFN TO ERR-COMMAND, MOVE EIBRESP TO ERR-RESP. ¦
 ¦ 175 EXEC CICS HANDLE CONDITION ERROR END-EXEC. ¦
 ¦ 176 EXEC CICS LINK PROGRAM('ACCT04') ¦
 ¦ 177 COMMAREA(COMMAREA-FOR-ACCT04) LENGTH(14) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 173 through 177 (NO-GOOD): These statements are executed whenever
 there is an unusual response to a CICS command, as shown by each IF
 RESPONSE NOT = DFHRESP(NORMAL) test. The code is identical to the
 corresponding code in Lines 409-413 of program ACCT01.

 +--+
 ¦ ¦
 ¦ 178 GOBACK. ¦
 ¦ ¦
 +--+

 Line 178: This GOBACK performs the same function that the GOBACK ending
 ACCT01 does. It satisfies the COBOL compiler requirement for a logical
 end of program.

 +--+
 ¦ ¦
 ¦ 179 MAIN-EXIT. ¦
 ¦ 180 EXIT. ¦
 ¦ ¦
 +--+

 Lines 179 through 180: This marks the end of the main-exit procedure, and
 control is returned to CICS.

 +--+
 ¦ ¦
 ¦ 181 EDIT SECTION. ¦
 ¦ 182 EDIT-START. ¦
 ¦ 183 IF SNAMEDL > 0 MOVE SNAMEDI TO SNAMEDO IN NEW-ACCTREC. ¦
 ¦ 184 IF FNAMEDL > 0 MOVE FNAMEDI TO FNAMEDO IN NEW-ACCTREC. ¦
 ¦ 185 IF MIDL > 0 MOVE MIDI TO MIDO IN NEW-ACCTREC. ¦
 ¦ 186 IF TTLDL > 0 MOVE TTLDI TO TTLDO IN NEW-ACCTREC. ¦
 ¦ 187 IF TELDL > 0 MOVE TELDI TO TELDO IN NEW-ACCTREC. ¦
 ¦ 188 IF ADDR1DL > 0 MOVE ADDR1DI TO ADDR1DO IN NEW-ACCTREC. ¦
 ¦ 189 IF ADDR2DL > 0 MOVE ADDR2DI TO ADDR2DO IN NEW-ACCTREC. ¦
 ¦ 190 IF ADDR3DL > 0 MOVE ADDR3DI TO ADDR3DO IN NEW-ACCTREC. ¦
 ¦ 191 IF AUTH1DL > 0 MOVE AUTH1DI TO AUTH1DO IN NEW-ACCTREC. ¦
 ¦ 192 IF AUTH2DL > 0 MOVE AUTH2DI TO AUTH2DO IN NEW-ACCTREC. ¦
 ¦ 193 IF AUTH3DL > 0 MOVE AUTH3DI TO AUTH3DO IN NEW-ACCTREC. ¦
 ¦ 194 IF AUTH4DL > 0 MOVE AUTH4DI TO AUTH4DO IN NEW-ACCTREC. ¦
 ¦ 195 IF CARDSDL > 0 MOVE CARDSDI TO CARDSDO IN NEW-ACCTREC. ¦
 ¦ 196 IF IMODL > 0 MOVE IMODI TO IMODO IN NEW-ACCTREC. ¦
 ¦ 197 IF IDAYDL > 0 MOVE IDAYDI TO IDAYDO IN NEW-ACCTREC. ¦
 ¦ 198 IF IYRDL > 0 MOVE IYRDI TO IYRDO IN NEW-ACCTREC. ¦
 ¦ 199 IF RSNDL > 0 MOVE RSNDI TO RSNDO IN NEW-ACCTREC. ¦
 ¦ 200 IF CCODEDL > 0 MOVE CCODEDI TO CCODEDO IN NEW-ACCTREC. ¦
 ¦ 201 IF APPRDL > 0 MOVE APPRDI TO APPRDO IN NEW-ACCTREC. ¦
 ¦ 202 IF SCODE1DL > 0 MOVE SCODE1DI TO SCODE1DO IN NEW-ACCTREC. ¦
 ¦ 203 IF SCODE2DL > 0 MOVE SCODE2DI TO SCODE2DO IN NEW-ACCTREC. ¦
 ¦ 204 IF SCODE3DL > 0 MOVE SCODE3DI TO SCODE3DO IN NEW-ACCTREC. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 9

 Lines 181 through 204: For all add and modify requests, the fields that
 the user filled in or changed (that is, that have a length subfield
 greater than zero) are moved in to replace the corresponding fields in the
 new version of the account record.

 +--+
 ¦ ¦
 ¦ 205 IF REQC = 'A' GO TO EDIT-0. ¦
 ¦ 206 IF SNAMEDF = HEX80 MOVE SPACES TO SNAMEDO IN NEW-ACCTREC. ¦
 ¦ 207 IF FNAMEDF = HEX80 MOVE SPACES TO FNAMEDO IN NEW-ACCTREC. ¦
 ¦ 208 IF MIDF = HEX80 MOVE SPACES TO MIDO IN NEW-ACCTREC. ¦
 ¦ 209 IF TTLDF = HEX80 MOVE SPACES TO TTLDO IN NEW-ACCTREC. ¦
 ¦ 210 IF TELDF = HEX80 MOVE SPACES TO TELDO IN NEW-ACCTREC. ¦
 ¦ 211 IF ADDR1DF = HEX80 MOVE SPACES TO ADDR1DO IN NEW-ACCTREC. ¦
 ¦ 212 IF ADDR2DF = HEX80 MOVE SPACES TO ADDR2DO IN NEW-ACCTREC. ¦
 ¦ 213 IF ADDR3DF = HEX80 MOVE SPACES TO ADDR3DO IN NEW-ACCTREC. ¦
 ¦ 214 IF AUTH1DF = HEX80 MOVE SPACES TO AUTH1DO IN NEW-ACCTREC. ¦
 ¦ 215 IF AUTH2DF = HEX80 MOVE SPACES TO AUTH2DO IN NEW-ACCTREC. ¦
 ¦ 216 IF AUTH3DF = HEX80 MOVE SPACES TO AUTH3DO IN NEW-ACCTREC. ¦
 ¦ 217 IF AUTH4DF = HEX80 MOVE SPACES TO AUTH4DO IN NEW-ACCTREC. ¦
 ¦ 218 IF CARDSDF = HEX80 MOVE SPACE TO CARDSDO IN NEW-ACCTREC. ¦
 ¦ 219 IF IMODF = HEX80 MOVE ZERO TO IMODO IN NEW-ACCTREC. ¦
 ¦ 220 IF IDAYDF = HEX80 MOVE ZERO TO IDAYDO IN NEW-ACCTREC. ¦
 ¦ 221 IF IYRDF = HEX80 MOVE ZERO TO IYRDO IN NEW-ACCTREC. ¦
 ¦ 222 IF RSNDF = HEX80 MOVE SPACE TO RSNDO IN NEW-ACCTREC. ¦
 ¦ 223 IF CCODEDF = HEX80 MOVE SPACES TO CCODEDO IN NEW-ACCTREC. ¦
 ¦ 224 IF APPRDF = HEX80 MOVE SPACES TO APPRDO IN NEW-ACCTREC. ¦
 ¦ 225 IF SCODE1DF = HEX80 MOVE SPACES TO SCODE1DO IN NEW-ACCTREC. ¦
 ¦ 226 IF SCODE2DF = HEX80 MOVE SPACES TO SCODE2DO IN NEW-ACCTREC. ¦
 ¦ 227 IF SCODE3DF = HEX80 MOVE SPACES TO SCODE3DO IN NEW-ACCTREC. ¦
 ¦ ¦
 +--+

 Lines 205 through 227: For modifications only, we test to see if the user
 erased the information in the old version of the record. (Erasure on the
 screen sets the flag subfield to a value of hexadecimal 80.) Any field
 erased on the screen is set to spaces in the new version of the record.

 +--+
 ¦ ¦
 ¦ 228 IF OLD-ACCTREC = NEW-ACCTREC, ¦
 ¦ 229 MOVE 5 TO DTL-MSGNO, ¦
 ¦ 230 GO TO EDIT-99. ¦
 ¦ ¦
 +--+

 Lines 228 through 230: Also for modifications, after the new record is
 built, it is compared to the old record. If there is no difference, the
 program treats the situation as an error, and goes to INPUT-REDISPLAY
 (Line 152) to send the appropriate message.

 +--+
 ¦ ¦
 ¦ 231 * EDIT INPUT. ¦
 ¦ 232 EDIT-0. ¦
 ¦ 233 MOVE LOW-VALUES TO ACCTDTLI. ¦
 ¦ ¦
 +--+

 Line 233 (EDIT-0): The detail map structure is cleared to nulls, in
 preparation for (maybe) having to use the area again to send error
 information to the user. As in program ACCT01, we'll send only the
 information that needs to be changed on the screen. For some fields this
 will mean the entire field (as when we move asterisks into a field); for
 others it may mean only the attribute byte (when we just highlight the

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 10

 field).

 +--+
 ¦ ¦
 ¦ 234 IF SNAMEDO IN NEW-ACCTREC = SPACES, ¦
 ¦ 235 MOVE STARS TO SNAMEDI, ¦
 ¦ 236 ELSE IF SNAMEDO IN NEW-ACCTREC ALPHABETIC GO TO EDIT-1. ¦
 ¦ 237 MOVE DFHUNIMD TO SNAMEDA, MOVE -1 TO SNAMEDL. ¦
 ¦ ¦
 +--+

 Lines 234 through 237: These statements begin the validation of each
 individual field in the account record which the user may have entered on
 the screen. The checks in this program are very simple. In a real
 application, however, they are often so complex that they can form the
 great bulk of the program's code. For this reason, they are sometimes
 relegated to a separate program, which is executed by either a LINK
 command or an XCTL command, depending on whether control must return to
 the original program or not.

 The first field we check is the surname, which is required and must be
 alphabetic. We use the same diagnostic conventions as in program ACCT01.
 If a field that is required has been left blank, we fill it with asterisks
 to remind the user that it is required. If there's any error in the
 field, we set the length subfield to -1, so that CICS will place the
 cursor under the first such field. We also highlight the field, to call
 it to the user's attention.

 Notice that we use a different value for highlighting in this program from
 that used in program ACCT01. In this program, we want an attribute byte
 that means bright, unprotected and modified-data tag on, whereas in ACCT01
 we wanted bright, unprotected and modified-data tag off. This is because
 here we want to be sure that anything the user keyed on any cycle of the
 current request gets transmitted every time the screen is sent. In
 ACCT01, by contrast, we wanted just the fields changed on the most recent
 cycle to be sent. (Refer to the discussion of Line 161 in program ACCT01
 for more information about this.)

 +--+
 ¦ ¦
 ¦ 238 EDIT-1. ¦
 ¦ 239 IF FNAMEDO IN NEW-ACCTREC = SPACES, ¦
 ¦ 240 MOVE STARS TO FNAMEDI, ¦
 ¦ 241 ELSE IF FNAMEDO IN NEW-ACCTREC ALPHABETIC, GO TO EDIT-2. ¦
 ¦ 242 MOVE DFHUNIMD TO FNAMEDA, MOVE -1 TO FNAMEDL. ¦
 ¦ ¦
 +--+

 Lines 239 through 242 (edit-1): These statements check the first name,
 which is required and must be alphabetic.

 +--+
 ¦ ¦
 ¦ 243 EDIT-2. ¦
 ¦ 244 IF MIDO IN NEW-ACCTREC NOT ALPHABETIC, ¦
 ¦ 245 MOVE DFHUNIMD TO MIDA, MOVE -1 TO MIDL. ¦
 ¦ ¦
 +--+

 Lines 243 through 245 (EDIT-2): The middle initial isn't required, but
 must be alphabetic if present.

 +--+
 ¦ ¦
 ¦ 246 IF TTLDO IN NEW-ACCTREC NOT ALPHABETIC, ¦

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 11

 ¦ 247 MOVE DFHUNIMD TO TTLDA, MOVE -1 TO TTLDL. ¦
 ¦ ¦
 +--+

 Lines 246 through 247: The title part of a name (Jr, Sr, and so on) must
 also be alphabetic if present, but isn't required.

 +--+
 ¦ ¦
 ¦ 248 IF (TELDO IN NEW-ACCTREC NOT = SPACES AND ¦
 ¦ 249 TELDO IN NEW-ACCTREC NOT NUMERIC), ¦
 ¦ 250 MOVE DFHUNIMD TO TELDA, MOVE -1 TO TELDL. ¦
 ¦ ¦
 +--+

 Lines 248 through 250: The telephone number isn't required, but if
 present, must be all numeric.

 We should mention here that there is a temptation to assume that if a
 field (like the telephone number here) has the numeric attribute in the
 map, the corresponding input subfield is automatically numeric in the
 COBOL sense. Unfortunately, this isn't necessarily true.

 First, the user may not have entered anything into it, and it may contain
 nulls. Second, if the user did enter something, it may contain periods
 and minus signs, which the 3278 considers to be numeric. (On some
 keyboards, still other keys are allowed.) Such items may not be in the
 right place in the field to make sense, or they may not make sense at all
 for the field in question (this one, for example). Finally, some
 terminals don't have the numeric lock feature, which allows the 3270
 system to distinguish between unprotected fields and numeric fields. So
 we still have to check such fields for proper values.

 +--+
 ¦ ¦
 ¦ 251 IF ADDR1DO IN NEW-ACCTREC = SPACES, ¦
 ¦ 252 MOVE STARS TO ADDR1DI, ¦
 ¦ 253 MOVE DFHBMBRY TO ADDR1DA, MOVE -1 TO ADDR1DL. ¦
 ¦ 254 IF ADDR2DO IN NEW-ACCTREC = SPACES, ¦
 ¦ 255 MOVE STARS TO ADDR2DI, ¦
 ¦ 256 MOVE DFHBMBRY TO ADDR2DA, MOVE -1 TO ADDR2DL. ¦
 ¦ ¦
 +--+

 Lines 251 through 256: An address consisting of at least two lines is
 required, but there are no other checks on the (up to) four lines of
 address information.

 Notice that we use DFHBMBRY (MDT off) instead of DFHUNIMD (MDT on) for
 these two fields. You see, if we used DFHUNIMD, and the user didn't
 replace the asterisks (STARS) that we put there (to show the field was
 needed) then we'd get the asterisks sent back. And since all we're
 requiring in the address is something, these asterisks would pass our edit
 check. This isn't a problem with other fields, such as the name, because
 asterisks will fail the more demanding edit checks on these other fields.

 +--+
 ¦ ¦
 ¦ 257 IF CARDSDO IN NEW-ACCTREC = SPACES, ¦
 ¦ 258 MOVE STARS TO CARDSDI, ¦
 ¦ 259 ELSE IF (CARDSDO IN NEW-ACCTREC > '0' AND ¦
 ¦ 260 CARDSDO IN NEW-ACCTREC NOT > '9'), GO TO EDIT-3. ¦
 ¦ 261 MOVE DFHUNIMD TO CARDSDA, MOVE -1 TO CARDSDL. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 12

 Lines 257 through 261: The number of cards issued is needed and must be
 between 1 and 9.

 +--+
 ¦ ¦
 ¦ 262 EDIT-3. ¦
 ¦ 263 IF IMODO IN NEW-ACCTREC = SPACES, ¦
 ¦ 264 MOVE STARS TO IMODI, ¦
 ¦ 265 ELSE IF IMODO IN NEW-ACCTREC NUMERIC AND ¦
 ¦ 266 IMODO IN NEW-ACCTREC > '00' AND ¦
 ¦ 267 IMODO IN NEW-ACCTREC < '13', GO TO EDIT-4. ¦
 ¦ 268 MOVE DFHUNIMD TO IMODA, MOVE -1 TO IMODL. ¦
 ¦ 269 EDIT-4. ¦
 ¦ 270 IF IDAYDO IN NEW-ACCTREC = SPACES, ¦
 ¦ 271 MOVE STARS TO IDAYDI, ¦
 ¦ 272 ELSE IF IDAYDO IN NEW-ACCTREC NUMERIC AND ¦
 ¦ 273 IDAYDO IN NEW-ACCTREC > '00' AND ¦
 ¦ 274 IDAYDO IN NEW-ACCTREC < '32', ¦
 ¦ 275 GO TO EDIT-5. ¦
 ¦ 276 MOVE DFHUNIMD TO IDAYDA, MOVE -1 TO IDAYDL. ¦
 ¦ 277 EDIT-5. ¦
 ¦ 278 IF IYRDO IN NEW-ACCTREC = SPACES, ¦
 ¦ 279 MOVE STARS TO IYRDI, ¦
 ¦ 280 ELSE IF IYRDO IN NEW-ACCTREC NUMERIC AND ¦
 ¦ 281 IYRDO IN NEW-ACCTREC > '75', GO TO EDIT-6. ¦
 ¦ 282 MOVE DFHUNIMD TO IYRDA, MOVE -1 TO IYRDL. ¦
 ¦ ¦
 +--+

 Lines 263 through 282 (EDIT-3, EDIT-4, EDIT-5): The date of issue, which
 consists of a month, day and year, is required. The program checks that
 the month is between 1 and 12, that the day is between 1 and 31, and that
 the year is at least 75. This is clearly not a complete date check,
 because it lets in things like June 31, to say nothing of leap-year
 problems. You'll probably want a much tighter check in any real
 application. (Thorough date checks can be so complex that you may want to
 use a separate routine.)

 You can use a separate CICS program and LINK to it if you don't have too
 many dates to check. If you do, and you need a subroutine, it's more
 efficient to use a standard COBOL subroutine and link it into the program
 with the linkage editor. (See "Subroutines revisited" in topic 3.6.2.5.)

 +--+
 ¦ ¦
 ¦ 283 EDIT-6. ¦
 ¦ 284 IF RSNDO IN NEW-ACCTREC = SPACES, ¦
 ¦ 285 MOVE STARS TO RSNDI, ¦
 ¦ 286 ELSE IF (RSNDO IN NEW-ACCTREC = 'N' OR ¦
 ¦ 287 RSNDO IN NEW-ACCTREC = 'L' OR ¦
 ¦ 288 RSNDO IN NEW-ACCTREC = 'S' OR ¦
 ¦ 289 RSNDO IN NEW-ACCTREC = 'R'), GO TO EDIT-7. ¦
 ¦ 290 MOVE DFHUNIMD TO RSNDA, MOVE -1 TO RSNDL. ¦
 ¦ ¦
 +--+

 Lines 284 through 290 (EDIT-6): The RSNDO (reason for issue) code must be
 filled in and must be either N (for new), L (lost), S (stolen), or R
 (reissued--for some other reason).

 +--+
 ¦ ¦
 ¦ 291 EDIT-7. ¦
 ¦ 292 IF CCODEDO IN NEW-ACCTREC = SPACES, ¦

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 13

 ¦ 293 MOVE STARS TO CCODEDI, ¦
 ¦ 294 MOVE -1 TO CCODEDL, MOVE DFHBMBRY TO CCODEDA. ¦
 ¦ 295 IF APPRDO IN NEW-ACCTREC = SPACES, ¦
 ¦ 296 MOVE STARS TO APPRDI, ¦
 ¦ 297 MOVE -1 TO APPRDL, MOVE DFHBMBRY TO APPRDA. ¦
 ¦ ¦
 +--+

 Lines 292 through 297 (EDIT-7): The "card code" and the initials of the
 approver must both be present, and not spaces.

 See Lines 251 through 256 for an explanation of the use of DFHMBRY.

 +--+
 ¦ ¦
 ¦ 298 IF ACCTDTLI NOT = LOW-VALUES, ¦
 ¦ 299 MOVE 3 TO DTL-MSGNO, GO TO EDIT-99. ¦
 ¦ ¦
 +--+

 Lines 298 through 299: All the checking is complete at this point, so we
 test to see if there were any errors by looking at the map area. If it is
 all nulls, as we initialized it at EDIT-0 (Line 233), then there were no
 errors. Otherwise there were, and we send the error information at
 INPUT-REDISPLAY (Line 152). We use the same general message for all
 field-checking errors (namely that the highlighted fields contain errors),
 rather than sending field-specific messages like the ones in ACCT01.

 +--+
 ¦ ¦
 ¦ 300 IF REQC = 'A' MOVE ACCTC TO ACCTDO IN NEW-ACCTREC, ¦
 ¦ 301 MOVE 'N ' TO STATDO IN NEW-ACCTREC, ¦
 ¦ 302 MOVE ' 1000.00' TO LIMITDO IN NEW-ACCTREC, ¦
 ¦ 303 MOVE PAY-INIT TO PAY-HIST IN NEW-ACCTREC (1), ¦
 ¦ 304 PAY-HIST IN NEW-ACCTREC (2), ¦
 ¦ 305 PAY-HIST IN NEW-ACCTREC (3). ¦
 ¦ ¦
 +--+

 Lines 300 through 305: These statements are for add requests only, and
 initialize those fields in the new record that are maintained in the batch
 system rather than online. The account status field is set to a value
 meaning "new account," the credit limit is set to an arbitrary $1000, and
 the payment history fields are all set to zeros.

 +--+
 ¦ ¦
 ¦ 306 MOVE ACCTDO IN NEW-ACCTREC TO ACCTDO IN NEW-ACIXREC. ¦
 ¦ 307 MOVE SNAMEDO IN NEW-ACCTREC TO SNAMEDO IN NEW-ACIXREC. ¦
 ¦ 308 MOVE FNAMEDO IN NEW-ACCTREC TO FNAMEDO IN NEW-ACIXREC. ¦
 ¦ 309 MOVE MIDO IN NEW-ACCTREC TO MIDO IN NEW-ACIXREC. ¦
 ¦ 310 MOVE TTLDO IN NEW-ACCTREC TO TTLDO IN NEW-ACIXREC. ¦
 ¦ 311 MOVE ADDR1DO IN NEW-ACCTREC TO ADDR1DO IN NEW-ACIXREC. ¦
 ¦ 312 MOVE STATDO IN NEW-ACCTREC TO STATDO IN NEW-ACIXREC. ¦
 ¦ 313 MOVE LIMITDO IN NEW-ACCTREC TO LIMITDO IN NEW-ACIXREC. ¦
 ¦ ¦
 +--+

 Lines 306 through 313: Here we build the index record corresponding to
 this account record. The index record will be needed on all add requests
 and some modification requests.

 +--+
 ¦ ¦
 ¦ 314 EDIT-99. ¦

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 14

 ¦ 315 EXIT. ¦
 ¦ ¦
 +--+

 Lines 314 through 315: This marks the end of the editing procedures
 referred to in lines 228-230 and 298-299, and control is returned to CICS.

 +--+
 ¦ ¦
 ¦ 316 * ¦
 ¦ 317 CK-OWN SECTION. ¦
 ¦ 318 * CHECK OWNERSHIP OF ACCOUNT NUMBER. ¦
 ¦ 319 CK-01. ¦
 ¦ 320 MOVE 0 TO OWN-FLAG. ¦
 ¦ 321 MOVE ACCTC TO USE-QID2. ¦
 ¦ ¦
 +--+

 Lines 319 through 321 (CK-OWN): The lines that begin here ensure that the
 account number that is about to be updated is still exclusively controlled
 by the terminal that entered this transaction.

 We need to include this code because we've allowed for a time limit on the
 ownership of an account number, and we don't yet know how long it has been
 since this particular user requested control of the number. (See
 "Pseudoconversational or not?" in topic 2.7 for a discussion of how the
 terminal that originated the update might lose control of an account
 number.)

 It doesn't really matter if the time has expired, so long as our terminal
 has had uninterrupted control of the number. However, if someone else has
 made or is making a change to this record in the meantime, we cannot let
 this user proceed with the update. At best, the current transaction will
 fail later because of a duplicate or missing record. And because this
 user is working with an old copy of the record, we could lose the changes
 made subsequently by another user.

 This situation will occur rarely, and only if the user leaves the
 operation half-done for a long period of time, or if some sort of system
 error occurs. When it does occur, we'll just send the user a message
 saying that the request has been interrupted and that it must be
 resubmitted. We'll not erase the screen, because the user may wish to
 look at it further, even though the only thing he or she can do next is to
 cancel the transaction by pressing CLEAR.

 The first step in this rechecking process is to build the name of the
 temporary storage queue that contains the scratchpad information for this
 account number.

 +--+
 ¦ ¦
 ¦ 322 EXEC CICS READQ TS QUEUE(USE-QID) INTO(USE-REC) ¦
 ¦ 323 LENGTH(USE-LNG) ITEM(1) RESP(RESPONSE) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 322 through 323: Next, we read the scratchpad entry for this
 account number. We specify the first item in the queue, since that is
 where we saved the information. (We might not get the first item in the
 queue if some other terminal had attempted to use our number, because
 program ACCT01 would have read the first item on behalf of that terminal,
 and CICS would be ready to send the next item to the next transaction that
 read the queue.) We must also specify a maximum length for the item,
 initialized to 12 in Line 30.

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 15

 +--+
 ¦ ¦
 ¦ 324 IF RESPONSE = DFHRESP(LENGERR) ¦
 ¦ 325 OR RESPONSE = DFHRESP(QIDERR) THEN ¦
 ¦ 326 MOVE 1 TO OWN-FLAG ¦
 ¦ 327 GO TO CK-EXIT. ¦
 ¦ 328 IF RESPONSE NOT = DFHRESP(NORMAL) GO TO NO-GOOD. ¦
 ¦ ¦
 +--+

 Lines 324 through 328: We explicitly test RESP for three conditions. The
 most probable error conditions arising from this command will be LENGERR
 (length error) and QIDERR (queue name error), in which case control will
 go to the CK-EXIT label with the OWN-FLAG value set to one. We thus
 return to Line 134 (the line after the PERFORM verb that brought us here
 in the first place), where we promptly examine the value of OWN-FLAG.

 If there is some other sort of error (any NOT NORMAL condition), control
 will go to NO-GOOD at Line 173, and thus, ultimately, to the
 error-handling program, ACCT04.

 +--+
 ¦ ¦
 ¦ 329 IF USE-TERM NOT = EIBTRMID OR USE-LNG NOT = 12 ¦
 ¦ 330 MOVE 1 TO OWN-FLAG ¦
 ¦ 331 GO TO CK-EXIT. ¦
 ¦ ¦
 +--+

 Lines 329 through 331: Control comes here if we successfully read the
 scratchpad. We then ensure that the name of the terminal that "owns" the
 number is the same as the name of the input terminal. We also ensure that
 the length of the entry is correct, as a further check on the validity of
 the entry. If either condition fails, control will go to the CK-EXIT
 label with the OWN-FLAG value set to one.

 +--+
 ¦ ¦
 ¦ 332 IF EIBAID = DFHCLEAR OR MENU-MSGNO = 5 GO TO CK-EXIT. ¦
 ¦ ¦
 +--+

 Line 325: At this point, we've established that the input terminal still
 has control over the account number. Now we have to recheck how we got
 here. Three paths in the code might have brought us here:

 1. A request to cancel (that is, use of the CLEAR key)

 2. A MAPFAIL that was not caused by a short-read key (see NO-MAP, Lines
 164-167)

 3. A normal sequence (no errors, no cancellation).

 For either of the first two conditions, we want to release control of the
 number, so that some other task can use it. We do this at RELEASE-ACCT,
 Line 140.

 +--+
 ¦ ¦
 ¦ 333 * ¦
 ¦ 334 * WRITE HARDCOPY LOG RECORDS. ¦
 ¦ 335 MOVE LOW-VALUES TO ACCTDTLO. ¦
 ¦ 336 MOVE DFHBMDAR TO HISTTLDA, STATTLDA, STATDA, LIMTTLDA, ¦
 ¦ 337 LIMITDA. ¦
 ¦ ¦

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 16

 +--+

 Lines 335 through 337: Otherwise, we proceed with the update. The first
 thing we do is to write an entry to the hard-copy log that we're required
 to produce. We'll format this log as follows:

 � For additions, we'll print the new record, using the same format that
 we use on the screen (the "detail" map).

 � For modifications, we'll print both the old version of the record and
 the new one, again using the map format. In the message area of the
 old record we'll note the areas that were changed (name, address, and
 so on), to make it easy for the supervisor to check.

 � For deletions, we'll print the old record.

 � For all types:

 1. We'll note the contents of the screen in the title line of the
 map: NEW RECORD for additions, BEFORE CHANGE and AFTER CHANGE for
 the two images printed on a modification, and DELETION on a
 delete.

 2. We'll show the time and date of the update and the name of the
 terminal at which it was entered. We'll put this information in
 the message area (for modifications, it will be in the "new"
 record image).

 These two statements simply get things ready for this process. The map is
 cleared to nulls, and certain fields in the map that should not appear in
 the log output are made nondisplay. (These are the title fields for the
 information from the record that is maintained by the batch system, and
 not subject to online update.)

 +--+
 ¦ ¦
 ¦ 338 IF REQC = 'A' MOVE 'NEW RECORD' TO TITLEDO, GO TO LOG-1. ¦
 ¦ ¦
 +--+

 Line 338: Next, we check the request type. If the update's an addition,
 the proper title is placed in the map and control goes to LOG-1 at Line
 398, where the rest of the output will be built.

 +--+
 ¦ ¦
 ¦ 339 MOVE ACCTDO IN OLD-ACCTREC TO ACCTDO IN ACCTDTLO. ¦
 ¦ 340 MOVE SNAMEDO IN OLD-ACCTREC TO SNAMEDO IN ACCTDTLO. ¦
 ¦ 341 MOVE FNAMEDO IN OLD-ACCTREC TO FNAMEDO IN ACCTDTLO. ¦
 ¦ 342 MOVE MIDO IN OLD-ACCTREC TO MIDO IN ACCTDTLO. ¦
 ¦ 343 MOVE TTLDO IN OLD-ACCTREC TO TTLDO IN ACCTDTLO. ¦
 ¦ 344 MOVE TELDO IN OLD-ACCTREC TO TELDO IN ACCTDTLO. ¦
 ¦ 345 MOVE ADDR1DO IN OLD-ACCTREC TO ADDR1DO IN ACCTDTLO. ¦
 ¦ 346 MOVE ADDR2DO IN OLD-ACCTREC TO ADDR2DO IN ACCTDTLO. ¦
 ¦ 347 MOVE ADDR3DO IN OLD-ACCTREC TO ADDR3DO IN ACCTDTLO. ¦
 ¦ 348 MOVE AUTH1DO IN OLD-ACCTREC TO AUTH1DO IN ACCTDTLO. ¦
 ¦ 349 MOVE AUTH2DO IN OLD-ACCTREC TO AUTH2DO IN ACCTDTLO. ¦
 ¦ 350 MOVE AUTH3DO IN OLD-ACCTREC TO AUTH3DO IN ACCTDTLO. ¦
 ¦ 351 MOVE AUTH4DO IN OLD-ACCTREC TO AUTH4DO IN ACCTDTLO. ¦
 ¦ 352 MOVE CARDSDO IN OLD-ACCTREC TO CARDSDO IN ACCTDTLO. ¦
 ¦ 353 MOVE IMODO IN OLD-ACCTREC TO IMODO IN ACCTDTLO. ¦
 ¦ 354 MOVE IDAYDO IN OLD-ACCTREC TO IDAYDO IN ACCTDTLO. ¦
 ¦ 355 MOVE IYRDO IN OLD-ACCTREC TO IYRDO IN ACCTDTLO. ¦
 ¦ 356 MOVE RSNDO IN OLD-ACCTREC TO RSNDO IN ACCTDTLO. ¦
 ¦ 357 MOVE CCODEDO IN OLD-ACCTREC TO CCODEDO IN ACCTDTLO. ¦

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 17

 ¦ 358 MOVE APPRDO IN OLD-ACCTREC TO APPRDO IN ACCTDTLO. ¦
 ¦ 359 MOVE SCODE1DO IN OLD-ACCTREC TO SCODE1DO IN ACCTDTLO. ¦
 ¦ 360 MOVE SCODE2DO IN OLD-ACCTREC TO SCODE2DO IN ACCTDTLO. ¦
 ¦ 361 MOVE SCODE3DO IN OLD-ACCTREC TO SCODE3DO IN ACCTDTLO. ¦
 ¦ 362 MOVE STATDO IN OLD-ACCTREC TO STATDO IN ACCTDTLO. ¦
 ¦ 363 MOVE LIMITDO IN OLD-ACCTREC TO LIMITDO IN ACCTDTLO. ¦
 ¦ ¦
 +--+

 Lines 339 through 363: For deletions and modifications, we build an image
 of the old version of the record in the map area.

