CICS Application Programming Primer
Book Cover

COVER Book Cover

Application Programm ng Priner

Docunment Nunber SC33-0674-01

Program Number
5685- 083

© Copyright IBM Corp. 1984, 1991
COVER -1

CICS Application Programming Primer
Abstract

ABSTRACT Abstract
This book is intended for application progranmers who are new to CICS, but
it is also useful for new system programers. Before reading this priner
you shoul d have sone knowl edge of progranming and in a batch environnent.
This book tells you enough to be able to design, code, test and run your
first CICS application programs. It describes a subset of the full CICS
product and illustrates CICS facilities and useful techniques by a
realistic exanple coded in VS COBOL I1.

© Copyright IBM Corp. 1984, 1991
ABSTRACT - 1

CICS Application Programming Primer
Edition Notice
EDI TI ON Edi tion Notice
First Edition (June 1990)

This edition applies to Version 3 Release 1 Mddification 1 of the |BM
licensed program Custonmer Information Control System Enterprise
Systens Architecture (CICS/ESA), program nunmber 5685-083, Version 2
Rel ease 1 and Version 2 Release 1 Mddification 1 of the Customer

I nformation Control System/ Multiple Virtual Storage (ClCS/ WS),
program nunber 5665-403; Version 2 Release 1 of the Custoner

I nformation Control System Virtual Storage Extended (ClCS/VSE),
program number 5686-026, and to all subsequent versions, rel eases, and
nodi fications until otherw se indicated in new editions.

This is the softcopy version of the printed version of the Application
Programmi ng Prinmer (VS COBOL I1). Mnor changes to formatting have
been made to make the information nore suitable for view ng online.

Changes nmade since this book was |ast published are indicated by the
hash (#) symbol to the left of the changes.

Consult the |latest edition of the applicable |IBM system bibliography
for current information on this product.

Order publications through your IBMrepresentative or the |BM branch
of fice serving your locality. Publications are not stocked at the
addresses given bel ow.

Reader's coments on this publication should be addressed to:

I nt ernational Business Machi nes Corporation, Attn: Dept ACV-H
1001 W Harris Blvd, Charlotte, NC 28257-0001, USA

or to:

I BM United Kingdom Laboratories Limted, Information Devel opnent,
Mai | Point 095, Hursley Park, Wnchester, Hanpshire, England, SO21 2JN.

When you send information to IBM you grant | BM a non-exclusive right
to use or distribute the information in any way it believes
appropriate wi thout incurring any obligation to you.

© Copyright International Business Machi nes Corporation 1984, 1991.

Al'l rights reserved.

Note to U S. Government Users -- Docunentation related to restricted
rights -- Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with |BM Corp.

© Copyright IBM Corp. 1984, 1991
EDITION - 1

CICS Application Programming Primer
Table of Contents
CONTENTS Tabl e of Contents
COVER Book Cover
ABSTRACT Abstract
EDI TI ON Edition Notice
CONTENTS Tabl e of Contents
FI GURES Fi gures
TABLES Tabl es
FRONT_1 Noti ces
PREFACE Preface
PREFACE. 1 Book structure
.0 Setting the scene
I ntroduction to CICS
What is CICS?
1 Why you may need an online system
Why have CI CS?
What does CICS do?
CI CS application prograns
Couldn't | do all this nyself?
Can CICS serve |large systens and snmall systens properly?
How does a Cl CS-based application differ froma batch application?
Basic differences
1 Recovering when things go wong
Two vital terms
Starting a transaction
I nside CICS
How does CICS hel p you set up an online systen
How do you use CI CS?
Application design
The CI CS exanpl e application--a department store
Defining the problem
The account file records
Requi renment s i nposed by the environment
Refining and devel opi ng the program specifications
Estimating the number of transactions
Summary
Designing the transactions: prelimnaries
What next?
3270 term nals
3270 field structure
3270 out put data stream
3270 attribute bytes
3270 input data stream
Unformatted 3270 data
Saved by BMS
Desi gning the user interface
A first approach
The di splay transaction
The print transaction
The add transaction
The nodify transaction

W N P

oA SMDE DDA WOWOWWWN PR
w NP PR

A WNRRR PP
A WN P

o g b WN P

a b~ wWN PP

The del ete transaction
A user-friendly approach
Using a nenu screen
2 Printing the |ogs
3 Name inquiry
Some interface design principles
Coming to grips with the data
The account file
Access by name
Choosing the file organization
Name i ndex records
Choosing a control interval (Cl) size
Recovery requirements
Refining the transaction design
1 Request anal ysis

WINNNNRE R R R R PR
[E

N
w N P

g o rBRDEDEDDIEDOOWWWWWWWWWWNNMNMNMNMNNMNNYNRPRRPRPRPRPRRPPRPPORPRPRPRPEPRERRPRPRERREPPRPEREPR
N e e

N DN N DNDNDNNNMNDNDDPNNMDNDNNDNNNMNDNDDNDMNDNDNNNMNDNNNDMDNDDNMDNDNNDNNNMNNDDNMNDMNDNNMNNMNNNMNNMNNMNNNRPRPRPRPRPRPRPRPRPRPRPRPRPRPRERERERPR

© Copyright IBM Corp. 1984, 1991
CONTENTS - 1

COOEOOONPINIDPDEPIDINNNNNNDDPOPDODOOA NG OOG GGG

PR P RPPRPRR R Boo~NooswN

w . W W NN W NDNNMNNPRPRPRRPR PR W W wN R
gD W N - h . b
NN NNPRP PP R

A WN P

N -

A WN P

w N PR

CICS Application Programming Primer
Table of Contents
Add processing
Modi fy processing
Del et e processing
Di spl ay processing
Print processing
Name inquiry processing
Printing the change | og
Printing the error |og
Sunmmary
Programmi ng for a CICS environnment
Resour ces
"Tradi tional" resources
Processor storage
Processor tinme
Auxi liary storage
Resources specific to working online
User time and good hunor
One-user-at-a-time resources
Li ne transm ssion capacity
Pseudoconversati onal or not?
Conversational transactions
Pseudoconversational transactions
Maintaining file integrity
Doubl e updati ng. .
...and how to avoid it
Arrangi ng the processing
Defining the transactions
Di spl ayi ng the menu
Anal yzing the user's response
Addi ng a new record
Handl i ng updates and ot her requests
Defining the prograns
Di spl ayi ng the nenu--ACCT00
Anal yzing the user's response, ACCTO1l
Handl i ng updates (including additions)--ACCT02
Summary
Three remi ni ng consi derations
Communi cati on between transactions
Handling errors and exceptional conditions
A "catch-all" error program -ACCT04
Transactions and term nals
A printer program -ACCT03
Defining the prograns--a final |ook
Program ACCT00: nenu di spl ay
Program ACCTO1: initial request processing
Program ACCT02: update processing
Program ACCT03: requests for printing
Program ACCT04: error processing

Application progranmm ng

Witing CICS progranms in COBOL
What's different about CICS prograns?
How to invoke CICS services
Restrictions in CICS COBOL
Defining screens with basic mapping support (BMS)
What BMS does
The BMS nmacros
The DFHVDF macro: generate BMS field definition
The DFHVDI nmacro: generate BMS map definition
The DFHMSD nmacro: generate BMS map set definition
Rul es on macro formats
Map definitions for the exanple
Defining the account detail map
Notes on the detail map
Defining the error map
Defining the message map

© Copyright IBM Corp. 1984, 1991
CONTENTS - 2

R I R e e e I N T Tl T T T T S O I N N

g b

0O NN~NOOO g DA WNMNDNMNNDNRERPRRPRPPRE

DWW NNNNMNNRRPRRPRPRRREPR

W N NDNNDNDNDNDDNPRP

O O A W WNDNMNNMNNDNDDNPRP

[N

N o g WON B N W N P

g b~ WN PP

N NN P

W INNNNDPRP PP

CICS Application Programming Primer
Table of Contents
The map set
Summary
Optional exercise
Usi ng BMS: more detai
Symbol i ¢ description nmaps (DSECT structures)
Copying the map DSECT into a program
The generated subfields
Fi el ds defined with the OCCURS= paraneter
Some things to keep in mind about these DSECTs
Sending a map to a term na
The SEND MAP conmand
Using SEND MAP in the ACCT exanple
Positioning the cursor
Sendi ng control information without data
The SEND CONTROL command
Receiving input froma term na
The RECElI VE MAP conmand
Fi ndi ng out what key the operator pressed
The EXEC Interface Bl ock (EIB)
Al D byte definitions
Errors on BMS commmands
MAPFAI L errors
I NVMPSZ errors
Ot her features of BMS
Handling files
Read conmands
Reading a file record
The account file record format
The index file record format
Browsing a file
Starting the browse operation
Readi ng the next record
Fi ni shing the browse operation

Usi ng the browse conmands in the exanpl e application

Wite commands
Rewriting a file record
Adding (writing) a file record
Deleting a file record

Using the wite commands in the exanple application

Errors on file commnds
Ot her file services

Saving data and communi cating between transactions
The need for scratchpad and queuing facilities
Tenporary storage

Addi ng to, and creating, a tenporary storage queue

Repl acing itenms in a tenporary storage queue
Readi ng tenporary storage queues

Del eting tenporary storage queues

Nam ng tenporary storage queues

Using tenporary storage in the exanple application

Errors on tenporary storage conmands
Transient data
Program contro
Associ ati ng progranms and transactions
Commands for passing program contro
The LI NK command
The XCTL command
The RETURN command
The COBOL CALL statement
Subroutines revisited

Passing control and data between prograns and transactions
Communi cati ng between transactions in the exanple application

Errors on the program control conmands
Abendi ng a transaction
Ot her program control commands

© Copyright IBM Corp. 1984, 1991
CONTENTS - 3

PEPPPPOONNTTO AT ANNTOATTANNTOATTOT AT OANT IO AT AN TR AR RRO DR DD E00 D0

P ONNRPROONNNNNNNNNNNNNNNNNNNNRRPRPRPRPRPRPRPRPRRRPRPRPRPPRPRPRPPRPRPROCRNMWOWNEROO®O®O®O®O®O®NNN NN N

a b w NP

WWWWWWWWWWNNNNNE PR BN N R

R R L e

N -

A WN PP

w

N o b WN R

NP PR R R R R R

~N o b WN PP

CICS Application Programming Primer

Table of Contents

Starting another task, and other tinme services

Starting anot

her task

Retrieving data passed in the START comuand

Usi ng the START and RETRI EVE conmands in the exanple application

Errors on the START and RETRI EVE commands
Other tine services
Errors and exceptional conditions
Letting the program conti nue
Passing control to a specified | abe
Changi ng the HANDLE CONDI TI ON "desti nati ons"

Errors within
Other facilit
The COBOL code of
Program ACCTOO0
Program ACCTO1:
Program ACCT02
Program ACCT03
Program ACCT04

the exanple application

ies for exceptional conditions
our exanple application

menu di spl ay

initial request analysis
updat e processing

requests for printing

error processing

Testing and di agnosi s

Testing

Preparing to test
Preparing the application and systemtable entries
Preparing the system for debuggi ng

Types of problem

Abends
Loops
Waits

I ncorrect output
Tool s for debugging
Executi on di agnostic facility (EDF)

O her inf

ormation displayed

Useful techniques with EDF

I nvoki ng
EDF di sp

EDF
ays

EDF options
Modi fyi ng execution with EDF
A session with EDF
Tenporary storage browse facility (CEBR)
Fi nding the problem
Prelimnary checkli st

Docunment ati on
Ref erence mat

erials

More testing considerations
Regression testing
Singl e-thread testing
Mul ti-thread testing

Abends
ASRA
ASRB
Al CA
APCT
AFCA

AEl x and AEYx

ATNI
Loops
Waits
I ncorrect out

put

ClI CS system probl ens

Appendi xes

Appendi x A. Getting the application into your

I ntroduction

What has to be done?

The result
Appendix B. O

of the SYSPARM=DSECT assenbly
her CICS facilities

Other CICS facilities

© Copyright IBM Corp. 1984, 1991
CONTENTS - 4

ClI CS system

CICS Application Programming Primer
Table of Contents

B. 2 The Application Progranmm ng Guide

B.3 The Application Programmer's Reference
GLOSSARY G ossary

I NDEX I ndex

COMMENTS Readers' Comments

© Copyright IBM Corp. 1984, 1991
CONTENTS - 5

CICS Application Programming Primer
Figures

FI GURES Fi gur es

1.

© 00 NO Ul b WN

QOO s DSDN DD DDDEDD®WOEOEWOWWWWORNNNNNNNONNNNRE RRRBRRRBRRR R
PONPOO®X®NIARWONRELOOONDAIRONEOO®NDOARONEOO®NDOAWNREO

55.
56.
57.
58.
59.
60.

61.
62.

The CICS online environnment 1.1.1

A DB/ DC system 1.1.1.1

The flow of control during a transaction 1.1.4.3
Account file record formt 2.1.1.1

The CICS sign-on screen 2.2.1

A 3270 output data stream 2.2.2

The sign-on screen in use 2.2.4

A 3270 input data stream 2.2.4

An exanmpl e of a display screen formt 2.3.1.1
A correspondi ng skel eton screen 2.3.1.3

An exanpl e of a menu screen 2.3.2.1

An expanded menu screen 2.3.2.3

Account file record format 2.4.1

The nanme index record format 2.4.1.1.2

Request anal ysis 2.5.1

Add processing 2.5.2

Modi fy processing 2.5.3

Del et e processing 2.5.4

Di spl ay processing 2.5.5

Print processing 2.5.6

Name inquiry processing 2.5.7

Printing the change | og 2.5.8

Printing the error |og 2.5.9

The conversational sequence of the nodify transaction 2.7
The pseudoconversational structure 2.7.2

The three transactions and three prograns 2.8.3
The six transactions and five prograns 2.9.3.1
The transaction error screen 2.10.5

The steps of a typical batch program 3.1.1
A detailed | ook at the menu screen 3.2.1
The DFHVDF macros for the menu nmap 3.2.2.1

The DFHMDI macro for the menu map 3.2.2.2

The account detail map 3.2.3.1

The account detail map definition 3.2.3.1

The error screen map 3.2.3.2

The error screen map definition 3.2.3.2

The nmessage map definition 3.2.3.3

Al'l four maps 3.2.3. 4

Copyi ng the nmenu map into your program 3.3.1.1

The menu screen at work 3.3.1.2

Attribute values for the I BM 3270 data stream 3.3.1.2
Attribute values used in the Priner 3.3.1.2

Buil ding the detail display map 3.3.2.2

The standard attention identifier values 3.3.6.1.1

Code to handl e MAPFAI L 3.3.7.1

The COBOL record definition for the account file 3.4.1.1.1
The COBOL record definition for the index file records 3.4.1.1.2
The name summary search code 3.4.1.3

Transferring control between progranms (normal returns) 3.6.2
Qutline logic of a standard "edit and update" nodul e. 3.6.2.5
Passing information to the error program 3.6.3

Receiving information in the error program 3.6.3
Transferring control between programs (after an abend) 3.6.5
The exception conditions for the Primer's subset of CICS
comuands 3.8.3

I nvoki ng the account file transaction 5.1.3.1.7

The account file menu 5.1.3.1.7

Let's del ete account nunber 11111 5.1.3.1.7

Now confirm the del etion... 5.1.3.1.7
by typing "Y" 5.1.3.1.7
Hold it! We've got a problem-- and we've been backed

out 5.1.3.1.7
Del eting the scratchpad record 5.1.3.1.7
Goi ng, going, ... 5.1.3.1.7

© Copyright IBM Corp. 1984, 1991
FIGURES - 1

63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.

Gone

Now ac
oK 5
Now re
And in
OK so
Agai n
Back t
Now we
Ready
Respon

CICS Application Programming Primer
Figures
5.1.3.1.7
tivate EDF 5.1.3.1.7
.1.3.1.7
-enter the account file transaction 5.1.3.1.7
to EDF 5.1.3.1.7
far 5.1.3.1.7
"yes" to continue with the next transaction 5.1.3.1.7
o the nmenu 5.1.3.1.7
can enter record 11111 5.1.3.1.7
to begin the request analysis 5.1.3.1. 7
se: QDERR 5.1.3.1.7

OK, carry on 5.1.3.1.7

"yes"
XK --

to carry on into ACO02 5.1.3.1.7
the big noment is (nearly) here 5.1.3.1.7

Here we go 5.1.3.1.7

Ready?

5.1.8.1.7

The INVREQ (invalid request) condition 5.1.3.1.7

The er
Here's
Just p
Sent t
Witin
About

About

Starti
Li nki n

ror report 5.1.3.1. 7
our abend, EACC 5.1.3.1.7
rior to the ABEND command 5.1.3.1.7
he error map 5.1.3.1.7
g to tenporary storage queue 5.1.3.1.7
to wite to tenporary storage queue 5.1.3.1.7
to send the error map 5.1.3.1.7
ng the error-handling program ACCT04 5.1.3.1. 7
g to the error program ACCT04 5.1.3.1.7

The HANDLE CONDI TI ON ERROR command 5.1.3.1.7

Do the
Here's

HANDLE CONDI TI ON ERROR conmand 5.1.3.1.7
our failing instruction again 5.1.3.1.7

Back wi th our abend, EACC, again 5.1.3.1.7
The abnormal task term nation 5.1.3.1.7

Thi s
The te

s the CICS nmessage 5.1.3.1.7
nmporary storage browse (CEBR) display 5.1.3.2

AEl x and AEly abend conditions 5.2.5.6

Resul t

of the SYSPARM=DSECT assenbly A 2.1

© Copyright IBM Corp. 1984, 1991
FIGURES - 2

CICS Application Programming Primer
Tables

TABLES Tabl es
1. Source code nenbers A 2

© Copyright IBM Corp. 1984, 1991
TABLES - 1

CICS Application Programming Primer
Notices
FRONT_1 Notices
References in this publication to |IBM products, programs, or services do
not inply that IBMintends to nake these available in all countries in
whi ch | BM oper at es.

Any reference to an IBMIlicensed program or other |BM product in this
publication is not intended to state or inply that only IBM s program or

ot her product may be used. Any functionally equival ent program that does
not infringe any of IBMs intellectual property rights may be used instead
of the IBM product. Evaluation and verification of operation in
conjunction with other products, except those expressly designated by | BM
is the user's responsibility.

| BM may have patents or pendi ng patent applications covering subject
matter in this docunment. The furnishing of this docunent does not give
you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Commercial Relations, |BM Corporation,
Pur chase, NY 10577.

In this publication are illustrations in which names are used. These
nanes are used solely for illustrative purposes and not for the
identification of any person or conpany.

Thi s book contains sanple prograns. Perm ssion is hereby granted to copy
and store the sanple programs into a data processing nmachine and to use
the stored copies for study and instruction only. No perm ssion is
granted to use the sanple program for any other purpose.

The following ternms, denoted by an asterisk (*), used in this publication,
are trademarks or service marks of |BM Corporation in the United States or
ot her countries:

CI CS/ ESA, CICS/ WS, |BM | MS/ESA, RACF

The following terns, denoted by a double asterisk (**), used in this
publication, are trademarks of other conpanies as follows:

Tel etype Tel et ype Corporation

© Copyright IBM Corp. 1984, 1991
FRONT_1-1

CICS Application Programming Primer
Preface
PREFACE Pref ace
This book is intended to help you to wite CICS application prograns,
using the command-1level CICS interface and the COBOL progranm ng | anguage.