 +--+
 ¦ ¦
 ¦ 364 IF REQC = 'X' MOVE 'DELETION' TO TITLEDO, GO TO LOG-2. ¦
 ¦ ¦
 +--+

 Line 364: For deletions, the title DELETION is added and then control
 goes to Line 424 (LOG-2), where the update particulars are added.

 +--+
 ¦ ¦
 ¦ 365 MOVE 'BEFORE CHANGE' TO TITLEDO. ¦
 ¦ 366 IF SNAMEDO IN OLD-ACCTREC NOT = SNAMEDO IN NEW-ACCTREC OR ¦
 ¦ 367 FNAMEDO IN OLD-ACCTREC NOT = FNAMEDO IN NEW-ACCTREC ¦
 ¦ 368 OR MIDO IN OLD-ACCTREC NOT = MIDO IN NEW-ACCTREC OR ¦
 ¦ 369 TTLDO IN OLD-ACCTREC NOT = TTLDO IN NEW-ACCTREC ¦
 ¦ 370 MOVE 'NAME' TO MOD-NAME. ¦
 ¦ 371 IF TELDO IN OLD-ACCTREC NOT = TELDO IN NEW-ACCTREC ¦
 ¦ 372 MOVE 'TEL' TO MOD-TELE. ¦
 ¦ 373 IF ADDR1DO IN OLD-ACCTREC NOT = ADDR1DO IN NEW-ACCTREC OR ¦
 ¦ 374 ADDR2DO IN OLD-ACCTREC NOT = ADDR2DO IN NEW-ACCTREC OR ¦
 ¦ 375 ADDR3DO IN OLD-ACCTREC NOT = ADDR3DO IN NEW-ACCTREC ¦
 ¦ 376 MOVE 'ADDR' TO MOD-ADDR. ¦
 ¦ 377 IF AUTH1DO IN OLD-ACCTREC NOT = AUTH1DO IN NEW-ACCTREC OR ¦
 ¦ 378 AUTH2DO IN OLD-ACCTREC NOT = AUTH2DO IN NEW-ACCTREC OR ¦
 ¦ 379 AUTH3DO IN OLD-ACCTREC NOT = AUTH3DO IN NEW-ACCTREC OR ¦
 ¦ 380 AUTH4DO IN OLD-ACCTREC NOT = AUTH4DO IN NEW-ACCTREC ¦
 ¦ 381 MOVE 'AUTH' TO MOD-AUTH. ¦
 ¦ 382 IF CARDSDO IN OLD-ACCTREC NOT = CARDSDO IN NEW-ACCTREC OR ¦
 ¦ 383 IMODO IN OLD-ACCTREC NOT = IMODO IN NEW-ACCTREC OR ¦
 ¦ 384 IDAYDO IN OLD-ACCTREC NOT = IDAYDO IN NEW-ACCTREC OR ¦
 ¦ 385 IYRDO IN OLD-ACCTREC NOT = IYRDO IN NEW-ACCTREC OR ¦
 ¦ 386 RSNDO IN OLD-ACCTREC NOT = RSNDO IN NEW-ACCTREC OR ¦
 ¦ 387 CCODEDO IN OLD-ACCTREC NOT = CCODEDO IN NEW-ACCTREC OR ¦
 ¦ 388 APPRDO IN OLD-ACCTREC NOT = APPRDO IN NEW-ACCTREC ¦
 ¦ 389 MOVE 'CARD' TO MOD-CARD. ¦
 ¦ 390 IF SCODE1DO IN OLD-ACCTREC NOT = SCODE1DO IN NEW-ACCTREC OR ¦
 ¦ 391 SCODE2DO IN OLD-ACCTREC NOT = SCODE2DO IN NEW-ACCTREC OR ¦
 ¦ 392 SCODE3DO IN OLD-ACCTREC NOT = SCODE3DO IN NEW-ACCTREC ¦
 ¦ 393 MOVE 'CODES' TO MOD-CODE. ¦
 ¦ 394 MOVE MOD-LINE TO MSGDO. ¦
 ¦ ¦
 +--+

 Lines 365 through 394: For modifications only, BEFORE CHANGE is placed in
 the title line. Then the fields in the old record are compared to those
 in the new record in logical groups, so that we can note the areas of the
 record that got changed. The changes are listed in the message area of
 the map, using an abbreviated form of the group name. For this purpose,
 the fields are grouped as follows: name (with the four component fields of
 surname, first name, middle initial, and title), telephone, address (the
 four address lines), authorized users (four), card issue information
 (seven fields), and special codes (three).

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 18

 +--+
 ¦ ¦
 ¦ 395 EXEC CICS WRITEQ TS QUEUE('ACCTLOG') FROM(ACCTDTLO) ¦
 ¦ 396 LENGTH(DTL-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 395 through 396: The next process in handling modifications is to
 write the old-record image, which we've just finished building, to the
 temporary storage queue that represents the log. We named this ACCTLOG.
 The length specified is the length of the symbolic map description in
 working storage (available from the compiler in the DMAP output).

 +--+
 ¦ ¦
 ¦ 397 MOVE 'AFTER CHANGE' TO TITLEDO. ¦
 ¦ ¦
 +--+

 Line 397: Finally, the title line in the map area is changed from BEFORE
 CHANGE to AFTER CHANGE in preparation for building an image of the new
 record to put into the log.

 +--+
 ¦ ¦
 ¦ 398 LOG-1. ¦
 ¦ 399 MOVE ACCTDO IN NEW-ACCTREC TO ACCTDO IN ACCTDTLO. ¦
 ¦ 400 MOVE SNAMEDO IN NEW-ACCTREC TO SNAMEDO IN ACCTDTLO. ¦
 ¦ 401 MOVE FNAMEDO IN NEW-ACCTREC TO FNAMEDO IN ACCTDTLO. ¦
 ¦ 402 MOVE MIDO IN NEW-ACCTREC TO MIDO IN ACCTDTLO. ¦
 ¦ 403 MOVE TTLDO IN NEW-ACCTREC TO TTLDO IN ACCTDTLO. ¦
 ¦ 404 MOVE TELDO IN NEW-ACCTREC TO TELDO IN ACCTDTLO. ¦
 ¦ 405 MOVE ADDR1DO IN NEW-ACCTREC TO ADDR1DO IN ACCTDTLO. ¦
 ¦ 406 MOVE ADDR2DO IN NEW-ACCTREC TO ADDR2DO IN ACCTDTLO. ¦
 ¦ 407 MOVE ADDR3DO IN NEW-ACCTREC TO ADDR3DO IN ACCTDTLO. ¦
 ¦ 408 MOVE AUTH1DO IN NEW-ACCTREC TO AUTH1DO IN ACCTDTLO. ¦
 ¦ 409 MOVE AUTH2DO IN NEW-ACCTREC TO AUTH2DO IN ACCTDTLO. ¦
 ¦ 410 MOVE AUTH3DO IN NEW-ACCTREC TO AUTH3DO IN ACCTDTLO. ¦
 ¦ 411 MOVE AUTH4DO IN NEW-ACCTREC TO AUTH4DO IN ACCTDTLO. ¦
 ¦ 412 MOVE CARDSDO IN NEW-ACCTREC TO CARDSDO IN ACCTDTLO. ¦
 ¦ 413 MOVE IMODO IN NEW-ACCTREC TO IMODO IN ACCTDTLO. ¦
 ¦ 414 MOVE IDAYDO IN NEW-ACCTREC TO IDAYDO IN ACCTDTLO. ¦
 ¦ 415 MOVE IYRDO IN NEW-ACCTREC TO IYRDO IN ACCTDTLO. ¦
 ¦ 416 MOVE RSNDO IN NEW-ACCTREC TO RSNDO IN ACCTDTLO. ¦
 ¦ 417 MOVE CCODEDO IN NEW-ACCTREC TO CCODEDO IN ACCTDTLO. ¦
 ¦ 418 MOVE APPRDO IN NEW-ACCTREC TO APPRDO IN ACCTDTLO. ¦
 ¦ 419 MOVE SCODE1DO IN NEW-ACCTREC TO SCODE1DO IN ACCTDTLO. ¦
 ¦ 420 MOVE SCODE2DO IN NEW-ACCTREC TO SCODE2DO IN ACCTDTLO. ¦
 ¦ 421 MOVE SCODE3DO IN NEW-ACCTREC TO SCODE3DO IN ACCTDTLO. ¦
 ¦ 422 MOVE STATDO IN NEW-ACCTREC TO STATDO IN ACCTDTLO. ¦
 ¦ 423 MOVE LIMITDO IN NEW-ACCTREC TO LIMITDO IN ACCTDTLO. ¦
 ¦ ¦
 +--+

 Lines 398 through 423 (LOG-1): For modifications and additions, an image
 of the new version of the record is completed in the map area, from the
 fields in the new file record.

 +--+
 ¦ ¦
 ¦ 424 LOG-2. ¦
 ¦ 424 MOVE EIBTRMID TO UPDT-TERM, MOVE EIBTIME TO UPDT-TIME, ¦
 ¦ 426 MOVE EIBDATE TO UPDT-DATE, MOVE UPDT-LINE TO MSGDO. ¦
 ¦ ¦

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 19

 +--+

 Lines 424 through 426 (LOG-2): At this point, we're ready to write to the
 log, either:

 � The second ("after") image, for modifications, o
 � The only image, for additions and deletions

 We add information about the update to the message area of the map:
 specifically, the time and date of the update and the terminal at which
 the entry was made.

 +--+
 ¦ ¦
 ¦ 427 EXEC CICS WRITEQ TS QUEUE('ACCTLOG') FROM(ACCTDTLO) ¦
 ¦ 428 LENGTH(DTL-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 427 through 428: The last step in the logging process is to write
 this image to temporary storage; this command is identical to that in
 Lines 395-396.

 +--+
 ¦ ¦
 ¦ 429 CK-EXIT. ¦
 ¦ 430 EXIT. ¦
 ¦ ¦
 +--+

 Lines 429 through 430: This marks the end of the checking procedures
 referred to in lines 324 through 332, and control is returned to CICS.

 +--+
 ¦ ¦
 ¦ 431 UPDTE SECTION. ¦
 ¦ 432 * UPDATE THE FILES FOR ADD REQUESTS. ¦
 ¦ 433 IF REQC = 'A' GO TO UPDT-ADD. ¦
 ¦ 434 IF REQC = 'X' GO TO UPDT-DELETE. ¦
 ¦ 435 IF REQC = 'M' GO TO UPDT-MODIFY. ¦
 ¦ ¦
 +--+

 Lines 433 through 435: These statements begin the updating of the files.
 Additions, modifications and deletions are handled separately in the code,
 starting at Lines 436, 445, and 466 respectively.

 +--+
 ¦ ¦
 ¦ 436 UPDT-ADD. ¦
 ¦ 437 MOVE 2 TO MENU-MSGNO. ¦
 ¦ ¦
 +--+

 Lines 436 through 437 (UPDT-ADD): The first step in adding a new record
 is to move a confirmation message to the message area of the menu map that
 will be displayed when the update is finished.

 +--+
 ¦ ¦
 ¦ 438 EXEC CICS WRITE FILE('ACCTFIL') FROM(NEW-ACCTREC) ¦
 ¦ 439 RIDFLD(ACCTC) LENGTH(ACCT-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 20

 Lines 438 through 439: Next, the new record is added to the account file.

 +--+
 ¦ ¦
 ¦ 440 EXEC CICS WRITE FILE('ACCTIX') FROM(NEW-ACIXREC) ¦
 ¦ 441 RIDFLD(SNAMEDO IN NEW-ACIXREC) LENGTH(ACIX-LNG) END-EXEC.¦
 ¦ ¦
 +--+

 Lines 440 through 441: Then the index record corresponding to the new
 account file record is added to the index file.

 +--+
 ¦ ¦
 ¦ 442 GO TO UPDT-EXIT. ¦
 ¦ ¦
 +--+

 Line 442: The updates for additions are complete at this point and
 control goes to RELEASE-ACCT (Line 140), where we give up exclusive
 control of the new account number.

 +--+
 ¦ ¦
 ¦ 443 * ¦
 ¦ 444 * UPDATE THE FILES FOR MODIFY REQUESTS. ¦
 ¦ 445 UPDT-MODIFY. ¦
 ¦ 446 MOVE 3 TO MENU-MSGNO. ¦
 ¦ ¦
 +--+

 Lines 443 through 446 (UPDT-MODIFY): The next 18 lines update the files
 for modifications. As with an addition, the first step is to move the
 appropriate confirmation message to the message area of the menu map,
 ready for the next output display.

 +--+
 ¦ ¦
 ¦ 447 EXEC CICS REWRITE FILE('ACCTFIL') FROM(NEW-ACCTREC) ¦
 ¦ 448 LENGTH (ACCT-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 447 through 448: Then we replace the old version of the account
 record with the new version in the account file.

 +--+
 ¦ ¦
 ¦ 449 IF SNAMEDO IN NEW-ACCTREC NOT = SNAMEDO IN OLD-ACCTREC ¦
 ¦ 450 EXEC CICS DELETE FILE('ACCTIX') RIDFLD(OLD-IXKEY) ¦
 ¦ 451 END-EXEC. ¦
 ¦ 452 EXEC CICS WRITE FILE('ACCTIX') FROM (NEW-ACIXREC) ¦
 ¦ 453 RIDFLD (SNAMEDO IN NEW-ACIXREC) LENGTH(ACIX-LNG) ¦
 ¦ 454 END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 449 through 454: Next we find what has to be done to the
 corresponding record in the index file. If the surname has changed, then
 the key of the index record has also changed, and we must delete the old
 index record and add a new one. Lines 449-450 do the deletion, using the
 key generated in Lines 120-121. The addition follows immediately, in a
 command that's the same as the one we used in Lines 440-441 for processing
 an addition. The index record was built at Lines 306-313 in preparation
 for this step.

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 21

 +--+
 ¦ ¦
 ¦ 455 ELSE IF FNAMEDO IN NEW-ACCTREC NOT = FNAMEDO IN OLD-ACCTREC ¦
 ¦ 456 OR MIDO IN NEW-ACCTREC NOT = MIDO IN OLD-ACCTREC OR ¦
 ¦ 457 TTLDO IN NEW-ACCTREC NOT = TTLDO IN OLD-ACCTREC OR ¦
 ¦ 458 ADDR1DO IN NEW-ACCTREC NOT = ADDR1DO IN OLD-ACCTREC ¦
 ¦ 459 EXEC CICS READ FILE('ACCTIX') INTO (OLD-ACIXREC) ¦
 ¦ 460 RIDFLD(OLD-IXKEY) LENGTH(ACIX-LNG) UPDATE END-EXEC. ¦
 ¦ 461 EXEC CICS REWRITE FILE('ACCTIX') FROM(NEW-ACIXREC) ¦
 ¦ 462 LENGTH(ACIX-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 455 through 462: Even if the surname hasn't changed, we may still
 need to update the index file, because one of the fields in the index
 record may have been changed in the modification. So we compare all the
 fields that appear in the index record in the new and old versions of the
 account record. If any field has changed, we rewrite the index record (in
 Lines 460-461). Before we do this, however, we have to read this record
 (Lines 458-459), because CICS doesn't let you rewrite without first
 reading the same record for update.

 +--+
 ¦ ¦
 ¦ 463 GO TO UPDT-EXIT. ¦
 ¦ ¦
 +--+

 Line 463: The file updates for modifications are complete at this point,
 and control goes to RELEASE-ACCT, just as it does for additions.

 +--+
 ¦ ¦
 ¦ 464 * ¦
 ¦ 465 * UPDATE THE FILES FOR DELETE REQUESTS. ¦
 ¦ 466 UPDT-DELETE. ¦
 ¦ 467 MOVE 4 TO MENU-MSGNO. ¦
 ¦ 468 EXEC CICS DELETE FILE('ACCTFIL') END-EXEC. ¦
 ¦ 469 EXEC CICS DELETE FILE('ACCTIX') RIDFLD(OLD-IXKEY) ¦
 ¦ 470 END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 466 through 470 (UPDT-DELETE): As with the other types of updates,
 processing a deletion begins by moving the appropriate confirmation
 message to the menu map. Then the account record and the associated index
 record are deleted from the account and index files, respectively. Note
 that we specify a key for the index file (the RIDFLD(OLD-IXKEY) option),
 but not for the account file. This is because we've read the account
 record for update (in Lines 117-118), but we haven't read the index
 record. In contrast to the situation with the REWRITE command, CICS
 allows you to use the DELETE command without first doing a
 read-for-update.

 This was our bug! Our original version of Line 468 read:

 EXEC CICS DELETE FILE('ACCTFIL') RIDFLD(ACCTC) END-EXEC.

 You'll see the problems this gave us when you move on to "Testing and
 diagnosis" in topic 5.0 where we show you a session with the Execution
 Diagnostic Facility, EDF.

 +--+
 ¦ ¦

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 22

 ¦ 471 UPDT-EXIT. ¦
 ¦ 472 EXIT. ¦
 ¦ ¦
 +--+

 Lines 471 to 472: This marks the end of the updating procedures referred
 to in lines 442 and 463, and control is returned to CICS.

CICS Application Programming Primer
Program ACCT02: update processing

© Copyright IBM Corp. 1984, 1991
4.3 - 23

 4.4 Program ACCT03: requests for printing
 +--+
 ¦ ¦
 ¦ 001 IDENTIFICATION DIVISION. ¦
 ¦ 002 PROGRAM-ID. ACCT03. ¦
 ¦ 003 *REMARKS. THIS PROGRAM IS THE FIRST INVOKED BY TRANSACTIONS ¦
 ¦ 004 * 'AC03', 'ACLG', 'AC05', 'ACEL' AND 'AC06'. 'AC03' ¦
 ¦ 005 * COMPLETES A REQUEST FOR PRINTING OF A CUSTOMER ¦
 ¦ 006 * RECORD, WHICH WAS PROCESSED INITIALLY BY TRANSACTION ¦
 ¦ 007 * 'AC01'. 'ACLG,' WHICH IS A USER REQUEST TO PRINT THE ¦
 ¦ 008 * LOG MERELY REQUESTS 'AC05' BE STARTED WHEN THE LOG ¦
 ¦ 009 * PRINTER ('L86O') IS AVAILABLE. 'AC05' TRANSFERS THE ¦
 ¦ 010 * LOG DATA FROM TEMPORARY STORAGE TO THE PRINTER. ¦
 ¦ 011 * 'ACEL,' WHICH IS A USER REQUEST TO PRINT THE ERROR ¦
 ¦ 012 * LOG MERELY REQUESTS 'AC06' BE STARTED WHEN THE LOG ¦
 ¦ 013 * PRINTER ('L86O') IS AVAILABLE. 'AC06' TRANSFERS THE ¦
 ¦ 014 * ERROR LOG DATA FROM TEMPORARY STORAGE TO THE PRINTER. ¦
 ¦ 015 ENVIRONMENT DIVISION. ¦
 ¦ 016 DATA DIVISION. ¦
 ¦ 017 WORKING STORAGE SECTION. ¦
 ¦ 018 01 MISC. ¦
 ¦ 019 02 RESPONSE PIC S9(8) COMP. ¦
 ¦ 020 01 COMMAREA-FOR-ACCT04. ¦
 ¦ 021 02 ERR-PGM PIC X(8) VALUE 'ACCT03'. ¦
 ¦ 022 02 ERR-FN PIC X. ¦
 ¦ 023 02 ERR-RCODE PIC X. ¦
 ¦ 024 02 ERR-COMMAND PIC XX. ¦
 ¦ 025 02 ERR-RESP PIC 99. ¦
 ¦ 026 01 TS-LNG PIC S9(4) COMP VALUE +751. ¦
 ¦ 027 01 TS-ELNG PIC S9(4) COMP VALUE +156. ¦
 ¦ ¦
 +--+

 Lines 17 through 27: These lines are the working storage area of the
 program. Individual variables will be explained in the comments below as
 they are used.

 +--+
 ¦ ¦
 ¦ 028 COPY ACCTSET. ¦
 ¦ ¦
 +--+

 Line 28: This line brings in a copy of the symbolic description map
 structure.

 +--+
 ¦ ¦
 ¦ 029 * ¦
 ¦ 030 PROCEDURE DIVISION. ¦
 ¦ 031 * ¦
 ¦ 032 * INITIALIZE. ¦
 ¦ 033 INIT. ¦
 ¦ 034 * CATER FOR UNEXPECTED ERRORS. ¦
 ¦ 035 EXEC CICS HANDLE CONDITION ERROR(NO-GOOD) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 29 through 35 (INIT): This command corresponds in function to the
 HANDLE CONDITION ERROR commands early in programs ACCT01 (Line 143) and
 ACCT02 (Line 103). It tells CICS where to transfer control if there's an
 unusual response to any other CICS command.

 +--+
 ¦ ¦

CICS Application Programming Primer
Program ACCT03: requests for printing

© Copyright IBM Corp. 1984, 1991
4.4 - 1

 ¦ 036 * ¦
 ¦ 037 * TEST FOR TRANSACTION TYPE. ¦
 ¦ 038 IF EIBTRNID = 'AC03' GO TO AC03. ¦
 ¦ 039 IF EIBTRNID = 'ACLG' GO TO ACLG. ¦
 ¦ 040 IF EIBTRNID = 'AC05' GO TO AC05. ¦
 ¦ 041 IF EIBTRNID = 'ACEL' GO TO ACEL. ¦
 ¦ 042 IF EIBTRNID = 'AC06' GO TO AC06. ¦
 ¦ ¦
 +--+

 Lines 36 through 42: This program performs five independent functions,
 each of which is invoked by a different transaction code. We could have
 used separate programs, but each would be so short that we've chosen
 instead to combine them. In these statements we look at the transaction
 identifier to find out which function we want on this execution of the
 program.

 +--+
 ¦ ¦
 ¦ 043 * ¦
 ¦ 044 * PROCESS TRANSACTION 'AC03'. ¦
 ¦ 045 AC03. ¦
 ¦ 046 EXEC CICS RETRIEVE INTO(ACCTDTLI) LENGTH(TS-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 44 through 46 (AC03): The three lines beginning here complete the
 processing of a request to print a particular account file record.
 Processing for this type of request begins in transaction AC01, which
 reads the record from the file, assembles the information into symbolic
 map form, and then invokes this transaction to finish the work. (See the
 discussion at Lines 372-373 of program ACCT01.)

 The first step here, therefore, is to get access to the symbolic map data
 prepared in transaction AC01. We use a RETRIEVE command to do this,
 bringing the data into working storage, where we've defined the same
 symbolic map structure. We have to specify the maximum length of data to
 be retrieved in this command, and for this we use a variable, defined at
 Line 26, and initialized to the length of the map. (We found this length
 from the DMAP section of the COBOL compiler output.)

 +--+
 ¦ ¦
 ¦ 047 EXEC CICS SEND MAP('ACCTDTL') MAPSET('ACCTSET') PRINT ¦
 ¦ 048 ERASE END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 47 through 48: Because the START command that invoked this
 transaction named a terminal, we know that we can write to that terminal
 directly, just as we send output back to the input terminal in other
 transactions. This command writes the map prepared in AC01 to this
 terminal, which is the printer that the user named in the original print
 request. We specify the PRINT option here to emphasize that it is
 required in either the command or the map if the terminal to which you are
 writing is a printer. (Strictly speaking, we could omit it here because
 we did include it in the map definition.) We also use ERASE, to remove
 any information in the device buffer left over from the previous print
 operation.

 +--+
 ¦ ¦
 ¦ 049 GO TO RTRN. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Program ACCT03: requests for printing

© Copyright IBM Corp. 1984, 1991
4.4 - 2

 Line 49: The printing is now complete and we return to CICS at Line 103
 (RTRN).

 We should note here that some of the work done in the AC01 part of
 processing a print request--reading the file and arranging the data into
 map format--could have been done in this one instead. There are two
 reasons for doing it where we did:

 1. We cannot check the input properly without reading the file record (to
 ensure that it really exists). We have to do this in transaction
 AC01, because afterward there's no way to send an error message back
 to the user (AC03 doesn't have access to the input terminal).

 2. There may be a delay between the AC01 and AC03 halves of the request,
 while CICS waits for the requested printer to become free. During
 this time the record may be modified, so that the user will see a copy
 that includes different information from what existed at the time of
 his or her request.

 It's true that this information will be more current than what was
 requested, but it is probably not what the user wants. Worse, the
 record could get deleted in this interval. Then the AC03 part of the
 request would fail, and there would be no way to tell the user what
 had happened (short of starting still another transaction to send a
 message back to the original input terminal, in the hope that the same
 user would still be there).

 +--+
 ¦ ¦
 ¦ 050 * ¦
 ¦ 051 * PROCESS TRANSACTION 'ACLG'. ¦
 ¦ 052 ACLG. ¦
 ¦ 053 EXEC CICS START TRANSID('AC05') TERMID('L86O') END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 50 through 53 (ACLG): The six lines beginning here perform the
 second function of this program, which is to process the first part of a
 request to print the log. Like a request to print an individual record, a
 request to print the log has to be handled as two transactions, because
 two different terminals are involved: the one that enters the request, and
 the printer.

 This code processes the request from an input terminal. The first step is
 to ask CICS to start up the second transaction (AC05) as soon as the
 printer used for the log is free (this printer happens to be named L86O).
 This START command does this; there's no data for this transaction to
 forward to the next one, and so we have no FROM option.

 +--+
 ¦ ¦
 ¦ 054 MOVE LOW-VALUES TO ACCTMSGO. ¦
 ¦ 055 MOVE 'PRINTING OF LOG HAS BEEN SCHEDULED' TO MSGO. ¦
 ¦ 056 EXEC CICS SEND MAP('ACCTMSG') MAPSET('ACCTSET') ¦
 ¦ 057 FREEKB END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 54 through 57: As usual, we clear the map to nulls (LOW-VALUES)
 before filling it in.

 Then we send a message back to the requesting terminal, confirming that
 the requested work has been scheduled. In contrast to all the other types
 of requests that make up this application, a request to print the log

CICS Application Programming Primer
Program ACCT03: requests for printing

© Copyright IBM Corp. 1984, 1991
4.4 - 3

 isn't entered through the menu screen. So it isn't appropriate to use the
 message area of the menu screen, and we need a separate map to send this
 message. This map is ACCTMSG, which is simply a one-line map consisting
 of an area for a message.

 +--+
 ¦ ¦
 ¦ 058 GO TO RTRN. ¦
 ¦ ¦
 +--+

 Line 58: Then we return to CICS at Line 103.

 +--+
 ¦ ¦
 ¦ 059 * ¦
 ¦ 060 * PROCESS TRANSACTION 'AC05'. ¦
 ¦ 061 AC05. ¦
 ¦ 062 EXEC CICS READQ TS QUEUE('ACCTLOG') INTO (ACCTDTLI) ¦
 ¦ 063 LENGTH(TS-LNG) NEXT RESP(RESPONSE) END-EXEC. ¦
 ¦ 064 IF RESPONSE = DFHRESP(QIDERR) ¦
 ¦ 065 GO TO RTRN. ¦
 ¦ 066 IF RESPONSE = DFHRESP(ITEMERR) ¦
 ¦ 067 GO TO LOG-END. ¦
 ¦ 068 IF RESPONSE NOT = DFHRESP(NORMAL) ¦
 ¦ 069 GO TO NO-GOOD. ¦
 ¦ 070 EXEC CICS SEND MAP('ACCTDTL') MAPSET('ACCTSET') PRINT ERASE ¦
 ¦ 071 END-EXEC. ¦
 ¦ 072 GO TO AC05. ¦
 ¦ ¦
 +--+

 Lines 59 through 72 (AC05): The code for handling the second half of a
 request to print the transaction log is the next function of this program.
 It begins with a two-command loop, in which the first command (Lines
 62-63) reads the next item from the temporary storage queue (ACCTLOG) that
 represents the log. The second command sends this item, which is a map
 already formatted by program ACCT01 (at Lines 304-353), to the printer.
 These two commands are repeated until all of the entries in the log have
 been printed.

 Since this is the only transaction that reads this temporary storage
 queue, we can omit the ITEM number option and code the NEXT option in
 reading it. Then the first time READQ is executed, the first item on the
 log is fetched; the next time, the second item is fetched, and so on until
 the end of the queue. (The end of the queue results in the ITEMERR
 condition, at which control goes to LOG-END--as explained in the next
 paragraph.)

 We explicitly test RESP for three error conditions: if a QIDERR has
 occurred (meaning that there is no queue corresponding to the one that has
 been entered), control will go to RTRN (Line 103). If an ITEMERR
 condition has occurred (meaning that we're trying to read an item that
 isn't there), this transfers control to LOG-END at Line 74. If there is
 some other sort of error (any NOT NORMAL condition), control will go to
 NO-GOOD at Line 107.

 +--+
 ¦ ¦
 ¦ 073 LOG-END. ¦
 ¦ 074 EXEC CICS DELETEQ TS QUEUE('ACCTLOG') END-EXEC. ¦
 ¦ 075 GO TO RTRN. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Program ACCT03: requests for printing

© Copyright IBM Corp. 1984, 1991
4.4 - 4

 Lines 73 through 75 (LOG-END): Having printed the log, we now delete the
 temporary storage queue in which it was collected, to free up temporary
 storage.

 Note: The next write to this deleted queue will cause CICS to create a
 new queue, with the same name, and the accumulation of change log records
 will begin all over again.

 +--+
 ¦ ¦
 ¦ 076 * ¦
 ¦ 077 * PROCESS TRANSACTION 'ACEL'. ¦
 ¦ 078 ACEL. ¦
 ¦ 079 EXEC CICS START TRANSID('AC06') TERMID('L86O') END-EXEC. ¦
 ¦ 080 MOVE LOW-VALUES TO ACCTMSGO. ¦
 ¦ 081 MOVE 'PRINTING OF ERROR LOG HAS BEEN SCHEDULED' TO MSGO. ¦
 ¦ 082 EXEC CICS SEND MAP('ACCTMSG') MAPSET('ACCTSET') ¦
 ¦ 083 FREEKB END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 76 through 83 (ACEL): We now issue the START command to initiate
 the third transaction that will do the printing of the error log. The
 name of this transaction is AC06. Like transaction ACLG, a request to
 print the error log has to be handled as two transactions, because two
 different terminals are involved: the one that enters the request, and the
 printer. Because we didn't specify any TIME or INTERVAL parameter, CICS
 will start the transaction as soon as it can after the required terminal
 is free.

 As usual, we clear the map to nulls (LOW-VALUES) before filling it in.

 Then we send a message back to the requesting terminal, confirming that
 the requested work has been scheduled. Like the request to print the
 transaction log, a request to print the error log isn't entered through
 the menu screen. So it isn't appropriate to use the message area of the
 menu screen, and we need a separate map to send this message. This map is
 ACCTMSG, which is simply a one-line map consisting of an area for a
 message.

 +--+
 ¦ ¦
 ¦ 084 GO TO RTRN. ¦
 ¦ ¦
 +--+

 Line 84: Then we return to CICS at Line 103.

 +--+
 ¦ ¦
 ¦ 085 * ¦
 ¦ 086 * PROCESS TRANSACTION 'AC06'. ¦
 ¦ 087 AC06. ¦
 ¦ 088 EXEC CICS READQ TS QUEUE('ACERLOG') INTO (ACCTERRI) ¦
 ¦ 089 LENGTH(TS-ELNG) NEXT RESP(RESPONSE) END-EXEC. ¦
 ¦ 090 IF RESPONSE = DFHRESP(QIDERR) ¦
 ¦ 091 GO TO RTRN. ¦
 ¦ 092 IF RESPONSE = DFHRESP(ITEMERR) ¦
 ¦ 093 GO TO ELOG-END. ¦
 ¦ 094 IF RESPONSE NOT = DFHRESP(NORMAL) ¦
 ¦ 095 GO TO NO-GOOD. ¦
 ¦ 096 EXEC CICS SEND MAP('ACCTERR') MAPSET('ACCTSET') PRINT ERASE ¦
 ¦ 097 END-EXEC. ¦
 ¦ 098 GO TO AC06. ¦
 ¦ ¦

CICS Application Programming Primer
Program ACCT03: requests for printing

© Copyright IBM Corp. 1984, 1991
4.4 - 5

 +--+

 Lines 85 through 98 (AC06): This is very similar to AC05, described in
 lines 59 through 72. It begins with a two-command loop, in which the
 first command (Lines 88-89) reads the next item from the temporary storage
 queue (ACERLOG) that represents the error log. The second command sends
 this item, which is a map already formatted by program ACCT01 (at Lines
 304-353), to the printer. These two commands are repeated until all of
 the entries in the error log have been printed.

 Since this is the only transaction that reads this temporary storage
 queue, we can omit the ITEM number option and code the NEXT option in
 reading it. Then the first time READQ is executed, the first item on the
 log is fetched; the next time, the second item is fetched, and so on until
 the end of the queue. (The end of the queue results in the ITEMERR
 condition, at which control goes to ELOG-END.)

 +--+
 ¦ ¦
 ¦ 099 ELOG-END. ¦
 ¦ 100 EXEC CICS DELETEQ TS QUEUE('ACERLOG') END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 99 through 100 (ELOG-END): Having printed the error log, we now
 delete the temporary storage queue in which it was collected, to free up
 temporary storage.

 Note: The next write to this deleted queue will cause CICS to create a
 new queue, with the same name, and the accumulation of error log records
 will begin all over again.

 +--+
 ¦ ¦
 ¦ 101 * ¦
 ¦ 102 * RETURN TO CICS. ¦
 ¦ 103 RTRN. ¦
 ¦ 104 EXEC CICS RETURN END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 101 through 104 (RTRN): This command returns control to CICS and is
 shared by all the functions in the program. Notice that no next transid
 is set. The concept of next transid doesn't apply, of course, to
 terminals that don't get input.

 This explains its absence for the first and third transactions, because
 the terminal associated with the transaction is a printer. In the case of
 the ACLG code, it is because the request is entered directly, and not
 through the menu. Once again, since we're not controlling the contents of
 the screen, we don't know what transaction the user will want next.

 +--+
 ¦ ¦
 ¦ 105 * ¦
 ¦ 106 * PROCESS UNRECOVERABLE ERRORS. ¦
 ¦ 107 NO-GOOD. ¦
 ¦ 108 MOVE EIBFN TO ERR-FN, MOVE EIBRCODE TO ERR-RCODE. ¦
 ¦ 109 MOVE EIBFN TO ERR-COMMAND, MOVE EIBRESP TO ERR-RESP. ¦
 ¦ 110 EXEC CICS HANDLE CONDITION ERROR END-EXEC. ¦
 ¦ 111 EXEC CICS LINK PROGRAM('ACCT04') ¦
 ¦ 112 COMMAREA(COMMAREA-FOR-ACCT04) LENGTH(14) END-EXEC. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Program ACCT03: requests for printing

© Copyright IBM Corp. 1984, 1991
4.4 - 6

 Lines 105 through 112 (NO-GOOD): This code handles unrecoverable errors
 on CICS commands and is identical to the corresponding code in Lines
 410-413 of program ACCT01.

 +--+
 ¦ ¦
 ¦ 113 GOBACK. ¦
 ¦ ¦
 +--+

 Line 113: This GOBACK has the same function as those that terminate the
 other programs.

CICS Application Programming Primer
Program ACCT03: requests for printing

© Copyright IBM Corp. 1984, 1991
4.4 - 7

 4.5 Program ACCT04: error processing
 +--+
 ¦ ¦
 ¦ 001 IDENTIFICATION DIVISION. ¦
 ¦ 002 PROGRAM-ID. ACCT04. ¦
 ¦ 003 *REMARKS. THIS PROGRAM IS A GENERAL PURPOSE ERROR ROUTINE. ¦
 ¦ 004 * CONTROL IS TRANSFERRED TO IT BY OTHER PROGRAMS IN THE ¦
 ¦ 005 * ONLINE ACCOUNT FILE APPLICATION WHEN AN UNRECOVERABLE ¦
 ¦ 006 * ERROR HAS OCCURRED. ¦
 ¦ 007 * IT SENDS A MESSAGE TO INPUT TERMINAL DESCRIBING THE ¦
 ¦ 008 * TYPE OF ERROR AND ASKS THE OPERATOR TO REPORT IT. ¦
 ¦ 009 * THEN IT ABENDS, SO THAT ANY UPDATES MADE IN THE ¦
 ¦ 010 * UNCOMPLETED TRANSACTION ARE BACKED OUT AND SO THAT AN ¦
 ¦ 011 * ABEND DUMP IS AVAILABLE. ¦
 ¦ 012 ENVIRONMENT DIVISION. ¦
 ¦ 013 DATA DIVISION. ¦
 ¦ 014 WORKING STORAGE SECTION. ¦
 ¦ 015 COPY ACCTSET. ¦
 ¦ 016 01 RESPTAB. ¦
 ¦ 017 02 RESP01 PIC X(12) VALUE 'ERROR'. ¦
 ¦ 018 02 RESP02 PIC X(12) VALUE 'RDATT'. ¦
 ¦ 019 02 RESP03 PIC X(12) VALUE 'WRBRK'. ¦
 ¦ 020 02 RESP04 PIC X(12) VALUE 'EOF'. ¦
 ¦ 021 02 RESP05 PIC X(12) VALUE 'EODS'. ¦
 ¦ 022 02 RESP06 PIC X(12) VALUE 'EOC'. ¦
 ¦ 023 02 RESP07 PIC X(12) VALUE 'INBFMH'. ¦
 ¦ 024 02 RESP08 PIC X(12) VALUE 'ENDINPT'. ¦
 ¦ 025 02 RESP09 PIC X(12) VALUE 'NONVAL'. ¦
 ¦ 026 02 RESP10 PIC X(12) VALUE 'NOSTART'. ¦
 ¦ 027 02 RESP11 PIC X(12) VALUE 'TERMIDERR'. ¦
 ¦ 028 02 RESP12 PIC X(12) VALUE 'FILENOTFOUND'. ¦
 ¦ 029 02 RESP13 PIC X(12) VALUE 'NOTFND'. ¦
 ¦ 030 02 RESP14 PIC X(12) VALUE 'DUPREC'. ¦
 ¦ 031 02 RESP15 PIC X(12) VALUE 'DUPKEY'. ¦
 ¦ 032 02 RESP16 PIC X(12) VALUE 'INVREQ'. ¦
 ¦ 033 02 RESP17 PIC X(12) VALUE 'IOERR'. ¦
 ¦ 034 02 RESP18 PIC X(12) VALUE 'NOSPACE'. ¦
 ¦ 035 02 RESP19 PIC X(12) VALUE 'NOTOPEN'. ¦
 ¦ 036 02 RESP20 PIC X(12) VALUE 'ENDFILE'. ¦
 ¦ 037 02 RESP21 PIC X(12) VALUE 'ILLOGIC'. ¦
 ¦ 038 02 RESP22 PIC X(12) VALUE 'LENGERR'. ¦
 ¦ 039 02 RESP23 PIC X(12) VALUE 'QZERO'. ¦
 ¦ 040 02 RESP24 PIC X(12) VALUE 'SIGNAL'. ¦
 ¦ 041 02 RESP25 PIC X(12) VALUE 'QBUSY'. ¦
 ¦ 042 02 RESP26 PIC X(12) VALUE 'ITEMERR'. ¦
 ¦ 043 02 RESP27 PIC X(12) VALUE 'PGMIDERR'. ¦
 ¦ 044 02 RESP28 PIC X(12) VALUE 'TRANSIDERR'. ¦
 ¦ 045 02 RESP29 PIC X(12) VALUE 'ENDDATA'. ¦
 ¦ 046 02 RESP30 PIC X(12) VALUE 'INVTSREQ'. ¦
 ¦ 047 02 RESP31 PIC X(12) VALUE 'EXPIRED'. ¦
 ¦ 048 02 RESP32 PIC X(12) VALUE 'RETPAGE'. ¦
 ¦ 049 02 RESP33 PIC X(12) VALUE 'RTEFAIL'. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 050 02 RESP34 PIC X(12) VALUE 'RTESOME'. ¦
 ¦ 051 02 RESP35 PIC X(12) VALUE 'TSIOERR'. ¦
 ¦ 052 02 RESP36 PIC X(12) VALUE 'MAPFAIL'. ¦
 ¦ 053 02 RESP37 PIC X(12) VALUE 'INVERRTERM'. ¦
 ¦ 054 02 RESP38 PIC X(12) VALUE 'INVMPSZ'. ¦
 ¦ 055 02 RESP39 PIC X(12) VALUE 'IGREQID'. ¦
 ¦ 056 02 RESP40 PIC X(12) VALUE 'OVERFLOW'. ¦
 ¦ 057 02 RESP41 PIC X(12) VALUE 'INVLDC'. ¦

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 1

 ¦ 058 02 RESP42 PIC X(12) VALUE 'NOSTG'. ¦
 ¦ 059 02 RESP43 PIC X(12) VALUE 'JIDERR'. ¦
 ¦ 060 02 RESP44 PIC X(12) VALUE 'QIDERR'. ¦
 ¦ 061 02 RESP45 PIC X(12) VALUE 'NOJBUFSP'. ¦
 ¦ 062 02 RESP46 PIC X(12) VALUE 'DSSTAT'. ¦
 ¦ 063 02 RESP47 PIC X(12) VALUE 'SELNERR'. ¦
 ¦ 064 02 RESP48 PIC X(12) VALUE 'FUNCERR'. ¦
 ¦ 065 02 RESP49 PIC X(12) VALUE 'UNEXPIN'. ¦
 ¦ 066 02 RESP50 PIC X(12) VALUE 'NOPASSBKRD'. ¦
 ¦ 067 02 RESP51 PIC X(12) VALUE 'NOPASSBKWR'. ¦
 ¦ 068 02 RESP52 PIC X(12) VALUE '*NOT VALID*'. ¦
 ¦ 069 02 RESP53 PIC X(12) VALUE 'SYSIDERR'. ¦
 ¦ 070 02 RESP54 PIC X(12) VALUE 'ISCINVREQ'. ¦
 ¦ 071 02 RESP55 PIC X(12) VALUE 'ENQBUSY'. ¦
 ¦ 072 02 RESP56 PIC X(12) VALUE 'ENVDEFERR'. ¦
 ¦ 073 02 RESP57 PIC X(12) VALUE 'IGREQCD'. ¦
 ¦ 074 02 RESP58 PIC X(12) VALUE 'SESSIONERR'. ¦
 ¦ 075 02 RESP59 PIC X(12) VALUE 'SYSBUSY'. ¦
 ¦ 076 02 RESP60 PIC X(12) VALUE 'SESSBUSY'. ¦
 ¦ 077 02 RESP61 PIC X(12) VALUE 'NOTALLOC'. ¦
 ¦ 078 02 RESP62 PIC X(12) VALUE 'CBIDERR'. ¦
 ¦ 079 02 RESP63 PIC X(12) VALUE 'INVEXITREQ'. ¦
 ¦ 080 02 RESP64 PIC X(12) VALUE 'INVPARTNSET'. ¦
 ¦ 081 02 RESP65 PIC X(12) VALUE 'INVPARTN'. ¦
 ¦ 082 02 RESP66 PIC X(12) VALUE 'PARTNFAIL'. ¦
 ¦ 083 02 RESP67 PIC X(12) VALUE '*NOT VALID*'. ¦
 ¦ 084 02 RESP68 PIC X(12) VALUE '*NOT VALID*'. ¦
 ¦ 085 02 RESP69 PIC X(12) VALUE 'USERIDERR'. ¦
 ¦ 086 02 RESP70 PIC X(12) VALUE 'NOTAUTH'. ¦
 ¦ 087 02 RESP71 PIC X(12) VALUE 'VOLIDERR'. ¦
 ¦ 088 02 RESP72 PIC X(12) VALUE 'SUPPRESSED'. ¦
 ¦ 089 02 RESP73 PIC X(12) VALUE '*NOT VALID*'. ¦
 ¦ 090 02 RESP74 PIC X(12) VALUE '*NOT VALID*'. ¦
 ¦ 091 02 RESP75 PIC X(12) VALUE 'RESIDERR'. ¦
 ¦ 092 02 RESP76 PIC X(12) VALUE '*NOT VALID*'. ¦
 ¦ 093 02 RESP77 PIC X(12) VALUE '*NOT VALID*'. ¦
 ¦ 094 02 RESP78 PIC X(12) VALUE '*NOT VALID*'. ¦
 ¦ 095 02 RESP79 PIC X(12) VALUE '*NOT VALID*'. ¦
 ¦ 096 02 RESP80 PIC X(12) VALUE 'NOSPOOL'. ¦
 ¦ 097 02 RESP81 PIC X(12) VALUE 'TERMERR'. ¦
 ¦ 098 02 RESP82 PIC X(12) VALUE 'ROLLEDBACK'. ¦
 ¦ 099 02 RESP83 PIC X(12) VALUE 'END'. ¦
 ¦ 100 02 RESP84 PIC X(12) VALUE 'DISABLED'. ¦
 ¦ 101 02 RESP85 PIC X(12) VALUE 'ALLOCERR'. ¦
 ¦ 102 02 RESP86 PIC X(12) VALUE 'STRELERR'. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 103 02 RESP87 PIC X(12) VALUE 'OPENERR'. ¦
 ¦ 104 02 RESP88 PIC X(12) VALUE 'SPOLBUSY'. ¦
 ¦ 105 02 RESP89 PIC X(12) VALUE 'SPOLERR'. ¦
 ¦ 106 02 RESP90 PIC X(12) VALUE 'NODEIDER'. ¦
 ¦ 107 02 RESP91 PIC X(12) VALUE 'TASKIDERR'. ¦
 ¦ 108 02 RESP92 PIC X(12) VALUE 'TCIDERR'. ¦
 ¦ 109 02 RESP93 PIC X(12) VALUE 'DSNNOTFOUND'. ¦
 ¦ 110 02 RESP-NOT-FOUND PIC X(12) VALUE '*NOT VALID*'. ¦
 ¦ 111 01 FILLER REDEFINES RESPTAB. ¦
 ¦ 112 02 RESPVAL OCCURS 94 ¦
 ¦ 113 PIC X(12). ¦
 ¦ 114 01 COMMAND-LIST. ¦
 ¦ 115 02 HEX-0202 PIC XX VALUE ' '. ¦
 ¦ 116 02 HEX-0204 PIC XX VALUE ' '. ¦
 ¦ 117 02 HEX-0206 PIC XX VALUE ' '. ¦

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 2

 ¦ 118 02 HEX-0208 PIC XX VALUE ' '. ¦
 ¦ 119 02 HEX-020A PIC XX VALUE ' '. ¦
 ¦ 120 02 HEX-020C PIC XX VALUE ' '. ¦
 ¦ 121 02 HEX-020E PIC XX VALUE ' '. ¦
 ¦ 122 02 HEX-0210 PIC XX VALUE ' '. ¦
 ¦ 123 02 HEX-0402 PIC XX VALUE ' '. ¦
 ¦ 124 02 HEX-0404 PIC XX VALUE ' '. ¦
 ¦ 125 02 HEX-0406 PIC XX VALUE ' '. ¦
 ¦ 126 02 HEX-0408 PIC XX VALUE ' '. ¦
 ¦ 127 02 HEX-040A PIC XX VALUE ' '. ¦
 ¦ 128 02 HEX-040C PIC XX VALUE ' '. ¦
 ¦ 129 02 HEX-040E PIC XX VALUE ' '. ¦
 ¦ 130 02 HEX-0410 PIC XX VALUE ' '. ¦
 ¦ 131 02 HEX-0412 PIC XX VALUE ' '. ¦
 ¦ 132 02 HEX-0414 PIC XX VALUE ' '. ¦
 ¦ 133 02 HEX-0416 PIC XX VALUE ' '. ¦
 ¦ 134 02 HEX-0418 PIC XX VALUE ' '. ¦
 ¦ 135 02 HEX-041A PIC XX VALUE ' '. ¦
 ¦ 136 02 HEX-041C PIC XX VALUE ' '. ¦
 ¦ 137 02 HEX-041E PIC XX VALUE ' '. ¦
 ¦ 138 02 HEX-0420 PIC XX VALUE ' '. ¦
 ¦ 139 02 HEX-0422 PIC XX VALUE ' '. ¦
 ¦ 140 02 HEX-0424 PIC XX VALUE ' '. ¦
 ¦ 141 02 HEX-0426 PIC XX VALUE ' '. ¦
 ¦ 142 02 HEX-0428 PIC XX VALUE ' '. ¦
 ¦ 143 02 HEX-042A PIC XX VALUE ' '. ¦
 ¦ 144 02 HEX-042C PIC XX VALUE ' '. ¦
 ¦ 145 02 HEX-042E PIC XX VALUE ' '. ¦
 ¦ 146 02 HEX-0430 PIC XX VALUE ' '. ¦
 ¦ 147 02 HEX-0432 PIC XX VALUE ' '. ¦
 ¦ 148 02 HEX-0434 PIC XX VALUE ' '. ¦
 ¦ 149 02 HEX-0436 PIC XX VALUE ' '. ¦
 ¦ 150 02 HEX-0438 PIC XX VALUE ' '. ¦
 ¦ 151 02 HEX-043A PIC XX VALUE ' '. ¦
 ¦ 152 02 HEX-043C PIC XX VALUE ' '. ¦
 ¦ 153 02 HEX-0602 PIC XX VALUE ' '. ¦
 ¦ 154 02 HEX-0604 PIC XX VALUE ' '. ¦
 ¦ 155 02 HEX-0606 PIC XX VALUE ' '. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 156 02 HEX-0608 PIC XX VALUE ' '. ¦
 ¦ 157 02 HEX-060A PIC XX VALUE ' '. ¦
 ¦ 158 02 HEX-060C PIC XX VALUE ' '. ¦
 ¦ 159 02 HEX-060E PIC XX VALUE ' '. ¦
 ¦ 160 02 HEX-0610 PIC XX VALUE ' '. ¦
 ¦ 161 02 HEX-0612 PIC XX VALUE ' '. ¦
 ¦ 162 02 HEX-0614 PIC XX VALUE ' '. ¦
 ¦ 163 02 HEX-0802 PIC XX VALUE ' '. ¦
 ¦ 164 02 HEX-0804 PIC XX VALUE ' '. ¦
 ¦ 165 02 HEX-0806 PIC XX VALUE ' '. ¦
 ¦ 166 02 HEX-0A02 PIC XX VALUE ' '. ¦
 ¦ 167 02 HEX-0A04 PIC XX VALUE ' '. ¦
 ¦ 168 02 HEX-0A06 PIC XX VALUE ' '. ¦
 ¦ 169 02 HEX-0C02 PIC XX VALUE ' '. ¦
 ¦ 170 02 HEX-0C04 PIC XX VALUE ' '. ¦
 ¦ 171 02 HEX-0E02 PIC XX VALUE ' '. ¦
 ¦ 172 02 HEX-0E04 PIC XX VALUE ' '. ¦
 ¦ 173 02 HEX-0E06 PIC XX VALUE ' '. ¦
 ¦ 174 02 HEX-0E08 PIC XX VALUE ' '. ¦
 ¦ 175 02 HEX-0E0A PIC XX VALUE ' '. ¦
 ¦ 176 02 HEX-0E0C PIC XX VALUE ' '. ¦
 ¦ 177 02 HEX-0E0E PIC XX VALUE ' '. ¦

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 3

 ¦ 178 02 HEX-1002 PIC XX VALUE ' '. ¦
 ¦ 179 02 HEX-1004 PIC XX VALUE ' '. ¦
 ¦ 180 02 HEX-1006 PIC XX VALUE ' '. ¦
 ¦ 181 02 HEX-1008 PIC XX VALUE ' '. ¦
 ¦ 182 02 HEX-100A PIC XX VALUE ' '. ¦
 ¦ 183 02 HEX-100C PIC XX VALUE ' '. ¦
 ¦ 184 02 HEX-1202 PIC XX VALUE ' '. ¦
 ¦ 185 02 HEX-1204 PIC XX VALUE ' '. ¦
 ¦ 186 02 HEX-1206 PIC XX VALUE ' '. ¦
 ¦ 187 02 HEX-1208 PIC XX VALUE ' '. ¦
 ¦ 188 02 HEX-1402 PIC XX VALUE ' '. ¦
 ¦ 189 02 HEX-1404 PIC XX VALUE ' '. ¦
 ¦ 190 02 HEX-1602 PIC XX VALUE ' '. ¦
 ¦ 191 02 HEX-1604 PIC XX VALUE ' '. ¦
 ¦ 192 02 HEX-1802 PIC XX VALUE ' '. ¦
 ¦ 193 02 HEX-1804 PIC XX VALUE ' '. ¦
 ¦ 194 02 HEX-1806 PIC XX VALUE ' '. ¦
 ¦ 195 02 HEX-1808 PIC XX VALUE ' '. ¦
 ¦ 196 02 HEX-180A PIC XX VALUE ' '. ¦
 ¦ 197 02 HEX-180C PIC XX VALUE ' '. ¦
 ¦ 198 02 HEX-180E PIC XX VALUE ' '. ¦
 ¦ 199 02 HEX-1810 PIC XX VALUE ' '. ¦
 ¦ 200 02 HEX-1812 PIC XX VALUE ' '. ¦
 ¦ 201 02 HEX-1A02 PIC XX VALUE ' '. ¦
 ¦ 202 02 HEX-1A04 PIC XX VALUE ' '. ¦
 ¦ 203 02 HEX-1C02 PIC XX VALUE ' '. ¦
 ¦ 204 02 HEX-1E02 PIC XX VALUE ' '. ¦
 ¦ 204 02 HEX-1E04 PIC XX VALUE ' '. ¦
 ¦ 205 02 HEX-1E06 PIC XX VALUE ' '. ¦
 ¦ 207 02 HEX-1E08 PIC XX VALUE ' '. ¦
 ¦ 208 02 HEX-1E0A PIC XX VALUE ' '. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 209 02 HEX-1E0C PIC XX VALUE ' '. ¦
 ¦ 210 02 HEX-1E0E PIC XX VALUE ' '. ¦
 ¦ 211 02 HEX-1E10 PIC XX VALUE ' '. ¦
 ¦ 212 02 HEX-1E12 PIC XX VALUE ' '. ¦
 ¦ 213 02 HEX-1E14 PIC XX VALUE ' '. ¦
 ¦ 214 02 HEX-2002 PIC XX VALUE ' '. ¦
 ¦ 215 02 HEX-2202 PIC XX VALUE ' '. ¦
 ¦ 216 02 HEX-2204 PIC XX VALUE ' '. ¦
 ¦ 217 02 HEX-2206 PIC XX VALUE ' '. ¦
 ¦ 218 02 HEX-4802 PIC XX VALUE ' '. ¦
 ¦ 219 02 HEX-4804 PIC XX VALUE ' '. ¦
 ¦ 220 02 HEX-4A02 PIC XX VALUE ' '. ¦
 ¦ 221 02 HEX-4A04 PIC XX VALUE ' '. ¦
 ¦ 222 02 HEX-4C02 PIC XX VALUE ' '. ¦
 ¦ 223 02 HEX-4C04 PIC XX VALUE ' '. ¦
 ¦ 224 02 HEX-4E02 PIC XX VALUE ' '. ¦
 ¦ 225 02 HEX-4E04 PIC XX VALUE ' '. ¦
 ¦ 226 02 HEX-5002 PIC XX VALUE ' '. ¦
 ¦ 227 02 HEX-5004 PIC XX VALUE ' '. ¦
 ¦ 228 02 HEX-5202 PIC XX VALUE ' '. ¦
 ¦ 229 02 HEX-5204 PIC XX VALUE ' '. ¦
 ¦ 230 02 HEX-5206 PIC XX VALUE ' '. ¦
 ¦ 231 02 HEX-5402 PIC XX VALUE ' '. ¦
 ¦ 232 02 HEX-5404 PIC XX VALUE ' '. ¦
 ¦ 233 02 HEX-5602 PIC XX VALUE ' '. ¦
 ¦ 234 02 HEX-5604 PIC XX VALUE ' '. ¦
 ¦ 235 02 HEX-5606 PIC XX VALUE ' '. ¦
 ¦ 236 02 HEX-5610 PIC XX VALUE ' '. ¦
 ¦ 237 02 HEX-5802 PIC XX VALUE ' '. ¦

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 4

 ¦ 238 02 HEX-5804 PIC XX VALUE ' '. ¦
 ¦ 239 02 HEX-5A02 PIC XX VALUE ' '. ¦
 ¦ 240 02 HEX-5A04 PIC XX VALUE ' '. ¦
 ¦ 241 02 HEX-5C02 PIC XX VALUE ' '. ¦
 ¦ 242 02 HEX-5C04 PIC XX VALUE ' '. ¦
 ¦ 243 02 HEX-5E02 PIC XX VALUE ' '. ¦
 ¦ 244 02 HEX-5E04 PIC XX VALUE ' '. ¦
 ¦ 245 02 HEX-5E06 PIC XX VALUE ' '. ¦
 ¦ 246 02 HEX-5E12 PIC XX VALUE ' '. ¦
 ¦ 247 02 HEX-5E14 PIC XX VALUE ' '. ¦
 ¦ 248 02 HEX-6002 PIC XX VALUE ' '. ¦
 ¦ 249 02 HEX-6004 PIC XX VALUE ' '. ¦
 ¦ 250 02 HEX-6202 PIC XX VALUE ' '. ¦
 ¦ 251 02 HEX-6204 PIC XX VALUE ' '. ¦
 ¦ 252 02 HEX-6402 PIC XX VALUE ' '. ¦
 ¦ 253 02 HEX-6602 PIC XX VALUE ' '. ¦
 ¦ 254 02 HEX-6604 PIC XX VALUE ' '. ¦
 ¦ 255 02 HEX-6612 PIC XX VALUE ' '. ¦
 ¦ 256 02 HEX-6614 PIC XX VALUE ' '. ¦
 ¦ 257 02 HEX-6622 PIC XX VALUE ' '. ¦
 ¦ 258 02 HEX-6624 PIC XX VALUE ' '. ¦
 ¦ 269 02 HEX-6802 PIC XX VALUE ' '. ¦
 ¦ 260 02 HEX-6804 PIC XX VALUE ' '. ¦
 ¦ 261 02 HEX-6812 PIC XX VALUE ' '. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 262 02 HEX-6814 PIC XX VALUE ' '. ¦
 ¦ 263 02 HEX-6A02 PIC XX VALUE ' '. ¦
 ¦ 264 02 HEX-6C02 PIC XX VALUE ' '. ¦
 ¦ 265 02 HEX-6C12 PIC XX VALUE ' '. ¦
 ¦ 266 02 HEX-6E02 PIC XX VALUE ' '. ¦
 ¦ 267 02 HEX-6E04 PIC XX VALUE ' '. ¦
 ¦ 268 02 HEX-7002 PIC XX VALUE ' '. ¦
 ¦ 269 02 HEX-7004 PIC XX VALUE ' '. ¦
 ¦ 270 02 HEX-7006 PIC XX VALUE ' '. ¦
 ¦ 271 02 HEX-7008 PIC XX VALUE ' '. ¦
 ¦ 272 02 HEX-7012 PIC XX VALUE ' '. ¦
 ¦ 273 02 HEX-7014 PIC XX VALUE ' '. ¦
 ¦ 274 02 HEX-7202 PIC XX VALUE ' '. ¦
 ¦ 275 02 HEX-7402 PIC XX VALUE ' '. ¦
 ¦ 276 02 HEX-7404 PIC XX VALUE ' '. ¦
 ¦ 277 02 HEX-7602 PIC XX VALUE ' '. ¦
 ¦ 278 02 HEX-7802 PIC XX VALUE ' '. ¦
 ¦ 279 02 HEX-7804 PIC XX VALUE ' '. ¦
 ¦ 280 02 HEX-7812 PIC XX VALUE ' '. ¦
 ¦ 281 02 HEX-7814 PIC XX VALUE ' '. ¦
 ¦ 282 02 HEX-7822 PIC XX VALUE ' '. ¦
 ¦ 283 02 HEX-7824 PIC XX VALUE ' '. ¦
 ¦ 284 02 HEX-7A02 PIC XX VALUE ' '. ¦
 ¦ 285 02 HEX-7A04 PIC XX VALUE ' '. ¦
 ¦ 286 02 HEX-7E02 PIC XX VALUE ' '. ¦
 ¦ 287 02 HEX-7E04 PIC XX VALUE ' '. ¦
 ¦ 288 02 HEX-MISC PIC XX VALUE ' '. ¦
 ¦ 289 01 FILLER REDEFINES COMMAND-LIST. ¦
 ¦ 290 02 HEX-COMMAND PIC X(2) OCCURS 174. ¦
 ¦ 291 01 COMMAND-NAMES. ¦
 ¦ 292 02 NAME-0202 PIC X(20) VALUE 'ADDRESS'. ¦
 ¦ 293 02 NAME-0204 PIC X(20) VALUE 'HANDLE CONDITION'. ¦
 ¦ 294 02 NAME-0206 PIC X(20) VALUE 'HANDLE AID'. ¦
 ¦ 295 02 NAME-0208 PIC X(20) VALUE 'ASSIGN'. ¦
 ¦ 296 02 NAME-020A PIC X(20) VALUE 'IGNORE CONDITION'. ¦
 ¦ 297 02 NAME-020C PIC X(20) VALUE 'PUSH'. ¦

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 5

 ¦ 298 02 NAME-020E PIC X(20) VALUE 'POP'. ¦
 ¦ 299 02 NAME-0210 PIC X(20) VALUE 'ADDRESS SET'. ¦
 ¦ 300 02 NAME-0402 PIC X(20) VALUE 'RECEIVE'. ¦
 ¦ 301 02 NAME-0404 PIC X(20) VALUE 'SEND'. ¦
 ¦ 302 02 NAME-0406 PIC X(20) VALUE 'CONVERSE'. ¦
 ¦ 303 02 NAME-0408 PIC X(20) VALUE 'ISSUE EODS'. ¦
 ¦ 304 02 NAME-040A PIC X(20) VALUE 'ISSUE COPY'. ¦
 ¦ 305 02 NAME-040C PIC X(20) VALUE 'WAIT TERMINAL'. ¦
 ¦ 306 02 NAME-040E PIC X(20) VALUE 'ISSUE LOAD'. ¦
 ¦ 307 02 NAME-0410 PIC X(20) VALUE 'WAIT SIGNAL'. ¦
 ¦ 308 02 NAME-0412 PIC X(20) VALUE 'ISSUE RESET'. ¦
 ¦ 309 02 NAME-0414 PIC X(20) VALUE 'ISSUE DISCONNECT'. ¦
 ¦ 310 02 NAME-0416 PIC X(20) VALUE 'ISSUE ENDOUTPUT'. ¦
 ¦ 311 02 NAME-0418 PIC X(20) VALUE 'ISSUE ERASEUP'. ¦
 ¦ 312 02 NAME-041A PIC X(20) VALUE 'ISSUE ENDFILE'. ¦
 ¦ 313 02 NAME-041C PIC X(20) VALUE 'ISSUE PRINT'. ¦
 ¦ 314 02 NAME-041E PIC X(20) VALUE 'ISSUE SIGNAL'. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 315 02 NAME-0420 PIC X(20) VALUE 'ALLOCATE'. ¦
 ¦ 316 02 NAME-0422 PIC X(20) VALUE 'FREE'. ¦
 ¦ 317 02 NAME-0424 PIC X(20) VALUE 'POINT'. ¦
 ¦ 318 02 NAME-0426 PIC X(20) VALUE 'BUILD ATTACH'. ¦
 ¦ 319 02 NAME-0428 PIC X(20) VALUE 'EXTRACT ATTACH'. ¦
 ¦ 320 02 NAME-042A PIC X(20) VALUE 'EXTRACT TCT'. ¦
 ¦ 321 02 NAME-042C PIC X(20) VALUE 'WAIT CONVID'. ¦
 ¦ 322 02 NAME-042E PIC X(20) VALUE 'EXTRACT PROCESS'. ¦
 ¦ 323 02 NAME-0430 PIC X(20) VALUE 'ISSUE ABEND'. ¦
 ¦ 324 02 NAME-0432 PIC X(20) VALUE 'CONNECT PROCESS'. ¦
 ¦ 325 02 NAME-0434 PIC X(20) VALUE 'ISSUE CONFIRMATION'. ¦
 ¦ 326 02 NAME-0436 PIC X(20) VALUE 'ISSUE ERROR'. ¦
 ¦ 327 02 NAME-0438 PIC X(20) VALUE 'ISSUE PREPARE'. ¦
 ¦ 328 02 NAME-043A PIC X(20) VALUE 'ISSUE PASS'. ¦
 ¦ 329 02 NAME-043C PIC X(20) VALUE 'EXTRACT LOGONMSG'. ¦
 ¦ 330 02 NAME-0602 PIC X(20) VALUE 'READ'. ¦
 ¦ 331 02 NAME-0604 PIC X(20) VALUE 'WRITE'. ¦
 ¦ 332 02 NAME-0606 PIC X(20) VALUE 'REWRITE'. ¦
 ¦ 333 02 NAME-0608 PIC X(20) VALUE 'DELETE'. ¦
 ¦ 334 02 NAME-060A PIC X(20) VALUE 'UNLOCK'. ¦
 ¦ 335 02 NAME-060C PIC X(20) VALUE 'STARTBR'. ¦
 ¦ 336 02 NAME-060E PIC X(20) VALUE 'READNEXT'. ¦
 ¦ 337 02 NAME-0610 PIC X(20) VALUE 'READPREV'. ¦
 ¦ 338 02 NAME-0612 PIC X(20) VALUE 'ENDBR'. ¦
 ¦ 339 02 NAME-0614 PIC X(20) VALUE 'RESETBR'. ¦
 ¦ 340 02 NAME-0802 PIC X(20) VALUE 'WRITEQ TD'. ¦
 ¦ 341 02 NAME-0804 PIC X(20) VALUE 'READQ TD'. ¦
 ¦ 342 02 NAME-0806 PIC X(20) VALUE 'DELETEQ TD'. ¦
 ¦ 343 02 NAME-0A02 PIC X(20) VALUE 'WRITEQ TS'. ¦
 ¦ 344 02 NAME-0A04 PIC X(20) VALUE 'READQ TS'. ¦
 ¦ 345 02 NAME-0A06 PIC X(20) VALUE 'DELETEQ TS'. ¦
 ¦ 346 02 NAME-0C02 PIC X(20) VALUE 'GETMAIN'. ¦
 ¦ 347 02 NAME-0C04 PIC X(20) VALUE 'FREEMAIN'. ¦
 ¦ 348 02 NAME-0E02 PIC X(20) VALUE 'LINK'. ¦
 ¦ 349 02 NAME-0E04 PIC X(20) VALUE 'XCTL'. ¦
 ¦ 350 02 NAME-0E06 PIC X(20) VALUE 'LOAD'. ¦
 ¦ 351 02 NAME-0E08 PIC X(20) VALUE 'RETURN'. ¦
 ¦ 352 02 NAME-0E0A PIC X(20) VALUE 'RELEASE'. ¦
 ¦ 353 02 NAME-0E0C PIC X(20) VALUE 'ABEND'. ¦
 ¦ 354 02 NAME-0E0E PIC X(20) VALUE 'HANDLE ABEND'. ¦
 ¦ 355 02 NAME-1002 PIC X(20) VALUE 'ASKTIME'. ¦
 ¦ 356 02 NAME-1004 PIC X(20) VALUE 'DELAY'. ¦
 ¦ 357 02 NAME-1006 PIC X(20) VALUE 'POST'. ¦