We assune you're an application progranmer, bringing to CICS your existing
know edge of COBOL gained in a batch progranm ng environnent. However,
experience of other (non-ClICS) online systens, and of other high-1Ievel
progranm ng | anguages (such as PL/I or C), will be helpful.

It contains guidance about designing, coding, testing and running your
first CICS application program W want to point you to the various books
in the CICS library that will fill in the gaps because, in a book this
size, we won't be able to tell you all about CICS. The information in the
book is not part of the definition of any programm ng interface for
custoners. It nust not be used for programm ng purposes.

We' Il be tal king about, and basing our exanples on, a subset of the full
CICS facilities. This nakes things easier for you because it nmeans we
won't have to keep referring you to other books in the CICS library while
you're | earning. These other books are shown in the library diagramfor
your particular release of CICS.

The subset of CICS conmands we've chosen is as conplete and

sel f-sufficient as we can make it. It will give you a sound framework for
your first application programs, and offer a logical starting point for
nor e advanced wor k.

Changes since the first edition

Since its first edition, when CICS/VS Version 1 Release 6 was current,
there's been a mmjor innovation of direct concern to all CICS application
programmrers. This is the RESP option, which you can add to any EXEC CI CS
command. RESP deals with the exceptional conditions that CICS rai ses when
things go wwong with CICS commands. By adding RESP to a commmand, you can
imedi ately test for any condition that concerns you and deci de, then and
there, what to do next. This makes it nuch easier to wite
clearly-structured code.

What we've done to the ACCT prograns that formthe exanple application
mainly reflects this new ability. W' ve noved al nost conpletely away from
the use of HANDLE CONDI TI ON conmands, adopting the nore structured
approach that RESP encourages. (We've also converted to VS COBOL Il code.
We' ve made some minor structural changes by noving sections of related
processing to the end of the code and usi ng PERFORM statenents. This

hel ps clarify the underlying |logic of the application.)

There are two editions of this Application Programm ng Primer. The
original edition (SC33-0139) contains COBOL source code that will run
under CI CS/ DOS/VS, CICS/0OS/VS, and CICS/WS (*). This edition (SC33-0674)
contains VS COBOL || source code that will run under CICS/ESA (*).

How to use this book

Read through it at your own pace until you reach "The COBOL code of our
exanpl e application" in topic 4.0. At that point, you nmeet the VS COBOL
Il source code of our exanple application. (It's supplied in nachine
readable formon the CICS distribution tape in the ClCS330. SAMPLIB
library.)

Study the code. Run the application. Think how you would inprove it
(this m ght not be as difficult as you imagine!). Make your changes and
try themout. Renenber: "I read, and | renenber; | do, and | understand."”
A note on installing your CICS system

© Copyright IBM Corp. 1984, 1991
PREFACE - 1

CICS Application Programming Primer
Preface
Before you can test your application, you need a CICS system on which to
run it. We tell you where to find out about installing a CICS systemin
Appendi x A, "Getting the application into your CICS system' in topic A O.

By referring to this appendix, and with the help of a friendly system
progranmmer, you should end up with a working CICS system on which you can
install and run your first application program

Product nanes

Thr oughout the book we've used the sinple, commonly used, abbreviations
for the nanes of |BM program products. |If you want to know exactly what
these abbreviati ons mean, look in the glossary at the back.

Conput er systens

CICS runs on a wi de range of |IBM conputer systens. Since its first
edition, when CICS/VS application programmer, you can assunme for the tinme
being that the information here applies to all these systens. However,
where we need to meke an assunption about the conmputer systemthat you are
using, we assunme a relatively small system running under MS.

Termi nal s

We'l'l be assuming 3270 Information Display Systemterm nals are used for
the exanple application in this book.

(*) IBM Trademark. For a conplete list of trademarks See
"Notices" in topic FRONT_1.

Subt opi cs
PREFACE. 1 Book structure

© Copyright IBM Corp. 1984, 1991
PREFACE - 2

CICS Application Programming Primer
Book structure

PREFACE. 1 Book structure

"Setting the scene" in topic 1.0
introduces CICS, and tries to answer the question "What's different
about ClI CS?" (conmpared with, say, a batch system).

"Application design" in topic 2.0
deals with application design fromvarious angles: the user interface,
the design of the data, the splitting of the processing steps into
sensi bl e transacti ons, the exercise of control and comuni cation
bet ween transactions, and so on.

"Application progranm ng" in topic 3.0
tells you how to wite the COBOL prograns that will inplenent the CICS
exanple file inquiry and update application. These programs forma
realistic (non-trivial) working system

"The COBOL code of our exanple application" in topic 4.0
contains the source code in full, and detailed step-by-step notes of
how it works.

"Testing and diagnosis" in topic 5.0
covers running, testing, and debugging application progranms. |t shows
you a conpl ete debuggi ng session using the powerful facilities of the
Execution Diagnostic Facility (EDF). (The bug is one we deliberately
added, in case you're wondering...)

It also shows you how to work through a transaction dunp of the sanme
problem arriving at the same concl usion.

Appendi x A, "Getting the application into your CICS system' in topic A O
tells you where to find out howto install and bring up a CICS system
with the exanple application.

Appendi x B, "Other CICS facilities" in topic B.0O
tells you about the various features of CICS that we've not been able
to cover in a book this size. It also introduces you to the three
ot her application progranmm ng books you'll need when you start writing
your own progranms: the ClICS/ESA Application Progranm ng Guide , the
ClI CS/ ESA Probl em Determ nati on Guide which contain gui dance
information, and the CI CS/ ESA Application Progranm ng Reference ,
whi ch contains definitive application programing interface
i nformati on.

"d ossary" in topic GLOSSARY
defines special CICS terms used in the library and words used with
other than their everyday neaning.

© Copyright IBM Corp. 1984, 1991
PREFACE.1-1

CICS Application Programming Primer
Setting the scene

1.0 Setting the scene
+--- This part of the Primer: -------ommmmm e

\ Describes the ideas behind CICS

|

|

|

|

i

i Explains some of the CICS term nol ogy

i

' i Describes a typical online application program
|
|

Subt opi cs
1.1 Introduction to CICS

© Copyright IBM Corp. 1984, 1991
10-1

CICS Application Programming Primer
Introduction to CICS

1.1 Introduction to CICS

Subt opi cs

.1.1 what is CICS?

Wiy have CI CS?

What does CICS do?

How does a ClI CS-based application differ froma batch application?
How does CICS help you set up an online systenr

How do you use CI CS?

R R R R R
[e N
o g~ WN

© Copyright IBM Corp. 1984, 1991
11-1

CICS Application Programming Primer
What is CICS?

1.1.1 What is CICS?

CICS (Customer Information Control System) is a general -purpose data
communi cation system that can support a network of many hundreds of
termnals. You may find it helpful to think of CICS as an operating
system wi thin your own operating system (although this definition m ght
offend purists). |In these terms, CICS is a specialized operating system
whose job is to provide an environment for the execution of your online
application prograns, including interfaces to files and database products.
See Figure 1.

PI CTURE 1

Figure 1. The CICS online environnent

The total systemis known as a database/dat a-comruni cation system, but
this is such a nouthful that we usually shorten it to DB/ DC system

Your host operating system of course, is still the final interface with
the conputer; CICS is "nmerely" another interface, this time with the
operating systemitself.

Operating systenms are designed to make the best use of the conputer's
various resources. CICS hel ps out by separating a particular kind of
application program (nanmely, online applications) fromothers in the
system and handling these programs itself.

Subt opi cs
1.1.1.1 Wiy you may need an online system

© Copyright IBM Corp. 1984, 1991
1.11-1

CICS Application Programming Primer
Why you may need an online system

1.1.1.1 Wiy you may need an online system

If you're the sort of person we've i magined as a typical reader, until now
you've written prograns that (typically) read a file, process individual
data records, update a carried-forward version of the file, and produce
some type of printed output. These files usually go offline when your
program has finished with them and the file data thus becomes

i naccessible for inquiry purposes. Furthermore, the records in the files
are only as up-to-date as the nobst recent programrun, and don't reflect
any intervening activity.

Nowadays, this often isn't good enough. Your users want inmmediate
responses to their information processing needs. The overnight turnaround
associated with traditional systems is no |onger adequate: accurate,
up-to-date information is needed within seconds. To achieve this you need
an online information processing system using termnals that can give
direct access to data held in either data sets or databases. In other
words, you need a DB/ DC system

Devel oping a DB/ DC system can be a major undertaking, particularly if you
choose to write all your own control programs for handling termnals and
files, and provide your own job-scheduling mechani sms. However, CICS can
meke it very much easier by supplying all the basic conmponents needed to
handl e your data communications. This allows you to concentrate on

devel opi ng application programs to neet your organization's business
needs. You don't need to concern yourself with the details of data
transm ssion, buffer handling, or the properties of individual term nal
devi ces.

PI CTURE 2

Figure 2. A DB/ DC system

© Copyright IBM Corp. 1984, 1991
11.1.1-1

CICS Application Programming Primer
Why have CICS?

1.1.2 Why have CICS?

The online end users within a network can nmake all sorts of demands on
many different sets of data. The things they want to do individually are
usually short. Often they are interrelated and share the same prograns
and data. Furthernmore, the response tines they get should be as short as
possible. For all these reasons, the users' transactions are done nore
efficiently within a single operating system job, rather than as separate
j obs.

If all the transactions are to be handled within the sane job, a
controller is needed to look after them in nmuch the same way that an
operating systemis needed within a conputer to control the jobs. CICS
carries out this controlling function within a DB/ DC job.

CI CS provides the conmunications control and service functions necessary
for users to create their own, custom zed DB/ DC system This cuts down
the total anopunt of programm ng needed. You can customi ze CICS to the
needs of practically any online application, and it can support networks
consisting of a wide variety of term nals and subsystens.

For nost of the tine, the users will be unaware of CICS and, indeed,
unaware of the existence of other applications. They will spend their
time using the online application prograns that you've designed for their
particul ar transactions.

Because CICS is a general -purpose product, the view your users get of it
wi || depend far nore on the configuration of your system and the
application programs you provide, than on any features of ClICS.

© Copyright IBM Corp. 1984, 1991
1.12-1

CICS Application Programming Primer
What does CICS do?

1.1.3 VWhat does CICS do?

CICS controls online DB/ DC application prograns. But what does this nean?
In fact, it nmeans that CICS is a programthat does a | ot of work on your
behal f. CICS handles interactions between term nal users and your
application programs. An interaction nmay consist of one or nmore requests
from and responses to, a termnal user in the course of a single job by
that user.

Cl CS provi des:

O The functions required by application programs for conmunication wit
renote and | ocal term nals and subsystens

O Control of concurrently running prograns serving many online user

O Facilities for accessing databases and files, in conjunction with th
various | BM dat abase products and data access methods that are
avail abl e

O The ability to comrunicate with other CICS systenms and dat abas
systens, both in the same conputer and in connected conputer systens.

We've left things as open as possible to allow our custonmers to produce
the systemthey need. |It's up to your systenms and applications designers
(which could nean you, of course) to choose what they want fromthe
various CICS facilities, and to build whatever kind of user interface that
best suits the end users. So, although you still have to provide the
application programs that the end users actually run, CICS makes it nuch
easier. Your programs gain access to the CICS facilities they need by
strai ghtforward, high-level, commands.

Subt opi cs

1.1.3.1 CICS application prograns

1.1.3.2 Couldn't I do all this nyself?

1.1.3.3 Can CICS serve large systenms and small| systens properly?

© Copyright IBM Corp. 1984, 1991
1.13-1

CICS Application Programming Primer
CICS application programs

1.1.3.1 CICS application prograns

Online application prograns have certain features and needs in conmon.
Typically, they:

O Serve many online users, apparently sinmultaneousl

O Requi re conmmmon access to the same data sets and database

O Try to give each end user a tinmely response to each interactio
O I nvol ve tel ecomunications access to renpte termnals

The host operating systemis in overall charge of the conputer and manages
resources in whatever way you set up. But the very versatility of a
general - purpose operating systemneans that it often cannot give online
progranms the sort of priority treatment they need. Instead, CICS nay be
given "privileged" treatment on behalf of all the online programs that run
under it.

To make the best use of the tine and system resources that the operating
system gives to CICS, CICS takes on itself some of the aspects of an
operating system For exanple, CICS allows nore than one of its prograns
(tasks) to be in an active state at the same tinme. But CICS doesn't
duplicate all of the services provided by the operating system \Whenever
appropriate, CICS goes straight to the operating systemto provide what
its tasks ask for.

© Copyright IBM Corp. 1984, 1991
1.131-1

CICS Application Programming Primer
Couldn't | do all this myself?

1.1.3.2 Couldn't | do all this myself?

Yes, of course, but why reinvent the wheel? CICS is a large, mature piece
of software that has evolved in parallel with the growmth of online

term nal networks and the movement toward distributed processing. It
supports a wi de range of hardware and software. Many thousands of

dat a- processing installations around the world have based their data
communi cation systems on Cl CS.

© Copyright IBM Corp. 1984, 1991
1.132-1

CICS Application Programming Primer
Can CICS serve large systems and small systems properly?

1.1.3.3 Can CICS serve |arge systens and small systens properly?

Yes. CICS is designed in a nodular fashion, and we supply it as a set of
progranms that you can combine rather like building blocks. |[|f you don't
need certain CICS functions, you sinply |leave out those parts of CICS when
installing your system O perhaps, nore typically, you mght install
everything, but only use what you need.

To start with, though, you'll be putting together your first application
on the subset CICS systemthat we've chosen for this Prinmer.

© Copyright IBM Corp. 1984, 1991
1.133-1

CICS Application Programming Primer
How does a CICS-based application differ from a batch application?

1.1.4 How does a CI CS-based application differ froma batch application?

As we hinted in the preface, we expect you to have a batch programm ng
background. That being so, you don't need us to tell you what batch
programming is all about. However, we do want to tell you how a

Cl CS-based application differs froma batch application.

Subt opi cs

1.1.4.1 Basic differences
1.1.4.2 Starting a transaction
1.1.4.3 Inside CICS

© Copyright IBM Corp. 1984, 1991
1.14-1

CICS Application Programming Primer
Basic differences

1.1.4.1 Basic differences

Not everything is different, of course. But here are some points to think
about :
O In a batch program you often define all the required input/output an

work areas within the program |In CICS, these areas are allocated by
CICS, as needed, by CICS itself froma dynam c storage area within the
CICS region. This lets CICS econonmi ze on main storage, and use the
same copy of a programto do work for several users at once.

O A batch programreads its own input data, whereas CICS reads the dat
on behalf of the CICS application programs. A particular CICS
application program need not even be | oaded into the conputer before
its first input nessage arrives.

O A batch programissues its input/output instructions directly to th
operating system CICS application programs always issue such
instructions to CICS, and CICS handles the interface to the operating
system

O Recovering when things go wwong is nore interesting (as we'll see)

Subt opi cs

1.1.4.1.1 Recovering when things go wong
1.1.4.1.2 Two vital terns

© Copyright IBM Corp. 1984, 1991
1141-1

CICS Application Programming Primer
Recovering when things go wrong

1.1.4.1.1 Recovering when things go wong

The final major difference between a batch system and an online system
comes up when things go wong.

Obvi ously, all data processing systens need to be able to survive faults
and errors such as the |oss of power supply, processor failures, program
errors, data set failures, and (in online systens) conmunication errors
Procedures are required to recover fromsuch faults or to restart the
systemif a fault has stopped it.

Recovery and restart design is inevitably nmore conplex for an online
system than for a batch system

O For batch processing, input data is prepared before processing begins
The data is then supplied to the batch process in one orderly
sequence, which is controlled and predictable

O For online processing, input data isn't prepared beforehand, but is
entered as needed while the application is running. Furthernore, the
input data can come from many di fferent users working concurrently.
I'n other words, input data does not arrive in a predictable sequence

If a failure occurs:

O Wth a batch program you can repeat the processing, or continue
fromthe point of failure. This is because the processing sequence is
predictable (it is based entirely on the predefined input data), and
because the input data is still available

O Wth an online application, you cannot sinply rerun the application o
continue fromthe point of failure because the state of the process is
unknown. And even if it were known, you couldn't expect the term na
users to reenter a day's work

So, online application programs need a system that provides special
mechani sms for recovery and restart. |n broad ternms, these nechani sns
ensure that each resource associated with an interrupted online
application is returned to a known state so that processing can be
restarted safely. As you work through this book, you'll see how CICS can
hel p you get over your recovery and restart problens.

Per haps the most striking difference is howa small, sinple application
program can be | oaded into the conputer and pronptly be used, by hundreds
of people throughout a term nal network. Not only that, but the sanme
application programcould be in use by all these people at the sane tinme.
And yet these online application prograns aren't necessarily nore
difficult to wite and get working than the prograns you've been used to
up to now.

© Copyright IBM Corp. 1984, 1991
1.1411-1

CICS Application Programming Primer
Two vital terms

1.1.4.1.2 Two vital terns

Next, we want to introduce two inportant words in the CICS vocabul ary:
"transaction" and "task." You'll constantly see these so it's good to
know what they mean right fromthe start.

A transaction is a piece of processing initiated by a single request,
usually froman end user at a terminal. A single transaction will consist
of one or nore application programs that, when run, will carry out the
processi ng needed

In other words, "transaction" neans in CICS what it does in everyday
English: a single event or item of business between two parties. In

bat ch processing, transactions of one type are grouped together and
processed in a batch (all the updates to the personnel file in one job, a
list of all the overdue accounts in another, and so on). In an online
system by contrast, transactions aren't sorted by type, but instead are
done individually as they arrive (an update to a personnel record here, a
customer order entered there, a billing inquiry next, and so on)

Havi ng given you this straightforward definition, we'll imediately
conplicate things a bit by admitting that the word "transaction" is used
to nmean both a single event (as we just described) and a class of simlar
events. Thus, we speak of adding Mary Smith to the Payroll File with a
(single) "add" transaction, but we also speak of the "add" transaction
meaning all additions to that particular file.

Things are further conplicated by the fact that one sonmetinmes describes
what the user sees as a single transaction (the addition to a file,
perhaps) as several transactions to CICS. W get to this nicety in
"Pseudoconversational or not?" in topic 2.7. Until we get there, you
shoul d use the definition of transaction we've given above; you'll be able
to tell from context whether we mean a transaction type or a single bit of
processi ng.

Now, what about a task?

Users tell CICS what type of transaction they want to do next by using a
transaction identifier. By convention, this is the first "word" in the
input for a new transaction, and is fromone to four characters |ong

al though this source of the identifier is sonetinmes overridden by
progr amm ng.

CICS | ooks up the transaction identifier to find out which programto
invoke first to do the work requested. It creates a task to do the work
and transfers control to the indicated program So a task is a single
execution of sone type of transaction, and nmeans the sane thing as
"transaction" when that word is used in its single event sense

A task can read fromand wite to the terminal that started it, read and
wite files, start other tasks, and do many other things. All these
services are controlled by and requested through CICS commands in your
application prograns. CICS manages many tasks concurrently. Only one
task can actually be executing at any one instant. However, when the task
requests a service which involves a wait, such as file input/output, CICS
uses the wait time of the first task to execute a second; so, to the
users, it looks as if many tasks are being executed at the same tine.

© Copyright IBM Corp. 1984, 1991
1.1412-1

CICS Application Programming Primer
Starting a transaction

1.1.4.2 Starting a transaction

Norrmal 'y, end users wishing to begin an online session will first identify
thenmsel ves to CICS by signing on. Signing on to CICS gives users the
authority to invoke certain transactions. Once signhed-on, they invoke the
particul ar application (transaction) they intend to use. They can do so
by typing the transaction identification code at the start of their
initial request. But, if your designers decide otherwi se, it's just as
easy to set up a particular programfunction (PF) key to invoke a
transaction with a single keystroke or, indeed, for a given term nal

al ways to invoke a particular transaction.