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 6

 ¦ 358 02 NAME-1008 PIC X(20) VALUE 'START'. ¦
 ¦ 359 02 NAME-100A PIC X(20) VALUE 'RETRIEVE'. ¦
 ¦ 360 02 NAME-100C PIC X(20) VALUE 'CANCEL'. ¦
 ¦ 361 02 NAME-1202 PIC X(20) VALUE 'WAIT EVENT'. ¦
 ¦ 362 02 NAME-1204 PIC X(20) VALUE 'ENQ'. ¦
 ¦ 363 02 NAME-1206 PIC X(20) VALUE 'DEQ'. ¦
 ¦ 364 02 NAME-1208 PIC X(20) VALUE 'SUSPEND'. ¦
 ¦ 365 02 NAME-1402 PIC X(20) VALUE 'JOURNAL'. ¦
 ¦ 366 02 NAME-1404 PIC X(20) VALUE 'WAIT JOURNAL'. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 367 02 NAME-1602 PIC X(20) VALUE 'SYNCPOINT'. ¦
 ¦ 368 02 NAME-1604 PIC X(20) VALUE 'RESYNC'. ¦
 ¦ 369 02 NAME-1802 PIC X(20) VALUE 'RECEIVE MAP'. ¦
 ¦ 370 02 NAME-1804 PIC X(20) VALUE 'SEND MAP'. ¦
 ¦ 371 02 NAME-1806 PIC X(20) VALUE 'SEND TEXT'. ¦
 ¦ 372 02 NAME-1808 PIC X(20) VALUE 'SEND PAGE'. ¦
 ¦ 373 02 NAME-180A PIC X(20) VALUE 'PURGE MESSAGE'. ¦
 ¦ 374 02 NAME-180C PIC X(20) VALUE 'ROUTE'. ¦
 ¦ 375 02 NAME-180E PIC X(20) VALUE 'RECEIVE PARTN'. ¦
 ¦ 376 02 NAME-1810 PIC X(20) VALUE 'SEND PARTNSET'. ¦
 ¦ 377 02 NAME-1812 PIC X(20) VALUE 'SEND CONTROL'. ¦
 ¦ 378 02 NAME-1A02 PIC X(20) VALUE 'TRACE ON/OFF'. ¦
 ¦ 379 02 NAME-1A04 PIC X(20) VALUE 'ENTER TRACEID'. ¦
 ¦ 380 02 NAME-1C02 PIC X(20) VALUE 'DUMP'. ¦
 ¦ 381 02 NAME-1E02 PIC X(20) VALUE 'ISSUE ADD'. ¦
 ¦ 382 02 NAME-1E04 PIC X(20) VALUE 'ISSUE ERASE'. ¦
 ¦ 383 02 NAME-1E06 PIC X(20) VALUE 'ISSUE REPLACE'. ¦
 ¦ 384 02 NAME-1E08 PIC X(20) VALUE 'ISSUE ABORT'. ¦
 ¦ 385 02 NAME-1E0A PIC X(20) VALUE 'ISSUE QUERY'. ¦
 ¦ 386 02 NAME-1E0C PIC X(20) VALUE 'ISSUE END'. ¦
 ¦ 387 02 NAME-1E0E PIC X(20) VALUE 'ISSUE RECEIVE'. ¦
 ¦ 388 02 NAME-1E10 PIC X(20) VALUE 'ISSUE NOTE'. ¦
 ¦ 389 02 NAME-1E12 PIC X(20) VALUE 'ISSUE WAIT'. ¦
 ¦ 390 02 NAME-1E14 PIC X(20) VALUE 'ISSUE SEND'. ¦
 ¦ 391 02 NAME-2002 PIC X(20) VALUE 'BIF DEEDIT'. ¦
 ¦ 392 02 NAME-2202 PIC X(20) VALUE 'ENABLE'. ¦
 ¦ 393 02 NAME-2204 PIC X(20) VALUE 'DISABLE'. ¦
 ¦ 394 02 NAME-2206 PIC X(20) VALUE 'EXTRACT EXIT'. ¦
 ¦ 395 02 NAME-4802 PIC X(20) VALUE 'ENTER TRACENUM'. ¦
 ¦ 396 02 NAME-4804 PIC X(20) VALUE 'MONITOR POINT'. ¦
 ¦ 397 02 NAME-4A02 PIC X(20) VALUE 'ASKTIME ABSTIME'. ¦
 ¦ 398 02 NAME-4A04 PIC X(20) VALUE 'FORMATTIME'. ¦
 ¦ 399 02 NAME-4C02 PIC X(20) VALUE 'INQUIRE FILE'. ¦
 ¦ 400 02 NAME-4C04 PIC X(20) VALUE 'SET FILE'. ¦
 ¦ 401 02 NAME-4E02 PIC X(20) VALUE 'INQUIRE PROGRAM'. ¦
 ¦ 402 02 NAME-4E04 PIC X(20) VALUE 'SET PROGRAM'. ¦
 ¦ 403 02 NAME-5002 PIC X(20) VALUE 'INQUIRE TRANSACTION'. ¦
 ¦ 404 02 NAME-5004 PIC X(20) VALUE 'SET TRANSACTION'. ¦
 ¦ 405 02 NAME-5202 PIC X(20) VALUE 'INQUIRE TERMINAL'. ¦
 ¦ 406 02 NAME-5204 PIC X(20) VALUE 'SET TERMINAL'. ¦
 ¦ 407 02 NAME-5206 PIC X(20) VALUE 'INQUIRE NETNAME'. ¦
 ¦ 408 02 NAME-5402 PIC X(20) VALUE 'INQUIRE SYSTEM'. ¦
 ¦ 409 02 NAME-5404 PIC X(20) VALUE 'SET SYSTEM'. ¦
 ¦ 410 02 NAME-5602 PIC X(20) VALUE 'SPOOLOPEN'. ¦
 ¦ 411 02 NAME-5604 PIC X(20) VALUE 'SPOOLREAD'. ¦
 ¦ 412 02 NAME-5606 PIC X(20) VALUE 'SPOOLWRITE'. ¦
 ¦ 413 02 NAME-5610 PIC X(20) VALUE 'SPOOLCLOSE'. ¦
 ¦ 414 02 NAME-5802 PIC X(20) VALUE 'INQUIRE CONNECTION'. ¦
 ¦ 415 02 NAME-5804 PIC X(20) VALUE 'SET CONNECTION'. ¦
 ¦ 416 02 NAME-5A02 PIC X(20) VALUE 'INQUIRE MODENAME'. ¦
 ¦ 417 02 NAME-5A04 PIC X(20) VALUE 'SET MODENAME'. ¦

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 7

 ¦ 418 02 NAME-5C02 PIC X(20) VALUE 'INQUIRE TDQUEUE'. ¦
 ¦ 419 02 NAME-5C04 PIC X(20) VALUE 'SET TDQUEUE'. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 420 02 NAME-5E02 PIC X(20) VALUE 'INQUIRE TASK'. ¦
 ¦ 421 02 NAME-5E04 PIC X(20) VALUE 'SET TASK'. ¦
 ¦ 422 02 NAME-5E06 PIC X(20) VALUE 'CHANGE TASK'. ¦
 ¦ 423 02 NAME-5E12 PIC X(20) VALUE 'INQUIRE TCLASS'. ¦
 ¦ 424 02 NAME-5E14 PIC X(20) VALUE 'SET TCLASS'. ¦
 ¦ 425 02 NAME-6002 PIC X(20) VALUE 'INQUIRE JOURNALNUM'. ¦
 ¦ 426 02 NAME-6004 PIC X(20) VALUE 'SET JOURNALNUM'. ¦
 ¦ 427 02 NAME-6202 PIC X(20) VALUE 'INQUIRE VOLUME'. ¦
 ¦ 428 02 NAME-6204 PIC X(20) VALUE 'SET VOLUME'. ¦
 ¦ 429 02 NAME-6402 PIC X(20) VALUE 'PERFORM SECURITY'. ¦
 ¦ 430 02 NAME-6602 PIC X(20) VALUE 'INQUIRE DUMPDS'. ¦
 ¦ 431 02 NAME-6604 PIC X(20) VALUE 'SET DUMPDS'. ¦
 ¦ 432 02 NAME-6612 PIC X(20) VALUE 'INQUIRE TRANDUMPCODE'. ¦
 ¦ 433 02 NAME-6614 PIC X(20) VALUE 'SET TRANDUMPCODE'. ¦
 ¦ 434 02 NAME-6622 PIC X(20) VALUE 'INQUIRE SYSDUMPCODE'. ¦
 ¦ 435 02 NAME-6624 PIC X(20) VALUE 'SET SYSDUMPCODE'. ¦
 ¦ 436 02 NAME-6802 PIC X(20) VALUE 'INQUIRE VTAM'. ¦
 ¦ 437 02 NAME-6804 PIC X(20) VALUE 'SET VTAM'. ¦
 ¦ 438 02 NAME-6812 PIC X(20) VALUE 'INQUIRE AUTOINSTALL'. ¦
 ¦ 439 02 NAME-6814 PIC X(20) VALUE 'SET AUTOINSTALL'. ¦
 ¦ 440 02 NAME-6A02 PIC X(20) VALUE 'QUERY SECURITY'. ¦
 ¦ 441 02 NAME-6C02 PIC X(20) VALUE 'WRITE OPERATOR'. ¦
 ¦ 442 02 NAME-6C12 PIC X(20) VALUE 'CICSMESSAGE'. ¦
 ¦ 443 02 NAME-6E02 PIC X(20) VALUE 'INQUIRE IRC'. ¦
 ¦ 444 02 NAME-6E04 PIC X(20) VALUE 'SET IRC'. ¦
 ¦ 445 02 NAME-7002 PIC X(20) VALUE 'INQUIRE STATISTICS'. ¦
 ¦ 446 02 NAME-7004 PIC X(20) VALUE 'SET STATISTICS'. ¦
 ¦ 447 02 NAME-7006 PIC X(20) VALUE 'PERFORM STATISTICS'. ¦
 ¦ 448 02 NAME-7008 PIC X(20) VALUE 'COLLECT STATISTICS'. ¦
 ¦ 449 02 NAME-7012 PIC X(20) VALUE 'INQUIRE MONITOR'. ¦
 ¦ 450 02 NAME-7014 PIC X(20) VALUE 'SET MONITOR'. ¦
 ¦ 451 02 NAME-7202 PIC X(20) VALUE 'PERFORM RESETTIME'. ¦
 ¦ 452 02 NAME-7402 PIC X(20) VALUE 'SIGNON'. ¦
 ¦ 453 02 NAME-7404 PIC X(20) VALUE 'SIGNOFF'. ¦
 ¦ 454 02 NAME-7602 PIC X(20) VALUE 'PERFORM SHUTDOWN'. ¦
 ¦ 455 02 NAME-7802 PIC X(20) VALUE 'INQUIRE TRACEDEST'. ¦
 ¦ 456 02 NAME-7804 PIC X(20) VALUE 'SET TRACEDEST'. ¦
 ¦ 457 02 NAME-7812 PIC X(20) VALUE 'INQUIRE TRACEFLAG'. ¦
 ¦ 458 02 NAME-7814 PIC X(20) VALUE 'SET TRACEFLAG'. ¦
 ¦ 459 02 NAME-7822 PIC X(20) VALUE 'INQUIRE TRACETYPE'. ¦
 ¦ 460 02 NAME-7824 PIC X(20) VALUE 'SET TRACETYPE'. ¦
 ¦ 461 02 NAME-7A02 PIC X(20) VALUE 'INQUIRE DSNAME'. ¦
 ¦ 462 02 NAME-7A04 PIC X(20) VALUE 'SET DSNAME'. ¦
 ¦ 463 02 NAME-7E02 PIC X(20) VALUE 'DUMP TRANSACTION'. ¦
 ¦ 464 02 NAME-7E04 PIC X(20) VALUE 'DUMP SYSTEM'. ¦
 ¦ 465 02 NAME-0001 PIC X(20) VALUE 'UNKNOWN COMMAND'. ¦
 ¦ 466 01 FILLER REDEFINES COMMAND-NAMES. ¦
 ¦ 467 02 COMMAND-NAME PIC X(20) OCCURS 174. ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 468 01 MISC. ¦
 ¦ 469 02 I PIC S9(4) COMP. ¦
 ¦ 470 02 IXR PIC S9(4) COMP VALUE +33. ¦
 ¦ 471 02 IXC PIC S9(4) COMP VALUE +174. ¦
 ¦ 472 02 ERR-LNG PIC S9(4) COMP VALUE +156. ¦

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 8

 ¦ 473 02 DSN-MSG. ¦
 ¦ 474 04 FILLER PIC X(13) VALUE 'THE FILE IS: '. ¦
 ¦ 475 04 DSN PIC X(8). ¦
 ¦ 476 04 FILLER PIC X VALUE '.'. ¦
 ¦ 477 02 HEX-LIST. ¦
 ¦ 478 04 HEX-0601 PIC S9(4) COMP VALUE +1537. ¦
 ¦ 479 04 HEX-0602 PIC S9(4) COMP VALUE +1538. ¦
 ¦ 480 04 HEX-0608 PIC S9(4) COMP VALUE +1544. ¦
 ¦ 481 04 HEX-060C PIC S9(4) COMP VALUE +1548. ¦
 ¦ 482 04 HEX-060D PIC S9(4) COMP VALUE +1549. ¦
 ¦ 483 04 HEX-060F PIC S9(4) COMP VALUE +1551. ¦
 ¦ 484 04 HEX-0680 PIC S9(4) COMP VALUE +1664. ¦
 ¦ 485 04 HEX-0681 PIC S9(4) COMP VALUE +1665. ¦
 ¦ 486 04 HEX-0682 PIC S9(4) COMP VALUE +1666. ¦
 ¦ 487 04 HEX-0683 PIC S9(4) COMP VALUE +1667. ¦
 ¦ 488 04 HEX-06E1 PIC S9(4) COMP VALUE +1761. ¦
 ¦ 489 04 HEX-0A01 PIC S9(4) COMP VALUE +2561. ¦
 ¦ 490 04 HEX-0A02 PIC S9(4) COMP VALUE +2562. ¦
 ¦ 491 04 HEX-0A04 PIC S9(4) COMP VALUE +2564. ¦
 ¦ 492 04 HEX-0A08 PIC S9(4) COMP VALUE +2568. ¦
 ¦ 493 04 HEX-0A20 PIC S9(4) COMP VALUE +2592. ¦
 ¦ 494 04 HEX-0AE1 PIC S9(4) COMP VALUE +2785. ¦
 ¦ 495 04 HEX-0E01 PIC S9(4) COMP VALUE +3585. ¦
 ¦ 496 04 HEX-0EE1 PIC S9(4) COMP VALUE +3809. ¦
 ¦ 497 04 HEX-1001 PIC S9(4) COMP VALUE +4097. ¦
 ¦ 498 04 HEX-1004 PIC S9(4) COMP VALUE +4100. ¦
 ¦ 499 04 HEX-1011 PIC S9(4) COMP VALUE +4113. ¦
 ¦ 500 04 HEX-1012 PIC S9(4) COMP VALUE +4114. ¦
 ¦ 501 04 HEX-1014 PIC S9(4) COMP VALUE +4116. ¦
 ¦ 502 04 HEX-1081 PIC S9(4) COMP VALUE +4225. ¦
 ¦ 503 04 HEX-10E1 PIC S9(4) COMP VALUE +4321. ¦
 ¦ 504 04 HEX-10E9 PIC S9(4) COMP VALUE +4329. ¦
 ¦ 505 04 HEX-10FF PIC S9(4) COMP VALUE +4351. ¦
 ¦ 506 04 HEX-1801 PIC S9(4) COMP VALUE +6145. ¦
 ¦ 507 04 HEX-1804 PIC S9(4) COMP VALUE +6148. ¦
 ¦ 508 04 HEX-1808 PIC S9(4) COMP VALUE +6152. ¦
 ¦ 509 04 HEX-18E1 PIC S9(4) COMP VALUE +6369. ¦
 ¦ 510 04 HEX-MISC PIC S9(4) COMP VALUE +0001. ¦
 ¦ 511 02 HEX-CODE REDEFINES HEX-LIST PIC X(2) OCCURS 33. ¦
 ¦ 512 02 ERR-LIST. ¦
 ¦ 513 04 MSG-0601 PIC X(60) VALUE ¦
 ¦ 514 * FILE CONTROL - FILENOTFOUND ¦
 ¦ 515 'A PROGRAM OR FCT TABLE ERROR (INVALID FILE NAME).'. ¦
 ¦ 516 04 MSG-0602 PIC X(60) VALUE ¦
 ¦ 517 * FILE CONTROL - ILLOGIC ¦
 ¦ 518 'A PROGRAM OR FILE ERROR (VSAM ILLOGIC).'. ¦
 ¦ 519 04 MSG-0608 PIC X(60) VALUE ¦
 ¦ 520 * FILE CONTROL - INVREQ ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 521 'A PROGRAM OR FCT TABLE ERROR (INVALID FILE REQUEST).'. ¦
 ¦ 522 04 MSG-060C PIC X(60) VALUE ¦
 ¦ 523 * FILE CONTROL - NOTOPEN ¦
 ¦ 524 'A FILE BEING CLOSED THAT MUST BE OPEN.'. ¦
 ¦ 525 04 MSG-060D PIC X(60) VALUE ¦
 ¦ 526 * FILE CONTROL - DISABLED ¦
 ¦ 527 'A FILE BEING DISABLED.'. ¦
 ¦ 528 04 MSG-060F PIC X(60) VALUE ¦
 ¦ 529 * FILE CONTROL - ENDFILE ¦
 ¦ 530 'A PROGRAM OR FILE ERROR (UNEXPECTED END-OF-FILE).'. ¦
 ¦ 531 04 MSG-0680 PIC X(60) VALUE ¦
 ¦ 532 * FILE CONTROL - IOERR ¦

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 9

 ¦ 533 'A FILE INPUT/OUTPUT ERROR.'. ¦
 ¦ 534 04 MSG-0681 PIC X(60) VALUE ¦
 ¦ 535 * FILE CONTROL - NOTFND ¦
 ¦ 536 'A PROGRAM OR FILE ERROR (RECORD NOT FOUND).'. ¦
 ¦ 537 04 MSG-0682 PIC X(60) VALUE ¦
 ¦ 538 * FILE CONTROL - DUPREC ¦
 ¦ 539 'A PROGRAM OR FILE ERROR (DUPLICATE RECORD).'. ¦
 ¦ 540 04 MSG-0683 PIC X(60) VALUE ¦
 ¦ 541 * FILE CONTROL - NOSPACE ¦
 ¦ 542 'INADEQUATE SPACE IN A FILE.'. ¦
 ¦ 543 04 MSG-06E1 PIC X(60) VALUE ¦
 ¦ 544 * FILE CONTROL - LENGERR ¦
 ¦ 545 'A PROGRAM OR FILE ERROR (LENGTH ERROR, FILE CONTROL).'. ¦
 ¦ 546 04 MSG-0A01 PIC X(60) VALUE ¦
 ¦ 547 * TEMPORARY STORAGE CONTROL - ITEMERR ¦
 ¦ 548 'A PROGRAM OR TEMPORARY STORAGE ERROR (ITEM ERROR).'. ¦
 ¦ 549 04 MSG-0A02 PIC X(60) VALUE ¦
 ¦ 550 * TEMPORARY STORAGE CONTROL - QIDERR ¦
 ¦ 551 'A PROGRAM OR TEMPORARY STORAGE ERROR (UNKNOWN QUEUE).'. ¦
 ¦ 552 04 MSG-0A04 PIC X(60) VALUE ¦
 ¦ 553 * TEMPORARY STORAGE CONTROL - IOERR ¦
 ¦ 554 'AN INPUT/OUTPUT ERROR IN TEMPORARY STORAGE.'. ¦
 ¦ 555 04 MSG-0A08 PIC X(60) VALUE ¦
 ¦ 556 * TEMPORARY STORAGE CONTROL - NOSPACE ¦
 ¦ 557 'NO SPACE IN TEMPORARY STORAGE.'. ¦
 ¦ 558 04 MSG-0A20 PIC X(60) VALUE ¦
 ¦ 559 * TEMPORARY STORAGE CONTROL - INVREQ ¦
 ¦ 560 'A PROGRAM OR SYSTEM ERROR (INVALID REQUEST IN TS).'. ¦
 ¦ 561 04 MSG-0AE1 PIC X(60) VALUE ¦
 ¦ 562 * TEMPORARY STORAGE CONTROL - LENGERR ¦
 ¦ 563 'A PROGRAM OR TEMPORARY STORAGE ERROR (TS LENGTH ERROR)'.¦
 ¦ 564 04 MSG-0E01 PIC X(60) VALUE ¦
 ¦ 565 * PROGRAM CONTROL - PGMIDERR ¦
 ¦ 566 'A PROGRAM IS NOT DEFINED TO CICS.'. ¦
 ¦ 567 04 MSG-0EE0 PIC X(60) VALUE ¦
 ¦ 568 * PROGRAM CONTROL - INVREQ ¦
 ¦ 569 'A PROGRAM ERROR (INVALID PROGRAM REQUEST).'. ¦
 ¦ 570 04 MSG-1001 PIC X(60) VALUE ¦
 ¦ 571 * INTERVAL CONTROL - ENDDATA ¦
 ¦ 572 'A PROGRAM ERROR (END OF DATA, USING IC).'. ¦
 ¦ 573 04 MSG-1004 PIC X(60) VALUE ¦
 ¦ ¦
 +--+

 +--+
 ¦ ¦
 ¦ 574 * INTERVAL CONTROL - IOERR ¦
 ¦ 575 'AN INPUT/OUTPUT ERROR IN TEMPORARY STORAGE (USING IC).'.¦
 ¦ 576 04 MSG-1011 PIC X(60) VALUE ¦
 ¦ 577 * INTERVAL CONTROL - TRANSIDERR ¦
 ¦ 578 'A TRANSACTION IS NOT DEFINED TO CICS'.' ¦
 ¦ 579 04 MSG-1012 PIC X(60) VALUE ¦
 ¦ 580 * INTERVAL CONTROL - TERMIDERR ¦
 ¦ 581 'A PROGRAM OR TCT TABLE ERROR (TERMIDERR USING IC).'.¦
 ¦ 582 04 MSG-1014 PIC X(60) VALUE ¦
 ¦ 583 * INTERVAL CONTROL - INVTSREQ ¦
 ¦ 584 'A PROGRAM OR SYSTEM ERROR (INVTSREQ USING IC).'. ¦
 ¦ 585 04 MSG-1081 PIC X(60) VALUE ¦
 ¦ 586 * INTERVAL CONTROL - NOTFND ¦
 ¦ 587 'A PROGRAM OR SYSTEM ERROR (NOT FOUND USING IC).'. ¦
 ¦ 588 04 MSG-10E1 PIC X(60) VALUE ¦
 ¦ 589 * INTERVAL CONTROL - LENGERR ¦
 ¦ 590 'A PROGRAM OR TEMP STORAGE ERROR (IC LENGTH ERROR).'. ¦
 ¦ 591 04 MSG-10E9 PIC X(60) VALUE ¦
 ¦ 592 * INTERVAL CONTROL - ENVDEFERR ¦

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 10

 ¦ 593 'A PROGRAM ERROR (ENVDEFERR USING IC).'. ¦
 ¦ 594 04 MSG-10FF PIC X(60) VALUE ¦
 ¦ 595 * INTERVAL CONTROL - INVREQ ¦
 ¦ 596 'A PROGRAM ERROR (INVALID REQUEST USING IC).'. ¦
 ¦ 597 04 MSG-1801 PIC X(60) VALUE ¦
 ¦ 598 * BASIC MAPPING SUPPORT - INVREQ ¦
 ¦ 599 'A PROGRAM ERROR (BMS INVALID REQUEST).'. ¦
 ¦ 600 04 MSG-1804 PIC X(60) VALUE ¦
 ¦ 601 * BASIC MAPPING SUPPORT - MAPFAIL ¦
 ¦ 602 'A PROGRAM ERROR (BMS MAPFAIL).'. ¦
 ¦ 603 04 MSG-1808 PIC X(60) VALUE ¦
 ¦ 604 * BASIC MAPPING SUPPORT - INVMPSZ ¦
 ¦ 605 'A PROGRAM ERROR (INVALID MAP SIZE).'. ¦
 ¦ 606 04 MSG-18E1 PIC X(60) VALUE ¦
 ¦ 607 * BASIC MAPPING SUPPORT - LENGERR ¦
 ¦ 608 'A PROGRAM ERROR (BMS LENGTH ERROR).'. ¦
 ¦ 609 04 MSG-MISC PIC X(60) VALUE ¦
 ¦ 610 * UNKNOWN ERROR ¦
 ¦ 611 'AN UNKNOWN TYPE OF ERROR.'. ¦
 ¦ 612 02 ERR-MSG REDEFINES ERR-LIST PIC X(60) OCCURS 33. ¦
 ¦ ¦
 +--+

 Lines 14 through 612: These lines are the WORKING STORAGE of the program.
 We explain individual variables as we use them in the comments that
 follow. Most of them, of course, are response names, command values and
 names, our HEX-LIST of error codes, and our error messages.

 +--+
 ¦ ¦
 ¦ 613 LINKAGE SECTION. ¦
 ¦ 614 01 DFHCOMMAREA. ¦
 ¦ 615 02 ERR-PGRMID PIC X(8). ¦
 ¦ 616 02 ERR-CODE. ¦
 ¦ 617 04 ERR-FN PIC X. ¦
 ¦ 618 04 ERR-RCODE PIC X. ¦
 ¦ 619 02 ERR-COMMAND PIC XX. ¦
 ¦ 620 02 ERR-RESP PIC 99. ¦
 ¦ ¦
 +--+

 Lines 613 through 620: The structure defined here and named DFHCOMMAREA
 describes the data passed to this program by means of COMMAREA.

 +--+
 ¦ ¦
 ¦ 621 PROCEDURE DIVISION. ¦
 ¦ 622 MOVE LOW-VALUES TO ACCTERRO. ¦
 ¦ ¦
 +--+

 Lines 621 through 622: We initialize the symbolic map structure to nulls
 (LOW-VALUES) as usual, ready for building the output map.

 +--+
 ¦ ¦
 ¦ 623 MOVE EIBTRNID TO TRANEO. ¦
 ¦ ¦
 +--+

 Line 623: Next, we move the code that identifies the failed transaction
 into the output map. This identifier is in the EIB at EIBTRNID. Unlike
 EIBFN and EIBRCODE, which change every time a command is executed,
 EIBTRNID remains the same throughout the course of the transaction, and so
 it will still be intact.

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 11

 +--+
 ¦ ¦
 ¦ 624 MOVE ERR-PGRMID TO PGMEO. ¦
 ¦ ¦
 +--+

 Line 624: We move the name of the program in which the error was detected
 to the output map. Like the function and the response codes, this item of
 information was passed in the COMMAREA from the program that linked to
 this one.

 +--+
 ¦ ¦
 ¦ 625 PERFORM REASON-LOOKUP THROUGH REASON-END ¦
 ¦ 626 VARYING I FROM 1 BY 1 UNTIL I NOT < IXR. ¦
 ¦ ¦
 +--+

 Lines 625 through 626 and 640 (REASON-LOOKUP): This loop finds the entry
 in the table named HEX-LIST that matches the error that has occurred. An
 error is defined by the type of command that failed (file commands,
 temporary storage commands, and so on) in combination with a specific
 unusual result (such as a length error, or record not found). At the time
 of the error, CICS stores the type of command in the first byte of EIBFN
 (the second byte indicates the particular command of a command type).

 The response is saved in EIBRCODE, which is a six-byte field, the first
 byte of which indicates the type of unusual response. You may remember
 that these two values were saved by the program that linked to this one,
 and that they were passed along in the COMMAREA. Program ACCT01, for
 example, defines them at Lines 42-43, saves them at Line 401, and passes
 them to this program in Lines 412-413. They are defined at Lines 617-618
 of this program in the COMMAREA passed to it.

 HEX-LIST consists of all the combinations of these two values that might
 occur on the commands that are used in this application (and included in
 the Primer). Since both items are encoded one-byte hexadecimal values,
 our table consists of two-byte combinations of hexadecimal values. And
 since COBOL does not allow hexadecimal expressions, we've converted each
 combination to its decimal equivalent in order to define the table. (You
 can accomplish the same thing with CHARACTER definitions and multiple
 punches, but multiple punches are very tricky if you are developing
 programs online.)

 The names in the table still reflect the hexadecimal values, however.
 HEX-0601 (Line 478) means a command (function) code of X'06' in
 combination with a response code of X'01'; the conversion to decimal of
 X'0601' is 1537. A function code of 06 happens to be a file command, and
 a response code of 01 for that function means FILENOTFOUND (file name
 error). You'll find all the function codes and response codes listed in
 the CICS/ESA Application Programming Reference.

 +--+
 ¦ ¦
 ¦ 627 MOVE ERR-MSG (IXR) TO RSNEO. ¦
 ¦ ¦
 +--+

 Line 627: Once the proper combination of command and response has been
 found in HEX-LIST, we move the text message that describes that situation
 to the map that will notify the user of the error. The right message is
 in the corresponding position of a second table, ERR-LIST, as the matching
 entry is in HEX-LIST. These messages are also named to reflect the error
 condition to which they apply; that is, MSG-0601 (Line 513) corresponds to

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 12

 HEX-0601 (Line 478), and so on.

 +--+
 ¦ ¦
 ¦ 628 IF IXR < 12 MOVE EIBDS TO DSN, ¦
 ¦ 629 MOVE DSN-MSG TO FILEEO. ¦
 ¦ ¦
 +--+

 Lines 628 through 629: If the command that failed was a file command,
 there is one additional piece of information that we want to convey to the
 user, and that's the name of the file on which the error occurred. These
 two lines do that. The file errors are the first ten in the table, and
 the name of the file most recently used is at EIBDS. (This value is also
 unchanged since the error occurred, because no file commands have been
 executed since then.)