Application prograns are stored in a library on a direct access storage
device (DASD) attached to the processor. They can be | oaded when the
systemis started, or sinply | oaded as required. |If a programis in
storage and isn't being used, CICS can rel ease the space for other
purposes. When the programis next needed, CICS |loads a fresh copy of it
fromthe library.

© Copyright IBM Corp. 1984, 1991
11.42-1

CICS Application Programming Primer
Inside CICS

1.1.4.3 Inside CICS

In the tine it takes to process one transaction, the system may receive
messages from several termnals. For each nessage, CICS | oads the
application program (if it isn't already |oaded), and starts a task to
execute it. Thus multiple CICS tasks can be running concurrently.

CI CS mai ntains a separate thread of control for each task. When, for
exanple, one task is waiting to read a disk file, or to get a response
froma termnal, CICSis able to give control to another task. Tasks are
managed by the CICS task control program the managenent of nultiple tasks
is called multitasking.

CI CS manages both nultitasking and requests fromthe tasks thensel ves for
services (of the operating systemor of CICS itself). This allows CICS
processing to continue while a task is waiting for the operating systemto
conplete a request on its behalf. Each transaction that is being nmanaged
by CICS is given control of the processor when that transaction has the

hi ghest priority of those that are ready to run.

While it runs, your application programrequests various CICS facilities
to handl e message transm ssions between it and the term nal, and to handle
any necessary file accesses. \Wen the application is conplete, CICS
returns the termnal to a standby state. Figure 3 should help you
under st and what goes on.

PI CTURE 3

The flow of control during a transaction (code ACCT) is shown by the
sequence of nunmbers 1 to 8 on the panels. Don't take this transaction
too seriously; we're only using it to show some of the stages that can
be involved. The meanings of these eight stages are as follows:

1. Term nal control accepts characters ACCT, typed at the term nal,
and puts themin working storage.

2. System services interpret the transaction code ACCT as a call for
an application programcalled ACCT00. |If the term nal operator has
authority to invoke this program it is either found already in
storage or | oaded from...

3. The program library into working storage, where....

PI CTURE 4

4. Atask is created. Program ACCT00 is given control on its behal f.
This particul ar programinvokes. ...

5. Basic mappi ng support (BMS) and terminal control to send a nmenu to
the terminal, allowing the user to specify precisely what information
i s needed.

© Copyright IBM Corp. 1984, 1991
11.43-1

CICS Application Programming Primer
Inside CICS

PI CTURE 5

6. BMS and term nal control also handle the user's next input,
returning it to ACCTO1l (the program desi gnated by ACCTO0 to handle the
next response fromthe terminal) which then invokes....

7. File control to read the appropriate file for the information the
term nal user has requested. Finally, ACCTOl invokes....

8. BMS and term nal control to format the retrieved data and present
it on the term nal.

Figure 3. The flow of control during a transaction

The transaction continues to run until it reaches a place in the program
at which it's waiting for some activity (such as a disk access) to end.

At this point, CICS allocates the processor to the next task that can run.
Only when there's no work to do on behalf of any CICS task does CICS pass
control back to the operating systemto allow batch work to run. This
allows CICS to maintain the priority of online working over batch work in
ot her address spaces.

In this way, CICS controls the overall flow of your online system

Besi des doing all the transaction processing, CICS al so supports the
bookkeepi ng side of the system by accunul ating performance statistics and
monitoring the resources used. This gives you the information that

enabl es user departments in an organization to be charged accordingly. It
also allows you to find out which parts of CICS are being heavily or
lightly used. This will help your systenms people change the CICS set-up
when you wi sh to tune your systemto inprove its perfornmance.

© Copyright IBM Corp. 1984, 1991
1.1.43-2

CICS Application Programming Primer
How does CICS help you set up an online system?

1.1.5 How does CICS help you set up an online systen?

After your system has been designed, the programm ng effort to turn the
specification into a working application is normally divided between two
groups: the people who install and nmaintain the system and those who
write the application programs it will use. (W don't want to rule out
the possibility of all this work being done by one heroic person.) CICS
offers a variety of helpful features for both groups. Concentrating on
the application programm ng side, CICS aids include:

O A choice of progranm ng | anguage. You can write your application
programs in assembler, COBOL, PL/I, or C |language.

| A command-1| evel programmng interface with CICS. You need know little
about how CICS works. You request data or conmunication with
termnals by issuing CICS commands that resenble those of the
progranm ng | anguage you are using. A command | anguage transl ator
preprocesses the application source code, translating ClICS commands
into CALL statements in the |anguage of the application program It
al so provides useful diagnostics.

O An execution diagnostic facility (EDF), for testing conmand-|evel
application prograns interactively.

© Copyright IBM Corp. 1984, 1991
1.15-1

CICS Application Programming Primer
How do you use CICS?

1.1.6 How do you use CICS?

Now t hat you have sone idea of what CICS is and how it fits into your
conmput er system we can explain how you use it. W're going to do so by
showi ng you the stages in designing and i nplementing a reasonably
typical (1) and useful application: a file inquiry and update system
This exanple starts in the next topic.

To get the best out of your CICS system (or, for that matter, any system
you shoul d design the system around its applications. However, for our
purposes, we'll assunme that you've been through this process for other
applications, and sinmply wish to extend your present system by adding this
online file inquiry and update application.

In reality, if your proposed new application prograns were very different
fromyour existing ones, your systems programmers m ght have to tailor
your CICS systemto provide the necessary functions, typically by picking
di fferent sets of system paranmeters for different occasions. This could
mean initializing the systemagain, to include |IBMsupplied progranms to
hel p you do what you want. |f your needs are very unusual, they m ght
have to custom ze sone parts of your CICS system adding code of their
own, before initializing the system The prograns that we devel op and
describe in this book are all supported by a sinple CICS system so you
can forget about initialization or custom zation for the tine being.

(1) Asking "What's a typical application?" is a bit |ike asking
"How long is a piece of string?". Nevertheless, many diverse
users share common information processing needs. So we shall
see how CICS can neet the needs of a "typical
application"--the online requirements of the Flibinite
bouti que--part of our exanple application, described in
"Designing the user interface" in topic 2.3.

© Copyright IBM Corp. 1984, 1991
1.16-1

2.

+-

CICS Application Programming Primer
Application design

0 Application design

-- This part of the Primer: -----c-mmmmmm e
i Explains how to design your first CICS application prograns
i Defines the problem
i Describes 3270 Information System data streans
i Deals with designing the data
\ Tal ks about establishing the user interface
| Exam nes special features of the CICS environnment

i Defines the exanple application progranms involved, and their
interactions.

The CI CS exanpl e application--a department store

+-

-- The current situation -------cm oo

A department store (the Flibinite boutique) with credit custoners
keeps a master file of its custoners' accounts. Each customer record
hol ds the custoner's nane, address, tel ephone nunmber, charge limt,
current bal ance, account activity, payment history, and so on.

At the nonment, a set of batch processing progranms updates this master
file (and some related ones) twice a week with the necessary charge
and payment information. The records are also printed periodically,
bound into bul ky folders, and distributed to each section to help in
answering questions both fromcustonmers and fromwi thin the Accounting
and Custoner Service sections.

However, the listing is too large to be printed often, so it's usually
out - of - dat e.

-- Online access to information --------------------------------

The store wants online access to a custoner's record, to have
absolutely current information. So we need an inquiry function.
Furthermore, the people in Accounts want to be able to update these
custoner records online, for convenience and currency. So we also
need a facility to add new records, delete records and change
addresses and other information unrelated to billing.

Each customer has a unique account nunber, which is the key to the
existing master file. The users in Accounts will presumably access
records by this nunmber, because it's always avail able when they are
processi ng work or answering questions.

© Copyright IBM Corp. 1984, 1991
20-1

CICS Application Programming Primer
Application design

+--- Access by name ------------- oo

However, people in the Custoner Service Department say they nmust be
able to access the file by customer nane if possible. Their
experience suggests that custoners don't usually know their account
nunbers, but can al ways remenber their names!

If a customer wants to charge itens but has forgotten to bring al ong
the right charge card, a clerk calls Custonmer Service, verifies the
exi stence and paynment status of the account, and gets the account

|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
i
i nunber for the charge slip.
|

|

+--- Logging and printing changes -------------ommmmm

Finally, the people in Accounts have asked us to make quite sure that
all changes to the file are |logged, and all errors, with a hard-copy
report in both cases. They seemto be rather nervous about subjecting
their master file to online updating, but assure us that they wll

feel nore confident having a printed record of all changes nade

They are al so concerned about the security aspects of this first
venture into online file updating, and want to be able to trace
changes to specific records. Later, they will probably agree to
direct this log to tape, printing it only when necessary, but for the
monment they need it in hard-copy form

Subt opi cs

.1 The CICS exanpl e application--a departnent store
3270 termnals

Desi gning the user interface

Coming to grips with the data
Refining the transacti on design
Programm ng for a CICS environnment
Pseudoconversational or not?
Arrangi ng the processing

Three renmnini ng consi derations
.10 Defining the programs--a final | ook

NN DNDNMNDNDMNMNDNDDNDN
© 0N O WDN

© Copyright IBM Corp. 1984, 1991
20-2

CICS Application Programming Primer
The CICS example application--a department store
2.1 The CICS exanple application--a departnent store
This topic explains, with the help of an exanple, one way of designing a
CI CS application. The text you've just been reading (in the boxes
opposite) describes what the application is to do

The outline specification for our exanple is a sinple one. It shows
design issues and programm ng requirements that arise in nearly every
application. The CICS services required by this application are a subset
of the full range avail abl e; however, this subset consists of those
functions that nost straightforward applications need to use. Let's

rel ate the departnment store's needs to some general points about CICS
application programs. A CICS application usually consists of three main
parts consisting of the data to be processed, the transactions to be
perfornmed, and the interface with the user

You can see these parts in the specifications just described for the
exanple. The custonmer information in the account file is the data to be
processed; the online operations (display a record, add a record, and so
on) are the transactions to be performed on that data; and the term nals,
formatted screens, and operating procedures are the interface with the
user. Let's see how each of these parts could be designed.

It is inmportant to note before starting, and it will certainly be clear in
what follows, that each of these three parts bears on the others. You
cannot design one without reference to the other two.

Mor eover, design is an iterative process. Decisions about the user
interface affect transaction definition, which, in turn, causes a slight
change in specifications, and the whole cycle begins again. These

adj ustnents are normal and should be expected in any design process.
However, unless you freeze the design at some point you will never

conpl ete the job.

Subt opi cs

2.1.1 Defining the problem

2.1.2 Sunmary

2.1.3 Designing the transactions: prelimnaries
2.1.4 \Wat next?

© Copyright IBM Corp. 1984, 1991
21-1

CICS Application Programming Primer

Defining the problem
2.1.1 Defining the problem
The first step in the design process is to specify broadly what the
application will do. |In our case, the need for the application came from
two user departments, and the first functions they requested are:
O Di spl ay of customer account record, given an account nunbe
O Addi tion of new account record
O Modi fication of existing account records (by account number
O Del eti on of account records (by account nunber
O Har d-copy listing of changes to the account fil
O Ability to access records by nane
Subt opi cs
2.1.1.1 The account file records
2.1.1.2 Requirenments inposed by the environment

2.1.1.3 Refining and devel opi ng the program specifications
2.1.1.4 Estimating the nunber of transactions

© Copyright IBM Corp. 1984, 1991
21.1-1

CICS Application Programming Primer
The account file records

2.1.1.1 The account file records

The detail ed design of our prograns is going to be influenced by the
established formof the existing custoner data, of course. The account
file is very much at the center of this application. |Its records are
shown in Figure 4.

E T +
i i
| Field Lengt h Occurs Tot al Type '
i Account Nunber (Key) 5 1 5 Onli ne '
| Surnane 18 1 18 Online '
i First Nane 12 1 12 Online '
i Mddle initial 1 1 Online '
| Title (Jr, Sr, and so on) 4 1 Online !
| Tel ephone nunber 10 1 10 Online '
| Address line 24 3 72 Online '
i Other charge nane 32 4 128 Online '
i Cards issued 1 1 1 Online '
i Date issued 6 1 6 Online '
i Reason issued 1 1 1 Online 1
i Card code 1 1 1 Online '
| Approver (initials) 3 1 3 Onli ne '
| Special codes 1 3 3 Online '
I Account status 2 1 2 Bat ch !
I Charge limt 8 1 8 Bat ch !
| Payment history: (36) 3 108 Bat ch !
' - Bal ance 8 !
' -Bill date 6 !
' -Bill amount 8 1
' -Date paid 6 1
' - Amount paid 8 1
i i
E T +

Figure 4. Account file record format

The fields marked as Type "Online" are the ones that are to be maintained
by our online program Those marked "Batch" are already updated by the
exi sting batch billing and payment cycle and need only be displayed by our
online system

© Copyright IBM Corp. 1984, 1991
2111-1

2.1.

Besi
are
are:

CICS Application Programming Primer
Requirements imposed by the environment

1.2 Requirements inposed by the environment

des the users' requirements, we're going to assune that certain others
i nposed by the environment in which this application will run. These

The term nals available are | BM 3270 system di spl ays and printers
The screens display 24 |ines, each of 80 characters (the |BM 3278
Di splay Station nmodel 2, for exanple), with corresponding printers.

Some of the people who will use the application will do s
infrequently. Consequently, the application should be as

sel f-docunmenting as possible, and users should not need to menorize
very nuch to use it confortably. On the other hand, help to casual
users should not result in slow or annoying interactions for frequent
users. Sone hard-copy documentation on how to use the systemw |l be
provi ded, but we hope users will only rarely need to look at it. The
goal is to keep everything nice and sinple for all users.

The integrity of the account file nmust be maintained. This means tha
it must be protected frominconsistent or |ost data, whether resulting
froma failure in the application or CICS or the operating system It
al so nmust be protected fromtotal |oss, such as a disk head crash or
ot her catastrophe.

The existing account file is a VSAM key-sequenced data set containin
about 10 000 records of 383 characters each, including the 5-digit
account nunber key.

© Copyright IBM Corp. 1984, 1991
2112-1

CICS Application Programming Primer
Refining and developing the program specifications

2.1.1.3 Refining and devel opi ng the program specifications

The next step in defining the problemis to verify the first program
specifications with whoever made the original requests. You should be
especially alert for information or functions that no-one requested but
that neverthel ess may actually be required when real work is attenpted.
Ot herwi se the users will make the sane discoveries right after you

conmpl ete your programm ng effort, and you'll be faced with maki ng changes
when it may prove difficult, rather than now when it is easy.

It is always useful to talk to the actual users of an application, to find
out how they do their work and how they view the functions you intend to
provide. Supervisors can provide other insights. It is very inportant to
repeat this verification step as the design process noves along froma
broad outline toward nore and nore detail ed specifications.

© Copyright IBM Corp. 1984, 1991
21.13-1

CICS Application Programming Primer
Estimating the number of transactions

2.1.1.4 Estimating the number of transactions

Now is also the time to find out how often the systemw ||l be expected to
cope with the transactions of each type, what sort of response tines wll
be expected, what tines of the day the application will have to be
available, and so on. This will allow you to design progranms that are
efficient for the bulk of the work, and it will help you in determ ning
system and operational requirements.

For the exanple application, let's assume that our inquiries produced the
foll owi ng information:

O There will be about 10 additions, 50 nodifications, 5 deletions, an
200 inquiries (by account number) per day in the Accounting
Depart ment .

O The people in Accounting are unable to estinmate the nunber o
inquiries that they would nake by name, but they sound intrigued with
the possibility, and therefore may be expected to make sonme use of
this facility.

O Accounting would find it very useful to be able to get a printed cop
of a customer account record, besides being able to display it on the
screen. (This is a new requirement, not in the original
specification. W should consider providing it.)

O Customer Service makes nearly 1000 inquiries per day agai nst accoun
records, ninety percent of them by name. For nost of these, the only
items used fromthe conplete account record are the name and address
(to verify that it is the right record), and the credit status and
limt.

Note: |In assessing estimates of transaction frequency, we need to account
for a fact of life. That is, if we nake it nmuch easier to do sonething,
such as an inquiry, users will alnost certainly do it nore often than they
used to do. Indeed, the eventual transaction rates experienced with
online systenms are al nost al ways hi gher than can be predicted fromthe
current workload -- often a reliable indication of their success.

© Copyright IBM Corp. 1984, 1991
21.14-1

CICS Application Programming Primer
Summary
2.1.2 Sunmary

We've now identified some of the first steps when starting to design an
application. You shoul d:

O Broadly set down the application functions based on user need

O ldentify the individual data elenments involved in the processin

O Consi der any external environnental factors and restriction

O Verify your initial specifications with the user

O Esti mate the expected | oad on the system fromthe various ne
functions that your application will provide.

When you' ve done this, you can then go on to design the transactions and
processi ng prograns that you'll need. So, let's continue now with sone
application design considerations.

© Copyright IBM Corp. 1984, 1991
21.2-1

CICS Application Programming Primer
Designing the transactions: preliminaries

2.1.3 Designing the transactions: prelimnaries

Earlier in this topic, we described the functions needed in our exanple.
Let's now see how we m ght define transactions to performthese functions.
One obvi ous approach is to nmake each function a separate transaction. The
transaction to display an account record, then, would work sonmething |ike
this:

O Find out fromthe term nal user which record is to be displayed

O Read that record fromthe file

O Di splay the information fromthat record at the term nal

That seens straightforward. How about the add transaction?

O Get the data for the new record as keyed in by the user at th
termnal .

O Wite this data to the file

Even sinpler. However, there are a few things we've not taken into
account .

First of all, we're not dealing with the fam liar batch devices of card
reader and line printer here. The 3270-systemtermnals are radically
different in their characteristics fromsuch batch devices. They are
different, too, fromline-oriented or record-oriented devices such as
Tel etypes (**) and | BM 2741s.

Second, there are human beings operating the terminals, and their
happi ness and efficiency nmust be a major design goal in any application.

Third, we have to deal with the inplications of processing in an online
envi ronment, where our goals and constraints may be quite different from
those that govern a batch program

Finally, we've not provided for any exceptional conditions. For exanple,
what if the record to be displayed isn't in the file? O if the one to be
added is in the file? You probably know that in a batch program about 80
percent of the effort and the code is devoted to handling errors, even
though this code is executed rarely. |In online progranms, all these sane
probl ems have to be thought about and resolved, and there are also sone
new potential problens.

(**) Trademark. For a conplete list of trademarks, see "Notices"
in topic FRONT_1.

© Copyright IBM Corp. 1984, 1991
213-1

CICS Application Programming Primer
What next?

2.1.4 \What next?

Before we continue trying to design our transactions, let's learn a little

nor e about the 3270 systenms that our users will be using to communicate
with the transactions. After all, one of the first things to be
considered is the user interface: how will the term nal operators
communi cate with this application, and howwill it give themthe

informati on they need?

We can then go on to find out nore about a much wi der range of issues:
what makes users happy ("human factors"), the design of data, programm ng
for a CICS environment, and so on.

But first, 3270s. |If you are already famliar with 3270 term nals and the
3270 data stream you can skip ahead to "Designing the user interface" in
topic 2.3.