 +--+
 ¦ ¦
 ¦ 630 PERFORM COMMAND-LOOKUP THROUGH COMMAND-END ¦
 ¦ 631 VARYING I FROM 1 BY 1 UNTIL I NOT < IXC. ¦
 ¦ ¦
 +--+

 Lines 630 through 631 and 643 (COMMAND-LOOKUP): This is a similar
 operation to the one described in lines 625 through 626 above for the
 REASON-LOOKUP procedure.

 +--+
 ¦ ¦
 ¦ 632 MOVE COMMAND-NAME (IXC) TO CMDEO. ¦
 ¦ 633 IF ERR-RESP < 94 MOVE RESPVAL (ERR-RESP) TO RESPEO ¦
 ¦ 634 ELSE MOVE RESPVAL (94) TO RESPEO. ¦
 ¦ ¦
 +--+

 Lines 632 through 634: This time, we get a text version of the
 appropriate CICS command name, as indexed by the ERR-RESP value. Again, we
 move the text message to our user's error map.

 +--+
 ¦ ¦
 ¦ 635 EXEC CICS SEND MAP('ACCTERR') MAPSET('ACCTSET') ERASE FREEKB ¦
 ¦ 636 WAIT END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 635 through 636: Having put all the particulars into the error map,
 we now send it to the user.

 +--+
 ¦ ¦
 ¦ 637 EXEC CICS WRITEQ TS QUEUE('ACERLOG') FROM(ACCTERRO) ¦
 ¦ 638 LENGTH(ERR-LNG) END-EXEC. ¦
 ¦ ¦
 +--+

 Lines 637 through 638: Here, we also write the error log entry to the
 temporary storage queue ACERLOG.

 +--+
 ¦ ¦
 ¦ 639 EXEC CICS ABEND ABCODE('EACC') NODUMP END-EXEC. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 13

 Line 639: Finally, we terminate the transaction with an ABEND command.
 This produces a dump (identified by the ABCODE of "EACC"), returns control
 to CICS, and causes CICS to back out any changes this transaction made to
 a protected resource. (See"Pseudoconversational or not?" in topic 2.7 and
 "Recovery requirements" in topic 2.4.2 for more on protected resources.)

 In addition, CICS sends a message to the input terminal saying that an
 abend has occurred. This message is written at the current cursor
 position without erasing the contents of the screen.

 We've not set the TCT parameter that would override the positioning of the
 CICS message, although a common choice is to have such messages appear at
 the top of the screen.

 Notice that control does not return to the application after an ABEND
 command.

 +--+
 ¦ ¦
 ¦ 640 REASON-LOOKUP. ¦
 ¦ 641 IF HEX-CODE (I) = ERR-CODE MOVE I TO IXR. ¦
 ¦ 642 REASON-END. EXIT. ¦
 ¦ ¦
 +--+

 Lines 640 through 642 (CODE-LOOKUP): The REASON-LOOKUP procedure is
 explained at Lines 625-626.

 +--+
 ¦ ¦
 ¦ 643 COMMAND-LOOKUP. ¦
 ¦ 644 IF HEX-COMMAND (I) = ERR-COMMAND MOVE I TO IXC. ¦
 ¦ 645 COMMAND-END. EXIT. ¦
 ¦ ¦
 +--+

 Lines 643 through 645 (COMMAND-LOOKUP): The COMMAND-LOOKUP procedure is
 explained at Lines 630-631.

 +--+
 ¦ ¦
 ¦ 646 DUMMY-END. ¦
 ¦ 647 GOBACK. ¦
 ¦ ¦
 +--+

 Lines 646 through 647 (DUMMY-END): This GOBACK provides the logical end
 of program required by the compiler, as do the GOBACK commands terminating
 the other programs.

CICS Application Programming Primer
Program ACCT04: error processing

© Copyright IBM Corp. 1984, 1991
4.5 - 14

 5.0 Testing and diagnosis
 +--- This part of the Primer describes: ---------------------------------+
 ¦ ¦
 ¦ ¦ Types of problem ¦
 ¦ ¦
 ¦ ¦ The CICS Execution Diagnostic Facility (EDF) ¦
 ¦ ¦
 ¦ ¦ The temporary storage browse transaction ¦
 ¦ ¦
 ¦ ¦ CICS abend codes. ¦
 ¦ ¦
 +--+

 Subtopics
 5.1 Testing
 5.2 Finding the problem

CICS Application Programming Primer
Testing and diagnosis

© Copyright IBM Corp. 1984, 1991
5.0 - 1

 5.1 Testing
 This topic discusses the process of testing application code and finding
 the causes of problems. When you bring up an application under CICS,
 problems can occur at any of three levels. They may be confined to the
 application, and affect only that one application. On the other hand,
 they may affect the whole of CICS. In the worst case, they affect the
 entire operating system.

 We'll discuss how to go about finding problems in application code,
 describe some of the tools that CICS provides to help in this process, and
 show an example of a common error using our example application. Even
 using the subset of CICS facilities described in this Primer, however, we
 can't confine the discussion to a convenient subset of mistakes -- there's
 no such thing. Debugging is a complex subject and very sensitive to the
 particular application, so that it isn't possible to discuss exhaustively
 even the level of errors that might affect only one application.

 Problems that affect the whole CICS system are generally even more
 difficult, as are operating-system problems, so we'll be leaving these
 entirely to other sources of information.

 Subtopics
 5.1.1 Preparing to test
 5.1.2 Types of problem
 5.1.3 Tools for debugging

CICS Application Programming Primer
Testing

© Copyright IBM Corp. 1984, 1991
5.1 - 1

 5.1.1 Preparing to test

 You have to do two main tasks before you can attempt to test and debug an
 application:

 � You need to prepare the application and the system table entries

 � You need to prepare the system for debugging

 Subtopics
 5.1.1.1 Preparing the application and system table entries
 5.1.1.2 Preparing the system for debugging

CICS Application Programming Primer
Preparing to test

© Copyright IBM Corp. 1984, 1991
5.1.1 - 1

 5.1.1.1 Preparing the application and system table entries

 1. Translate, compile and link-edit each program. Make sure that there
 are no error messages on any of these three steps for any program
 before you begin testing.

 2. Use the DEBUG option on your Translator step, so that you can use
 Translator statement numbers with Execution Diagnostic Facility (EDF)
 displays.

 3. Use the COBOL compiler options CLIST and DMAP so that you can relate
 storage locations in dumps and Execution Diagnostic Facility (EDF)
 displays to the original COBOL source statements, and find your
 variables in Working-Storage.

 4. Use the resource definition online (RDO), (5) DEFINE TRANSACTION
 command for each transaction in the application.

 5. Use the RDO DEFINE PROGRAM command for each program used in the
 application.

 6. Use the RDO DEFINE MAPSET command for each mapset in the application.

 7. If you are using RDO, be sure to INSTALL the new definitions.

 8. Put an entry in the CSD or the FCT for each file used.

 9. Build at least a test version of each of the files required.

 10. Put job control DLBL, EXTENT and ASSGN cards (or the equivalent OS DD
 cards) in the startup job stream for each file used in the
 application.

 11. Prepare some test data.

 (5) RDO enables you to add CICS system definition file (CSD)
 entries for a new application program to a running CICS
 system.

CICS Application Programming Primer
Preparing the application and system table entries

© Copyright IBM Corp. 1984, 1991
5.1.1.1 - 1

 5.1.1.2 Preparing the system for debugging

 1. Make sure that EDF is included in your system. Include RDO group
 DFHEDF in the list you specify in the GRPLIST parameter of the SIT.

 2. Turn the trace on and allow a generous trace table (at least 200
 entries, better 500). Specify in the SIT:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ TRP=(YES,ON) or TRP=(xx,ON) ¦
 ¦ and TRT=nnn where nnn>200 ¦
 ¦ ¦
 ¦ ¦
 +--+

 3. Request that dumps be provided, for both the transaction and the
 system, for all abnormal terminations. Specify in the SIT:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ DCP=YES or DCP=xx and FDP=(xx,FORMAT) or FDP=(xx,FULL) ¦
 ¦ ¦
 ¦ ¦
 +--+

 4. Be prepared to print the dumps. Have a DFHDUP job stream or procedure
 ready, and have the CICS dump data set(s) defined in your startup
 procedure. (For further guidance on using DFHDUP, see the &opgc..)

 5. Enable CICS to detect loops, by setting the ICVR parameter in the SIT
 to a number greater than zero. Something between 5 and 10 seconds
 (ICVR=5000 to ICVR=10000) is usually a workable value.

 6. Turn off storage recovery (SIT parameter SVD=NO), so that CICS won't
 try to recover after one of its storage areas is over-written. Then
 you will know as soon as CICS does that you've made this pernicious
 error. For production, storage recovery should be on. For testing,
 unless a great many people are testing at once, it is better left off.

 7. Generate shutdown statistics.

CICS Application Programming Primer
Preparing the system for debugging

© Copyright IBM Corp. 1984, 1991
5.1.1.2 - 1

 5.1.2 Types of problem

 Once you start to test, the first few problems you meet will probably be
 what we call startup problems. Most of these will be in that category we
 described in "Handling errors and exceptional conditions" in topic 2.9.2
 as category 4 "system-application mismatches." They will produce abends
 that can be investigated like any others. However, there may also be
 system initialization problems, terminal problems, and so on. While we
 won't try to address these directly here, "Reference materials" in
 topic 5.2.3 lists sources of information for help in these areas.

 When you reach the point where you can begin executing your code, you will
 find the problems you meet can be grouped by symptom into four general
 types. This classification is useful, because you need to take a slightly
 different approach to each type. Also, it is the same
 problem-classification scheme used by IBM programming support
 representatives (PSRs). So if you require assistance, it will help you in
 identifying your problem to IBM. The four types are:

 � Abend
 � Loop
 � Wait
 � Incorrect output

 We'll discuss the identifying symptoms first, and later (in "Finding the
 problem" in topic 5.2) suggest approaches for solution.

 Subtopics
 5.1.2.1 Abends
 5.1.2.2 Loops
 5.1.2.3 Waits
 5.1.2.4 Incorrect output

CICS Application Programming Primer
Types of problem

© Copyright IBM Corp. 1984, 1991
5.1.2 - 1

 5.1.2.1 Abends

 Abends are readily identified by the presence of that same unwelcome word
 in a message from CICS. When a transaction terminates abnormally, CICS
 sends this message both to the terminal associated with the transaction
 and to the transient data message destination CSMT. (At most CICS
 installations, this message destination is directed to a printer used by
 the master terminal operator, to provide a second immediate notification
 of the unhappy event.)

CICS Application Programming Primer
Abends

© Copyright IBM Corp. 1984, 1991
5.1.2.1 - 1

 5.1.2.2 Loops

 Loops come in two varieties. If you have a loop containing no CICS
 commands, CICS generally detects this condition and terminates your
 transaction with an AICA abend. It will fail to do so only if you have
 disabled this facility (by setting ICVR = 0 in the SIT or by setting it to
 such a large value that the effect is the same).

 If the loop contains a CICS command, however, CICS may not detect it. The
 problem symptom is that the transaction never ends. It usually produces
 less than all of the expected output and leaves the keyboard locked, too.

CICS Application Programming Primer
Loops

© Copyright IBM Corp. 1984, 1991
5.1.2.2 - 1

 5.1.2.3 Waits

 The symptoms of a transaction in the wait state are the same as those
 described for a loop containing a CICS command: the transaction never
 ends and may not produce all of its outputs. If your transaction behaves
 like this, you can tell whether you have a loop or a wait by using the
 CEMT transaction. Display the task:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ CEMT INQUIRE TASK FACILITY(tttt) ¦
 ¦ ¦
 ¦ ¦
 +--+

 ("tttt" is the name of the terminal from which the transaction was
 entered.) If the task still exists and is active, wait a minute and
 repeat the inquiry. If the same task is still there, the program is
 probably in a loop that contains a CICS command.

 If the task is not active but suspended, repeat the display once or twice.
 If the task remains suspended, it's probably waiting for some event that's
 never going to happen. There is a third possibility when you display your
 task, of course. It may not be there at all! This disappearing
 transaction syndrome is really a form of "incorrect output" (as described
 below), but it's usually tracked down using the techniques used for loops.

 When you have a transaction that seems to be stuck in a loop or a wait,
 cancel it with the CEMT command:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ CEMT SET TASK FACILITY(tttt) FORCEPURGE ¦
 ¦ ¦
 ¦ ¦
 +--+

 This will produce an AMTx abend, and a dump that you can use to help
 determine where the loop or wait is.

 A word of caution about canceling tasks, however. Some perfectly normal
 tasks spend a lot of time in a suspended state. A transaction that writes
 multiple messages to a printer, for example, is suspended most of its
 lifetime, waiting for the printer to print the last message it sent. And,
 with FORCEPURGE, CICS cannot assure system integrity, so use it with care.
 It's OK while debugging, but avoid it in a production system.

CICS Application Programming Primer
Waits

© Copyright IBM Corp. 1984, 1991
5.1.2.3 - 1

 5.1.2.4 Incorrect output

 The last category of problem covers those situations in which the
 transaction appears to run successfully but produces the wrong results.
 It includes simple wrong answers, missing or extra records in files,
 screens filled with what appear to be random characters, and no output at
 all, where a transaction just shuffles off quietly without any indication
 that it ever existed.

CICS Application Programming Primer
Incorrect output

© Copyright IBM Corp. 1984, 1991
5.1.2.4 - 1

 5.1.3 Tools for debugging

 Before trying to describe approaches to solving these four classes of
 problems (which we tackle in the next topic), we need to describe three
 important tools that CICS provides for debugging applications. These are:

 � The Execution Diagnostic Facility (EDF

 � The temporary storage browse (CEBR) facilit

 � The transaction dump

 Subtopics
 5.1.3.1 Execution diagnostic facility (EDF)
 5.1.3.2 Temporary storage browse facility (CEBR)

CICS Application Programming Primer
Tools for debugging

© Copyright IBM Corp. 1984, 1991
5.1.3 - 1

 5.1.3.1 Execution diagnostic facility (EDF)

 You'll find a complete EDF session reproduced in "A session with EDF" in
 topic 5.1.3.1.7; refer to it whenever you need to. (Please note that it
 shows the example application misbehaving due to the presence of a
 deliberate bug...)

 EDF allows you to observe the execution of your transaction under the
 control of another transaction, CEDF. When you execute your transaction
 in this debugging mode, EDF intercepts your program(s) at the following
 points:

 1. Transaction initiation (just before the first program gets control)

 2. Just before the execution of each CICS command

 3. Just after the execution of each CICS command (except ABEND, XCTL and
 RETURN)

 4. At the termination of each program

 5. At normal task termination

 6. When an abend occurs

 7. At abnormal task termination.

 At these points, EDF interrupts execution of the program and sends a
 display back to the terminal. This display indicates which of these
 interception points has been reached and shows information appropriate to
 the situation.

 Subtopics
 5.1.3.1.1 Other information displayed
 5.1.3.1.2 Useful techniques with EDF
 5.1.3.1.3 Invoking EDF
 5.1.3.1.4 EDF displays
 5.1.3.1.5 EDF options
 5.1.3.1.6 Modifying execution with EDF
 5.1.3.1.7 A session with EDF

CICS Application Programming Primer
Execution diagnostic facility (EDF)

© Copyright IBM Corp. 1984, 1991
5.1.3.1 - 1

 5.1.3.1.1 Other information displayed

 At any one of these points, you can also display a variety of other
 information by selecting one of the function-key options listed on the
 screen. The choices include:

 1. The EIB. The values are displayed in symbolic form, as listed in the
 complete list in the CICS/ESA Application Programming Reference.

 2. Working-Storage for the program being executed. The display shows the
 information in both hexadecimal and character form.

 3. The option of showing up to ten previous EDF displays, including all
 the argument values, responses, and so on.

 4. The contents of any temporary storage queue.

 5. The contents (in hexadecimal) of any address location within the CICS
 region.

CICS Application Programming Primer
Other information displayed

© Copyright IBM Corp. 1984, 1991
5.1.3.1.1 - 1

 5.1.3.1.2 Useful techniques with EDF

 Once you have an idea about what is wrong with a program, you can test
 your theory by intervening in its execution:

 1. Before a command is executed, you can modify any argument value (but
 not the command options) or you can suppress execution of the command
 altogether.

 2. After a command is executed, you can modify the response code (and
 some of the argument values). This allows you to test branches of the
 program that are hard to reach using ordinary test data (what happens
 on an input/output error, for instance). It also allows you to bypass
 the effects of an error to see if doing so eliminates a problem.

 3. At any time except just before execution of a command, you can turn
 off the debug mode and let the transaction proceed without any further
 intervention from EDF.

 4. Alternatively, at any time you can suppress the displays associated
 with EDF until some specific condition is reached. When it is, the
 displays resume again. This is particularly useful when you are
 debugging a fairly long or repetitive transaction, because you might
 have to go through a lot of displays before you get to the point where
 the trouble is, making the process very slow. If you know that the
 transaction runs properly up to a certain point, you can specify that
 point as the condition for resuming displays, and suppress them up
 until then. Once the stop condition is reached, you still have access
 to the previous ten displays, even though they were not actually sent
 to the screen when originally created.

 You can express this stop condition in several different ways:

 � When a specific type of command is encountered, such as READQ TS

 � When a specific exceptional condition arises, such as NOTFND

 � When any exceptional condition at all (that CICS classifies as an
 error) arises

 � When the command at a specific offset is encountered

 � When the command at a specific translator line number is
 encountered (if the DEBUG option of the Translator has been used)

 � When any abend occurs

 � When the task terminates.

 5. At any point at all, you can change the contents of working storage
 for your program, and you can change most of the fields in the EIB as
 well.

CICS Application Programming Primer
Useful techniques with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.2 - 1

 5.1.3.1.3 Invoking EDF

 You can run EDF using either one terminal or two.

 For two terminals: You use the first terminal for the EDF displays and
 for sending input to EDF; and you use the second terminal for sending
 input to, and receiving output from, the transaction under test.

 You start by entering, at the first terminal, the transaction:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ CEDF tttt ¦
 ¦ ¦
 ¦ ¦
 +--+

 where "tttt" is the name of the other terminal to be used in the EDF
 session. This second terminal must be in transceive (ATI/TTI) status.
 This is the most common status for display terminals, but you can check
 its status with CEMT:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ CEMT INQUIRE TERMINAL(tttt) ¦
 ¦ ¦
 ¦ ¦
 +--+

 and change it if it isn't already ATI/TTI:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ CEMT SET TERMINAL(tttt) ATI TTI ¦
 ¦ ¦
 ¦ ¦
 +--+

 Then enter the transaction to be tested on this second terminal.

 If you want to use EDF to monitor a transaction that's already running,
 you can do so from another terminal. If, for example, you believe a
 transaction at a certain terminal to be looping, you can go to another
 terminal and enter a CEDF transaction naming the first terminal. EDF
 picks up control at the next CICS command executed, and you can then
 observe the sequence of commands that are causing the loop.

 For one terminal: When you use EDF with just one terminal, the EDF inputs
 and outputs are interleaved with those from the transaction. This sounds
 complicated, but works quite easily in practice. The only noticeable
 peculiarity is that when a SEND command is followed by a RECEIVE command,
 the display sent by the SEND command appears twice: once when the SEND is
 executed, and again when the RECEIVE is executed. It isn't necessary to
 respond to the first display, but if you do, EDF preserves anything that
 was entered from the first display to the second.

 To start a one-terminal session with EDF, just enter the transaction
 identifier "CEDF." Then enter the input that invokes the transaction you
 want to test.

 Note: EDF makes a special provision for testing pseudoconversational
 transactions from a single terminal. If the terminal came out of debug

CICS Application Programming Primer
Invoking EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.3 - 1

 mode between the several tasks that make up a pseudoconversational
 transaction, it would be very hard to do any debugging after the first
 task. So, when a task terminates, EDF asks the operator whether debug
 mode is to continue to the next task. If you are debugging a
 pseudoconversational task, reply "yes".

CICS Application Programming Primer
Invoking EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.3 - 2

 5.1.3.1.4 EDF displays

 EDF displays consist of a header and the screen "body." The header shows:

 � The identifier of the transaction being execute
 � The name of the program being execute
 � The internal task number assigned by CICS to the transactio
 � A display numbe
 � Under "STATUS," the reason for the interception by EDF

 The body of the screen contains information which varies with the type of
 interception point, as follows:

 1. At transaction initiation, it shows the EIB.

 2. When a command is about to be executed, it shows the command in source
 language form, including the keywords, options and argument values.
 The command is identified by giving the name of the transaction, the
 name of the program being executed, and the hexadecimal offset of the
 command in the program. If the Translator DEBUG option has been used,
 the line number in the translator source listing will also be
 displayed.

 3. After the command has been executed, the same display as for item 2
 appears, along with the results (response code), in source language.

 4. Whenever an abend occurs, and at termination time for a transaction
 ending abnormally, the display includes:

 � The EIB

 � The abend code

 � For an ASRA abend, the program status word (PSW) value at the time
 of the interrupt

 � The offset within the program of this PSW, provided it is within
 the program being executed.

CICS Application Programming Primer
EDF displays

© Copyright IBM Corp. 1984, 1991
5.1.3.1.4 - 1

 5.1.3.1.5 EDF options

 The last section of an EDF display contains a menu of things you can do at
 that point. The choices are listed below. Not all choices are available
 at each interception point; the menu shows which ones are available for
 the current display. To select an option, press the indicated PF key. If
 your terminal doesn't have PF keys, place the cursor under the option you
 want and press the ENTER key instead.

 abend user task
 Selecting this option causes the transaction being monitored to be
 abended, just as if an ABEND command had been issued in the program.
 When you make this choice, EDF asks you to enter an abend code (the
 ABCODE parameter of the command) to request the abend again, and then
 to press ENTER again, as confirmation that you really want to do this.

 browse temporary storage
 This option produces a display of the temporary storage queue
 CEBRxxxx, where xxxx is the name of the terminal from which the
 monitored transaction is being run. You can then use CEBR commands,
 discussed in "Temporary storage browse facility (CEBR)" in
 topic 5.1.3.2, to display or modify other temporary storage queues.

 continue
 If you've made changes to the screen, EDF redisplays the screen with
 the changes incorporated. (See "Modifying execution with EDF" in
 topic 5.1.3.1.6.) Otherwise, it allows the transaction to continue
 running until the next interrupt point.

 current display
 If you've modified a screen, this option causes EDF to redisplay the
 screen with the changes incorporated. Otherwise, it causes EDF to
 display the screen it showed at the last interrupt point, before you
 requested other displays.

 EIB display
 This option displays the EIB contents in symbolic form. If there is a
 COMMAREA at this time, its contents are also displayed.

 end EDF session
 This choice terminates EDF control of the transaction. The
 transaction resumes execution from that point, but no longer runs in
 debug mode.

 previous display
 Selecting this option causes the previous display (from the previous
 command, unless you've requested that other displays be remembered) to
 be sent to the screen. The number of the display from the current
 interrupt point is always 00. As you call up previous displays, the
 display number is decreased by 1 to -01 for the first previous
 display, -02 for the one before that, and so on down to the oldest
 display, -10.

 next display
 This option is the reverse of previous display. When you've gone back
 to a previous display, this option causes the next one forward to be
 shown. The display number is increased by 1.

 registers at abend
 This option is provided only when an ASRA abend occurs. It produces a
 display of the PSW and the registers at the time of the abend.

 scroll forward, scroll back
 These options apply to an EIB or command display that will not all fit
 on one screen. When this happens, a plus sign (+) appears before the

CICS Application Programming Primer
EDF options

© Copyright IBM Corp. 1984, 1991
5.1.3.1.5 - 1

 first option or field in the display, to show that there are more
 screens. Choosing scroll forward brings up the next screen in the
 display. When the screen on view isn't the first one of the display,
 there is a minus sign (-) before the first option or field, and you
 can view previous screens in the display by selecting scroll back.

 scroll forward full, scroll back full
 These two options have the same function for displays of
 Working-Storage as the scroll forward and scroll back options for EIB
 displays. Scroll forward full gives a Working-Storage display one
 full screen forward, showing addresses higher in storage than those on
 the previous screen. Scroll back full shows the addresses lower in
 storage than those on the previous screen.

 scroll forward half, scroll back half
 Scroll forward half is similar to scroll forward full, except that the
 display of working storage is advanced by only half a screen. This
 means that the addresses on the bottom half of the previous screen
 still appear on the top half of the new screen, followed by the next
 half-screen of higher addresses. Scroll back half is the backward
 counterpart of scroll forward half.

 suppress displays
 This option causes EDF to suppress its displays until one of the stop
 conditions (see next item) is met.

 stop conditions
 Selecting this option causes EDF to present a menu, in which you can
 specify conditions under which you want a display. You use this
 feature when you are about to suppress the displays, to indicate when
 they should be resumed again. However, you can also use it to get
 displays at points in the code between the normal EDF interception
 points. This is particularly helpful in locating loops and finding
 the cause of incorrect output.

 switch hex/char
 If EDF is displaying information in character form, this option causes
 it to switch to hexadecimal for subsequent displays, and back again.
 It applies only to the basic interrupt display and does not affect
 Working-Storage displays, stop condition displays, or remembered
 displays.

 user display
 This option causes EDF to display what would be on the screen if the
 transaction were not running under EDF. To get back to EDF from the
 user display, simply press the ENTER key.

 working storage
 This option allows you to see the contents of the Working-Storage area
 in your program, or of any other address in the CICS region. The
 address of Working-Storage is displayed at the top of the screen. You
 can browse through the entire area using the scroll commands, or you
 can simply enter a new address at the top of the screen. This address
 can be anywhere within the CICS region.

 remember display
 This option allows you to record displays that EDF does not ordinarily
 save. EDF can save up to ten displays, and it keeps the last ten
 command displays unless you use this option to save something else.
 Note, however, that if you save a working storage display, only the
 screen on view is saved; otherwise all the pages that make up the
 display are saved and can be recalled.

CICS Application Programming Primer
EDF options

© Copyright IBM Corp. 1984, 1991
5.1.3.1.5 - 2

 5.1.3.1.6 Modifying execution with EDF

 You can modify the execution of a transaction in four different ways:

 � Changing the contents of Working-Storage and the EI
 � Changing the argument values before a command is execute
 � Changing the response code afterwar
 � Suppressing commands altogether

 You make these changes by typing over the information shown on the screen
 with the information you want used instead. You can change any area of
 the screen where the cursor stops when you use the tab keys, except for
 the menu area at the bottom.

 When you change the screen, you must observe the following conventions:

 � If you want to suppress the execution of a command entirely, type NO
 over the first three characters of the command.

 � You can change argument values in commands, but not keywords

 � When you change an argument in the command display (as opposed t
 Working-Storage), you can change only the part shown on the display.
 If it is such a long argument that only part of it appears on the
 screen, you should change the area in Working-Storage to which the
 argument points.

 � You can change the response code from a command to any response cod
 that applies to that command, including the all-purpose ERROR. In
 this way you can test your program's error recovery routines.

 � Conversely, if the response code from a command was some exceptiona
 condition, and you want to see what would happen if you'd had a normal
 response to the command, type NORMAL over the response code.

 � When you overtype a field representing a data area in your program
 the change is made directly in program storage and is permanent.
 However, if you change a field that represents a constant (a program
 literal), program storage isn't changed, because this might affect any
 other parts of the program that use the same constant. The command is
 executed with the changed data, but when the command is displayed
 after execution, the original argument values re-appear. If you
 execute the same command more than once, you must enter this type of
 change afresh each time.

 � When arguments are displayed in character form, any character tha
 cannot be displayed on the screen is shown as a period (.). So you're
 not allowed to change any character to a period in a character
 display. If you must do this, use the switch hex/char option to
 change to a hexadecimal display and then use "4B" for period.

 � EDF only accepts uppercase characters. If your terminal ha
 lowercase, and uppercase translation is not specified for it (this
 will have been specified by your system programmer), be careful to use
 uppercase at all times.

CICS Application Programming Primer
Modifying execution with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.6 - 1

 5.1.3.1.7 A session with EDF

 What follows is an "as it happened" reproduction of an EDF session after
 we'd found that the example application had a nasty little bug in it.

 Note: If you want to follow this sample EDF session at your own terminal,
 you need to get the following things done first:

 � Make a copy of ACCT02, and add the bug, as shown i "Lines 466 through
 470 (UPDT-DELETE)" in topic 4.3 .

 � Ask your system programmer to make a copy of the EDF group EDF an
 change resource security checking to RESSEC=NO.

 It all began innocently enough, simply by trying to delete account record
 number 11111 from our account file....

 The first thing we did, of course, was type in the transaction id:

 +--+
 ¦ ¦
 ¦ acct ¦
 ¦ ¦
 +--+

 Figure 55. Invoking the account file transaction

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: MENU ¦
 ¦ TO SEARCH BY NAME, ENTER: ONLY SURNAME ¦
 ¦ REQUIRED. EITHER ¦
 ¦ SURNAME: FIRST NAME: MAY BE PARTIAL. ¦
 ¦ FOR INDIVIDUAL RECORDS, ENTER: ¦
 ¦ PRINTER REQUIRED ¦
 ¦ REQUEST TYPE: ACCOUNT: PRINTER: ONLY FOR PRINT ¦
 ¦ REQUESTS. ¦
 ¦ REQUEST TYPES: D = DISPLAY A = ADD X = DELETE ¦
 ¦ P = PRINT M = MODIFY ¦
 ¦ THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT ¦
 ¦ ¦
 +--+

 Figure 56. The account file menu

 This gave us the menu, as shown above. Next, we had to say which record
 we wanted to delete.

 So we typed in x (for delete) and 11111 (the record number) and pressed
 the ENTER key.

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: MENU ¦
 ¦ TO SEARCH BY NAME, ENTER: ONLY SURNAME ¦
 ¦ REQUIRED. EITHER ¦
 ¦ SURNAME: FIRST NAME: MAY BE PARTIAL. ¦
 ¦ FOR INDIVIDUAL RECORDS, ENTER: ¦
 ¦ PRINTER REQUIRED ¦
 ¦ REQUEST TYPE: x ACCOUNT: 11111 PRINTER: ONLY FOR PRINT ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 1

 ¦ REQUESTS. ¦
 ¦ REQUEST TYPES: D = DISPLAY A = ADD X = DELETE ¦
 ¦ P = PRINT M = MODIFY ¦
 ¦ THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT ¦
 ¦ ¦
 +--+

 Figure 57. Let's delete account number 11111

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: DELETION ¦
 ¦ ACCOUNT NO: 11111 SURNAME: LOCKS ¦
 ¦ FIRST: GOLDIE MI: X TITLE: LADY ¦
 ¦ TELEPHONE: 2345212341 ADDRESS: THE COTTAGE ¦
 ¦ WOODLANDS ¦
 ¦ HANTS ¦
 ¦ OTHERS WHO MAY CHARGE: ¦
 ¦ THE 3 BEARS ¦
 ¦ NO. CARDS ISSUED: 4 DATE ISSUED: 05 04 89 REASON: N ¦
 ¦ CARD CODE: 2 APPROVED BY: HRH SPECIAL CODES: ¦
 ¦ ACCOUNT STATUS: N CHARGE LIMIT: 1000.00 ¦
 ¦ HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ ENTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL ¦
 ¦ ¦
 +--+

 Figure 58. Now confirm the deletion...

 As you see, this fetched Goldie Locks' record, and asked us to confirm the
 deletion.

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: DELETION ¦
 ¦ ACCOUNT NO: 11111 SURNAME: LOCKS ¦
 ¦ FIRST: GOLDIE MI: X TITLE: LADY ¦
 ¦ TELEPHONE: 2345212341 ADDRESS: THE COTTAGE ¦
 ¦ WOODLANDS ¦
 ¦ HANTS ¦
 ¦ OTHERS WHO MAY CHARGE: ¦
 ¦ THE 3 BEARS ¦
 ¦ NO. CARDS ISSUED: 4 DATE ISSUED: 05 04 89 REASON: N ¦
 ¦ CARD CODE: 2 APPROVED BY: HRH SPECIAL CODES: ¦
 ¦ ACCOUNT STATUS: N CHARGE LIMIT: 1000.00 ¦
 ¦ HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ ENTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL y ¦
 ¦ ¦
 +--+

 Figure 59. ... by typing "Y"

 +--+

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 2

 ¦ ¦
 ¦ ACCOUNT FILE: ERROR REPORT ¦
 ¦ TRANSACTION AC02 HAS FAILED IN PROGRAM ACCT02 BECAUSE OF ¦
 ¦ A PROGRAM OR FCT TABLE ERROR (INVALID FILE REQUEST). ¦
 ¦ COMMAND DELETE RESP INVREQ ¦
 ¦ THE FILE IS: ACCTFIL . ¦
 ¦ PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORMATION TO THE ¦
 ¦ OPERATIONS STAFF. ¦
 ¦ THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGER UNDER CONTROL OF ¦
 ¦ THE "ACCT" APPLICATION. ¦
 ¦ DFH2206 12:31:13 CIDCICSC TRANSACTION AC02 HAS FAILED WITH ABEND EACC. ¦
 ¦ RESOURCE BACKOUT WAS SUCCESSFUL. ¦
 ¦ ¦
 +--+

 Figure 60. Hold it! We've got a problem -- and we've been backed out

 Well! That didn't work, so what do we do next? First, we'd better delete
 the scratchpad entry for this record, so we can try again, this time with
 EDF on. (You see, we've just reserved account number 11111 in ACCT01
 before we displayed the Account Detail screen. So, unless we now remove
 the reservation, we won't be able to try the deletion again for ten
 minutes. We'll use CECI, a useful CICS transaction -- the command
 interpreter.)

 First, we CLEAR the screen, then we can type:

 +--+
 ¦ ¦
 ¦ ceci deleteq ts queue(ac011111) ¦
 ¦ ¦
 +--+

 Figure 61. Deleting the scratchpad record. We have to do this so that we
 can retry the deletion.

 +--+
 ¦ ¦
 ¦ DELETEQ TS QUEUE (AC011111) ¦
 ¦ STATUS: ABOUT TO EXECUTE COMMAND NAME= ¦
 ¦ EXEC CICS DELETEQ TS ¦
 ¦ Queue('AC011111') ¦
 ¦ < Sysid() > ¦
 ¦ PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF ¦
 ¦ ¦
 +--+

 Figure 62. Going, going, ...

 We just press ENTER to delete the queue entry.

 +--+
 ¦ ¦
 ¦ DELETEQ TS QUEUE (AC011111) ¦
 ¦ STATUS: COMMAND EXECUTION COMPLETE NAME= ¦
 ¦ EXEC CICS DELETEQ TS ¦
 ¦ Queue('AC011111') ¦
 ¦ < Sysid() > ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 3

 ¦ RESPONSE: NORMAL EIBRESP=+0000000000 ¦
 ¦ PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF ¦
 ¦ ¦
 +--+

 Figure 63. Gone!

 First, we hit PF3 to end the CECI transaction, and CLEAR to get a clear
 screen. Now we can use EDF to try and find out what's going wrong. To
 invoke the facility, we simply type CEDF:

 +--+
 ¦ ¦
 ¦ cedf ¦
 ¦ ¦
 +--+

 Figure 64. Now activate EDF

 +--+
 ¦ ¦
 ¦ THIS TERMINAL: EDF MODE ON ¦
 ¦ ¦
 +--+

 Figure 65. OK

 Now we can CLEAR the screen and re-enter the ACCT transaction:

 +--+
 ¦ ¦
 ¦ acct ¦
 ¦ ¦
 +--+

 Figure 66. Now re-enter the account file transaction

 +--+
 ¦ ¦
 ¦ TRANSACTION: ACCT PROGRAM: ACCT00 TASK NUMBER: 0000089 DISPLAY: 00 ¦
 ¦ STATUS: PROGRAM INITIATION ¦
 ¦ EIBTIME = 123343 ¦
 ¦ EIBDATE = 89170 ¦
 ¦ EIBTRNID = 'ACCT' ¦
 ¦ EIBTASKN = 89 ¦
 ¦ EIBTRMID = '037L' ¦
 ¦ EIBCPOSN = 4 ¦
 ¦ EIBCALEN = 0 ¦
 ¦ EIBAID = X'7D' AT X'00543F1E'¦
 ¦ EIBFN = X'0000' AT X'00543F1F'¦
 ¦ EIBRCODE = X'000000000000' AT X'00543F21'¦
 ¦ EIBDS = '........' ¦
 ¦ + EIBREQID = '........' ¦
 ¦ RESPONSE: ¦
 ¦ REPLY: ¦
 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 4

 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 67. And into EDF

 Here's our first EDF screen. From now on, we'll use the PF4 key to
 suppress displays. EDF goes on building (and remembering) its displays --
 we simply don't want to be overwhelmed by seeing them all. (At any point,
 you can use the PF10 key to step back through a maximum of ten previous
 displays. We'll see how later on.)

 Any abnormal response, or any program output, or the end of the task, will
 all end the display suppression and show us the appropriate screen. Press
 the PF4 key, then, and away we go!

 And the next screen we see is this one:

 +--+
 ¦ ¦
 ¦ TRANSACTION: ACCT PROGRAM: TASK NUMBER: 0000089 DISPLAY: 00¦
 ¦ STATUS: TASK TERMINATION ¦
 ¦ RESPONSE: ¦
 ¦ TO CONTINUE EDF SESSION REPLY YES REPLY: NO¦
 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS¦
 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 68. OK so far

 We overtype the "REPLY: NO" with our "yes" and (as usual) press ENTER.

 This ensures that EDF will continue monitoring the next transaction (AC01)
 in our pseudoconversational sequence.

 +--+
 ¦ ¦
 ¦ TRANSACTION: ACCT PROGRAM: TASK NUMBER: 0000089 DISPLAY: 00¦
 ¦ STATUS: TASK TERMINATION ¦
 ¦ RESPONSE: ¦
 ¦ TO CONTINUE EDF SESSION REPLY YES REPLY: yes ¦
 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 69. Again "yes" to continue with the next transaction

 +--+
 ¦ ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 5

 ¦ ACCOUNT FILE: MENU ¦
 ¦ TO SEARCH BY NAME, ENTER: ONLY SURNAME ¦
 ¦ REQUIRED. EITHER ¦
 ¦ SURNAME: FIRST NAME: MAY BE PARTIAL. ¦
 ¦ FOR INDIVIDUAL RECORDS, ENTER: ¦
 ¦ PRINTER REQUIRED ¦
 ¦ REQUEST TYPE: ACCOUNT: PRINTER: ONLY FOR PRINT ¦
 ¦ REQUESTS. ¦
 ¦ REQUEST TYPES: D = DISPLAY A = ADD X = DELETE ¦
 ¦ P = PRINT M = MODIFY ¦
 ¦ THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT ¦
 ¦ ¦
 +--+

 Figure 70. Back to the menu

 Suppression of EDF displays ends for the time being with our user screen,
 the menu. Now we type in that troublesome record, 11111.

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: MENU ¦
 ¦ TO SEARCH BY NAME, ENTER: ONLY SURNAME ¦
 ¦ REQUIRED. EITHER ¦
 ¦ SURNAME: FIRST NAME: MAY BE PARTIAL. ¦
 ¦ FOR INDIVIDUAL RECORDS, ENTER: ¦
 ¦ PRINTER REQUIRED ¦
 ¦ REQUEST TYPE: x ACCOUNT: 11111 PRINTER: ONLY FOR PRINT ¦
 ¦ REQUESTS. ¦
 ¦ REQUEST TYPES: D = DISPLAY A = ADD X = DELETE ¦
 ¦ P = PRINT M = MODIFY ¦
 ¦ THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT ¦
 ¦ ¦
 +--+

 Figure 71. Now we can enter record 11111

 We press ENTER, cross our fingers, and see what happens...

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC01 PROGRAM: ACCT01 TASK NUMBER: 0000096 DISPLAY: 00 ¦
 ¦ STATUS: PROGRAM INITIATION ¦
 ¦ EIBTIME = 123616 ¦
 ¦ EIBDATE = 89170 ¦
 ¦ EIBTRNID = 'AC01' ¦
 ¦ EIBTASKN = 96 ¦
 ¦ EIBTRMID = '037L' ¦
 ¦ EIBCPOSN = 691 ¦
 ¦ EIBCALEN = 0 ¦
 ¦ EIBAID = X'7D' AT X'00543F1E' ¦
 ¦ EIBFN = X'0000' AT X'00543F1F' ¦
 ¦ EIBRCODE = X'000000000000' AT X'00543F21' ¦
 ¦ EIBDS = '........' ¦
 ¦ + EIBREQID = '........' ¦
 ¦ RESPONSE: ¦
 ¦ REPLY: ¦
 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 6

 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 72. Ready to begin the request analysis. Here's the next EDF
 display.

 Again, we'll use PF4 to suppress displays until something unusual happens.

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC01 PROGRAM: ACCT01 TASK NUMBER: 0000096 DISPLAY: 00¦
 ¦ STATUS: COMMAND EXECUTION COMPLETE ¦
 ¦ EXEC CICS READQ TS ¦
 ¦ QUEUE ('AC011111') ¦
 ¦ INTO (' ') ¦
 ¦ LENGTH (12) ¦
 ¦ ITEM (1) ¦
 ¦ NOHANDLE ¦
 ¦ OFFSET:X'000F6C' LINE:00281 EIBFN=X'0A04' ¦
 ¦ RESPONSE: QIDERR EIBRESP=44 ¦
 ¦ REPLY: ¦
 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK ¦
 ¦ ¦
 +--+

 Figure 73. Response: QIDERR. This tells us no-one else owns our record.

 And here we are with a QIDERR condition. However, it's what we expect
 when reading the scratchpad entry, so we can proceed. Using PF4 again to
 suppress displays, let's carry on....

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC01 PROGRAM: TASK NUMBER: 0000096 DISPLAY: 00¦
 ¦ STATUS: TASK TERMINATION ¦
 ¦ RESPONSE: ¦
 ¦ TO CONTINUE EDF SESSION REPLY YES REPLY: NO¦
 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 74. OK, carry on

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC01 PROGRAM: TASK NUMBER: 0000096 DISPLAY: 00 ¦
 ¦ STATUS: TASK TERMINATION ¦
 ¦ RESPONSE: ¦
 ¦ TO CONTINUE EDF SESSION REPLY YES REPLY: yes ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 7

 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 75. "yes" to carry on into AC02

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: DELETION ¦
 ¦ ACCOUNT NO: 11111 SURNAME: LOCKS ¦
 ¦ FIRST: GOLDIE MI: X TITLE: LADY ¦
 ¦ TELEPHONE: 2345212341 ADDRESS: THE COTTAGE ¦
 ¦ WOODLANDS ¦
 ¦ HANTS ¦
 ¦ OTHERS WHO MAY CHARGE: ¦
 ¦ THE 3 BEARS ¦
 ¦ NO. CARDS ISSUED: 4 DATE ISSUED: 05 04 89 REASON: N ¦
 ¦ CARD CODE: 2 APPROVED BY: HRH SPECIAL CODES: ¦
 ¦ ACCOUNT STATUS: N CHARGE LIMIT: 1000.00 ¦
 ¦ HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ ENTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL ¦
 ¦ ¦
 +--+

 Figure 76. OK -- the big moment is (nearly) here

 Let's type "y" and see what happens. Now we should at least find out a
 bit more about the problem....

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: DELETION ¦
 ¦ ACCOUNT NO: 11111 SURNAME: LOCKS ¦
 ¦ FIRST: GOLDIE MI: X TITLE: LADY ¦
 ¦ TELEPHONE: 2345212341 ADDRESS: THE COTTAGE ¦
 ¦ WOODLANDS ¦
 ¦ HANTS ¦
 ¦ OTHERS WHO MAY CHARGE: ¦
 ¦ THE 3 BEARS ¦
 ¦ NO. CARDS ISSUED: 4 DATE ISSUED: 05 04 89 REASON: N ¦
 ¦ CARD CODE: 2 APPROVED BY: HRH SPECIAL CODES: ¦
 ¦ ACCOUNT STATUS: N CHARGE LIMIT: 1000.00 ¦
 ¦ HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ 0.00 00/00/00 0.00 00/00/00 0.00 ¦
 ¦ ENTER "Y" TO CONFIRM OR "CLEAR" TO CANCEL y ¦
 ¦ ¦
 +--+

 Figure 77. Here we go

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 8

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT02 TASK NUMBER: 0000113 DISPLAY: 00 ¦
 ¦ STATUS: PROGRAM INITIATION ¦
 ¦ COMMAREA = 'X11111' ¦
 ¦ EIBTIME = 123914 ¦
 ¦ EIBDATE = 89170 ¦
 ¦ EIBTRNID = 'AC02' ¦
 ¦ EIBTASKN = 113 ¦
 ¦ EIBTRMID = '037L' ¦
 ¦ EIBCPOSN = 1743 ¦
 ¦ EIBCALEN = 6 ¦
 ¦ EIBAID = X'7D' AT X'00543F1E'¦
 ¦ EIBFN = X'0000' AT X'00543F1F'¦
 ¦ EIBRCODE = X'000000000000' AT X'00543F21'¦
 ¦ EIBDS = '........' ¦
 ¦ + EIBREQID = '........' ¦
 ¦ RESPONSE: ¦
 ¦ REPLY: ¦
 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 78. Ready?

 Again we use PF4 to suppress displays, as usual.

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT02 TASK NUMBER: 0000113 DISPLAY: 00¦
 ¦ STATUS: COMMAND EXECUTION COMPLETE ¦
 ¦ EXEC CICS DELETE ¦
 ¦ FILE ('ACCTFIL ') ¦
 ¦ RIDFLD ('11111') ¦
 ¦ OFFSET:X'0018CE' LINE:00472 EIBFN=X'0608' ¦
 ¦ RESPONSE: INVREQ EIBRESP=16 ¦
 ¦ REPLY: ¦
 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK ¦
 ¦ ¦
 +--+

 Figure 79. The INVREQ (invalid request) condition

 And here's an INVREQ (invalid request) condition. This is not what we
 expect. If the RIDFLD field looked odd (it doesn't here) we might want to
 use PF5 to start looking at Working-Storage, or PF6 to examine the user
 display. However, using PF4 again, let's carry on....

 The following screen flashes up briefly and disappears again:

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: ERROR REPORT ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 9

 ¦ TRANSACTION AC02 HAS FAILED IN PROGRAM ACCT02 BECAUSE OF ¦
 ¦ A PROGRAM OR FCT TABLE ERROR (INVALID FILE REQUEST). ¦
 ¦ COMMAND DELETE RESP INVREQ ¦
 ¦ THE FILE IS: ACCTFIL . ¦
 ¦ PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORMATION TO THE ¦
 ¦ OPERATIONS STAFF. ¦
 ¦ THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGER UNDER CONTROL OF ¦
 ¦ THE "ACCT" APPLICATION. ¦
 ¦ ¦
 +--+

 Figure 80. The error report

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT04 TASK NUMBER: 0000113 DISPLAY: 00 ¦
 ¦ STATUS: AN ABEND HAS OCCURRED ¦
 ¦ COMMAREA = 'ACCT02 16' ¦
 ¦ EIBTIME = 123914 ¦
 ¦ EIBDATE = 89170 ¦
 ¦ EIBTRNID = 'AC02' ¦
 ¦ EIBTASKN = 113 ¦
 ¦ EIBTRMID = '037L' ¦
 ¦ EIBCPOSN = 1743 ¦
 ¦ EIBCALEN = 14 ¦
 ¦ EIBAID = X'7D' AT X'00543F1E¦
 ¦ EIBFN = X'0E0C' ABEND AT X'00543F1F¦
 ¦ EIBRCODE = X'000000000000' AT X'00543F21¦
 ¦ EIBDS = 'ACCTFIL ' ¦
 ¦ + EIBREQID = '........' ¦
 ¦ ABEND : EACC ¦
 ¦ REPLY: ¦
 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 81. Here's our abend, EACC

 And the next EDF display we stop at is this ABEND status warning.

 Now we'll use the PF10 key to step back through the remembered displays
 (that we've been suppressing), in the hope that the cause of the problem
 will become clearer. Watch the "DISPLAY:" number in the top right hand
 corner of each screen.

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT04 TASK NUMBER: 0000113 DISPLAY: -01 ¦
 ¦ STATUS: ABOUT TO EXECUTE COMMAND ¦
 ¦ EXEC CICS ABEND ¦
 ¦ ABCODE ('EACC') ¦
 ¦ NODUMP ¦
 ¦ OFFSET:X'00035E' LINE:00646 EIBFN=X'0E0C' ¦
 ¦ RESPONSE: ¦
 ¦ REPLY: ¦
 ¦ ENTER: CURRENT DISPLAY ¦
 ¦ PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 10

 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: NEXT DISPLAY PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 82. Just prior to the ABEND command

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT04 TASK NUMBER: 0000113 DISPLAY: -02 ¦
 ¦ STATUS: COMMAND EXECUTION COMPLETE ¦
 ¦ EXEC CICS WRITEQ TS ¦
 ¦ QUEUE ('ACERLOG ') ¦
 ¦ FROM ('.......AC02...ACCT02 ...A PROGRAM OR FCT TABLE ERROR (I'...) ¦
 ¦ LENGTH (156) ¦
 ¦ AUXILIARY ¦
 ¦ OFFSET:X'000320' LINE:00644 EIBFN=X'0A02' ¦
 ¦ RESPONSE: NORMAL EIBRESP=0 ¦
 ¦ REPLY: ¦
 ¦ ENTER: CURRENT DISPLAY ¦
 ¦ PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITION¦
 ¦ PF10: PREVIOUS DISPLAY PF11: NEXT DISPLAY PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 83. Sent the error map

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT04 TASK NUMBER: 0000089 DISPLAY: -04 ¦
 ¦ STATUS: COMMAND EXECUTION COMPLETE ¦
 ¦ EXEC CICS SEND MAP ¦
 ¦ MAP ('ACCTERR') ¦
 ¦ FROM ('.......AC02...ACCT02 ...A PROGRAM OR FCT TABLE ERROR (I'...) ¦
 ¦ LENGTH (156) ¦
 ¦ MAPSET ('ACCTSET') ¦
 ¦ TERMINAL ¦
 ¦ WAIT ¦
 ¦ FREEKB ¦
 ¦ ERASE ¦
 ¦ OFFSET:X'0002CE' LINE:00639 EIBFN=X'1804' ¦
 ¦ RESPONSE: NORMAL EIBRESP=0 ¦
 ¦ REPLY: ¦
 ¦ ENTER: CURRENT DISPLAY ¦
 ¦ PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITION ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: NEXT DISPLAY PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 84. Writing to temporary storage queue

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT04 TASK NUMBER: 0000089 DISPLAY: -05 ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 11

 ¦ STATUS: ABOUT TO EXECUTE COMMAND ¦
 ¦ EXEC CICS SEND MAP ¦
 ¦ MAP ('ACCTERR') ¦
 ¦ FROM ('.......AC02...ACCT02 ...A PROGRAM OR FCT TABLE ERROR (I'...) ¦
 ¦ LENGTH (156) ¦
 ¦ MAPSET ('ACCTSET') ¦
 ¦ TERMINAL ¦
 ¦ WAIT ¦
 ¦ FREEKB ¦
 ¦ ERASE ¦
 ¦ OFFSET:X'0002CE' LINE:00639 EIBFN=X'1804' ¦
 ¦ RESPONSE: ¦
 ¦ REPLY: ¦
 ¦ ENTER: CURRENT DISPLAY ¦
 ¦ PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: NEXT DISPLAY PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 85. About to write to temporary storage queue

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT04 TASK NUMBER: 0000113 DISPLAY: -03 ¦
 ¦ STATUS: ABOUT TO EXECUTE COMMAND ¦
 ¦ EXEC CICS WRITEQ TS ¦
 ¦ QUEUE ('ACERLOG ') ¦
 ¦ FROM ('.......AC02...ACCT02 ...A PROGRAM OR FCT TABLE ERROR (I'...) ¦
 ¦ LENGTH (156) ¦
 ¦ AUXILIARY ¦
 ¦ OFFSET:X'000320' LINE:00644 EIBFN=X'0A02' ¦
 ¦ RESPONSE: ¦
 ¦ REPLY: ¦
 ¦ ENTER: CURRENT DISPLAY ¦
 ¦ PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: NEXT DISPLAY PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 86. About to send the error map

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT04 TASK NUMBER: 0000113 DISPLAY: -06 ¦
 ¦ STATUS: PROGRAM INITIATION ¦
 ¦ COMMAREA = 'ACCT02 16' ¦
 ¦ EIBTIME = 123914 ¦
 ¦ EIBDATE = 89170 ¦
 ¦ EIBTRNID = 'AC02' ¦
 ¦ EIBTASKN = 113 ¦
 ¦ EIBTRMID = '037L' ¦
 ¦ EIBCPOSN = 1743 ¦
 ¦ EIBCALEN = 14 ¦
 ¦ EIBAID = X'7D' AT X'00543F1E¦
 ¦ EIBFN = X'0E02' LINK AT X'00543F1F¦
 ¦ EIBRCODE = X'000000000000' AT X'00543F21¦
 ¦ EIBDS = 'ACCTFIL ' ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 12

 ¦ + EIBREQID = '........' ¦
 ¦ RESPONSE: ¦
 ¦ REPLY: ¦
 ¦ ENTER: CURRENT DISPLAY ¦
 ¦ PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: NEXT DISPLAY PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 87. Starting the error-handling program, ACCT04

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT02 TASK NUMBER: 0000113 DISPLAY: -07 ¦
 ¦ STATUS: ABOUT TO EXECUTE COMMAND ¦
 ¦ EXEC CICS LINK ¦
 ¦ PROGRAM ('ACCT04 ') ¦
 ¦ COMMAREA ('ACCT02 16') ¦
 ¦ LENGTH (14) ¦
 ¦ OFFSET:X'000B1A' LINE:00180 EIBFN=X'0E02' ¦
 ¦ RESPONSE: ¦
 ¦ REPLY: ¦
 ¦ ENTER: CURRENT DISPLAY ¦
 ¦ PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: NEXT DISPLAY PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 88. Linking to the error program, ACCT04

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT02 TASK NUMBER: 0000113 DISPLAY: -08¦
 ¦ STATUS: COMMAND EXECUTION COMPLETE ¦
 ¦ EXEC CICS HANDLE CONDITION ¦
 ¦ ERROR ¦
 ¦ OFFSET:X'000AC0' LINE:00179 EIBFN=X'0204' ¦
 ¦ RESPONSE: NORMAL EIBRESP=0 ¦
 ¦ REPLY: ¦
 ¦ ENTER: CURRENT DISPLAY ¦
 ¦ PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS¦
 ¦ PF10: PREVIOUS DISPLAY PF11: NEXT DISPLAY PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 89. The HANDLE CONDITION ERROR command

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT02 TASK NUMBER: 0000113 DISPLAY: -09 ¦
 ¦ STATUS: ABOUT TO EXECUTE COMMAND ¦
 ¦ EXEC CICS HANDLE CONDITION ¦
 ¦ ERROR ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 13

 ¦ OFFSET:X'000AC0' LINE:00179 EIBFN=X'0204' ¦
 ¦ RESPONSE: ¦
 ¦ REPLY: ¦
 ¦ ENTER: CURRENT DISPLAY ¦
 ¦ PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: NEXT DISPLAY PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 90. Do the HANDLE CONDITION ERROR command

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT02 TASK NUMBER: 0000113 DISPLAY: -10 ¦
 ¦ STATUS: COMMAND EXECUTION COMPLETE ¦
 ¦ EXEC CICS DELETE ¦
 ¦ FILE ('ACCTFIL ') ¦
 ¦ RIDFLD ('11111') ¦
 ¦ OFFSET:X'0018CE' LINE:00472 EIBFN=X'0608' ¦
 ¦ RESPONSE: INVREQ EIBRESP=16 ¦
 ¦ REPLY: ¦
 ¦ ENTER: CURRENT DISPLAY ¦
 ¦ PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: NEXT DISPLAY PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 91. Here's our failing instruction again

 The delete command is returning with INVREQ.

 As we said in "The COBOL code of our example application" in topic 4.0,
 when discussing Lines 333 to 336 of ACCT02, the problem is that we're
 trying to delete a record that's been read for update. Our mistake is to
 quote a value for the RIDFLD at this point.

 We shall now press ENTER....

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: ACCT04 TASK NUMBER: 0000113 DISPLAY: 00 ¦
 ¦ STATUS: AN ABEND HAS OCCURRED ¦
 ¦ COMMAREA = 'ACCT02 16' ¦
 ¦ EIBTIME = 123914 ¦
 ¦ EIBDATE = 89170 ¦
 ¦ EIBTRNID = 'AC02' ¦
 ¦ EIBTASKN = 113 ¦
 ¦ EIBTRMID = '037L' ¦
 ¦ EIBCPOSN = 1743 ¦
 ¦ EIBCALEN = 14 ¦
 ¦ EIBAID = X'7D' AT X'00543F1E' ¦
 ¦ EIBFN = X'0E0C' ABEND AT X'00543F1F' ¦
 ¦ EIBRCODE = X'000000000000' AT X'00543F21' ¦
 ¦ EIBDS = 'ACCTFIL ' ¦
 ¦ + EIBREQID = '........' ¦
 ¦ ABEND : EACC ¦
 ¦ REPLY: ¦

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 14

 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 92. Back with our abend, EACC, again

 And ENTER again...

 +--+
 ¦ ¦
 ¦ TRANSACTION: AC02 PROGRAM: TASK NUMBER: 0000113 DISPLAY: 00 ¦
 ¦ STATUS: ABNORMAL TASK TERMINATION ¦
 ¦ EIBTIME = 123914 ¦
 ¦ EIBDATE = 89170 ¦
 ¦ EIBTRNID = 'AC02' ¦
 ¦ EIBTASKN = 113 ¦
 ¦ EIBTRMID = '037L' ¦
 ¦ EIBCPOSN = 1743 ¦
 ¦ EIBCALEN = 6 ¦
 ¦ EIBAID = X'7D' AT X'00543F1E' ¦
 ¦ EIBFN = X'0A02' WRITEQ AT X'00543F1F' ¦
 ¦ EIBRCODE = X'000000000000' AT X'00543F21' ¦
 ¦ EIBDS = 'ACCTFIL ' ¦
 ¦ + EIBREQID = '........' ¦
 ¦ ABEND : EACC ¦
 ¦ TO CONTINUE EDF SESSION REPLY YES REPLY: NO ¦
 ¦ ENTER: CONTINUE ¦
 ¦ PF1 : UNDEFINED PF2 : SWITCH HEX/CHAR PF3 : END EDF SESSION ¦
 ¦ PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY ¦
 ¦ PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS ¦
 ¦ PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 93. The abnormal task termination

 Pressing ENTER one final time brings us to this:

 +--+
 ¦ ¦
 ¦ ACCOUNT FILE: ERROR REPORT ¦
 ¦ TRANSACTION AC02 HAS FAILED IN PROGRAM ACCT02 BECAUSE OF ¦
 ¦ A PROGRAM OR FCT TABLE ERROR (INVALID FILE REQUEST). ¦
 ¦ COMMAND DELETE RESP INVREQ ¦
 ¦ THE FILE IS: ACCTFIL . ¦
 ¦ PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORMATION TO THE ¦
 ¦ OPERATIONS STAFF. ¦
 ¦ THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGER UNDER CONTROL OF ¦
 ¦ THE "ACCT" APPLICATION. ¦
 ¦ DFH2206 12:47:47 CIDCICSC TRANSACTION AC02 HAS FAILED WITH ABEND EACC. ¦
 ¦ RESOURCE BACKOUT WAS SUCCESSFUL. ¦
 ¦ ¦
 +--+

 Figure 94. This is the CICS message. Message DFH2206 tells us that all
 recoverable resources associated with the failed transaction

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 15

 have been successfully backed out following the abend.

 If we'd chosen not to suppress displays, you would have faced about
 another 45 screens to reach this point.

 Of course, although you know the EXEC CICS DELETE command is failing, you
 have to go off and read the CICS/ESA Application Programming Reference
 carefully to pinpoint the exact reason. Studying a transaction dump leads
 you to the same conclusion by a different route.

 The beauty of EDF as a testing tool is the way you can home in on a
 problem, and the way you can force your code to behave as though a problem
 had arisen. We hope you find EDF a useful weapon in your bug-killing
 armory

CICS Application Programming Primer
A session with EDF

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 16

 5.1.3.2 Temporary storage browse facility (CEBR)

 We'll describe another diagnostic tool here. This is the CEBR transaction
 that allows you to look at temporary storage queues. If you need to do
 this while debugging, enter the transaction identifier CEBR to produce the
 display shown in Figure 95.

 +--+
 ¦ ¦
 ¦ CEBR TS QUEUE CEBRxxxx RECORD 1 OF 0 COL 1 OF 0¦
 ¦ ENTER COMMAND ===> ¦
 ¦ ************************** TOP OF QUEUE **************************¦
 ¦ ************************* BOTTOM OF QUEUE ************************¦
 ¦ TEMPORARY STORAGE QUEUE CEBRxxxx CONTAINS NO DATA ¦
 ¦ PF1 : HELP PF2 : SWITCH HEX/CHAR PF3 : TERMINATE BROWSE ¦
 ¦ PF4 : VIEW TOP PF5 : VIEW BOTTOM PF6 : REPEAT LAST FIND ¦
 ¦ PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFINED ¦
 ¦ PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFINED ¦
 ¦ ¦
 +--+

 Figure 95. The temporary storage browse (CEBR) display

 This shows the browse display for the temporary storage queue named
 "CEBRtttt" ("tttt" is the terminal identifier of the terminal from which
 you made the entry). Unless you happen to be interested in this
 particular queue (and this is unlikely), the first thing you do is to
 enter "QUEUE xxxxxxxx" in the command area, where "xxxxxxxx" is the name
 of the queue you do want to see. The command area is the space right
 after "ENTER COMMAND" at the top of the screen.

 If a queue by this name exists, you'll see a display of it. The items in
 the queue are displayed one per line, in the area between the command line
 and the PF key menu. Only as much of each item as will fit on one line of
 the screen is shown.

 Initially the display starts with the first character in the item.
 However, if you need to see characters beyond those displayed, you can
 shift the starting character by entering "COLUMN(n)" in the command area.
 This causes the display of each item to begin with the nth character in
 the item; "n" can be up to four digits.

 You can tell which character the display starts at, and how long the
 longest item in the queue is, from the "Col X of Y" information at the top
 of the screen. "X" is the position of the record displayed in the first
 column of the screen, and "Y" is the length of the longest item. The "Line
 N of M" message just before that tells you that the "Nth" item in the
 queue is in the first one on the screen, and there are "M" items in the
 queue.

 You can look through the items in the queue by using the scroll keys shown
 in the figure (PF7, PF8, PF10, and PF11), or you can specify that the
 display should start with a particular item in the queue. The scroll keys
 work just as they do for EDF. To display a particular item, enter "LINE
 (n)" in the command line. CEBR responds by starting the display one item
 before the number you specify; this number, too, can be up to four digits
 long.

 You can redisplay the beginning of the queue either by entering "TOP" in
 the command area or by pressing PF4. Similarly, you can display the last
 screen's worth of items by entering "BOTTOM" or pressing PF5.

 You can also search the items in the queue for the occurrence of a

CICS Application Programming Primer
Temporary storage browse facility (CEBR)

© Copyright IBM Corp. 1984, 1991
5.1.3.2 - 1

 particular character string. If you were looking for the characters
 "MOUNCE", for example, you would put:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ FIND /MOUNCE ¦
 ¦ ¦
 ¦ ¦
 +--+

 in the command area. CEBR would scroll the display forward until it
 displayed the first item that contained "MOUNCE".

 The slash (/) in the command above is a delimiter. It can be any
 non-space character that isn't in the search string. That is,

 +--+
 ¦ ¦
 ¦ ¦
 ¦ FIND X05/07/89 and FIND S05/07/89 ¦
 ¦ ¦
 ¦ ¦
 +--+

 are equivalent.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ FIND /05/07/89 ¦
 ¦ ¦
 ¦ ¦
 +--+

 will not work, however, because there is a slash in the search string. If
 there are any spaces in the search string, you must repeat the delimiter
 at the end of the string. For example:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ FIND /JOHN JONES/ ¦
 ¦ ¦
 ¦ ¦
 +--+

 Once you've entered a find command, you can repeat it (that is, find the
 next occurrence of the string) by pressing PF6.

 You can use PF2 to switch the display from character to hexadecimal
 format, and back again, just like the corresponding switch hex/char
 command in EDF.