© Copyright IBM Corp. 1984, 1991
214-1

CICS Application Programming Primer
3270 terminals
2.2 3270 termnals
Remenber, you're free to skip this topic if you know about |BM 3270
term nal s al ready.

The 3270 Information Display Systemis a famly of display and printer
termnals. Different 3270 device types and nodels differ in screen sizes
printer speeds, features (like color and special symbol sets) and manner

of attachment to the processor, but they all use essentially the sane data
format.

You need to know a little about this format to make the best use of
3270-system devi ces, and to understand the Basic Mappi ng Support (BMS)
services that CICS provides for communicating with these devices. That's
the purpose of this topic.

Let's talk about the IBM 3278 Display Station Mdel 2, which has a display
screen and a keyboard. This device is used for both input and output, and
in both cases the screen (or rather a buffer that represents it) is the
cruci al medi um of exchange between the term nal and the processor. The
purpose of the keyboard is to nodify the screen, in preparation for input,
and to signal when that input is ready to be sent to the processor

When your application programwites to a 3278, the processor sends a
stream of data in the special format used by 3270 devices. Mst of the
data in the streamis the text that is to be displayed on the screen; the
rest of it is control information that defines where the text should go on
the screen, whether it can be overtyped fromthe keyboard later, and so
on.

The printers that correspond to the 3278 can use this same data stream so
a streambuilt for a display device can be used equally well for a
printer.

Subt opi cs

.2.1 3270 field structure
3270 output data stream
3270 attribute bytes
3270 input data stream
Unformatted 3270 data
Saved by BMS

N N NN NN
N NN DNDN
o O wWN

© Copyright IBM Corp. 1984, 1991
22-1

CICS Application Programming Primer
3270 field structure

2.2.1 3270 field structure

The screen of the 3278 Moddel 2 can display up to 1920 characters, in 24
rows and 80 colums. That is, the face of the screen is logically divided
into an array of positions, 24 deep and 80 wi de, each capabl e of

di spl ayi ng one character, with enough space around it to separate it from
the next character.

Each of these 1920 character positions is individually addressable. This
means that your COBOL application program can send data to any position on
the screen, without having to space it out with space characters to get it
into the right location. Your program does not, however, give an address
for each character you want displayed. Instead, within your program you
divide your display output into fields. A field on the 3278 screen is a
consecutive set of character positions, all having the sanme display
characteristics (high intensity, normal intensity, protected, not
protected, and so on). Normally, you use a 3270 field in exactly the sane
way as a field in a file record or an output report: to contain one item
of data.

To show you how this works, Figure 5 shows the screen that the CICS system
uses for the standard sign-on transaction:

o m e mmmmmmmemmmmmmmemmmmmmmm e e m =
|

i CESN - CICS/VS SIGNON - ENTER USERI D AND PASSWORD

' USERI D:

' PASSWORD:

|

o m e m e m =

Figure 5. The CICS sign-on screen

There are a nunber of fields on this screen although, as shown, only three
of the fields are displaying character data. The first one is at row 1,
colum 1 (position 1,1), and it contains the data ClICS/ VS SI GNON - ENTER
USERI D AND PASSWORD. The field is specified as both protected (meaning
that the term nal operator cannot type over that area of the screen) and
bright (high intensity, in this case just for enphasis). The second field
is at position (4,5) and contains the data USERID:. This is also protected
and bright. (The underscore after USERID: is the cursor and marks the
position into which the next character entered fromthe keyboard will go.)
Both of these fields have been used for output only, to convey sonething
to the user. For the second field, it was to show what should be typed
into the third field. The second field is followed by an attribute byte
at position (4,11), and then the third field starts at position (4,12)

This third field is different because we intend the user to key something
into it which will becone input the next time the termnal transmts. So
it isn't protected. It is set for normal intensity, and, even though you
cannot see this by looking at the screen, it is 20 positions long. This
is the permtted length of the name field in the CICS Sign-On Table, with
which the contents of this field will later be conpared.

At the end of this field is another field, known as a stopper field. (You
can't see this one, either.) |Its only function is to stop the user from
keyi ng more than 20 characters into the nane field. The reason for this
is that the beginning, but not the end, of each field is flagged in the
buffer that represents the screen. The end of a field is one position
before the start of the next field. There's no data in this "stopper"
field; the inportant thing is that it is protected. \Whenever you try to
key into a protected field on the screen, you are prevented from doing so
and the keyboard | ocks. Users who try to key nore than 20 characters into

© Copyright IBM Corp. 1984, 1991
221-1

CICS Application Programming Primer
3270 field structure
the name field, therefore, run into this protected field, and are nade
aware of the error by the | ocking of the keyboard

The next three fields are two |ines down, at positions (6,5), (6,15) and
(6,24). They are rather like the three fields on the earlier line. The
first of them contains the data PASSWORD: and is protected. The second is
the field into which the user is supposed to enter the password. It is
unprotected, and has another attribute that may at first seem curious. It
is dark or nondisplay. This means that the data in the field does not
show on the screen (whether the user puts it there or the program does)
even though it is very nmuch there. Nondisplay is used for this field
because passwords are supposed to be secret, and this way no one passing
by while the user is signing-on will see the password. The third field is
again a stopper field to stop the user fromkeying in nore than eight
characters of password information

© Copyright IBM Corp. 1984, 1991
221-2

CICS Application Programming Primer
3270 output data stream

2.2.2 3270 output data stream

Now let's see how this information is formatted for transm ssion fromthe
processor to the 3278. Figure 6 shows the data stream

Control information affecting the whole transm ssion, such
as whether to unlock the keyboard or not, where to place
the cursor, and so on.

First Encoded screen address showi ng where
field: the next field goes on the screen (row 1,
colum 1)

Control information to show that a
field is about to begin

Control information to describe display
attributes of field: high intensity, protected

Data to be displayed: "CESN - CICS/ VS
SI GNON - ENTER PERSONAL DETAI LS"

Second Encoded screen address show ng where
field: the next field goes on the screen (row 4,
colum 5)

Control information to show that a
field is about to begin

Control information to describe display
attributes of field: high intensity, protected

Data to be displayed "USERID: "

Third Control information to show that a
field: field is about to begin

Control information to describe display
attributes of field: normal intensity,
unpr ot ect ed

Control information cursor position

Fourth Encoded screen address show ng where
field: the next field goes on the screen (row 4,
colum 32)

Control information to show that a
field is about to begin

Control information to describe display
attributes of field: protected (stopper)

Fifth Encoded screen address show ng where
field: the next field goes on the screen (row 6,
colum 5)

Control information to show that a
field is about to begin

Control information to describe display
attributes of field: high intensity, protected

© Copyright IBM Corp. 1984, 1991
222-1

CICS Application Programming Primer
3270 output data stream

Data to be displayed: "PASSWORD:"

...And so on for the remaining fields.

Figure 6. A 3270 output data stream
There are several things to note about this data stream

O For the first and second fields, a screen address appears in the dat
stream whereas for the next field it does not. This is because no
new address needs to be provided when one field i mediately follows
another. Addresses for these fields could be included, but they would
increase the length of the transmssion. It is inportant to keep
transm ssions as short as possible when dealing with term nals that
may be connected by tel ephone I|ines.

O Simlarly, data is included for the first two fields but not for th
next two. Again, if there is no data, it isn't necessary to include
anything in the data stream This also reduces the length of the
transm ssion.

O We' ve shown the various fields for the screen being transmitted in th
order they appear on the screen. This is customary and natural, but
it isn't required by the device, which will accept fields in any
order, but it's much faster to display themin the correct order.

O The most striking feature of the data streamis its variable |engt
and format, which depend on the presence or absence of data, adjacency
or nonadjacency of fields, and so on. This would be very cunbersone
to produce in a COBOL program to say the least. Moreover, every tine
you moved sonet hing about on the screen, you would have to change the
program t hat produced the data stream

Don't panic! "Saved by BMS" in topic 2.2.6 shows us the |light at the end
of this particular tunnel.

© Copyright IBM Corp. 1984, 1991
222-2

CICS Application Programming Primer
3270 attribute bytes

2.2.3 3270 attribute bytes

One nore point about this output data stream If you followed the screen
positions used in the exanple carefully, you may have noticed that each
field seens to be one position too long. |f the 20-position nanme field

begins at (4,11), why doesn't the stopper field start at (4,31) instead of
(4,32)? This is because the display attributes to which we've referred
(protected, bright, and so on) actually occupy one screen position for
each field. That is, if we start a 20-character field at position (4,11),
the attribute byte (as it is called) for the field is |ocated at (4, 11)
and the actual data goes from (4,12) through (4,31). The attribute byte

| ooks |ike a space on the screen, and is itself protected (whether or not
the field to which it applies is protected), so that the user cannot key
into it and change the field identity.

As noted earlier, the attribute byte controls how data is shown on the
screen. The choices are

O Hi gh intensit
O Normal intensit
O Dar k (nondi spl ay)

The attribute byte also governs what can be done to the field fromthe
keyboard. Here the choices are

O Unprotected: The user may key anything into the field

O Nuneric: The user may key only digits, deciml points, and m nus sign
into the field.

O Protected: The user may not key into the field

O Aut oski p: The user may not key into the field and, furthernore, th
cursor will automatically skip over the field if the previous field is
filled.

Autoskip is usually used for stopper fields if the information in the
previous field is of fixed length and always fills the field. That way
the user can key continuously, and doesn't have to use the cursor advance
key after filling a field to get to the next one

After variable-length data (such as the nane field in the sign-on screen)
however, it is customary to make the stopper a protected field, instead

If you specify autoskip, and the user keys too nuch, the excess goes into
the next unprotected field, and the user may not be aware of this. \here
there are fields for both fixed-length and variable-length data, sone
progranmers like to use only protected stoppers, so that the user
consistently has to use the cursor advance key to get to the next field
whet her or not the current field is full. Others prefer to use both kinds
on the same screen.

The attribute byte also carries one nore piece of information. This is
the modified data tag. It has to do with input, however, and so we'l
explain it later. (If you can't wait, you'll find more details on 2.2.4
and in "The BMS macros" in topic 3.2.2.)

Note: Not all conbinations of attributes are permtted, but all the
useful ones are. We should also point out now that displays with
additional features, |ike color and special synmbols, have nore conpl ex
attribute conbinations to express the additional possibilities. However
the logic for formatting the data streamwi th these extended attributes is
essentially the same.

© Copyright IBM Corp. 1984, 1991
223-1

CICS Application Programming Primer
3270 input data stream

2.2.4 3270 input data stream

Now t hat we've described what output to a 3278 | ooks |like, what does the
i nput ook like? There are several different possible formats, and the
one used depends both on the type of read command used and on certain

ot her circunmstances. Figure 7 shows our sign-on screen after John Jones
has been busy at it.

o e o -
|

! CESN - CICS/VS SIGNON - ENTER USERI D AND PASSWORD

! USERI D: JONESJO

! PASSWORD: OPNSESME_

|

o o e — e e e e

Figure 7. The sign-on screen in use

We're showi ng you the password here but, remenber, you wouldn't normally
see it because it's held in a nondisplay field.

VWhat is of interest to us is what CICS gets when it reads a screen like
this one. Figure 8 shows us what cones back after the user presses the
ENTER key.

Control information affecting the whole transm ssion, such
as which key caused the input to be sent (ENTER, PFx),
where the cursor is, and so on

First Encoded screen address show ng where
field: the field was on the screen (here Row 4,
Colum 11).

Contents of the field: "JONESJO'
(7 characters, not the full 20 allowed).

Second Encoded screen address showi ng where
field: the field was on the screen (here Row 6,
Col um 15).

Contents of the field: "OPNSESME"

Figure 8. A 3270 input data stream

Points to note about this transm ssion are:

O Practically nothing came back. All the fields used for titles an
| abel s have been onmitted fromthe transm ssion, and even the "new
password" field, which the user did not fill in, is mssing. This is
because only changed fields are transmtted back on the kind of read
used here by CICS. The reason the hardware works this way is, again,
to minimze the Iength of the transm ssion.

How does the 3278 know what to send? When a user keys into a field, a
bit in the attribute byte is turned on. This is the modified data
tag, or "MDT." You can also turn this bit on when you wite to the
screen, so that the field is returned whether or not the user keys
intoit. This provides a handy method for storing information on the

© Copyright IBM Corp. 1984, 1991
224-1

CICS Application Programming Primer
3270 input data stream
screen between transactions, but we'll explain that later, in
"Communi cati on between transactions" in topic 2.9.1.

O The second thing to note is that only the significant portion of
changed field is sent; the unused portion on the right-hand side of
the field is not. This is because the 3270 does not send enpty
positions on the screen. Enpty positions are called nulls, and have a
character encoding of hexadeci mal (hex) 00 (LOWVALUE in COBOL). |If
you ask for the screen to be erased (as you'll often want to) before
your data streamis witten to it, the screen is set to nulls. Nulls
aren't the same as spaces, even though they | ook the same on the
screen. Spaces have a hexadecimal representation of 40 and are
transmtted; thus the space between JOHN and JONES comes in, but the
unused part of the field after JONES does not. This is, once again,
to minimze the length of the data transm ssion.

The result of all these length-reduction measures is another data stream
of extrenely variable format. This tine the position of the data com ng
back depends not only on the content of what was sent but also on what the
operator did, presenting a considerable challenge to decode.

We nentioned earlier that there were several different formats used for
transm ssion to the processor, depending on the type of read used and
ot her circunstances.

One of the other circunstances is the type of key the operator used to
send the input. A nunmber of keys cause the 3278 to send input to the
processor at the earliest opportunity (these keys include CLEAR and ENTER,
the program access (PA) keys, and the program function (PF) keys). Of
these, the CLEAR key and the PA keys send only the identity of the key
itself, without sending any of the data on the screen. |If the operator
uses one of these so-called "short-read" keys, the data stream shown in
Figure 8 ends right after the initial control information. This causes a
speci al situation which you'll have to deal with in any programthat tries
to read a formatted screen.

© Copyright IBM Corp. 1984, 1991
224-2

CICS Application Programming Primer
Unformatted 3270 data

2.2.5 Unformatted 3270 data

As well as transmitting a short data streamto the processor, the CLEAR
key al so erases the screen. The entire screen is set to null values, and
there are no fields. You may prefer to think of the screen as just one
big field, but it is a field without attributes. The user can key into
this field and send it to the processor. 1In fact, if you think about it,
al rost every new transaction is going to start this way. The user presses
CLEAR to erase the leftovers fromthe previ ous operation, and then keys in
sonething to identify the next request and transmts it with the ENTER
key. \What does this look like comng in to the processor?

Data that comes in froma screen that was not formatted into fields by a
previous wite is called, very logically, unformatted data. The data
stream | ooks like the one in Figure 8 in topic 2.2.4 except that no
address is provided (the data is assumed to start at the first position on
the screen), and there is only one field. The field consists of every
character that isn't a null--that is, every character that the user
keyed--regardl ess of where it is on the screen, and in the order it
appears on the screen).

Unformatted data is handled in CICS with a slightly different set of
commands from formatted data. Unformatted data is actually sinpler than
formatted data (and you can write it as well as receive it), but it isn't
nearly as useful. So we'll only cover formatted data in this Primer, and
point you to where you can find out how to use unformatted screens if you
shoul d want to.

© Copyright IBM Corp. 1984, 1991
225-1

CICS Application Programming Primer
Saved by BMS

2.2.6 Saved by BMS

We said earlier that you do not have to deal directly with this data
format in your CICS program The feature of CICS that spares you this
complexity is called Basic Mapping Support (BMS). BMs:

O Allows you to deal with data in a fixed format, providing a dat
structure for you to copy into your programin which the input fields
(the name, password, and new password in the exanple we showed) are
al ways in the same place and of the same (maxi mum | ength.

O Al lows you to deal with data by name. 1In this instance we m ght hav
called the fields where we expected i nput NAVME, and PSWD. (We would
do this when we first defined the screen.) Then we could refer to
these variables by nane in our program wi thout any concern for where
they are on the screen.

O Allows you to define all the constant data for the screen (titles
field labels, and so on) separately fromyour program so that you
don't have to clutter your code with a great many statenments |ike

MOVE ' ENTER PERSONNEL NUMBER TO

O Saves you from having to know about the details of the 3270 dat
stream

Wth these facilities, you can change the arrangenent of the screen, the
words in the titles, and so on w thout any changes to your program-a very
i mportant advantage.

"What BMS does" in topic 3.2.1 tells you nore about BMS and expl ai ns how
to use it.

Now, let's go on and | ook at what we'll have to consider when designing
the user interface.

© Copyright IBM Corp. 1984, 1991
226-1

CICS Application Programming Primer
Designing the user interface
2.3 Designing the user interface
We know broadly what we want our application to do

Di spl ay custoner account records, given their account nunber
Add new account record

Modi fy existing account record

Del ete account record

Print a list of the changes nade to the account fil

Print a single copy of a custoner account recor

Access records by nane

OO oOooOoooao

We al so now know sonet hi ng about how the 3270 data stream works and how
CICS starts transactions. So we can start thinking about how our
application mght ook to the user.

Subt opi cs

2.3.1 A first approach

2.3.2 A user-friendly approach

2.3.3 Sone interface design principles

© Copyright IBM Corp. 1984, 1991
23-1

CICS Application Programming Primer
A first approach

2.3.1 A first approach

One approach is to review the transactions which the user wants to do, and
t hi nk about what the user should see while perform ng each one.

Subt opi cs

2.3.1.1 The display transaction
2.3.1.2 The print transaction
2.3.1.3 The add transaction
2.3.1.4 The nodify transaction
2.3.1.5 The del ete transaction

© Copyright IBM Corp. 1984, 1991
231-1

CICS Application Programming Primer
The display transaction

2.3.1.1 The display transaction

If we take the sinplest one as a starting point, displaying a record in
the file, then we need to decide:

1. How the user enters a request.

2. How we show the user the requested record.

3. What to do if the user makes a m st ake.

The user need enter only a very little information to request the display
of a record: just the transaction type (display, in this case) and
something to identify the record to be displayed. The output, on the
other hand, is quite extensive, consisting of all the fields in the
account record.

We can therefore inmagine that a user wanting to display a record m ght
switch on the termnal, sign-on to the system clear the screen, and enter
somet hing |ike:

o)
[0}
o
P
N
w
N
5

DI SP here is the transaction identifier that CICS needs to decide which
transaction the user wants to perform and 12345 is the nunber of the
account to be displayed.

If the requested record can be found in the Account File, the application
program shoul d respond with a screen showing the data in the record.

To make the screen as easy as possible to understand, we should | abel each
field to show what it means. Figure 9 shows a possible screen format.

o o e e o e
i

! ACCOUNT FILE: RECORD DI SPLAY

' ACCOUNT NO. 12345 SURNAME: MOUNCE

! FI RST: DAVI D M: C TITLE

! TELEPHONE: 7512483960 ADDRESS: 79 W STFUL VI STA

! PLEASANTVI LLE, NY 10549

! OTHERS WHO MAY CHARGE:

! CHRI STA MOUNCE (W FE) PETER MOUNCE (SON)

! NO. CARDS | SSUED: 2 DATE | SSUED: 04 01 89 REASON: L

! CARD CODE: C APPROVED BY: CES SPECI AL CODES: A J

I ACCOUNT STATUS: N CHARGE LIMT: 2000. 00

I HISTORY: BALANCE Bl LLED AMOUNT PAI D ANOUNT

! 0. 00 04/ 25/ 89 101. 37 05/ 05/ 89 101. 37

! 0.00 05/ 25/ 89 42.50 06/ 08/ 89 42.50

! 3210. 97 06/ 25/ 89 321. 97

! PRESS "CLEAR' OR "ENTER' WHEN FI NI SHED

i

e m e e — e — =

Figure 9. An exanple of a display screen format

If the request wasn't correct, we have to write back sonme sort of nessage
expl ai ning exactly what's wong. Very little can go wong here with the
di splay transaction (unlike the add transaction, where all sorts of things
can happen!). The user can nmeke a format error in specifying the record,

© Copyright IBM Corp. 1984, 1991
2311-1

CICS Application Programming Primer
The display transaction

or name a non-existent record and thus try to display sonething that isn't
t here.

Note that CICS has to deal with errors in the transaction type. |If the
user gets the DISP part wrong, CICS won't know what transaction to start
up, and will so informthe user. So, if the user enters sonething other

than DI SP, but sonmething that happens to match a valid transaction
identifier, CICS will happily start up the "wrong" transaction. Beware!
(The "cure" the user generally tries in such a situation is usually to
press the CLEAR key and try again.)

Ot her, "higher level" error possibilities include:

O The user may not be authorized for acces

O The account file may not be onlin

O There may be a physical error while accessing a record fromthe file

However, in the absence of these "high level" problens, as we said, very
little can go wong here.

© Copyright IBM Corp. 1984, 1991
2311-2

CICS Application Programming Primer
The print transaction

2.3.1.2 The print transaction

We can nmake the print transaction very simlar to the display transaction.

The only functional difference will be that the output will go to a
printer instead of the screen. |If we intend to use nore than one printer,
we'll probably want to let the user tell us which one, which means anot her

item of input (and, we rmust admt, nore opportunity for error).

© Copyright IBM Corp. 1984, 1991
2312-1

CICS Application Programming Primer
The add transaction

2.3.1.3 The add transaction

When it cones to adding a new record to the file--an add transaction--we
must still think about the same three things as for the display
transaction. Unlike the display situation, however, the input required is
very extensive. W could let users enter the request and the particul ars
for an add at the same tine, but this would make things rather difficult
for them besides being a poor use of the 3270. Wth that many fields to
enter, we definitely want users to enter the input into formatted screens,
with | abels to show where and how to enter the data.

So users will have to make two entries to do an add. The first one will
display the formatted screen, and the second will contain the input for
the addition. The output screen for the first stage of the add will be

the skeleton into which the user is to enter the data. No output is
actually required fromthe second stage of the add, but good human factors
suggest that we consider telling the user that the transaction was
successful .

Al so, unlike the display transaction, there are plenty of opportunities
for errors on an add. The record to be added mi ght already exist on the
file, or some of the fields entered m ght be mi ssing or incorrect or
inconsistent with each other. W don't want to make our users start all
over again if they get one or two itenms wong, so we'll have to think of a
way for themto fix any bad fields w thout rekeying the good ones.

Maybe an add transaction could go like this. The user would enter
something |ike ADD 12345 and the transaction would do one of two things.
Either it would respond with an error nessage that the record to be added
al ready existed (far better to tell the user now, instead of after all the
data for the record has been keyed in). O it would display a skel eton
screen for the user to fill in.

Now, users entering records are probably reading froma form of some sort
while they do the data entry. |It's very helpful to themif you nake the
screen | ook as nuch like their original data formas possible. Figure 10
shows the sort of skeleton screen that we'd want. (The underscores sinply
show where the input fields are; they wouldn't appear on the screen.)

e e e e e e e e ee e cmemememmmmmmemememmmmmmmmsmemsmsmsmeccccc-c-e--m-m-m-m-m-m-mm-m-mmmmmm=========
|

i ACCOUNT FI LE: NEW RECORD

i ACCOUNT NO© ___ SURNAME:

' FIRST: M: _ TITLE _____

i TELEPHONE: ____ ADDRESS:

:

i OTHERS WHO MAY CHARGE:

|

|

|

! NO. CARDS | SSUED: _ DATE | SSUED: _ [/ __ [__ REASON: _

i CARD CODE: _ APPROVED BY: ___ SPECI AL CODES:

' (message area)

|

e e e e e e e eeecec e eeeeeeeeeeeeeeeeeeemmmmmeemcccceccccccccccececeee--======-==

Figure 10. A correspondi ng skel eton screen

Notice there are some bits and pieces on the formthat we haven't
transferred to the data entry screen. For exanple, the addresses of the
ot her account users, the neanings of the four "reason" codes, the formt
of the date, and the custoner's signature.

While it's generally true that a well-designed formwill translate

© Copyright IBM Corp. 1984, 1991
2313-1

CICS Application Programming Primer
The add transaction
painlessly into a data entry screen, never mss the chance to re-think
aspects of the data entry task fromthe term nal operator's point of view
Al so renmenmber that if the operator's receiving information during a
tel ephone conversation, the original formnmay be largely irrelevant to
that particular situation.

After the user had filled in this screen, the transacti on would check the
input fields for reasonable and consistent values. |If one or more of them
wer e unacceptable, it could redisplay the user's input with the fields in
error highlighted, and with a nessage added that the highlighted fields
were either wong or inconsistent with each other. The user could then
fix the errors, and this input-edit-redisplay cycle could be repeated

until the input was right. Then the transaction would send a nmessage to
the term nal saying that the record had been added to the file.

Strictly speaking, the transaction needn't confirmthat the addition was
successful. However, many users don't entirely trust conputers, and a
wary user mght develop the habit of doing a display transaction after
each add, just to make sure the add worked. This would waste a |ot of
user and conputer time, and can easily be avoided by having a confirmation
nmessage

© Copyright IBM Corp. 1984, 1991
23.13-2

CICS Application Programming Primer
The modify transaction

2.3.1.4 The nodify transaction

A modification could be alnost |ike an add, except that instead of a

skel eton screen being displayed, the information in the record would be

di spl ayed instead. The user would show the changes by typing over the old
informati on on the screen.

© Copyright IBM Corp. 1984, 1991
2314-1

CICS Application Programming Primer
The delete transaction

2.3.1.5 The del ete transaction

The deletion could be a very sinple matter. We could let the user enter
DELE12345, and then sinply delete account nunmber 12345, and send back a
message that we had done so. It turns out that this isn't a good idea,
however. Users could easily make a mistake in keying the account nunber,
and woul d be very distressed when they realized that they had removed the
wrong record and had to put it back again. Wbrse than that, they m ght
not notice at all!

Generally, when you're about to perform sonmething as potentially
irrevocable as a deletion in an online system it's a good idea to confirm

that the user really wants to go ahead with it.

Therefore, we probably want a deletion to be handled |like a special case

of a nodification. Users will enter the account number to be del eted;
we'll show themthe record they are about to delete; and instead of keying
in changes as they would for a nodification, they will enter something to
confirmthat the record on the screen is really the one they want to
delete. Only then will we delete it and say that we've done so.

Of course, we nust give the user sone way to say "no, | didn't nean it,"
cancel the transaction, and escape the deletion. Cone to think of it,
we'll have to do that in all these update transactions. |f a user starts
to add a record and then can't conplete the entry for sonme reason (perhaps
some required information is m ssing), then the user nust be able to
cancel the request wi thout corrupting the files with a half-conpleted

addi tion, nodification, or whatever.

© Copyright IBM Corp. 1984, 1991
2315-1

CICS Application Programming Primer
A user-friendly approach

2.3.2 A user-friendly approach

Subt opi cs

2.3.2.1 Using a nenu screen
2.3.2.2 Printing the |ogs
2.3.2.3 Nanme inquiry

© Copyright IBM Corp. 1984, 1991
232-1

CICS Application Programming Primer
Using a menu screen

2.3.2.1 Using a nmenu screen

Before going on to the other transactions, let's look at an alternative
approach to this growing list of transaction identifiers. |It's called the
menu technique, and it's very popular as a user interface.

It works Iike this. For any application, users need to remenber just one
transaction identifier. When they want to do any transaction in that
application (in our case, add, display, print, and so on) they enter just

the one transaction identifier. 1In response, the screen displays a nmenu
of things that the users can do in this application. The menu has
formatted fields for the data itens that are required on input. It also

shows instructions in case users don't renmenber exactly what to do.

The chief advantage of this technique is that the user has to renmenber
al rost nothing, a big help to the "infrequent" users of our exanple
application.

There are some other benefits as well: you can di aghnose errors in the
request input in the same convenient way that we described for the "add"
screen, so that the user gets a good explanation of the problem and has to
do a m nimum of rekeying to correct the errors. Also, when you conplete a
transaction such as an add, you can conbi ne your confirmati on nessage with
this menu screen. This way the user knows that the previous entry was
successful, and is all ready to enter the next request.

The nenu for this application mght look |ike the one here (Figure 11).
Again, the input fields are underscored in the figure to show their
position, but the underscores woul dn't appear on the actual screen:

S
i

i ACCOUNT FILE: MENU

' TO SEARCH BY NAME, ENTER: ONLY SURNAME

' REQUI RED. EI THER

' SURNAME: __ FIRST NAME: ___ MAY BE PARTI AL.

|

I

' FOR | NDI VI DUAL RECORDS, ENTER:

|

I

|

i NO. CARDS | SSUED: _ DATE | SSUED: __/__[|__ REASON: _

i CARD CODE: _ APPROVED BY: ___ SPECI AL CODES:

' (message area)

i
S

Figure 11. An exanple of a menu screen

Al most the only disadvantage to this menu technique is that a user has to
go through one extra screen for the first transaction of a session, and
one extra step (clearing the screen in this case) to escape. The only
time this is a serious matter is when users need to m x transactions from
different applications constantly. This isn't the case in our exanple,

and we do have infrequent users to think about, so we'll use the nenu
appr oach.
So here's how, say, a nmodify transaction will work:

1. The user keys in the four-character transaction identifier to get
started.

2. The nenu screen is displayed in response.

© Copyright IBM Corp. 1984, 1991
2321-1

CICS Application Programming Primer
Using a menu screen
3. The user enters Mfor the request type, keys in an account nunber, and
presses ENTER.

If there's a problem the user will see the sane screen with the fields in
error highlighted and a message at the bottom sayi ng what's w ong.

Ot herwi se, the response will be a display of the record to be nodified,
ready for the user to change. The user will change the fields to be

nmodi fied, and then press ENTER to send the screen back. |If there are
errors in the changes, the transaction will send back the input with the
errors highlighted and a nessage if necessary. |f (when) the user gets it
right, the transaction will update the file, and send back the menu
screen, with a message at the bottom saying that the nodification just
requested was conpl eted successfully. The user will then enter the next
request, or clear the screen to quit our application.

© Copyright IBM Corp. 1984, 1991
2321-2

CICS Application Programming Primer
Printing the logs

2.3.2.2 Printing the |ogs

We've not yet dealt with the printing of the two | ogs: the log of changes
to the account file, and the log of errors. The logs will be printed only
occasional ly, perhaps once a day, and this will be done by a supervisor in
the Accounting Department. We probably don't want to include these
options in our menu, because it will only confuse the other users, who may
not even know what a log is. So we'll have separate transaction
identifiers for these two functions.

The main output in either case, of course, will be a printed log. W
shoul d also send a confirmation to the input term nal, however, in case
the printer isn't in the immediate area or is busy with another task at
the time of the request.

© Copyright IBM Corp. 1984, 1991
2322-1

CICS Application Programming Primer
Name inquiry

2.3.2.3 Nanme inquiry

Finally, we nmust think a little nore about the name inquiry transaction

In view of the structure of the rest of the application, it would be very
convenient if we could just fetch a single record fromthe file on the
basis of a nane instead of an account nunber. Unfortunately, this won't
usual Iy be possible, because names are a notorious problem They cannot
be depended on to be unique, they vary enormously in format and | ength,
and spelling is a great challenge. That, in fact, is exactly why we
assign an account nunber to each customer and use it as the file key,
instead of using the one identifier that is nmost natural (and that the
custoner is least likely to forget).

It isn't usually possible to guarantee a uni que response to a request that
speci fies a name, because we can't depend on that name being unique (and
the user may even have misspelled it). Wat we want to do, then, is to
give the users who need this facility sonme way to get to the right account
nunber by entering a name. Suppose that our response to such a request is
a list of custoner names, in al phabetical order, starting with the first
one that matches the requested name, up to the capacity of the screen.

In fact, since the user nay be uncertain of the spelling, we'll treat the
name entered as a generic or partial name, and show all the nanmes that
start in the way specified. So, if the user enters "Adans," the response
will begin with the Adanmses and continue with the Adamsons. But if the
nane were one that had several conmon spellings, such as "Reid" (also
often "Reade"), then the user could enter just "Re" and get both forns.

We can treat the first name simlarly. The user could enter the first
nane (or initial) if known, to limt the nunber of responses, but we won't
make this mandatory.

In our exanple, renenber, we |earned from our user survey that the
Customer Service people are going to be the heaviest users. Most of their
transactions will be inquiries by name. Mreover, nost of these inquiries
involve just three itens besides the nanme: DFHP1CDU i nquires by name, it
makes sense to display these itens along with the name and account nunber.
That way these users will usually see all the data they want on the first
response, w thout having to go on to ask for the detailed display of one
particul ar record.

Soneti nes, of course, they will want to see the whole record, and the
Accounting Department will want this facility as well. So we nust provide
some easy way to get fromthe summary display to the other transactions
that the users m ght want to do, once they have the account nunber.
Suppose we use the remaining lines on the menu screen to display the
results of a name search when one is requested. After a search, the users
can then enter the request directly, w thout changing screens, on the menu
to which they are accustoned. Figure 12 shows how the expanded nmenu
screen m ght | ook:

ACCOUNT FI LE: MENU

TO SEARCH BY NAME, ENTER: ONLY SURNAME
REQUI RED. EI THER
SURNAME: FI RST NAME: MAY BE PARTI AL.

FOR | NDI VI DUAL RECORDS, ENTER:
PRI NTER REQUI RED

REQUEST TYPE: _ ACCOUNT: ___ PRINTER ONLY FOR PRI NT
REQUESTS
REQUEST TYPES: D = DI SPLAY A = ADD X = DELETE
P = PRINT M = MODI FY
THEN PRESS " ENTER" -OR- PRESS "CLEAR' TO EXIT

© Copyright IBM Corp. 1984, 1991
2323-1

CICS Application Programming Primer
Name inquiry

ACCT SURNAME FI RST M TTL ADDRESS ST LIMT

(msg area)

Figure 12. An expanded nmenu screen

© Copyright IBM Corp. 1984, 1991
23.23-2

CICS Application Programming Primer
Some interface design principles

2.3.3 Sonme interface design principles

In reaching our current idea of how our user interface will |ook, we've
based npbst of our decisions on what is easiest for the user. |Indeed, that
shoul d be the cardinal rule. Human time has beconme so much nore val uabl e
than conputer tinme that it is worth a lot of effort and coding to nake the
user as productive as possible.

It isn't always obvious how to do this to best advantage, and what is best
for one user may not be best for another. This applies especially to
occasi onal users of an application. |In fact, the style of conversation
bet ween users and conputers has changed significantly as people have

| earned nore about the "human factors" aspect of online systens.

The advent of sophisticated termnals, |like those in the 3270 system has
al so had an enormous effect in this area, as it became practical to deal
with users in ways not possible with earlier devices. The whole idea of
using a nenu, for exanple, came nuch later than the original release of
CI CS, and depends explicitly on the characteristics of the 3270 for
success.

Though there are no hard-and-fast rules, and though there can be many good
designs for the user interface, there are five guidelines that we can
safely propose:

+--- 1. Make screens easy to understand --------------------------------- +

O Keep to the rules used in forms design: try to give the screen
layout an uncluttered appearance and, to the extent possible, a
columar structure, so that the reader's eye nmoves easily from one
itemto the next and doesn't have to junp |long distances.

] Put a title on the screen, so that users know where they are in
the current transaction.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
- Be consistent from screen to screen. |f you put the title on the
' top center of one screen, put it there on all the screens. |f you
! put the nessages at the bottom of one screen, put themthere on

! all the screens.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

1

I

1

|

|

O If the user will be reading froma formfor input to a screen,
make the screen |l ook as nmuch as possible Iike the form Put the
fields in the sane order, and use the same placenent as far as
possi bl e.

] Likewise, if a screen is used to display information that the user
is accustonmed to seeing printed on a form nmke the screen
resenble the formas nearly as possible.

+--- 2. Cut down what the user nust renmember ---------------------------- +

] If there are nore than a few fields to be filled in, use a
formatted screen with | abels and instructions.

O \here possible, put instructions on the screen to show what the
user can do next.

O Use consistent procedures, both within and across application
prograns. For exanple, if the CLEAR key is used to cancel in one
transaction, use it that way in all transactions.

© Copyright IBM Corp. 1984, 1991
233-1

CICS Application Programming Primer
Some interface design principles
+--- 3. Protect users fromthenmselves --------------------- -

|
I
i If a user is about to do something that's hard to undo, such as a file
| deletion, get the user to confirmthat it's the right deletion.
|
|

+--- 4. Save the user's tine and patience ----------------------~---------

O M nimze the nunber of characters that have to be keyed.

] Make the user change screens as little as possible.

O Make it as easy as possible to correct errors. There are many
ways to do this. In our application, for exanple, we stick to the

foll owi ng:

- We redisplay the user's input in the same screen as the one in
which it was entered.

- We di agnose all the errors at once (to the extent possible).
- We highlight fields that have errors.

- If the user m sses any required fields, we fill themwth
asterisks and highlight them

- We place the cursor under the start of the first field in
error.

- We di splay an explanatory nmessage if the error nmay not be
obvi ous.

] Place the cursor where the user will probably want to key first.

] M nimze the nunber of times that the users have to skip over
fields.

t--- 5. REASSUIMNE USEIS - - -- - - mm oo oo oo o oo oo oo

O Give a positive confirmation that a requested acti on has been done
successful ly.

O \When you know a particul ar response tinme is likely to be longer
than usual (because of the operation being performed) consider
sendi ng an i ntermedi ate displ ay.

© Copyright IBM Corp. 1984, 1991
233-2

CICS Application Programming Primer
Coming to grips with the data
2.4 Coming to grips with the data
Havi ng deci ded what you want to do, you can now determ ne what data wll
be required to do it and how to organi ze that data.

Subt opi cs
2.4.1 The account file
2.4.2 Recovery requirenents

© Copyright IBM Corp. 1984, 1991
24-1

CICS Application Programming Primer
The account file

2.4.1 The account file

In this application, we know that we need access to all the fields that
make up records in the existing account file, because this is the data
that we intend to maintain and display. W need direct access to these
records by account nunber for several of the required operations (display,
add, and so on). Happily, this file exists in a formdirectly usable by
CICS (a VSAM key-sequenced data set (KSDS), with the exact key that we
need). This isn't pure luck or coincidence. The account number is the
natural key for this file, and a VSAM key-sequenced data set is a good
choice for a mxture of sequential and direct processing, such as probably
occurs now in the batch programs that already use this file. Figure 13
shows the record format for this file.