 Indeed, you can use the CEBR transaction while under control of EDF, by
 using the PF key assigned for BROWSE TEMPORARY STORAGE. Your EDF
 transaction is suspended; CEBR starts and continues until you end it with
 the PF3 key. If you are in EDF, PF3 returns you to the point at which you
 requested CEBR. If you were not in EDF but came in by entering CEBR, PF3
 terminates the transaction in the normal way, and frees the terminal for
 the next transaction.

 The CEBR transaction also allows you to delete a temporary storage queue,
 by entering PURGE in the command area. And finally, there is a HELP
 facility, explaining how to use CEBR, which you can access by pressing

CICS Application Programming Primer
Temporary storage browse facility (CEBR)

© Copyright IBM Corp. 1984, 1991
5.1.3.2 - 2

 PF1.

CICS Application Programming Primer
Temporary storage browse facility (CEBR)

© Copyright IBM Corp. 1984, 1991
5.1.3.2 - 3

 5.2 Finding the problem

 Subtopics
 5.2.1 Preliminary checklist
 5.2.2 Documentation
 5.2.3 Reference materials
 5.2.4 More testing considerations
 5.2.5 Abends
 5.2.6 Loops
 5.2.7 Waits
 5.2.8 Incorrect output
 5.2.9 CICS system problems

CICS Application Programming Primer
Finding the problem

© Copyright IBM Corp. 1984, 1991
5.2 - 1

 5.2.1 Preliminary checklist

 Before looking in detail at how to cope with the various classes of
 errors, there are some "simple" things for you to check first which may
 turn up a number of mistakes. For example:

 1. Go back and make sure that your translator, compiler and linkage
 editor outputs were all error-free.

 2. Check that the required PROGRAM definitions are present and correct in
 the CSD, and that the you have the correct entries for files in the
 CSD or the FCT.

 3. If you are using RDO and you DEFINE or ALTER a transaction, program or
 mapset, then be sure to use the INSTALL option to get the changes
 invoked.

 4. If you changed any maps, be sure that you created both a new load
 module (TYPE=MAP) and a new DSECT (TYPE=DSECT), and that you then
 recompiled every program using that new DSECT.

 5. If you changed any program or mapset since CICS was last started, make
 sure that you are executing the most recent version, by using the
 transaction:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ CEMT SET PROGRAM(pgrmid) NEWCOPY ¦
 ¦ ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Preliminary checklist

© Copyright IBM Corp. 1984, 1991
5.2.1 - 1

 5.2.2 Documentation

 Next, collect all the documentation of the problem. There are many
 sources of information, including:

 1. Output from the translator, compiler and link editor.

 2. Messages to the terminal associated with the failing transaction, and
 messages to the master terminal.

 3. Observations from the terminal operator and the master terminal
 operator. In the case of the master terminal, you should note any
 unusual messages associated with the startup of CICS and any that
 occurred for some time before the actual problem.

 4. Dumps. (You may not want to bother to print the dumps until you have
 tried other techniques. You should be prepared to do so however,
 because sometimes they are absolutely necessary.)

 5. Shutdown statistics. These aren't usually necessary, and you should
 not automatically shut down your system after a transaction abend to
 get them. However, there are occasions on which they may give you
 insight into problems. Among other things, they show:

 � Which transactions were used
 � Which programs were executed
 � Which terminals were used
 � A summary of temporary storage activity
 � A summary of file activity.

 6. CEMT output. You can use CEMT to find out status information about
 files, programs, transactions, and executing tasks.

CICS Application Programming Primer
Documentation

© Copyright IBM Corp. 1984, 1991
5.2.2 - 1

 5.2.3 Reference materials

 You should also collect certain reference materials for debugging. These
 include:

 � CICS/ESA Application Programming Reference . This book contains
 definitive information on the error conditions possible on the various
 commands, and on the EIB.

 � CICS/ESA Messages and Codes. This book describes all the "DFHxxxx"
 messages that CICS issues and all the CICS-generated transaction abend
 codes.

 � CICS/ESA Problem Determination Guide . This manual includes guidance
 on:

 1. Techniques and tools for problem determination in CICS

 2. Causes of waits and loops in applications, and how to solve them

 3. Extended and abbreviated trace format details

 4. CICS system and transaction dump format and content.

CICS Application Programming Primer
Reference materials

© Copyright IBM Corp. 1984, 1991
5.2.3 - 1

 5.2.4 More testing considerations

 Subtopics
 5.2.4.1 Regression testing
 5.2.4.2 Single-thread testing
 5.2.4.3 Multi-thread testing

CICS Application Programming Primer
More testing considerations

© Copyright IBM Corp. 1984, 1991
5.2.4 - 1

 5.2.4.1 Regression testing

 A regression test is used to make sure that all the transactions in a
 system continue to do their processing in the same way both before and
 after changes are applied to the system. This is to ensure that fixes
 that have been applied to solve one problem don't go on to cause further
 problems. It's often a good idea to build a set of miniature files to
 perform your tests on, because it's much easier to examine a small data
 file for changes.

 A good regression test will exercise all the code in every program -- that
 is, it will explore all tests and possible conditions. As your system
 develops to include more transactions, more possible conditions, and so
 on, add these to your test system to keep it in step. The results of each
 test should match those from the previous round of testing. Any
 discrepancies are grounds for suspicion. You can compare terminal output,
 file changes, and log entries for validity.

CICS Application Programming Primer
Regression testing

© Copyright IBM Corp. 1984, 1991
5.2.4.1 - 1

 5.2.4.2 Single-thread testing

 A single-thread test takes one application transaction at a time, in an
 otherwise "empty" CICS system, and sees how it behaves. This enables you
 to test the program logic, and also shows whether or not the basic CICS
 information (such as CSD or FCT entries) is correct. It's quite feasible
 to test this single application in one CICS region while your normal,
 online production CICS system is active in another.

CICS Application Programming Primer
Single-thread testing

© Copyright IBM Corp. 1984, 1991
5.2.4.2 - 1

 5.2.4.3 Multi-thread testing

 A multi-thread test involves several, concurrently-active transactions.
 Naturally, all the transactions will be in the same CICS region, so you
 can readily test the ability of a new transaction to co-exist with its
 future partners.

 You may find that a transaction that sails through its single-thread
 testing still fails miserably in the multi-thread test. Or it may cause
 other transactions to fail, or even terminate CICS!

 Now we can take a systematic look at abends, loops, waits, and incorrect
 output. We'll start with abends.

CICS Application Programming Primer
Multi-thread testing

© Copyright IBM Corp. 1984, 1991
5.2.4.3 - 1

 5.2.5 Abends

 The message with which CICS tells you that a transaction abended:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ DFH2005 TRANSACTION xxxx PROGRAM yyyyyyyy ABEND zzzz ¦
 ¦ ¦
 ¦ ¦
 +--+

 contains several vital pieces of information. It identifies the
 transaction (xxxx) that failed. It tells which program (yyyyyyyy) was
 being executed at the time of the failure. And, most important, it
 indicates which of the many things that could go wrong did. This is the
 abend code, zzzz.

 There are two kinds of abend codes: yours and CICS's. All the codes that
 CICS uses begin with the letter A; yours are the ones that appear in the
 ABCODE parameter on an ABEND command. For ease of recognition, therefore,
 don't start your ABCODEs with the letter A.

 The first step in tracking down the cause of an abend is to look up this
 code. If it is one of yours, you'll know what condition it represents.
 From there you can look at other information (values in working storage
 and the sequence of calls leading up to the crash) to find out how the
 situation came about. For CICS abends, the place to look is the CICS/ESA
 Messages and Codes , which describes all of the CICS abend codes and, for
 many of them, has suggestions for analysis.

 When you are using the subset of commands described in this Primer, you
 are likely to produce only a relatively small number of CICS ABENDs. With
 some inventiveness you could produce others, but the ones you are most
 likely to encounter are described under the following headings.

 Subtopics
 5.2.5.1 ASRA
 5.2.5.2 ASRB
 5.2.5.3 AICA
 5.2.5.4 APCT
 5.2.5.5 AFCA
 5.2.5.6 AEIx and AEYx
 5.2.5.7 ATNI

CICS Application Programming Primer
Abends

© Copyright IBM Corp. 1984, 1991
5.2.5 - 1

 5.2.5.1 ASRA

 To stop a simple error in one transaction from crashing the whole CICS
 system, CICS issues an operating system SVC to intercept abends.

 So, for example, if you try to do packed arithmetic with EBCDIC variables
 in your COBOL code (producing what the operating system recognizes as a
 program check) you don't get the abend that you would in a batch program.
 Instead, when the operating system detects the program check, it returns
 control to CICS, which terminates the offending transaction with an abend
 of its own: ASRA. All ASRA means, therefore, is that a program has
 committed a violation of the program check type. In COBOL, the source of
 this trouble is almost always an attempt to do arithmetic with variables
 that are of mixed PICTURE types or that have not been initialized
 properly.

 The first step in diagnosing an ASRA is to find out where it occurred.
 This means finding out the program status word (PSW) at the time of the
 program check. You can find this information either in a dump or by using
 EDF. Next, you need to know in what program it occurred, so that you can
 find out where in that program the offending instruction was. Usually the
 program is the application program that was executing at the time.

CICS Application Programming Primer
ASRA

© Copyright IBM Corp. 1984, 1991
5.2.5.1 - 1

 5.2.5.2 ASRB

 An ASRB abend occurs in almost the same way as an ASRA, but it is the
 result of an operating system abend other than the common program check.
 If CICS can contain the damage, it terminates that transaction with ASRB.
 The procedure for finding the source of the trouble is the same as for
 ASRA. An operating system abend isn't likely to happen except as a
 program check in a CICS command-level program, however, and so ASRB is
 much less common than ASRA.

CICS Application Programming Primer
ASRB

© Copyright IBM Corp. 1984, 1991
5.2.5.2 - 1

 5.2.5.3 AICA

 As explained earlier, an AICA abend occurs when CICS detects that an
 application program is looping. Whether CICS considers a program to be
 looping depends on the length of time that elapses between successive CICS
 commands. If the time is longer than the runaway task time interval
 (ICVR) parameter in the SIT, CICS assumes that the program is looping and
 terminates it with code AICA.

 When you have a loop, you need to know where it is in the code. With an
 AICA, you know by definition that the loop started after the last CICS
 command was issued and ended before any other command was issued. You can
 tell either from the trace table in a dump, or by using EDF, what the last
 CICS command was and where it was in the code, and the program listing
 will tell you where the next one was expected. If this doesn't pinpoint
 the problem, look at the values of your Working-Storage variables. Often
 these values, in combination with your knowledge of the program logic,
 will tell you almost exactly how far you got in the code.

 If you still need further information, however, you can use either EDF or
 transaction dumps to work out how far through a section of code you are
 getting, and what the values of the variables in Working-Storage are at
 each step. To do this with EDF, choose a CICS statement that you aren't
 sure gets executed. Using its statement number (from the translator if
 you used DEBUG) or its hex location otherwise, enter it as a stop
 condition. Then let the program run.

 If the loop is far into the code, suppress the displays. If the program
 reaches the stop condition, then you know that the CICS statement got
 executed. Pick another statement beyond this one and repeat the process.
 If the statement does not get executed before the AICA occurs, pick
 another CICS statement between it and the beginning of the loop. Repeat
 this process until you've located the loop.

 The technique with transaction dumps is very similar, except that you
 should pick out all the questionable statements at once, and put a DUMP
 command after each one, each with a different DMPCODE identifier. Then
 run the program and analyze the dumps. You can tell from the sequence of
 DMPCODEs how far you got through the code, and your Working-Storage at
 each point will also be available in the dumps, to help you work out what
 went wrong.

 We'll add two notes of caution here about AICA abends.

 1. Since in all but the most recent versions CICS uses real time rather
 than processor time to detect loops, it's possible for a transaction
 to get terminated, with AICA, without being in a loop. This can
 result from setting the runaway task time interval (ICVR) value in the
 SIT too low, or from too much interference with the CICS region from
 other regions, or a combination of both. If you've any doubt that an
 AICA is valid, raise the ICVR value somewhat and repeat the
 transaction several times. If it is a "true" AICA, the last CICS
 command executed will always be the same one.

 2. Certain CICS commands don't pass through task control and don't,
 therefore, reset the runaway task time interval.

CICS Application Programming Primer
AICA

© Copyright IBM Corp. 1984, 1991
5.2.5.3 - 1

 5.2.5.4 APCT

 This abend occurs when you attempt to execute a program that is either (1)
 disabled, or (2) not defined at all in an active RDO group, or (3) the map
 or other load module referenced by the application cannot be found. For
 pure command-level programs, APCT can occur only when the first program
 for a transaction is invoked (before the command-level interface gets
 established). After that, the same type of failure (during a LINK or XCTL
 command, for instance) produces an AEI0 abend instead.

 So, if you get an APCT, the cause is one of the following:

 1. The program named in the DEFINE TRANSACTION command hasn't been
 defined in a DEFINE PROGRAM command.

 2. The program is disabled.

 Programs can be disabled by an operator or even by CICS for sufficiently
 unsuitable behavior. By far the most common cause, however, is that CICS
 could not find the program in the load library at startup time, and
 disabled the program for that reason. If this occurs, therefore, make
 sure that:

 � The name of the program in the load library matches the name in th
 CSD, and the program has been successfully linked into the library.

 � The program name in the DEFINE TRANSACTION command is the same as th
 name in the corresponding DEFINE PROGRAM command.

 � The program is enabled. To find out the status of the program at th
 time of the APCT failure, use the transaction:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ CEMT INQUIRE PROGRAM(pgrmid) ¦
 ¦ ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
APCT

© Copyright IBM Corp. 1984, 1991
5.2.5.4 - 1

 5.2.5.5 AFCA

 This abend occurs when you try to use a file that has been disabled. This
 should happen only rarely. If the file is closed for some reason (which
 is more likely) and if you've not handled this condition, you'll get an
 AEIS abend instead. If AFCA does occur, use the CEMT transaction to find
 out which of the files in question is disabled:

 +--+
 ¦ ¦
 ¦ ¦
 ¦ CEMT INQUIRE DATASET(fileid) ¦
 ¦ ¦
 ¦ ¦
 +--+

 The problem should disappear as soon as the file is properly available.

CICS Application Programming Primer
AFCA

© Copyright IBM Corp. 1984, 1991
5.2.5.5 - 1

 5.2.5.6 AEIx and AEYx

 All of the abend codes that start with the letters "AEI" or "AEY" result
 from exceptional conditions detected in command-level programs, for which
 no HANDLE CONDITION command is active.

 Figure 96 lists all of the AEIx and AEYx abends that may occur using the
 commands described in this Primer. After each code the figure shows the
 exceptional condition, and also the command type (such as file or BMS),
 and the associated EIBFN and EIBRCODE values.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ Code Condition Service EIBFN EIBRCODE ¦
 ¦ AEIA ERROR Misc N/A N/A ¦
 ¦ AEIK TERMIDERR Time 10 12 ¦
 ¦ AEIL FILENOTFOUND File 06 01 ¦
 ¦ AEIM NOTFND File 06 81 ¦
 ¦ or Time 10 81 ¦
 ¦ AEIN DUPREC File 06 82 ¦
 ¦ AEIP INVREQ File 06 08 ¦
 ¦ or Temp Stge 0A 20 ¦
 ¦ or Program 0E E0 ¦
 ¦ AEIQ IOERR File 06 80 ¦
 ¦ AEIR NOSPACE File 06 83 ¦
 ¦ or Temp Stge 0A 08 ¦
 ¦ AEIS NOTOPEN File 06 0C ¦
 ¦ AEIT ENDFILE File 06 0F ¦
 ¦ AEIU ILLOGIC File 06 02 ¦
 ¦ AEIV LENGERR File 06 E1 ¦
 ¦ or Temp Stge 0A E1 ¦
 ¦ or Time 10 E1 ¦
 ¦ AEIZ ITEMERR Temp Stge 0A 01 ¦
 ¦ AEI0 PGMIDERR Program 0E 01 ¦
 ¦ AEI1 TRANSIDERR Time 10 11 ¦
 ¦ AEI3 INVTSREQ Time 10 14 ¦
 ¦ AEI8 IOERR Temp Stge 0A 04 ¦
 ¦ or Time 10 04 ¦
 ¦ AEI9 MAPFAIL BMS 18 04 ¦
 ¦ AEYB INVMPSZ BMS 18 08 ¦
 ¦ AEYH QIDERR Temp Stge 0A 02 ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 96. AEIx and AEIy abend conditions

 For the most part, the reasons for these abends are exactly what is stated
 in the CICS/ESA Application Programming Reference for the corresponding
 condition. Some of the errors may have multiple causes, such as ILLOGIC
 and INVREQ. For example, on an ILLOGIC abend, byte 1 of EIBRCODE is the
 VSAM return code and byte 2 is the VSAM error code.

 If you determine that the condition was the result of a logic error in the
 program, then you can correct that error and retry. If, however, it turns
 out that the condition could arise naturally, then you should add a HANDLE
 CONDITION command to the program to deal with it.

CICS Application Programming Primer
AEIx and AEYx

© Copyright IBM Corp. 1984, 1991
5.2.5.6 - 1

 5.2.5.7 ATNI

 A terminal error will lead to an ATNI transaction abend, and a CICS
 transaction dump. In other words, the application will not get control
 back, and contact with the screen will be lost.

CICS Application Programming Primer
ATNI

© Copyright IBM Corp. 1984, 1991
5.2.5.7 - 1

 5.2.6 Loops

 We've already described a technique for finding loops that do not contain
 any CICS commands. (It was in the discussion of AICA abends, and involved
 using either EDF or transaction dumps.) For loops that do include CICS
 commands, the same tools apply.

 Using EDF, the easiest method is to invoke the transaction and let it run
 until you're satisfied that it is looping. Then go to another terminal
 and invoke EDF for the terminal running the suspect transaction. EDF will
 interrupt the execution of the transaction at every CICS command, and send
 a display to this second terminal. As each command is executed, note it
 in the associated program listing. Let the program continue executing
 commands until a clear pattern of repetition emerges.

 Having located the loop, the next step is to find the cause. There will
 usually be one or more points in the loop at which the program should
 exit, provided certain conditions are met. The problem is that the
 conditions are never met. When, under EDF, you reach the command that is
 causing the problem, you may need to examine the values in Working-Storage
 to find out why this is occurring. The next time the loop is executed,
 you may want to pause at the preceding command and look at the same
 variables at that time. If there's too much code between these two
 commands to see exactly what's going wrong, you can then use the
 techniques for the other kind of loops (AICA abends) to locate the error
 within the CICS statements between the CICS commands.

 The process is very similar using a transaction dump. Let the transaction
 run until it's clearly looping, and then cancel it. Use the trace table
 in the resulting abend dump to find the repeated sequence of CICS
 commands. At this point the contents of Working-Storage may or may not
 give you enough information to work out the problem. If they do not, put
 further dump requests near the expected exit point(s) from the loop, and
 use the technique described above to close in on the problem.

CICS Application Programming Primer
Loops

© Copyright IBM Corp. 1984, 1991
5.2.6 - 1

 5.2.7 Waits

 Remember we're assuming you have a batch programming background.

 With that in mind, you can avoid WAITs by avoiding two programming
 practices you may be bringing with you from that background. You see, the
 most common cause of a WAIT in a COBOL program is an ACCEPT FROM CONSOLE
 or STOP statement to which the operator failed to reply. Check for these
 before going any further with your debugging of a wait.

 Now, what about approaching WAITs from a CICS point of view?

 The key to recognizing a wait is the operator's observation. In other
 words, he or she has typed in some data, pressed the ENTER key, and
 nothing much seems to be happening.

 When you first suspect a wait, use the CEMT transaction to make sure there
 is still a task associated with the terminal. If there isn't, you've got
 an "incorrect output". A waiting task will show as suspended or active.

 If we leave aside the question of database access (as beyond the scope of
 the Primer), there are then just five reasons for a task to get suspended:

 � Terminal control wai

 � Unsuccessful enqueue -- when a task needs, but has failed to gai
 access to, a resource owned by some other task

 � Interval control wai

 � Not enough main storag

 � Not enough auxiliary storage

 There are a further four reasons for a task to be active but waiting:

 � Dispatchabl

 � Dispatchable, but on the point of an ABEND comman

 � Non-dispatchable, because of too many other tasks in the system, o
 some other CICS workload control

 � Waiting for some external or internal event to complete (for example
 file input/output or no VSAM string available, respectively).

 Whatever the case, purge the task and print the dump. Work through the
 dump to find the last CALL made by the program. If the troublesome task
 was suspended, look for the KCP SUSPEND trace table entry. Just before
 this should be a clue to the reason for the suspend, bearing in mind the
 above five reasons.

 If, on the other hand, the task was active, look for the KCP WAIT trace
 table entry. Just before this should be a clue to the reason for the
 wait.

 Between them, the source code of the last CALL and the request causing
 either the wait or the suspend should cast some light on the problem.

 Of course, the problem may be entirely outside your task. There are two
 reasons for the CICS region itself to be in a wait state:

 1. No CICS tasks are currently ready to be dispatched, so task control
 has issued an operating system wait for the length of time specified
 by the ICV (a SIT operand that basically says how long CICS is to give

CICS Application Programming Primer
Waits

© Copyright IBM Corp. 1984, 1991
5.2.7 - 1

 up control).

 2. A wait has been issued from somewhere else in CICS, or an SVC
 (supervisor call) has been issued.

 In the first case, you must check each task to find out what it's waiting
 for. There may also be some reason why new tasks aren't coming along.
 The system could be short on storage; or the maximum number of concurrent
 tasks allowed could have been reached; or terminal input could be failing
 to get through.

 In the second case, you must find out what's going on in the operating
 system and also, perhaps, confirm that a badly-behaved task hasn't issued
 an SVC. During normal running, CICS issues only the task control
 operating system wait we mentioned above.

CICS Application Programming Primer
Waits

© Copyright IBM Corp. 1984, 1991
5.2.7 - 2

 5.2.8 Incorrect output

 As we've said, the symptoms of incorrect output are garbage on the screen
 (or printer), a terminal that simply locks up, bad data in files, or wrong
 screen sequences. In fact, incorrect output problems can present all
 kinds of bothersome symptoms and be very interesting to pin down.

 Here are some suggestions for you to think about when you have a program
 that's compiled correctly but that seems to misbehave:

 � Is the input data correct

 � Are you correctly validating entered data

 � Assuming you are getting some output at the terminal or printed out,
 check it over:

 - Is the sequence what you expect?
 - Are the items correct?
 - Are any totals correct?
 - Are some items being repeated when they shouldn't be?
 - Are any items missing?

 � Print any output files, data files, and so on to see if they contai
 what you expect.

 � Are you initializing or clearing program variables properly

 Be sure to look up any messages or codes that come up. Work through
 program dump listings to see what command last executed. (Note, however,
 that an operation that uncovers incorrect output may be completely
 innocent of having caused it.)

 Try to find out what resource is failing. It's usually data on a disk (on
 a clear disk, you can seek forever!) or data in a terminal data stream.
 Of course, data on the terminal may be bad because of a bad file.

 Work back, if possible, from the place where the symptoms first occur, and
 forward from a point where the data is OK. Where you meet should be
 interesting.

 Look at map or file data structures from appropriate listings. Compare
 each field, as defined in the output from the map assembly, with the map
 as displayed in working storage. You can use EDF to do this, or a
 transaction dump. Note the contents of each field carefully, and look at
 each field suspiciously.

 Paranoid patience is sometimes the best approach. Good luck!

CICS Application Programming Primer
Incorrect output

© Copyright IBM Corp. 1984, 1991
5.2.8 - 1

 5.2.9 CICS system problems

 Problems that affect CICS as a system fall into the same four categories
 as those which affect transactions: abends, loops, waits, and incorrect
 output. As noted before, such problems are generally beyond the scope of
 this Primer.

CICS Application Programming Primer
CICS system problems

© Copyright IBM Corp. 1984, 1991
5.2.9 - 1

 6.0 Appendixes

 +--- The appendixes describe: ---+
 ¦ ¦
 ¦ ¦ Where to find out how to install the example application ¦
 ¦ ¦
 ¦ ¦ The remaining facilities of CICS ¦
 ¦ ¦
 ¦ ¦ The application programming books. ¦
 ¦ ¦
 +--+

CICS Application Programming Primer
Appendixes

© Copyright IBM Corp. 1984, 1991
6.0 - 1

 A.0 Appendix A. Getting the application into your CICS system

 Subtopics
 A.1 Introduction
 A.2 What has to be done?

CICS Application Programming Primer
Appendix A. Getting the application into your CICS system

© Copyright IBM Corp. 1984, 1991
A.0 - 1

 A.1 Introduction

 Your systems programmer will probably have to help you get the application
 into your CICS system. You'll need a copy of the CICS/ESA Installation
 Guide to refer to for guidance on doing so. You may also need to refer to
 the CICS/ESA System Definition Guide if you want to have more background
 guidance information about installing COBOL application programs.

CICS Application Programming Primer
Introduction

© Copyright IBM Corp. 1984, 1991
A.1 - 1

 A.2 What has to be done?

 The COBOL source code for the application programs is supplied on the CICS
 distribution tape. You'll find the application source code in the
 following members of the CICS330.SAMPLIB library:

 +--+
 ¦ Table 1. Source code members ¦
 +--¦
 ¦ Name as ¦ Primer ¦ ¦
 ¦ supplied ¦ name ¦ Description ¦
 +------------+--------------+--¦
 ¦ DFHXSET ¦ ACCTSET ¦ Map definitions for 3270 displays and ¦
 ¦ ¦ ¦ print ¦
 +------------+--------------+--¦
 ¦ DFHXS00 ¦ ACCT00 ¦ Display menu ¦
 +------------+--------------+--¦
 ¦ DFHXS01 ¦ ACCT01 ¦ Initial request processing ¦
 +------------+--------------+--¦
 ¦ DFHXS02 ¦ ACCT02 ¦ Update processing ¦
 +------------+--------------+--¦
 ¦ DFHXS03 ¦ ACCT03 ¦ Requests for printing ¦
 +------------+--------------+--¦
 ¦ DFHXS04 ¦ ACCT04 ¦ Error processing ¦
 +------------+--------------+--¦
 ¦ DFHXSREC ¦ ACCTREC ¦ Layout of account record ¦
 +------------+--------------+--¦
 ¦ DFHXSIXR ¦ ACIXREC ¦ Layout of index record ¦
 +------------+--------------+--¦
 ¦ DFHXSINX ¦ ACCTINDX ¦ Index file recovery (batch program) ¦
 +--+

 Note:

 For an illustration of the data structure created when assembling
 mapset ACCTSET, see "The result of the SYSPARM=DSECT assembly" in
 topic A.2.1.

 The example application uses VSAM files and 3270 display and printer
 terminals.

 Before you can run the application, you have to prepare the mapset and
 programs for execution, define all the required resources to CICS, and
 define the VSAM files. If you are using CICS/ESA, you'll find general
 guidance about installing mapsets and programs, in the CICS/ESA System
 Definition Guide. For guidance on defining VSAM files and an example of
 JCL needed to do so, see the CICS/ESA Installation Guide.

 Note that ACCTINDX is not required for normal online execution of the
 application. See "Recovery requirements" in topic 2.4.2.

 Subtopics
 A.2.1 The result of the SYSPARM=DSECT assembly

CICS Application Programming Primer
What has to be done?

© Copyright IBM Corp. 1984, 1991
A.2 - 1

 A.2.1 The result of the SYSPARM=DSECT assembly

 The following example shows the data structure created when assembling
 mapset ACCTSET.

 +--+
 ¦ ¦
 ¦ ¦
 ¦ 01 ACCTMNUI. ¦
 ¦ 02 FILLER PIC X(12). ¦
 ¦ 02 SNAMEML COMP PIC S9(4). ¦
 ¦ 02 SNAMEMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES SNAMEMF. ¦
 ¦ 03 SNAMEMA PICTURE X. ¦
 ¦ 02 SNAMEMI PIC X(12). ¦
 ¦ 02 FNAMEML COMP PIC S9(4). ¦
 ¦ 02 FNAMEMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES FNAMEMF. ¦
 ¦ 03 FNAMEMA PICTURE X. ¦
 ¦ 02 FNAMEMI PIC X(7). ¦
 ¦ 02 REQML COMP PIC S9(4). ¦
 ¦ 02 REQMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES REQMF. ¦
 ¦ 03 REQMA PICTURE X. ¦
 ¦ 02 REQMI PIC X(1). ¦
 ¦ 02 ACCTML COMP PIC S9(4). ¦
 ¦ 02 ACCTMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES ACCTMF. ¦
 ¦ 03 ACCTMA PICTURE X. ¦
 ¦ 02 ACCTMI PIC X(5). ¦
 ¦ 02 PRTRML COMP PIC S9(4). ¦
 ¦ 02 PRTRMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES PRTRMF. ¦
 ¦ 03 PRTRMA PICTURE X. ¦
 ¦ 02 PRTRMI PIC X(4). ¦
 ¦ 02 SUMTTLML COMP PIC S9(4). ¦
 ¦ 02 SUMTTLMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES SUMTTLMF. ¦
 ¦ 03 SUMTTLMA PICTURE X. ¦
 ¦ 02 SUMTTLMI PIC X(79). ¦
 ¦ 02 SUMLNMD OCCURS 6 TIMES. ¦
 ¦ 03 SUMLNML COMP PIC S9(4). ¦
 ¦ 03 SUMLNMF PICTURE X. ¦
 ¦ 03 SUMLNMI PIC X(79). ¦
 ¦ 02 MSGML COMP PIC S9(4). ¦
 ¦ 02 MSGMF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES MSGMF. ¦
 ¦ 03 MSGMA PICTURE X. ¦
 ¦ 02 MSGMI PIC X(60). ¦
 ¦ 01 ACCTMNUO REDEFINES ACCTMNUI. ¦
 ¦ 02 FILLER PIC X(12). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 SNAMEMO PIC X(12). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 FNAMEMO PIC X(7). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 REQMO PIC X(1). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 ACCTMO PIC X(5). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 PRTRMO PIC X(4). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 SUMTTLMO PIC X(79). ¦
 ¦ 02 DFHMS1 OCCURS 6 TIMES. ¦
 ¦ 03 FILLER PICTURE X(2). ¦

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly

© Copyright IBM Corp. 1984, 1991
A.2.1 - 1

 ¦ 03 SUMLNMA PICTURE X. ¦
 ¦ 03 SUMLNMO PIC X(79). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 MSGMO PIC X(60). ¦
 ¦ 01 ACCTDTLI. ¦
 ¦ 02 FILLER PIC X(12). ¦
 ¦ 02 TITLEDL COMP PIC S9(4). ¦
 ¦ 02 TITLEDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES TITLEDF. ¦
 ¦ 03 TITLEDA PICTURE X. ¦
 ¦ 02 TITLEDI PIC X(14). ¦
 ¦ 02 ACCTDL COMP PIC S9(4). ¦
 ¦ 02 ACCTDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES ACCTDF. ¦
 ¦ 03 ACCTDA PICTURE X. ¦
 ¦ 02 ACCTDI PIC X(5). ¦
 ¦ 02 SNAMEDL COMP PIC S9(4). ¦
 ¦ 02 SNAMEDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES SNAMEDF. ¦
 ¦ 03 SNAMEDA PICTURE X. ¦
 ¦ 02 SNAMEDI PIC X(18). ¦
 ¦ 02 FNAMEDL COMP PIC S9(4). ¦
 ¦ 02 FNAMEDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES FNAMEDF. ¦
 ¦ 03 FNAMEDA PICTURE X. ¦
 ¦ 02 FNAMEDI PIC X(12). ¦
 ¦ 02 MIDL COMP PIC S9(4). ¦
 ¦ 02 MIDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES MIDF. ¦
 ¦ 03 MIDA PICTURE X. ¦
 ¦ 02 MIDI PIC X(1). ¦
 ¦ 02 TTLDL COMP PIC S9(4). ¦
 ¦ 02 TTLDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES TTLDF. ¦
 ¦ 03 TTLDA PICTURE X. ¦
 ¦ 02 TTLDI PIC X(4). ¦
 ¦ 02 TELDL COMP PIC S9(4). ¦
 ¦ 02 TELDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES TELDF. ¦
 ¦ 03 TELDA PICTURE X. ¦
 ¦ 02 TELDI PIC X(10). ¦
 ¦ 02 ADDR1DL COMP PIC S9(4). ¦
 ¦ 02 ADDR1DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES ADDR1DF. ¦
 ¦ 03 ADDR1DA PICTURE X. ¦
 ¦ 02 ADDR1DI PIC X(24). ¦
 ¦ 02 ADDR2DL COMP PIC S9(4). ¦
 ¦ 02 ADDR2DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES ADDR2DF. ¦
 ¦ 03 ADDR2DA PICTURE X. ¦
 ¦ 02 ADDR2DI PIC X(24). ¦
 ¦ 02 ADDR3DL COMP PIC S9(4). ¦
 ¦ 02 ADDR3DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES ADDR3DF. ¦
 ¦ 03 ADDR3DA PICTURE X. ¦
 ¦ 02 ADDR3DI PIC X(24). ¦
 ¦ 02 AUTH1DL COMP PIC S9(4). ¦
 ¦ 02 AUTH1DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES AUTH1DF. ¦
 ¦ 03 AUTH1DA PICTURE X. ¦
 ¦ 02 AUTH1DI PIC X(32). ¦
 ¦ 02 AUTH2DL COMP PIC S9(4). ¦
 ¦ 02 AUTH2DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES AUTH2DF. ¦
 ¦ 03 AUTH2DA PICTURE X. ¦