B +
| i
| Field Length Occurs Tot al

I Account Nunber (Key) 5 1 5 1
| Surnane 18 1 18

i First Nane 12 1 12 '
i Mddle initial 1 1 1

i Title (Jr, Sr, and so on) 4 1 4

| Tel ephone nunber 10 1 10

| Address line 24 3 72

I Other charge nane 32 4 128

| Cards issued 1 1 1

| Date issued 6 1 6

| Reason issued 1 1 1 !
| Card code 1 1 1 '
| Approver (initials) 3 1 3 H
| Special codes 1 3 3 1
i Account status 2 1 2 '
i Charge limt 8 1 8 '
i Payment history: (36) 3 108

' - Bal ance 8

' -Bill date 6

' -Bill amount 8

! -Date paid 6

! - Amount paid 8

| i
B +

Figure 13. Account file record format

Subt opi cs
2.4.1.1 Access by name

© Copyright IBM Corp. 1984, 1991
241-1

CICS Application Programming Primer
Access by name

2.4.1.1 Access by name

As well as accessing the account file records by account number, we need
to access them by a second key--the customer name. There are many ways of
achieving an alternative path into a file. For exanple, VSAM provides a
facility called an alternate index, which can be used in CICS. CICS
supports the DATABASE 2 relational product, and IMS/DB DL/I. These
systenms provide powerful cross-indexing facilities, and they have many
other features that reduce the coding required in user applications. They
support conplex data structures, provide increased function, and sinplify
the mai ntenance of file integrity. |If you have data that you need to
access by nore than just a few different key fields, or if you have data
that does not arrange itself into neat units like the account records in
this application, you should evaluate seriously the use of a database
system

However, all these database products are beyond the scope of this Prinmer.
For our application we'll use a sinple technique, frequently used and
quite appropriate to an application of this size. W'Il build a snmal
separate file, in name sequence order, to use as an index into the account
file.

This is probably going to offer us better performance for sequenti al
browsi ng of custoner names than, say, an alternate VSAM i ndex

Subt opi cs

2.4.1.1.1 Choosing the file organization
2.4.1.1.2 Nanme index records

2.4.1.1.3 Choosing a control interval (Cl) size

© Copyright IBM Corp. 1984, 1991
2411-1

CICS Application Programming Primer
Choosing the file organization

2.4.1.1.1 Choosing the file organization

For the initial read, we'll need direct access to the index file when we
process an inquiry by nane. After that, we'll read sequentially until we
have enough names to fill one screen. So VSAM key-sequenced

organi zation (2) is appropriate to this file as well as to the account
file. ("Other file services" in topic 3.4.4 lists the other file access
met hods supported in CICS. VSAM KSDS is widely applicable, however, and
is the only one covered in this book.)

(2) File organization, of course, isn't generally chosen by an
application programrer, but by the application designer.

© Copyright IBM Corp. 1984, 1991
24111-1

CICS Application Programming Primer
Name index records

2.4.1.1.2 Nane index records

What do we need in our nane index records? W need the surnanme, clearly,
and the first name. W need the account nunber, for access to the main
file and to ensure a unique key. This is all we really need. However,
since we're maintaining our own index file, we've the option of putting
nmore than pointers into it. Let's see what else we can usefully put into
the nanme index file.

In our application, we could produce the display shown in Figure 12 in
topic 2.3.2.3 in two different ways:

O Read the name from the nane index record and, for each nane, use th
account number in the index to access the account file. This can get
us the address, the account status, and the charge limt.

O Repeat the address, the account status, and the charge limt field
within the nane index file. W' d then only need to access the nane
index file (and not the account file) to get these itens.

In the second case, the index records would be a little larger as a
result, and we'd have two copies of sone fields (a potential source of
trouble in large file-based systens). On the other hand, we could avoid
one read for every nane in the response to a name inquiry.

This latter point turns out to be inportant. 1In VSAM one read brings a
whol e control interval (Cl) of data into virtual storage. CICS passes to
your programonly the particular logical record that your program asked
for, but on your next programread, CICS can return your record directly,
wi t hout another VSAMread, if the record is in the same control interval.
When you are reading in key sequence, the probability of the record being
in the same control interval is very high. |In our exanple, we'll be going
through the nane index records in name order, and the records are small,
so we can expect there to be only one physical read for several | ogical
reads.

However, if we needed to access the account file once for each of these
reads, there would probably be a physical read to that file for every
logical read to the index file, as we wouldn't be reading the account file
in sequential (custoner nunber) order.

In deciding which nethod to choose, we must weigh the cost of the nmany
additional reads against file space and agai nst the possible conplications
of keeping the two files synchronized. Changes that will have to be nmade
to the batch billing and paynment system need to be evaluated as well. If
searching by name were an infrequent request, or if any of these other
factors had a | arge cost associ ated, we m ght choose the first nmethod.
However, for our exanple we'll assume that this isn't so and, since
inquiry by name will be by far the npbst frequent transaction, we'll
include these fields in the index.

-- Fig "I NXFMI* unknown -- shows a reasonable |layout for the name index
record:
e +
i i
' Field Length (in bytes) '
' Sur nanme 12 These two fields form '
' Account Number 5 the key. '
' First nanme 7 '
' M ddle Initial 1 '
' Title 4 '
! Street Address 24 !
! Account Status 2 '
! Charge Limit 8 i

© Copyright IBM Corp. 1984, 1991
24112-1

CICS Application Programming Primer
Name index records

Figure 14. The nane index record format

The first two fields together formthe key. It will be unique because
account nunbers are unique, and it will allow us to search by surname,
using a partial key of variable Iength. Notice that we chose field

I engths for the surname and first name that were shorter than the
corresponding fields in the account file. W also included only one |ine
of the address. This keeps our index records reasonably small and lets us
di splay a nanme index record on a single line of the screen. W can afford
to do this because our purpose is to help the user in recognizing the
right nanme, not to account for all the possibilities that can occur in
names and addresses.

© Copyright IBM Corp. 1984, 1991
24112-2

CICS Application Programming Primer
Choosing a control interval (Cl) size

2.4.1.1.3 Choosing a control interval (Cl) size

One of the issues in designing VSAM files is choosing control interval
sizes for the data and the index. The choice depends partly on the fit of
records into the Cl, but it also depends on whether the data will be
accessed directly or sequentially. In our exanple, the account file wll
al ways be accessed directly. That is, there is little or no chance of
readi ng account records in account nunber order. So a |large data control
interval will hurt rather than help us. It will mean |arger buffers (nore
demand for virtual storage), and nore data will be transferred than can be
used (the larger the interval, the nore records transferred in one read).
Therefore a small data Cl is appropriate for this file.

In contrast, the name index file will be read sequentially nore often than
directly. The first read in a name inquiry will of course, be random but
after that we'll tend to read several records in sequence. Therefore it
will be helpful to get many |l ogical records in a single physical read, and
so we'll choose a large data Cl size for the nane index.

Al'l these physical reads are done by CICS using VSAM Your programis
concerned only with | ogical reads, which are conpletely unaffected by Cl
size. So you don't have to think about these factors. However, a good

application designer will try to take all such factors into consideration.
VWi le learning, you can certainly put off the choice of the "best" Cl size
until your programis working. After all, you can change the CI sizes of

your files wi thout changing your application code or your CICS tables, and
you may wi sh to do this later if trying to tune your system

© Copyright IBM Corp. 1984, 1991
24113-1

CICS Application Programming Primer
Recovery requirements

2.4.2 Recovery requirenents

One of the first requirements for the exanple application was to maintain

the integrity of the account file. W'IIl see in "Pseudoconversational or
not?" in topic 2.7 how CICS prevents the loss of integrity associated with
partially conpleted transactions, and we'll use this feature to keep the

two files (the nanme index file and the account file) properly
synchroni zed. However, we nust also protect the account file from
di sasters such as a head crash

In a batch environment, you can keep an extra copy of an inportant file,

or keep enough information to recreate it (by keeping back versions, for
instance, with the inputs to the update runs). In an online environnment,
this isn't so easily done. You cannot copy the file after every update
Nor can you afford to lose all the updates since the last time you copied
the file. These updates were entered at term nals by many different

users, who may not remenmber what stage they had reached when you | ast
secured the file, who may not have ready access to the input docunents any
I onger, and who will certainly be very cross if they have to rekey a | arge
nunber of transactions

ClICS solves this problemby using a variation on the batch technique. |If
you have a file that nust be protected, you ask CICS to journal the
updates. CICS then keeps a copy of every change made to the file on a
tape or disk. It logs these changes on the systemlog, which is journa
nunber one. If you lose a file, you go back to the nost recent copy of it
and recreate it fromthat. Then you run a programthat applies the
changes recorded on all the journals created since that copy was nmde.

In our exanple application, the account file is clearly a file that nust
be protected in this way. |In contrast, the index file does not require
these precautions. W do have to protect its integrity frompartially
conpl eted transactions, just as we do the account file. However, we can

al ways recreate the index file fromthe account file with a very sinple
batch program (the CICS tape includes the source code of a programcalled
ACCTINDX to do this--see Appendix A, "Getting the application into your
CICS systen! in topic A.0) so it isn't necessary to journal the changes to
it, nor even to make periodic backup copies

© Copyright IBM Corp. 1984, 1991
242-1

CICS Application Programming Primer
Refining the transaction design

2.5 Refining the transaction design
We' ve now | ooked at several principles that we need to bear in mnd when
wor ki ng on application programs for online transactions. Next, let's have
a closer look at what we have to do to acconplish the functions that make
up our exanple. Sonme people just wite out, in English, the transaction
flow Ohers prefer flowcharts. You'll find both in this topic.

Now t hat we've decided to give the user a "nenu" screen, we'll start by
di splaying this menu and analyzing the request entered on it. After that
we' || describe the requirements according to the type of request (add

di splay, and so on)

Subt opi cs

.5.1 Request anal ysis

Add processing

Modi fy processing

Del et e processing

Di spl ay processing
Print processing

Name inquiry processing
Printing the change | og
Printing the error |og
.10 Summary

N NDNDNDNNMDNNDNNDDN
g oo oo oo o aag
© 00N O O WN

© Copyright IBM Corp. 1984, 1991
25-1

CICS Application Programming Primer
Request analysis

2.5.1 Request analysis
1. Display the menu screen, (as shown in Figure 11 in topic 2.3.2.1)
2. Wit for the user to enter a request
3. Analyze the request, which may be:

a. To leave the application entirely

b. To add, nodify, delete, display, or print a record

c. To search on a nanme

d. None of the above.

4. Process according to the type of request.

O In case a above, sinmply return control to CICS.
O In cases b and c, process as described | ater.
O If the request cannot be deci phered (case d), send an error

message to the user. Then go back to step 2 to wait for the user
to correct the input. (When it arrives, repeat the processing from
step 3 above.)

PI CTURE 6

Figure 15. Request analysis

© Copyright IBM Corp. 1984, 1991
251-1

CICS Application Programming Primer
Add processing

2.5.2 Add processing

1. Check the custoner account nunber that was entered along with the
request. It nust be present, and:

a. Nuneric

b. In the proper range (we'll assume the Accounting Depart nment
restricts numbers to the range from 10 000 to 79 999)

c. Not already used (that is, not already in the file).

If any of these conditions isn't net, send a message to the user
saying what is wong. Then go back to step 2 of "Request analysis" in
topic 2.5.1to wait for the corrected input. When it arrives,
processing will resume at step 3 of that process, so that the user has
a full range of choices at this point. That is, the user can correct
the add request, change to a different type of request, or quit the
application entirely.

2. If the account number is acceptable, send a skeleton screen (see
Figure 10 in topic 2.3.1.3) back to the term nal so that the user can
fill in the fields for the new record.

3. Wit for the user to enter the data (or to signal a desire to quit by
using the CLEAR key).

4. See whether the user wants to continue this operation. (He or she
m ght have had trouble entering this particular record or had a change
of mnd.) |If the user doesn't want to go on, display the menu screen
again with a nmessage |ike "previous request cancelled" and go to step
2 of "Request Analysis" to wait for the next request to come in.

5. Otherwi se, check the fields read fromthe filled-in data entry screen
for reasonabl eness and consistency. |f there are errors, send a
message back to the terminal saying what the errors are, and go back
to step 3 to wait for the next input.

6. If no errors are detected in the input, update the files:

a. Wite an inmage of the new record to the change |og.

b. Build a new account record using the information fromthe input
screen, and add this record to the file.

c. Build the correspondi ng nane index record and add this to the name
index file.

7. Redisplay the nmenu screen, with a nessage to say what has just been
done, and resune at step 2 of "Request Analysis."

PI CTURE 7

Figure 16. Add processing

© Copyright IBM Corp. 1984, 1991
252-1

CICS Application Programming Primer
Modify processing

2.5.3 Modify processing

Check the account nunber that is entered along with the request. It
nmust be present, and:
a. Nunmeric
b. In the proper range (10 000 to 79 999)
c. Already on file.
Just as in the add processing, if any of these conditions isn't net,
send a message to the user saying what is wong, and then go to step 2
of "Request analysis" in topic 2.5.1 to await corrected (new) input.
Build a display of the current contents of the record fromthe
information on file, and send it to the user's screen.
Wait for the user to enter the changes (or to indicate, with the CLEAR
key, a desire to abandon the transaction).
If the user doesn't want to continue, send a fresh menu screen with a
message acknow edgi ng the cancellation and then go to step 2 of
"Request Analysis" to wait for the next request.
Build a new version of the record by applying the changes entered on
the screen to the old version of the record.
Check that the old record hasn't been updated in the meanti nme.
Check all itens in the new record for reasonabl eness and consi stency
with each other. |[If there are errors, send the input screen back to
the terminal with all the errors noted. Also, if there are no
di fferences between the new record and the ol d one, send a nessage
noting this (the user may have made an error and should be notified).
Treat this situation just like an error in a data item Return to
step 3 to await corrected input.
If there are no errors in the input, update the files:
a. Wite a record of the changes (that is, imges of the old and new
records, plus an indication of the changed areas) to the change
| og.
b. Replace the old record in the file with the new version.
c. |If the changes affected the corresponding index record, replace
that record, too, with a revised version.
Redi spl ay the nenu screen, with a nessage to say what has just been
done, and resune at step 2 of "Request Analysis."
__ +
1
1
1
1
1
1
i
PI CTURE 8 '
1
1
1
1
i
__ +

Figure 17. Modify processing

© Copyright IBM Corp. 1984, 1991
253-1

CICS Application Programming Primer
Delete processing
2.5.4 Del ete processing
1. Check the account nunmber entered with the request; the requirenents
and the error processing are the same as for "Mddify processing" in

topic 2.5.3.

2. Build a display of the contents of the record fromthe information in
the account file and send this to the termnal.

3. Wait for the user to confirmor cancel the delete request.

4. See if the user has decided to cancel the delete request. |If so,
proceed as in step 4 of "Add processing" in topic 2.5.2.

5. If the user has not cancelled, see whether he or she has confirned the
del ete request. |If not, send a nessage asking the user either to
confirmor cancel, and go back to step 3.

6. |If the delete request is confirmed, update the files:

a. Wite an inmage of the deleted record to the change |og.
b. Delete the record fromthe account file.
c. Delete the corresponding name index record fromthat file.
7. Redisplay the nenu screen, with a nessage to say what has just been

done, and go back to step 2 of "Request analysis" in topic 2.5.1 to
wait for the next request.

PI CTURE 9

Figure 18. Delete processing

© Copyright IBM Corp. 1984, 1991
254-1

CICS Application Programming Primer
Display processing

2.5.5 Display processing

1. Check the account nunmber entered with the request; the requirenents
and the error processing are the same as for "Mddify processing" in
topic 2.5.3.

2. Build a display of the contents of the record fromthe information in
the account file, and send it to the screen.

3. Wit for the next input fromthe termnal (indicating that the user

has finished | ooking at the display), and then go back to step 1 of
"Request analysis" in topic 2.5.1.

PI CTURE 10

Figure 19. Display processing

© Copyright IBM Corp. 1984, 1991
255-1

CICS Application Programming Primer
Print processing

2.5.6 Print processing

1. Check the account nunmber entered with the request; the requirenents
are the same as for a "nodify" request. Also check the name of the
printer entered with the request. It nmust be present and nust
correspond to the name of a real printer known to CICS. |If either
input itemis in error, send an appropriate nmessage to the term nal
and return to step 2 of "Request analysis" in topic 2.5.1 to await
corrected input.

2. Build a display i mge of the contents of the record fromthe
information in the account file, (printers understand the sane data
streans that displays do).

3. Send this image to the indicated printer.

4. Send a message to the term nal, saying that the print request has been

processed; then go back to step 2 of "Request analysis" in topic 2.5.1
to await the next request.

PI CTURE 11

Figure 20. Print processing

© Copyright IBM Corp. 1984, 1991
256-1

CICS Application Programming Primer
Name inquiry processing

2.5.7 Nane inquiry processing
1. Check the name search input:

O The surname nmust be present and al phabetic.
O The first name nmust be alphabetic, if present.

If either condition isn't nmet, send an error nessage to the term nal
and go back to step 2 of "Request analysis" in topic 2.5.1 to wait for
corrected input or another request.

2. If the names are correct, find the first index file record that has a
surnane that matches the (full or partial) surname specified in the
input, or which is just higher in the al phabet than the input surnane.

3. Build the search output part of the display, one line at a tinme.

a. Read the next record in the index file.

b. See if this record nmeets the input criteria for the given nane.
If it does, build an output line fromit.

Repeat this step (building one line at a time, renenber) until the
surnane read fromthe file is higher in the al phabet than any that
woul d match the input surnane, or the end of the file is reached, or
all the output |ines have been used.

4. Send the conpleted output to the screen.
5. Wit for the user's next request.
6. If the next input shows that the user wants to continue the search, go

back to step 2, using as a starting point the |last record read in
producing the previous display.

7. |f the user doesn't want to continue, go to step 3 of "Request

anal ysis" in topic 2.5.1 to find out what he or she wants to do

i nst ead.
o m m e o e +
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
! P| CTURE 12 !
i i
I 1
1 1
| 1
| 1
o m o e o ee— e +

Figure 21. Name inquiry processing

© Copyright IBM Corp. 1984, 1991
257-1

CICS Application Programming Primer
Printing the change log
2.5.8 Printing the change | og
1. Read the first (next) record fromthe | og.
2. Wite the information read to the log printer.
3. Repeat steps 1 and 2 until there are no nmore records on the |og.

4. Delete the log records once they have been printed.

You'll find nore information about both this change I og and the error |og
in "Program ACCT03: requests for printing" in topic 2.10.4.

PI CTURE 13

Figure 22. Printing the change |og

© Copyright IBM Corp. 1984, 1991
258-1

CICS Application Programming Primer
Printing the error log
2.5.9 Printing the error |og
1. Read the first (next) record fromthe | og.
2. Wite the information read to the log printer.
3. Repeat steps 1 and 2 until there are no nmore records on the |og.

4. Delete the log records once they have been printed.

You'll find nore information about both this error |og and the change |og
in "Program ACCT03: requests for printing" in topic 2.10.4.

PI CTURE 14

Figure 23. Printing the error |og

© Copyright IBM Corp. 1984, 1991
259-1

CICS Application Programming Primer
Summary

2.5.10 Summary

We' ve now seen the requirenments for the various functions our users can
performat (or, in the case of printing, from their termnals.

The next thing we need to do is to consider how to break up these
functions into CICS transactions, and what factors affect program design
in a CICS environment.

© Copyright IBM Corp. 1984, 1991
2510-1

CICS Application Programming Primer
Programming for a CICS environment
2.6 Programming for a ClICS environnment
The overall design goals in an online environment are the sane as those in
a batch environment: to provide as nuch service (do as nuch useful work)
as possible while using as little resource as possible

Deci di ng what services to provide is, as we noted in "Defining the
problem' in topic 2.1.1, the first step in the design. It takes a little
experience and experimentation in online programrng to know what

addi tional services you can provide at reasonable cost, beyond sinply
repl aci ng batch services with equival ent online services.