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly

© Copyright IBM Corp. 1984, 1991
A.2.1 - 2

 ¦ 02 AUTH2DI PIC X(32). ¦
 ¦ 02 AUTH3DL COMP PIC S9(4). ¦
 ¦ 02 AUTH3DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES AUTH3DF. ¦
 ¦ 03 AUTH3DA PICTURE X. ¦
 ¦ 02 AUTH3DI PIC X(32). ¦
 ¦ 02 AUTH4DL COMP PIC S9(4). ¦
 ¦ 02 AUTH4DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES AUTH4DF. ¦
 ¦ 03 AUTH4DA PICTURE X. ¦
 ¦ 02 AUTH4DI PIC X(32). ¦
 ¦ 02 CARDSDL COMP PIC S9(4). ¦
 ¦ 02 CARDSDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES CARDSDF. ¦
 ¦ 03 CARDSDA PICTURE X. ¦
 ¦ 02 CARDSDI PIC X(1). ¦
 ¦ 02 IMODL COMP PIC S9(4). ¦
 ¦ 02 IMODF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES IMODF. ¦
 ¦ 03 IMODA PICTURE X. ¦
 ¦ 02 IMODI PIC X(2). ¦
 ¦ 02 IDAYDL COMP PIC S9(4). ¦
 ¦ 02 IDAYDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES IDAYDF. ¦
 ¦ 03 IDAYDA PICTURE X. ¦
 ¦ 02 IDAYDI PIC X(2). ¦
 ¦ 02 IYRDL COMP PIC S9(4). ¦
 ¦ 02 IYRDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES IYRDF. ¦
 ¦ 03 IYRDA PICTURE X. ¦
 ¦ 02 IYRDI PIC X(2). ¦
 ¦ 02 RSNDL COMP PIC S9(4). ¦
 ¦ 02 RSNDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES RSNDF. ¦
 ¦ 03 RSNDA PICTURE X. ¦
 ¦ 02 RSNDI PIC X(1). ¦
 ¦ 02 CCODEDL COMP PIC S9(4). ¦
 ¦ 02 CCODEDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES CCODEDF. ¦
 ¦ 03 CCODEDA PICTURE X. ¦
 ¦ 02 CCODEDI PIC X(1). ¦
 ¦ 02 APPRDL COMP PIC S9(4). ¦
 ¦ 02 APPRDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES APPRDF. ¦
 ¦ 03 APPRDA PICTURE X. ¦
 ¦ 02 APPRDI PIC X(3). ¦
 ¦ 02 SCODE1DL COMP PIC S9(4). ¦
 ¦ 02 SCODE1DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES SCODE1DF. ¦
 ¦ 03 SCODE1DA PICTURE X. ¦
 ¦ 02 SCODE1DI PIC X(1). ¦
 ¦ 02 SCODE2DL COMP PIC S9(4). ¦
 ¦ 02 SCODE2DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES SCODE2DF. ¦
 ¦ 03 SCODE2DA PICTURE X. ¦
 ¦ 02 SCODE2DI PIC X(1). ¦
 ¦ 02 SCODE3DL COMP PIC S9(4). ¦
 ¦ 02 SCODE3DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES SCODE3DF. ¦
 ¦ 03 SCODE3DA PICTURE X. ¦
 ¦ 02 SCODE3DI PIC X(1). ¦
 ¦ 02 STATTLDL COMP PIC S9(4). ¦
 ¦ 02 STATTLDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES STATTLDF. ¦
 ¦ 03 STATTLDA PICTURE X. ¦

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly

© Copyright IBM Corp. 1984, 1991
A.2.1 - 3

 ¦ 02 STATTLDI PIC X(15). ¦
 ¦ 02 STATDL COMP PIC S9(4). ¦
 ¦ 02 STATDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES STATDF. ¦
 ¦ 03 STATDA PICTURE X. ¦
 ¦ 02 STATDI PIC X(2). ¦
 ¦ 02 LIMTTLDL COMP PIC S9(4). ¦
 ¦ 02 LIMTTLDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES LIMTTLDF. ¦
 ¦ 03 LIMTTLDA PICTURE X. ¦
 ¦ 02 LIMTTLDI PIC X(18). ¦
 ¦ 02 LIMITDL COMP PIC S9(4). ¦
 ¦ 02 LIMITDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES LIMITDF. ¦
 ¦ 03 LIMITDA PICTURE X. ¦
 ¦ 02 LIMITDI PIC X(8). ¦
 ¦ 02 HISTTLDL COMP PIC S9(4). ¦
 ¦ 02 HISTTLDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES HISTTLDF. ¦
 ¦ 03 HISTTLDA PICTURE X. ¦
 ¦ 02 HISTTLDI PIC X(71). ¦
 ¦ 02 HIST1DL COMP PIC S9(4). ¦
 ¦ 02 HIST1DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES HIST1DF. ¦
 ¦ 03 HIST1DA PICTURE X. ¦
 ¦ 02 HIST1DI PIC X(61). ¦
 ¦ 02 HIST2DL COMP PIC S9(4). ¦
 ¦ 02 HIST2DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES HIST2DF. ¦
 ¦ 03 HIST2DA PICTURE X. ¦
 ¦ 02 HIST2DI PIC X(61). ¦
 ¦ 02 HIST3DL COMP PIC S9(4). ¦
 ¦ 02 HIST3DF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES HIST3DF. ¦
 ¦ 03 HIST3DA PICTURE X. ¦
 ¦ 02 HIST3DI PIC X(61). ¦
 ¦ 02 MSGDL COMP PIC S9(4). ¦
 ¦ 02 MSGDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES MSGDF. ¦
 ¦ 03 MSGDA PICTURE X. ¦
 ¦ 02 MSGDI PIC X(60). ¦
 ¦ 02 VFYDL COMP PIC S9(4). ¦
 ¦ 02 VFYDF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES VFYDF. ¦
 ¦ 03 VFYDA PICTURE X. ¦
 ¦ 02 VFYDI PIC X(1). ¦
 ¦ 01 ACCTDTLO REDEFINES ACCTDTLI. ¦
 ¦ 02 FILLER PIC X(12). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 TITLEDO PIC X(14). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 ACCTDO PIC X(5). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 SNAMEDO PIC X(18). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 FNAMEDO PIC X(12). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 MIDO PIC X(1). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 TTLDO PIC X(4). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 TELDO PIC X(10). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 ADDR1DO PIC X(24). ¦
 ¦ 02 FILLER PICTURE X(3). ¦

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly

© Copyright IBM Corp. 1984, 1991
A.2.1 - 4

 ¦ 02 ADDR2DO PIC X(24). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 ADDR3DO PIC X(24). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 AUTH1DO PIC X(32). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 AUTH2DO PIC X(32). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 AUTH3DO PIC X(32). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 AUTH4DO PIC X(32). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 CARDSDO PIC X(1). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 IMODO PIC X(2). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 IDAYDO PIC X(2). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 IYRDO PIC X(2). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 RSNDO PIC X(1). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 CCODEDO PIC X(1). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 APPRDO PIC X(3). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 SCODE1DO PIC X(1). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 SCODE2DO PIC X(1). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 SCODE3DO PIC X(1). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 STATTLDO PIC X(15). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 STATDO PIC X(2). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 LIMTTLDO PIC X(18). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 LIMITDO PIC X(8). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 HISTTLDO PIC X(71). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 HIST1DO PIC X(61). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 HIST2DO PIC X(61). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 HIST3DO PIC X(61). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 MSGDO PIC X(60). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 VFYDO PIC X(1). ¦
 ¦ 01 ACCTERRI. ¦
 ¦ 02 FILLER PIC X(12). ¦
 ¦ 02 TRANEL COMP PIC S9(4). ¦
 ¦ 02 TRANEF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES TRANEF. ¦
 ¦ 03 TRANEA PICTURE X. ¦
 ¦ 02 TRANEI PIC X(4). ¦
 ¦ 02 PGMEL COMP PIC S9(4). ¦
 ¦ 02 PGMEF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES PGMEF. ¦
 ¦ 03 PGMEA PICTURE X. ¦
 ¦ 02 PGMEI PIC X(8). ¦
 ¦ 02 RSNEL COMP PIC S9(4). ¦
 ¦ 02 RSNEF PICTURE X. ¦

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly

© Copyright IBM Corp. 1984, 1991
A.2.1 - 5

 ¦ 02 FILLER REDEFINES RSNEF. ¦
 ¦ 03 RSNEA PICTURE X. ¦
 ¦ 02 RSNEI PIC X(60). ¦
 ¦ 02 CMDEL COMP PIC S9(4). ¦
 ¦ 02 CMDEF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES CMDEF. ¦
 ¦ 03 CMDEA PICTURE X. ¦
 ¦ 02 CMDEI PIC X(20). ¦
 ¦ 02 RESPEL COMP PIC S9(4). ¦
 ¦ 02 RESPEF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES RESPEF. ¦
 ¦ 03 RESPEA PICTURE X. ¦
 ¦ 02 RESPEI PIC X(12). ¦
 ¦ 02 FILEEL COMP PIC S9(4). ¦
 ¦ 02 FILEEF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES FILEEF. ¦
 ¦ 03 FILEEA PICTURE X. ¦
 ¦ 02 FILEEI PIC X(22). ¦
 ¦ 01 ACCTERRO REDEFINES ACCTERRI. ¦
 ¦ 02 FILLER PIC X(12). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 TRANEO PIC X(4). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 PGMEO PIC X(8). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 RSNEO PIC X(60). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 CMDEO PIC X(20). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 RESPEO PIC X(12). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 FILEEO PIC X(22). ¦
 ¦ 01 ACCTMSGI. ¦
 ¦ 02 FILLER PIC X(12). ¦
 ¦ 02 MSGL COMP PIC S9(4). ¦
 ¦ 02 MSGF PICTURE X. ¦
 ¦ 02 FILLER REDEFINES MSGF. ¦
 ¦ 03 MSGA PICTURE X. ¦
 ¦ 02 MSGI PIC X(79). ¦
 ¦ 01 ACCTMSGO REDEFINES ACCTMSGI. ¦
 ¦ 02 FILLER PIC X(12). ¦
 ¦ 02 FILLER PICTURE X(3). ¦
 ¦ 02 MSGO PIC X(79). ¦
 ¦ ¦
 ¦ ¦
 +--+
 Figure 97. Result of the SYSPARM=DSECT assembly

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly

© Copyright IBM Corp. 1984, 1991
A.2.1 - 6

 B.0 Appendix B. Other CICS facilities
 The aim of this appendix is to mention the CICS facilities we haven't
 covered in the Primer, and to introduce you to the other application
 programming books in the CICS library.

 Subtopics
 B.1 Other CICS facilities
 B.2 The Application Programming Guide
 B.3 The Application Programmer's Reference

CICS Application Programming Primer
Appendix B. Other CICS facilities

© Copyright IBM Corp. 1984, 1991
B.0 - 1

 B.1 Other CICS facilities

 In no particular order, these include:

 � Getting access to control blocks and control information using ADDRES
 and ASSIGN commands.

 The ADDRESS command gives you access to the common storage area (CSA),
 the common work area (CWA), the transaction work area (TWA), and so
 on.

 The ASSIGN command allows you to get values from outside the local
 environment of your application program. For example, lengths of
 storage areas, values needed during BMS operations, information about
 terminal characteristics, and so on.

 � The use of the command interpreter transaction, CECI (which we ver
 briefly met in "Optional exercise" in topic 3.2.5).

 CECI is very useful for deleting, repairing, inspecting, and creating
 all sorts of items. We use it in the EDF session to delete our
 temporary storage scratchpad record (to save waiting 10 minutes).

 � The DL/I interface

 DL/I is a general-purpose database control system. CICS application
 programs can access DL/I databases using EXEC DLI... commands.

 � The DATABASE 2 interface (MVS)

 DATABASE 2 is a relational database control system. CICS application
 programs can access DB2 databases using EXEC SQL... commands. You
 can find more guidance about it in the CICS/ESA Release Guide.

 � Terminal operations that don't use BMS

 This means using native terminal control commands.

 � Batch Data Interchange

 The CICS batch data interchange program allows your application to
 talk to programmable subsystems such as the IBM 8100.

 � The task control commands, SUSPEND, ENQ, and DEQ

 The SUSPEND command allows you to give up control and allow other,
 higher priority, tasks to run. The task from which you issue the
 SUSPEND gets control back as soon as all higher priority tasks that
 can run have "had their turn".

 ENQ (enqueue) tells CICS that a given task wants a particular resource
 (of the one-user-at-a-time type). CICS returns control to the task
 when the resource becomes available.

 Similarly, DEQ (dequeue) tells CICS that a given task has finished
 with such a resource.

 � The storage control commands, GETMAIN, FREEMAIN

 The GETMAIN command gets a specified amount of main storage. If you
 want, it can also initialize the contents of that storage to a
 particular bit configuration.

 The FREEMAIN command, as you'd expect, releases such storage.

CICS Application Programming Primer
Other CICS facilities

© Copyright IBM Corp. 1984, 1991
B.1 - 1

 � User journal operations

 The CICS journal control facilities allow you to direct any
 information you want to special-purpose sequential data sets (called
 journals). These journals are to help you reconstruct events or data
 changes for both audit purposes and in case of system failures.

 � Syncpoint command

 The SYNCPOINT command allows you to divide a task--usually a
 long-running one--into smaller units known as logical units of work.
 This makes it easier to recover from a task abend or a system failure.

 � The DUMP command (which we mentioned on 3.8.3).

 This allows you to dump specified main storage areas without
 terminating your program, as you do with an ABEND command. You can
 dump the same areas as appear in a transaction abend dump, and/or
 other areas too.

 � Trace commands

 CICS trace control uses a trace table (which is included for guidance
 in the CICS/ESA Problem Determination Guide). You can put your own
 entries into this table for use as "flags" to help you spot what your
 application program is doing.

 � The monitor program and its exits

 You can define user event monitoring points (EMPs). At each user EMP
 you can accumulate all sorts of information of an accounting and
 performance nature. You'll find more details of this part of the
 programming interface in the CICS/ESA Customization Guide. For
 definitive application programming interface information on EXEC CICS
 MONITOR commands, see the CICS/ESA Application Programming Reference.

 � Intersystem communication (ISC) and multi-region operation (MRO
 facilities.

 These allow independent CICS systems to talk to each other. The
 systems may be in the same processor or in different processors.
 Guidance on using ISC and MRO is in the CICS/ESA Intercommunication
 Guide.

 � Exits within the management modules

 You may, despite the many options that CICS offers, still have special
 requirements that a standard CICS system cannot meet. In this case,
 you can add your own user exit code to certain CICS modules. This
 code will then be invoked whenever one of these modules is used.

 See the CICS/ESA Customization Guide for product-sensitive programming
 interface information on user exits.

 � Transaction restart facilities

 The CICS/ESA Recovery and Restart Guide gives you guidance on
 designing applications with recovery in mind.

 � Program error programs (PEPs), node error programs (NEPs), an
 terminal error programs (TEPs).

 IBM supplies programs to handle certain common error situations.
 There's one to handle program errors (PEP), one for VTAM terminal
 errors (NEP), and one for non-VTAM terminal errors (TEP). If you

CICS Application Programming Primer
Other CICS facilities

© Copyright IBM Corp. 1984, 1991
B.1 - 2

 prefer, you can supply your own versions of these programs, and tailor
 the processing of certain types of error for your particular needs.
 There are special macros to help you build your own versions of these
 programs. Either way, please see the CICS/ESA Customization Guide for
 product-sensitive programming interface information.

 � The external security interface

 CICS offers you an interface to an external security manager. You can
 write this yourself or, if you use MVS, you can use the Resource
 Access Control Facility (RACF) (*) program product.

 See the CICS/ESA Customization Guide for guidance on doing so.

 � Dynamic OPEN and CLOSE

 This facility allows you to open and close data sets dynamically while
 CICS is running. Again, see the CICS/ESA Customization Guide for
 programming interface information.

 � The phonetic key routine

 CICS provides a subroutine to convert words to a condensed "phonetic"
 form. The major use of phonetic codes is for keys to data sets
 (usually names), so that you can access records in the file without
 knowing the exact spelling of a name or a word in the file key. We
 might have chosen to use this subroutine in building the name index to
 our account file. See the CICS/ESA Customization Guide for
 product-sensitive programming interface information.

 � The master terminal operator (CEMT) transaction application interface

 The master terminal (CEMT) transaction functions are also available to
 an application program. See the CICS/ESA CICS-Supplied Transactions
 manual for product-sensitive programming interface information.

 (*) IBM Trademark. For a complete list of trademarks, see
 "Notices" in topic FRONT_1.

CICS Application Programming Primer
Other CICS facilities

© Copyright IBM Corp. 1984, 1991
B.1 - 3

 B.2 The Application Programming Guide

 This is the next book you should read.

 It contains programming design guidance, particularly in the vital area of
 performance, debugging, and testing CICS applications.

 It also describes the variety of sample material that is available as part
 of your CICS system. This material contains some useful coding hints,
 tips, and techniques.

CICS Application Programming Primer
The Application Programming Guide

© Copyright IBM Corp. 1984, 1991
B.2 - 1

 B.3 The Application Programmer's Reference

 This is your authoritative source of information about the command-level
 application programming interface.

 You'll find within it all that you need to know about every CICS
 command-level instruction.

CICS Application Programming Primer
The Application Programmer's Reference

© Copyright IBM Corp. 1984, 1991
B.3 - 1

 GLOSSARY Glossary
 This glossary defines special CICS terms used in the library and words
 used with other than their everyday meaning. It includes terms and
 definitions from the IBM Vocabulary for Data Processing,
 Telecommunications, and Office Systems, GC20-1699. In some cases the
 definition given isn't the only one applicable to the term, but gives the
 particular sense in which we've used it.

 American National Standards Institute (ANSI) definitions are preceded by
 an asterisk.

 +---+
 ¦ A ¦
 +---+

 abend. Abnormal end of task.

 access method. A technique for moving data between main storage and
 input/output devices.

 application. This refers to a set of one or more application units of
 work designed to fulfill a particular need (or needs) of the user
 organization.

 application program. (1) A program written for or by a user that applies
 to the user's work. (2) In data communication, a program used to connect
 and communicate with stations in a network, enabling users to perform
 application-oriented activities.

 auxiliary storage. Data storage other than main storage; for example,
 storage on magnetic tape or direct access devices.

 +---+
 ¦ B ¦
 +---+

 backout. A general term meaning to restore a previous state of all or
 part of a system. See dynamic transaction backout.

 Basic Mapping Support (BMS). A facility that moves data streams to and
 from a terminal. It provides device independence and format independence
 for application programs.

 batch. An accumulation of data to be processed.

 blanks. See space.

 BMS. See Basic Mapping Support.

 byte. In System/370, a sequence of eight adjacent binary digits that are
 operated on as a unit.

 +---+
 ¦ C ¦
 +---+

 CEMT. The master terminal transaction.

 CI. See control interval.

 CICS. Customer Information Control System

CICS Application Programming Primer
Glossary

© Copyright IBM Corp. 1984, 1991
GLOSSARY - 1

 CICS system definition file (CSD). CSD In CICS, the CSD is a file that
 contains a resource definition record for every resource defined to CICS
 using RDO.

 COBOL. Common business-oriented language. An English-like programming
 language designed for business data processing applications.

 command. In CICS, an instruction similar in format to a high-level
 programming language statement. (Contrast with macro.) CICS commands
 invariably include the verb EXECUTE (or EXEC). They may be issued by an
 application program to make use of CICS facilities.

 command-language statement. In CICS, synonym for command.

 common system area (CSA). In CICS, a basic system control block to which
 all transactions have access.

 * concurrent. Pertaining to the occurrence of two or more activities
 within a given interval of time.

 control block. In CICS, a storage area used to hold dynamic data during
 the execution of control programs and application programs. Synonym for
 control area. Contrast with control table.

 control interval (CI). A fixed-length area of direct access storage in
 which VSAM stores records. The unit of information that VSAM transmits to
 or from direct access storage.

 control table. In CICS, a set of information used to define or describe
 the configuration or operation of the system in a relatively permanent
 way. Contrast with control block.

 conversational. Pertaining to a program or a system that carries on a
 dialogue with a terminal user, alternately accepting input and then
 responding to the input quickly enough for the user to maintain his or her
 train of thought.

 CSA. Common system area.

 CSD. CICS system definition file.

 CWA. Common work area, an extension of the common system area (CSA).

 +---+
 ¦ D ¦
 +---+

 DAM. Direct access method.

 DASD. Direct access storage device.

 database. An organized collection of interrelated or independent data
 items stored together without unnecessary redundancy, to serve one or more
 applications.

 data set. The major unit of data storage and retrieval, consisting of a
 collection of data in one of several prescribed arrangements and described
 by control information to which the system has access. See file.

 DB2. DATABASE 2, IBM's relational database management system program
 product for the MVS environment.

 DB/DC. Data-base and data-communication.

CICS Application Programming Primer
Glossary

© Copyright IBM Corp. 1984, 1991
GLOSSARY - 2

 deadlock. (1) Unresolved contention for the use of a resource. (2) An
 error condition in which processing cannot continue because each of two
 elements of the process is waiting for an action by, or a response from,
 the other.

 device independence. An application program written in such a way that it
 does not depend on the physical characteristics of devices. BMS provides
 a measure of device independence.

 direct access storage. (1) * A storage device in which the access time is
 in effect independent of the location of the data. (2) A storage device
 that provides direct access to data.

 DL/I. Data Language/I, the high-level interface between a user
 application and an IMS/VS database.

 DTB. See dynamic transaction backout.

 dynamic transaction backout. The process of canceling changes made to
 stored data by a transaction following the failure of that transaction for
 whatever reason.

 +---+
 ¦ E ¦
 +---+

 EDF. Execution (command-level) diagnostic facility for testing
 command-level programs interactively at a terminal.

 emergency restart. The CICS facility for use following a system failure.
 It restores the data files of all interrupted transactions to the
 condition they were in after the last complete transaction (that affected
 them) before the failure.

 end user. In CICS, a person using a terminal to cause execution of a CICS
 transaction. Typically, a non-data-processing professional, for example,
 a reservation clerk.

 exception. An abnormal condition such as an I/O error encountered in
 processing a data set or a file.

 +---+
 ¦ F ¦
 +---+

 * file. A set of related records treated as a unit, for example, in stock
 control, a file could consist of a set of invoices. See data set.

 file control table. A CICS table containing the characteristics of the
 files accessed by file control.

 * format. The arrangement or layout of data on a data medium. In CICS,
 the data medium is usually a display screen.

 format independence. The ability to send data to a device without having
 to be concerned with the format in which the data will be displayed. The
 same data may appear in different formats on different devices.

 +---+
 ¦ H ¦
 +---+

CICS Application Programming Primer
Glossary

© Copyright IBM Corp. 1984, 1991
GLOSSARY - 3

 high-values. Hexadecimal FF.

 +---+
 ¦ I ¦
 +---+

 * I/O. Input/Output.

 IMS/ESA. Information Management System/Extended System Architecture.

 inquiry. A request for information from storage; for example, a request
 for the number of available airline seats.

 installation. (1) A particular computing system, in terms of the work it
 does and the people who manage it, operate it, apply it to problems,
 service it and use the work it produces. (2) The task of making a program
 ready to do useful work. This task includes generating a program,
 initializing it, and applying PTFs to it.

 installed program definition. An application program that has been
 defined to the CICS system by the CEDA transaction, and that is valid for
 processing under CICS. These definitions also keep track of whether an
 application program is in main storage or not. Prior to CICS/ESA 3.3,
 this was an entry in the processing program table (PPT).

 installed transaction definition. A transaction that has been defined to
 the CICS system by the CEDA transaction, and that may be processed by the
 system. Prior to CICS/ESA 3.3, this was an entry in the program control
 table (PCT).

 interactive. Pertaining to an application in which each entry calls forth
 a response from a system or program, as in an inquiry system or an airline
 reservation system. An interactive system may also be conversational,
 implying a continuous dialogue between the user and the system.

 ISAM. Indexed Sequential Access Method.

 +---+
 ¦ J ¦
 +---+

 journal. A chronological record of the changes made to a set of data; the
 record may be used to reconstruct a previous version of the set.

 journaling. Recording transactions against a data set in such a way that
 the data set can be reconstructed by applying transactions in the journal
 against a previous version of the data set.

 +---+
 ¦ K ¦
 +---+

 keyword. (1) A symbol that identifies a parameter. (2) A part of a
 command operand that consists of a specific character string.

 +---+
 ¦ L ¦
 +---+

 label. See paragraph name.

CICS Application Programming Primer
Glossary

© Copyright IBM Corp. 1984, 1991
GLOSSARY - 4

 linkage editor. A computer program used to create one load module from
 one or more independently-translated object modules or load modules by
 resolving cross references among the modules.

 logging. The recording (by CICS) of recovery information onto journal 01
 (the system log).

 low-values. Hexadecimal 00.

 +---+
 ¦ M ¦
 +---+

 main storage. Program-addressable storage from which instructions and
 data can be loaded directly into registers for subsequent execution or
 processing. See also real storage, storage.

 map. In CICS, a format established for a page or a portion of a page.

 master terminal. In CICS, the terminal at which a designated operator is
 signed-on.

 master terminal operator. Any CICS operator authorized to use the master
 terminal functions.

 multitasking. * Pertaining to the concurrent execution of two or more
 tasks by a computer.

 multithreading. Pertaining to the concurrent operation of more than one
 path of execution within a computer. In CICS, the use, by several
 transactions, of a single copy of an application program.

 +---+
 ¦ N ¦
 +---+

 null. A character encoding of hexadecimal 00--LOW-VALUE in COBOL.

 +---+
 ¦ O ¦
 +---+

 online. (1) * Pertaining to a user's ability to interact with a computer.
 (2) * Pertaining to a user's access to a computer via a terminal. The
 term "online" is also used to describe a user's access to a computer via a
 terminal.

 operating system. Software that controls the execution of programs; an
 operating system may provide services such as resource allocation,
 scheduling, input/output control, and data management.

 OS. Operating System.

 +---+
 ¦ P ¦
 +---+

 paragraph name. COBOL term for destination of a branch or GOTO
 instruction.

CICS Application Programming Primer
Glossary

© Copyright IBM Corp. 1984, 1991
GLOSSARY - 5

 * parameter. A variable that is given a constant value for a specified
 application and that may denote the application.

 processing program table (obsolete). See installed program definition.

 program control. The CICS element that manages CICS application programs.

 program control table (obsolete). See installed transaction definition.

 program function (PF) key. A key that passes a signal to a program.

 pseudoconversational. A series of CICS transactions designed to appear to
 the operator as a continuous conversation occurring as part of a single
 transaction.

 +---+
 ¦ Q ¦
 +---+

 quasi-reentrant. Applied to a CICS application program that is serially
 reusable between CICS calls because it does not modify itself or store
 data within itself between calls on CICS facilities.

 +---+
 ¦ R ¦
 +---+

 real storage. The main storage in a virtual storage system. Physically,
 real storage and main storage are identical. Conceptually, however, real
 storage represents only part of the range of addresses available to the
 user of a virtual storage system.

 recoverable resources. Items whose integrity CICS will maintain in the
 event of a system failure. They include individual CICS files, and
 auxiliary temporary storage queues.

 reentrant. The attribute of a program or routine that allows the same
 copy of the program or routine to be used concurrently by two or more
 tasks.

 * response time. The elapsed time between the end of an inquiry or demand
 on a data processing system and the beginning of the response. For
 example, the length of time between an indication of the end of an inquiry
 and the display of the first character of the response at a user terminal.

 +---+
 ¦ S ¦
 +---+

 SAM. Sequential Access Method.

 screen page. The amount of data displayed, or capable of being displayed,
 at any one time on the screen of a terminal.

 SIT. System initialization table. A CICS table.

 space. A character encoding of hexadecimal 40.

 storage. A functional unit into which data can be placed and from which
 it can be retrieved. See main storage, real storage.

 storage control. The CICS element that manages working storage areas.

CICS Application Programming Primer
Glossary

© Copyright IBM Corp. 1984, 1991
GLOSSARY - 6

 system initialization table. A table containing user-specified data that
 will control a system initialization process.

 system log. The (only) journal data set (identification='01') that is
 used by CICS to log changes made to resources for the purpose of backout
 on emergency restart.

 +---+
 ¦ T ¦
 +---+

 task. (1) A basic unit of work to be accomplished by a computer. (2)
 Under CICS, the execution of a transaction for a particular user.
 Contrast with transaction.

 task control. The CICS element that controls all CICS tasks.

 task control area (TCA). A basic CICS control block provided for each
 task.

 TCA. See task control area.

 TCT. Terminal control table. A CICS table.

 terminal. (1) * A point in a system or communication network at which
 data can either enter or leave. (2) In CICS, a device, often equipped
 with a keyboard and some kind of display, capable of sending and receiving
 information over a communication channel.

 terminal control. The CICS element that controls all CICS terminal
 activity.

 terminal control table. A table describing a configuration of terminals,
 logical units, or other CICS systems in a CICS network with which the CICS
 system may communicate.

 terminal operator. The user of a terminal.

 terminal paging. A set of CICS commands for retrieving "pages" of an
 oversize output message in any order.

 threading. The process whereby various transactions undergo concurrent
 execution.

 TIOA. Terminal input/output area.

 transaction. A transaction may be regarded as a unit of processing
 (consisting of one or more application programs) started by a single
 request, often from a terminal. A transaction may require the starting of
 one or more tasks for its execution. Contrast with task.

 transaction backout. The cancellation, as a result of a transaction
 failure, of all updates performed by a partially-completed task.

 transaction identification code. Synonym for transaction identifier. A
 group of up to four characters used to identify (name) a particular
 transaction type in the list of installed transaction definitions.

 transaction identifier. Synonymous with transaction identification code.

 transaction restart. The restart of a task after a transaction backout.

CICS Application Programming Primer
Glossary

© Copyright IBM Corp. 1984, 1991
GLOSSARY - 7

 +---+
 ¦ U ¦
 +---+

 update. To modify a file with current information.

CICS Application Programming Primer
Glossary

© Copyright IBM Corp. 1984, 1991
GLOSSARY - 8

 COMMENTS Readers' Comments
 CICS
 Application Programming Primer

 Publication No. SC33-0674-01

 Use this form to tell us what you think about this manual. If you have
 found errors in it, or if you want to express your opinion about it (such
 as organization, subject matter, appearance) or make suggestions for
 improvement, this is the form to use.

 To request additional publications, or to ask questions or make comments
 about the functions of IBM products or systems, you should talk to your
 IBM representative or to your IBM authorized remarketer. This form is
 provided for comments about the information in this manual and the way it
 is presented.

 When you send comments to IBM, you grant IBM a nonexclusive right to use
 or distribute your comments in any way it believes appropriate without
 incurring any obligation to you.

 Be sure to print your name and address below if you would like a reply.

 International Business Machines Corporation
 Attn: Dept ACV-H
 1001 WT HARRIS BLVD
 CHARLOTTE NC 28257-0001

 Name ___
 Company or Organization ___
 Address ___

 Phone No. ___

CICS Application Programming Primer
Readers' Comments

© Copyright IBM Corp. 1984, 1991
COMMENTS - 1