In our exanple, for instance, we decided initially to replace the function
of the old printed account listing with the ability to display individual
records on the screen. Originally, we had no plans to allow users to
print individual records, even though it seenmed an obvious feature to
provi de, once a user pointed out how useful it would be. This kind of
interaction with potential users is invaluable in arriving at a design
that is good fromthe user's point of view It should be repeated often
in the design cycle, as your insight into the application and the
programr ng requirenents devel ops.

Subt opi cs
2.6.1 Resources

© Copyright IBM Corp. 1984, 1991
26-1

CICS Application Programming Primer
Resources

2.6.1 Resources

After deciding what to do, what resources do we have to conserve while
providing this function? Some of themare the traditional ones that are
common to both batch programm ng and online programm ng:

| Processor storag
O Processor tim
O Auxiliary storage space and transm ssion capacity to it

Others are new, and require sone new considerations in design. They are:

O User time and good humo

O One-user-at-a-time resources, such as terminals, file records
scrat ch-pad areas, and so on

O Li ne transm ssion capacity

Let's take these individually and devel op sonme guidelines for designing
and programm ng CICS applications fromthem Renmenber, there's bound to
be conflict fromtime to time when trying to save one resource at the
"cost" of another. The appropriate conmpronmises will vary from one program
to the next.

Subt opi cs
2.6.1.1 "Traditional" resources
2.6.1.2 Resources specific to working online

© Copyright IBM Corp. 1984, 1991
26.1-1

CICS Application Programming Primer
"Traditional" resources

2.6.1.1 "Traditional" resources
First, the resources conmon to both batch and online progranm ng.

Subt opi cs

2.6.1.1.1 Processor storage
2.6.1.1.2 Processor tinme
2.6.1.1.3 Auxiliary storage

© Copyright IBM Corp. 1984, 1991
26.11-1

CICS Application Programming Primer
Processor storage

2.6.1.1.1 Processor storage

Your applications use up processor storage in two ways. First, there are
the CICS control blocks associated with any transaction being processed
and second, there is the program or progranms, being executed to
acconplish the transaction. The prograns, in turn, take up space both for
execut abl e code and for working storage areas. |In an online system the
storage needs for these purposes constantly come and go. They exist only
for at nost the duration of a transaction, and so in assessing storage
needs, we have to consider not only how nmuch, but for how long. The
trade-of f between space and tinme is conplex, but at a mninum we can say:

+--- Processor storage guidelines (1) ---------------------“------------- +
Keep programs short.

|

I

|

i

| Keep WORKI NG STORAGE short.

|

| Keep progranms short in duration of use.
|
|

How transacti ons use storage over tinme is taken up again in
"Pseudoconversational or not?" in topic 2.7.

We should also note that CICS is a virtual storage system and the good

coding practices (whether COBOL or otherw se) observed in batch

progranm ng for a virtual storage environnent apply equally well to ClICS.

These incl ude:

+--- Processor storage guidelines (2) --------m-mmmmmmm oo +
Keep GOTOs to a m ni num

|
|
I
|
i
i Place subroutines near the code that PERFORMs or otherw se calls them
|
| Avoid |l ong searches for data.

|

I

Some remar ks about PERFORM Having nmentioned subroutines, let's stay with
them for a few nonents. COBOL programers |learning CICS often ask about
the pros and cons of using PERFORMs in ClCS.

First of all, using PERFORM to execute a COBOL subroutine is very much
nmore efficient than the CICS overheads associated with Iinking to, or
transferring control to, another program However, repeating the
subroutine in each of your COBOL application prograns is going to cost you
nore storage. That is, if you're using PERFORM for repeated code, you're
tradi ng space agai nst (possible) paging.

Li ke earlier COBOL conpilers, the VS COBOL Il conpiler allows a COBOL
programto use CALLs to external routines, but now the called routines can
i ssue CICS commands. This avoids the CICS overheads of transferring
control between programs, but it does mean |link-editing the routines with
every calling program

We've some nore to say in the next part of the Primer (in "The COBOL CALL
statement” in topic 3.6.2.4).

Secondly, the matter also arises in COBOL |oop situations. You see, COBOL
doesn't let you put the PERFORM which controls the |oop physically

adj acent to the actual code of the |loop, unless you cheat and use a GOTO
rather unnaturally. PERFORMs are OK for |oops, but always keep the code
you PERFORM as near as you can to the controlling PERFORM statement, to

© Copyright IBM Corp. 1984, 1991
26.1.11-1

CICS Application Programming Primer
Processor storage

mnimze the risk of the two things being in separate pages of storage.

Finally, the question of a PERFORM al so crops up with regard to code that

sn't a true "subroutine" in the old-fashioned sense, and code which the

programer never really considered breaking off as a separate
(sub)routine.

Thi s kind of PERFORM cones from sonme of the structured programm ng rules,

where you PERFORM bl ocks of code (often physically distant

with attendant paging inplications) for reasons of neatness, readability,

mai ntainability, and so on. The response tine inpact of flipping through

a |l ot of pages is of course much nore critical in a real-time environnment
than in batch, because you have to conpete with all those other term nal
users instead of just a few other jobs.

+--- Our "PERFORM' guidelines -------mmmmm e

Use PERFORMs to help structure your code (but watch out for increased
pagi ng) .

Keep PERFORMed code as close as possible to the PERFORM st at enent .

Use PERFORM for |ong code, or code used in a great many pl aces.

© Copyright IBM Corp. 1984, 1991
26.1.11-2

in the program

CICS Application Programming Primer
Processor time

2.6.1.1.2 Processor tine

In general, we need to conserve processor tine in CICS in the sane way as
in a batch program The major factor is exactly the sane: calls for
operating system services take much | onger, relatively speaking, than
strai ght application code. This is true whether you are coding in CICS,
where a call takes the formof a CICS command, or in batch COBOL, where a
call is inmplicit in your input-output statements (OPEN, READ, WRITE and

so on). So, avoiding unnecessary conmands in a CICS design will reduce
processor tinme nmuch nore than fine tuning your COBOL code, just as
avoi ding a single input/output operation in a regular programwill nmake up

for many MOVEs and GOTOs.

It is never desirable to do long calculations (matrix inversion and such)
in an online program This is because any online programis sharing the
processor with many other prograns (or occurrences of the sane program
servicing users who each think they have the full attention of the
"conputer." Fortunately, such long calculations are rarely needed in
online prograns.

The highest cost of CICS programs is incurred by maintenance. Since
structured code is easier to maintain, it my well be worth incurring

hi gher paging rates because of PERFORMs. For exanple, one section that
performs input/output to a file, rather than having 20 copies of the sane
code is nuch easier to nodify if the file organization changes.

+--- Processor time guidelines --------------------------- oo +
Avoi d unnecessary ClI CS conmands.

|
|
|
|
|
| Avoi d excessively long cal cul ations.
|

|

© Copyright IBM Corp. 1984, 1991
26.1.12-1

CICS Application Programming Primer
Auxiliary storage

2.6.1.1.3 Auxiliary storage

Di sk space and transfer capacity are optim zed in an online systemin the

same way as in a batch system \What differs is the following. In a batch
system the system progranmer arranges data sets on di sk according to what
jobs might run concurrently. In an online system however, the system

programrer arranges data sets according to what transactions m ght execute
concurrently. The sane techniques are used for tuning: statistics on
device and channel utilization in conbination with know edge of the
applications.

© Copyright IBM Corp. 1984, 1991
26.1.13-1

CICS Application Programming Primer
Resources specific to working online

2.6.1.2 Resources specific to working online
This brings us to the new consi derations.

Subt opi cs

2.6.1.2.1 User time and good hunor
2.6.1.2.2 One-user-at-a-tinme resources
2.6.1.2.3 Line transm ssion capacity

© Copyright IBM Corp. 1984, 1991
26.12-1

CICS Application Programming Primer
User time and good humor

2.6.1.2.1 User time and good hunor

We' ve already seen (in "Some interface design principles" in topic 2.3.3)
how user time and aggravation can be mnimzed. You'll find our
gui del i nes there.

© Copyright IBM Corp. 1984, 1991
26.1.21-1

CICS Application Programming Primer
One-user-at-a-time resources

2.6.1.2.2 One-user-at-a-tinme resources

The next candi dates for conservation are a whole class of resources that
can be used by only one user (one transaction) at a tine. A file record
is a perfect exanple of this type of resource. As we've noted several
times, we do not want two transactions updating the same record at the
same time. CICS provides the enqueue mechanisms to prevent conflicts
bet ween transactions over such resources. What you have to remenber in
designing a transaction is that when one user has access to such a
resource, everyone else who wants it will have to wait. Therefore:

+--- Exclusive-use resource guideline -----------------momoo

M nim ze the duration of transactions that require exclusive use of
resources.

We' Il say sone nore about these resources in |later topics.

© Copyright IBM Corp. 1984, 1991
26.1.22-1

CICS Application Programming Primer
Line transmission capacity

2.6.1.2.3 Line transm ssion capacity

The |l ast new el enent on our list is line transm ssion capacity. In an
online systemwith termnals |located a long way fromthe processor, the
signal s between them are generally (although not invariably) carried over
the public voice tel ephone network. Conpared to nost of the elenents of a
computing system telephone lines are very slow i ndeed. Transm ssion
time, especially over a congested line, may be a mmjor conponent of the
total response time. Therefore:

+--- Line transmission guideline ----------------mmm +

|
|
I Avoi d sending unnecessary data to and from screens.
|
I

For the nost part, CICS does this for you automatically, using the 3270
hardware features explained in "3270 termnals" in topic 2.2. Sonmetines,
however, you can help as well. For exanple, if you were witing a data
entry application programin which the operator repeatedly filled in the
same screen, you would not need to rewite the constant information on the
screen (the titles and field | abels) after the first display. It would be
well worth your while to add a little extra programlogic, to distinguish
bet ween the screen for the first entry and that for subsequent entries,
and thereby reduce line traffic by not resending data that is already on
the screen.

© Copyright IBM Corp. 1984, 1991
26.1.23-1

CICS Application Programming Primer
Pseudoconversational or not?
2.7 Pseudoconversational or not?
Now t hat we've established guidelines for design, let's return to the
probl em of defining the transactions that make up the exanpl e application
In "Refining the transaction design" in topic 2.5, we described the
processing required for the various transaction types that the user sees

add, nodify, display, and so on. |If we were to define our CICS
transactions along these functional lines, we can foresee several
probl ens:

O There is much repetitive code, which suggests that we should at |eas
use conmon prograns for some of the transactions, if not conbine some
transacti ons.

O Every transaction involves a wait for the user to enter data, and th
update transactions contain two such waits. This means that these
transactions will be running for a relatively long time, which is a
violation of the guideline to keep program duration short.

O The modify and delete transactions will be holding on to
one-user-at-a-time resource during one of the waits, contradicting the
gui deline to mnimze the duration of transactions that use such
resources.

Let's dodge the first problemfor a monment, and | ook at the other two,
whi ch bring up an inportant issue in CICS design.

Take, for exanple, the nodify transaction. |f programed as outlined
earlier, the sequence of major events would be as shown here in Figure 24:

Oper ations

1. Display nenu screen.
2. Wit for response.
3. Receive nmenu screen (which is presunmed to contain a correct

nodi fy request).
4. Read the subject record fromthe account file.
5. Display the record in formatted form
6. Wait for the user to enter changes.
7. Receive the changes.
8. Wite changes to the printed |og.
9. Update the account and index files accordingly.
10. Redisplay the nenu screen.

Figure 24. The conversational sequence of the modify transaction

Subt opi cs

2.7.1 Conversational transactions

2.7.2 Pseudoconversational transactions
2.7.3 Maintaining file integrity

© Copyright IBM Corp. 1984, 1991
27-1

CICS Application Programming Primer
Conversational transactions

2.7.1 Conversational transactions

In CICS, this is called a conversational transaction, because the
progranm(s) being executed enter into a conversation with the user. A
nonconversational transaction, by contrast, processes one input (which was
read by CICS and which was what started the task), responds, and ends

(di sappears). It never pauses to read a second input fromthe termnnal,
so there is no real conversation.

There are inportant differences between the two types: for exanple
duration. Because the time required for a response froma term nal user
is much longer than the tine required for the conputer to process the

i nput, conversational transactions |ast that nmuch | onger than
nonconversational transactions. This means, in turn, that conversationa
transactions use storage and other resources nuch nore heavily than
nonconversati onal ones, because they hold on to their resources for so

Il ong. \Whenever one of these resources is critical, you have a conpelling
reason for using nonconversational transactions if possible.

© Copyright IBM Corp. 1984, 1991
27.1-1

CICS Application Programming Primer
Pseudoconversational transactions

2.7.2 Pseudoconversational transactions

This led to a technique in CICS called pseudoconversational processing, in
whi ch a series of nonconversational transactions gives the appearance (to
the user) of a single conversational transaction. |In the case we were
just looking at, the pseudoconversational structure is shown in Figure 25

E T +
i i
i Transaction Oper ations '
I First 1 Di spl ay menu screen. '
i Second 3 Recei ve menu screen.

! 4. Read the subject record fromthe account file.

' 5. Display the record in formatted form !
i Third 7 Recei ve the changes. '
' 8 Wite changes to the printed |og.

' 9 Update the account and index files accordingly.

' 10. Redisplay the nenu screen.

i i
E S I T N o, +

Figure 25. The pseudoconversational structure

Notice that steps 2 and 6 of the conversational version have di sappeared
No transaction exists during these waits for input; CICS takes care of
readi ng the input when the user gets around to sending it

A word about "transactions". |If we seemto be using the word in two
different ways, well ... yes we are. W defined the word earlier in the
way that the user sees a transaction: a single item of business, such as
an add, a display operation, and so on. This is a correct use of the
word. However, what the user sees as a transaction isn't necessarily what
Cl CS sees

To CICS, a transaction is a task that begins (usually on request froma
termnal), exists for long enough to do the required work, and then

di sappears. It may last mlliseconds or it may |last hours. As we've just
expl ai ned, you can use either one or several CICS transactions to do what
the user regards as a single transaction. We're still deciding what we
shoul d define to CICS as transactions to acconplish the user transactions
in our exanple problem At the nonent, the pseudoconversati onal approach
seens prom sing; it will use shorter prograns, which are desirable in

CI CS, and although there may be nore of them the progranm ng does not

| ook any more conplicated

There is a second inmportant issue in this choice of techniques, however

It brings up a characteristic of the conversational transaction that can
be both a significant advantage and a serious di sadvantage. This
characteristic is the length of the transaction, and it affects both file
integrity and the ownership of resources that other transactions my need

© Copyright IBM Corp. 1984, 1991
272-1

CICS Application Programming Primer
Maintaining file integrity

2.7.3 Maintaining file integrity

We said earlier (in "Recovery requirenents"” in topic 2.4.2) that CICS has
facilities for maintaining the integrity of files and other resources that

are inportant enough to protect. CICS does two things:
1. It makes sure that file nodifications for a transaction are either
executed conpletely or not at all. For exanple, if a transaction has

to update two related files and, after updating the first, finds it
cannot do the second, then CICS undoes (backs out) the first update.
We'll make use of this feature in our exanple application. |[If the
application changes the account file and then discovers that soneone
has closed the index file by the tine it goes to nake the
correspondi ng change there, CICS automatically renoves the update to
the account file.

2. It makes sure that protected resources (records in protected files,
protected scratchpad areas, and so on) are updated by only one
transaction at a time, and that any transaction updating such a
resource finishes conpletely before a second transaction gets access
to that resource.

Let's reexam ne the conversational or pseudoconversational issue in view
of this new information. We've been insisting that we do not want two

users to update the same record at once. |If we use a single
conversational transaction for our modify, CICS will prevent this from
happening (that's good). Wen we issue the read (for update) in this
sequence, CICS will prevent any other task fromwiting this record. |If a
second task cones al ong and requests the same record, for update, CICS
will suspend that task until the first one is finished.

However, the program being executed in this second transacti on won't be
notified that it is going to get suspended, and so the user won't know why
the request is taking |longer than usual (that's bad).

To be honest, it's a little nore conplicated than that...

Both CICS and VSAM get involved in protecting the file from concurrent
updates. VSAM s nechanismis based on the control interval, and has this
effect: while one transaction is updating a record, no other transaction
can update any record in the same control interval. Furthermore, other
transactions may not even be able to read a record in the same Cl as the
one being updated. (3) Moreover, the wait experienced by the second
transaction may be substantial; it will last as long as it takes the first
user to enter the nodifications on the screen. |If he or she should |eave
the term nal before finishing, or go through a |ot of error cycles getting
the input correct, the wait may be very long indeed

(3) Whether a second transaction can read a record in the sane
control interval depends on whether the file is using |ocal
shared resource (LSR) or nonshared resource (NSR). For NSR
only, a second task can performa sinple read (but not a
read-for-update) on a record in the same control interval.

Subt opi cs
2.7.3.1 Doubl e updating...
2.7.3.2 ...and howto avoid it

© Copyright IBM Corp. 1984, 1991
273-1

CICS Application Programming Primer
Double updating...

2.7.3.1 Doubl e updating..

If we choose the pseudoconversational technique, this waiting problem

di sappears, but so does the protection. |In this case, the second
transaction in the pseudoconversational sequence could issue the sane
"read" as in the conversational form But as soon as this transaction
ends, CICS releases the record, long before the update process is
conmplete. A second user can conme along and request the sane record. Then
you have two users meking changes on the basis of the same "ol d" copy of

the record. Changes made by the first user will go into the file, but
then changes fromthe second user will go into the file right over the
first user's, and the first set of changes will be lost (that's very bad)

Now cl early, in our application, we can separate off the first part of our
user transaction (the first transaction in the pseudoconversationa
sequence) because we're not yet dealing with any protected resources
Nothing is done in this step that a later failure would have to undo. But
what about the rest of it? W' re caught between two unfortunate
alternatives. |If we use a conversational approach, there will be greater
use of storage and, worse, occasional unexplained waits. |f we use a
pseudoconversational approach, we may conpromnmise file integrity.

There's no easy way to get around the unexpl ained waits of the
conversational approach, but there are ways to get around the integrity
problem with a little extra coding

For exanpl e, suppose that as soon as a user asked to update an account
nunber, we made a note in a scratchpad area. (CICS provides scratchpad
facilities for keeping track of things between transactions.) W can

| eave the number there until the update is entirely conpleted and then

erase it. In our exanple, this means that we wite a scratchpad record in
the second transaction, and erase it in the third. Before we start any
updat e request, we can check to see if the nunber is in use. |If it is, we

can tell the user this and ask himor her to resubmt the request |ater.
Furthernmore, we can |let the user display the record even if it is in use

This isn't quite all, however. Because CICS ensures that transactions are
ei ther done conpletely or not at all, we have to make sure that all our
protected resources get updated in what CICS regards as a single
transaction to ensure file integrity. |n the conversational case, this
takes care of itself, as there is only one transaction. In the

pseudoconversational case, the files are all updated in the third
transaction (good), but the scratchpad is updated in two different
transactions (not so good). |If the second transaction is conpleted
successfully, but something happens to the third, the scratchpad record is
written but not erased. Our files would be okay, which is the main thing
but we'd be unable to update the record involved until we could somehow
reset the scratchpad

© Copyright IBM Corp. 1984, 1991
2731-1

CICS Application Programming Primer
...and how to avoid it

2.7.3.2 ...and howto avoid it

We'll get around this by designing a slightly nore sophisticated
scratchpad mechanism We can, for instance, put a limt on the tinme for
whi ch a transaction can "own" an account number. Then an accident in the
third transaction or thoughtl ess behavior by a user (going to lunch in the

m ddl e of a nodification) will not cause an account record to becone
unusable for nore than a short period of tinme. All this involves extra
codi ng and conplications, however. 1Is it worth it?

In this exanple, it really isn't obvious whether conversational or
pseudoconversational is the better choice (after the nenu phase, in which
bei ng pseudoconversational is definitely better). The choice really cones
down to how many of these transactions we m ght expect at once. |f there
were a great many, the storage burden of a conversational transaction

al one m ght cause us to choose pseudoconversational. |If there were only a
nmodest nunber, then we would have to consider how often a user would
experience the unexplained wait if we chose conversational. |If nearly all
the activity consisted of displaying and printing, with only an occasional
updat e, then the conversational approach m ght still be the correct

choi ce.

We'|| assume here, however, that there are enough transactions with enough
updates to justify choosing the pseudoconversati onal approach, and we'l]l
program our own nechani sm for avoiding concurrent updates.

Doubl e updating is one of those problenms you can tackle in a variety of
ways. We've chosen a scratchpad (partly because it's a reasonabl e nethod,
and partly because it's going to allow us to show you how to use a CICS
facility called tenporary storage). A drawback of our scratchpad,
however, is that all future (and, as yet, unknown) transactions that
update the account file will have to refer to this scratchpad. We'll
mention an alternative solution in "The need for scratchpad and queui ng
facilities" in topic 3.5.1.

© Copyright IBM Corp. 1984, 1991
2732-1

CICS Application Programming Primer
Arranging the processing

2.8 Arranging the processing
We' ve now reached the point where we can start to arrange the processing
described earlier into transactions and progranms. Remenmber, a CICS
transaction uses one or several prograns to do its work. When a
transaction is invoked, CICS |looks in its |ist of installed transaction
definitions to find out which program should be executed first to
acconplish that transaction. However, that program may invoke any nunber
of other prograns. Several transactions may use the same program or
prograns, in the same order or in a different order.

Subt opi cs

2.8.1 Defining the transactions
2.8.2 Defining the prograns
2.8.3 Sunmary

© Copyright IBM Corp. 1984, 1991
28-1

CICS Application Programming Primer
Defining the transactions

2.8.1 Defining the transactions

Let's first look at the transactions we'll need, and then we can assess
what prograns we'll require. Because we're going to use the
pseudoconversational approach, we need transactions that take an input
fromthe screen, process it, and wite back either the final result or an
intermediate result ready for the next transaction.

Subt opi cs

2.8.1.1 Displaying the menu

2.8.1.2 Analyzing the user's response
2.8.1.3 Adding a new record

2.8.1.4 Handling updates and other requests

© Copyright IBM Corp. 1984, 1991
28.1-1

CICS Application Programming Primer
Displaying the menu

2.8.1.1 Displaying the nenu

The first thing we need is a very sinple transaction that will accept a
request to get started: that is, one that will put the nmenu up on the
screen.

© Copyright IBM Corp. 1984, 1991
2811-1

CICS Application Programming Primer
Analyzing the user's response

2.8.1.2 Analyzing the user's response
Once the nmenu is on the screen, we need a transaction to analyze and
respond to the input request that comes in after the user has conpleted
fields on the menu screen. Going back to "Refining the transaction
design" in topic 2.5, we see that this transaction nust do the follow ng
st eps:

Steps 3-4 of "Request analysis" in topic 2.5.1

Steps 1-2 of "Add processing"” in topic 2.5.2

Steps 1-2 of "Modify processing"” in topic 2.5.3

Steps 1-2 of "Delete processing” in topic 2.5.4

Steps 1-2 of "Display processing” in topic 2.5.5

Steps 1-4 of "Nane inquiry processing” in topic 2.5.7

Al'l steps of "Print processing” in topic 2.5.6.
Remenmber, we don't have to do all this processing with a single program

We' Il decide on the prograns we need |ater, after we've laid out the
transacti ons.

© Copyright IBM Corp. 1984, 1991
2812-1

CICS Application Programming Primer
Adding a new record

2.8.1.3 Adding a new record

The next transaction that we need is one to do steps 4 through 7 of "Add
processing"” in topic 2.5.2. W'Ill use this transaction if the request in
the previous transaction was to add an account record.

© Copyright IBM Corp. 1984, 1991
28.13-1

CICS Application Programming Primer
Handling updates and other requests

2.8.1.4 Handling updates and other requests

Simlarly, we'll need four other transactions to do, respectively, the
st eps shown bel ow:

Steps 4-8 of "Modify processing"” in topic 2.5.3
Steps 4-7 of "Delete processing"” in topic 2.5.4
Steps 6-7 of "Name inquiry processing"” in topic 2.5.7
Al'l steps of "Printing the change log" in topic 2.5.8.
We m ght use a separate transaction for each of these requirements, or

m ght combine sone of them We won't nake that decision for the tinme
bei ng.

© Copyright IBM Corp. 1984, 1991
28.14-1

we

CICS Application Programming Primer
Defining the programs

2.8.2 Defining the prograns

Let's look at the prograns that we're going to need in support of these
transactions, because that will help us to decide how many different
transaction types we need.

Subt opi cs

2.8.2.1 Displaying the menu--ACCT00

2.8.2.2 Analyzing the user's response, ACCTO1l

2.8.2.3 Handling updates (including additions)--ACCT02

© Copyright IBM Corp. 1984, 1991
282-1

CICS Application Programming Primer
Displaying the menu--ACCTO00

2.8.2.1 Displaying the menu--ACCT00

Let's go back to the first transaction, the one that puts up the nenu

screen, and give it a name so that we can refer to it easily. W'IlIl need
a four-character transaction identifier to define it to CICS anyway, so
let's call it, say, ACCT. This is what the term nal user will key in to
see the menu screen for this application. Now ACCT needs a program that
will display the menu screen. This programis so sinple that perhaps it
shoul d be conbined with some other program but for clarity we'll keep it

separate. Let's call this program ACCTO0O.

© Copyright IBM Corp. 1984, 1991
2821-1

CICS Application Programming Primer
Analyzing the user's response, ACCTO01

2.8.2.2 Analyzing the user's response, ACCTO1

The next transaction is the one that processes the nenu input. Let's also
give it a nane, say, ACO0l1. |It's a good idea to use sone sort of naning
convention for both your transactions and programs. You should be able to
tell which application they belong to just by their nanes. There's a
tenmptati on when writing your first application to use names |ike MENU,

ADD, and UPDT. These turn out to be unfortunate choices when you get
around to doing your second application, however, and so nanmes that
identify the application are generally better.

ACCT is the only transaction identifier the general user will have to
remenber, so we'll start the others with AC for ease of recognition, and
just nunber themfromthere. Simlarly, the prograns will start with ACCT
and be nunbered.

But back to transactions. Let's see the processing that ACO1 has to do,
to help us visualize the prograns required. Looking back at the list of
requi rements, one approach would be to wite a separate program for each
itemon the list. The first program (the one that did the initial request
anal ysis) would transfer control to one of the others, depending on the
type of request. However, if we |ook at the content of Steps 1 and 2 of
"Add Processing," "Display Processing," "Mdify Processing," "Delete
Processing", and "Print Processing," we find that they are very sinmlar.
They start with the same data and access the same file record, so we

probably want to combine these into a single program So we can cut down
our original list for this transaction to:

Steps 3-4 of "Request analysis" in topic 2.5.1

Steps 1-2 for add, nodify, delete, display, and print
Steps 1-4 for "Name inquiry processing"” in topic 2.5.7
Steps 3-4 for "Print processing"” in topic 2.5.6.

None of these is a very long piece of code, so it will probably be nost
convenient to put themin the sane program For the noment we'll call
this program ACCTOl. However, it may turn out later that it's better to
break out one or nobre of these segnents of code into additional prograns.
Program and transacti on structures often become clearer when you start to
code, and you may find that you can come up with a better structure than
your original one once you start. Don't worry if everything isn't obvious
at first; it takes practice.

© Copyright IBM Corp. 1984, 1991
2822-1

CICS Application Programming Primer
Handling updates (including additions)--ACCT02

2.8.2.3 Handling updates (including additions)--ACCT02

For the transactions that follow transaction ACO1 and finish the
processing for adds, nodifies, and so on, we again m ght consider a
separate program for each type of function. Once nore, however, it's
obvious that the processing for adds, modifies and deletes is very
simlar. Mst of the steps, in fact, are identical. So, let's conmbine
these into a single program and call it ACCT02. Then we can use a single
transaction for all three processes. W could use different transactions,
all using the same program but it would be pointless in this case. Let's
assign the identifier ACO2 to the transaction that gets executed when the
user has filled in an update screen (add, nodify or delete).

We still need a transaction that will do the remmining steps of "Nanme
inquiry processing" in topic 2.5.7. But this code will be al nost

identical to an initial nane search request, so we can probably include it
in program ACCTO1.

© Copyright IBM Corp. 1984, 1991
28.23-1

CICS Application Programming Primer
Summary

2.8.3 Sunmary

To sunmmarize, so far we've defined three transactions, and three prograns
in support of them as shown in Figure 26:

o
i

i ldentifier Transaction Programs Used

i ACCT Di spl ays menu. ACCTO00

| ACO1 Anal yzes requests; ACCTO01

' Processes nane search

' di splay and print requests;*

! Does first part of update

! requests

I ACO02 Conpl et es update requests ACCT02

' * Alnpbst, as we'll see later

i
e

Figure 26. The three transactions and three prograns

The only thing left is the printing of the log. O is it? |In fact, in
addition to printing, we haven't yet thought nuch about the business of
telling the user at the term nal about any error conditions that nmay
arise. So before we consider the log, we shall digress to discuss three
considerations that will bear on our definition of transactions and
prograns.

These are:

O Communi cati on between transaction

O Error handlin

O The rel ationship between transactions and term nals

These bear directly on how we'll handle the |ast two application
functions.

© Copyright IBM Corp. 1984, 1991
283-1

CICS Application Programming Primer
Three remaining considerations

2.9 Three remni ning considerations

Subt opi cs

2.9.1 Communi cation between transactions

2.9.2 Handling errors and exceptional conditions
2.9.3 Transactions and term nals

© Copyright IBM Corp. 1984, 1991
29-1

CICS Application Programming Primer
Communication between transactions

2.9.1 Communi cation between transactions

You may have noticed when we were explaining pseudoconversational
processing that there seemed to be sone gaps in control and communi cati on.

When one transaction of a pseudoconversational sequence has been

conpl eted, doesn't this task di sappear when control goes back to ClCS?
And if so, how can we make sure that the transaction we intend to follow
this one is actually the one that gets executed? And how will the next
transacti on know what this one was doi ng? Wen transaction ACO02 is
supposed to follow ACO1, for exanple, doesn't ACO02 need to know what kind
of an update has been requested and which record was being updated?

Yes, CICS does indeed effectively erase all the storage associated with a
transaction when it ends, and it often erases the programas well.
However, before it passes out of existence, the departing transaction is
allowed to pass data forward to be used by the next transaction initiated
fromthe sane term nal, whenever that transaction arrives. It is also

al l owed to specify what that next transaction should be. You can see that
this is a very useful--indeed, vital--facility for pseudoconversati onal
programming. It's what allows us to ensure that transaction ACOl always
follows ACCT, that ACO02 follows ACO1l when we're updating, and so on. It's
called, not surprisingly, the "next transaction identifier" feature.

We'll shorten this to "next transid."

The main way one transacti on passes data forward to the next is by using

the COMMAREA (for conmunication area). The same facility is available to
pass data between programs within a transaction. W'Il|l see howto use it
for both purposes in "Application progranm ng" in topic 3.0.

There are other facilities for storing data between transactions as well.
One of these is a CICS facility known as Tenporary Storage, which can be
used as a sort of application scratchpad. This facility will do nicely
for keeping track of the account numbers being updated. We'Il see howto
use it in "Application programrmng" in topic 3.0.

A | ess obvious place to store data between transactions is the screen
itself. You may recall from our discussion of the 3270 data stream (see
"3270 termnals" in topic 2.2) that the nodified data tag governs whet her
or not a field on the screen is transmtted back to the processor. One
way to ensure that an item of data gets from one transaction to another,
then, is sinply to store it on the screen, with the nmodified data tag on
and the field protected, so that the user cannot change it. You can even
prevent users from seeing the data (if that m ght confuse them, by using
the dark attribute.

This nethod isn't appropriate to |large anounts of data, of course, because
we don't want to send nmuch extra data over a communications |ink.

© Copyright IBM Corp. 1984, 1991
29.1-1

CICS Application Programming Primer
Handling errors and exceptional conditions

2.9.2 Handling errors and exceptional conditions

Before we get down to specifying our prograns, we need to say a few
prelimnary words about errors and error recovery. Recovering fromerrors
in online programs is a topic given a conplete guidance book in the ClICS
l'ibrary--the &rgc.. For now, however, we'll just state sone guidelines
here before we start to specify our programs. (We'll return to the topic
fromthe point of view of our exanple application in "Errors and
exceptional conditions" in topic 3.8.)

We can divide the errors that can occur in a CICS transaction into five
cat egori es:

1. Conditions that aren't normal from CICS' s point of view but that are
expected in the program

There's an exanple in transaction ACOl, when we test to be sure the
record to be added isn't already there and get the "not found"
response

Errors in this category should be handled by explicit logic in the
program

2. Conditions caused by user errors and input data errors

We'd have an error of this kind in our exanple application if a user
tried to add an account nunber that already existed, or used the wong
key to send the data on the screen.

Errors in this category should also be handled by explicit logic in
your program ldeally, no errors of either of these types should be
allowed to stop the program or do anything else to upset the user

3. Conditions caused by om ssions or errors in the application code

These may result in the inmmediate failure of the transacti on (ABEND)

or sinmply in a condition that we believed "could not happen" according
to our programlogic. |In our exanple application, a "duplicate
record" response in AC02, on adding a record to the account file,
woul d represent this kind of error. W don't expect it, because we've
al ready tested in transaction ACOl1 to ensure that no record with the
same key is in the file.

For errors in this category, you'll want to term nate your transaction
abnormally, in case CICS doesn't do it for you first. The resulting
dunp should enable you to find out why the condition occurred, and

we' Il give you nore guidance on this in the CICS/ESA Problem

Det erm nation Guide. One of the main goals of the debugging process
should be to get rid of this type of error.

4, Errors caused by m smatches between applications and CICS tables
generation paranmeters, and JCL.

An exanple is when CICS responds "no such file exists" to your read or
write request. \When you are first debugging an application, these
probl ens are al nost invariably your fault. (This may sound harsh, but
we're afraid it's true.) Perhaps the entry got left out of the File
Control Table, or you spelled a name differently in the table fromthe
program or asked for the wrong set of services in selecting CICS
nodul es

These conditions sonetimes occur after the system has been put into
use, as well. In this stage they are usually the result of changes to
a CICS table, or an installed definition, or services paraneters, or
JCL, usually related to some other application.

© Copyright IBM Corp. 1984, 1991
29.2-1

CICS Application Programming Primer
Handling errors and exceptional conditions

This category needs the sanme treatnment as the third while you are
debugging. Once the programis in actual use, however, sonmething nore
is needed when one of these conditions arises. You nust give users an
intelligible nessage that they or their supervisors can relay to the
operations staff, to help in identifying and correcting the problem
For exanple, if a nmachine room operator has disabled a file for sonme
reason and forgotten to reopen it, you want a message that says that
the problemis caused by a disabled file (and which file, of course)
Mor eover, you should program for these eventualities right away, as
this part of the programwill need debugging just as well as the rest.

5. Errors related to hardware or other system conditions beyond the
control of an application program

The classic exanple of this is an "input/output error” while accessing
a file.

As far as the application prograns are concerned, this category needs
the same treatment as the fourth. Systens or operations personne
will still have to analyze the problemand fix it. The only
differences are that they probably didn't cause it directly, and it
may take nuch nore effort to put right.

The need to produce an appropriate nessage when an error in one of these
| ast two categories occurs (or when one in category 3 slips through the
debugging) will nean an additional programin our exanple application.

Subt opi cs
2.9.2.1 A "catch-all" error program -ACCT04

© Copyright IBM Corp. 1984, 1991
29.2-2

CICS Application Programming Primer
A "catch-all" error program--ACCT04

2.9.2.1 A "catch-all" error program -ACCT04

Since there are CICS conmands in every program we'll need this nessage
logic in each. Rather than repeat the code in each, we'll put it in a
separate program (ACCT04). This will not only avoid repetition, but wll

renove a |long section of rarely-used code fromthe mainline prograns.
(The code itself isn't long, but the error message tables are.)

© Copyright IBM Corp. 1984, 1991
29.21-1

CICS Application Programming Primer
Transactions and terminals

2.9.3 Transactions and term nals

There's one additional conplication to think about in defining our
transactions for this application program This is the relationship

bet ween transactions and termnals in CICS. As we explained earlier, npst
CICS transactions (tasks) are invoked when CICS receives unsolicited input
froma terminal. On receiving such input, CICS creates a task to process
it. Which type of task is determined fromthe transaction identifier at
the start of the input or the next transid that was set by the previous
transaction at this termnal.

The task and the termnal that invoked it have a special relationship in
CICS: the task essentially "owns" the termnal for its duration; it can
write to it and read fromit directly, and no other task can do so during
this time. Conversely, the task owns only this term nal and cannot read
fromor wite to any other termnal directly (another task m ght own that
terminal at the tinme, and a sudden message from a second task m ght

di srupt the owni ng task hopel essly).

You may be asking at this point "how can transaction ACOl in the exanple
do all the steps of print processing?" as we proposed earlier, since step
3 of "Print processing"” in topic 2.5.6 (send this inage to the indicated
printer) seens to violate this restriction. The answer is that it can't.
The sanme task cannot own the display term nal from which the input was
received and a printer termnal.

Subt opi cs
2.9.3.1 A printer program-ACCT03

© Copyright IBM Corp. 1984, 1991
293-1

CICS Application Programming Primer
A printer program--ACCTO03

2.9.3.1 A printer program -ACCT03

What we do to get around this restriction is to have transaction AC01 do
the other steps of the print processing and then create a second
transaction (task), which does own the necessary printer termnal, to do
step 3. CICS provides a conmand cal | ed START expressly for this purpose,
as we'll see in "Application programm ng" in topic 3.0. So we nust add
anot her transaction to our list, nanely the one that does step 3 of "Print
processing” in topic 2.5.6. Let's call it AC0O3. W'Il also need a
programto go with it, albeit a very short one; this we'll call ACCTO03.

Now clearly the sane problemwi |l arise with printing the |og of changes
to the account file. The input that invokes this transaction is clearly
not going to cone fromthe terminal required to execute it (printers not
being strong on input) and so again we'll need two transactions. One will
accept the request froman input termnal and start a second, which will
have the necessary printer at its disposal.

Let's call this first transaction ACLG and the second AC0O5. (We're
reverting to a transaction identifier that's easier to remenber, because

the supervisor will have to renmenber it.)

Finally, we'll have transactions ACEL and AC06. ACEL w |l accept the

i nput request, and will start AC06 to print the error |og.

We'll also need a program for each of these transactions. W could define
a separate one for each, but the code required for these functions turns
out to be so short, in fact, that we'll include it in the little program

we defined for transaction AC03, and use a single programfor four
di fferent functions.

Figure 27 shows the program structure we've now arrived at. The five
progranms in support of these transactions are exam ned one last time in
"Defining the prograns--a final |ook" in topic 2.10. You can either read
this topic to consolidate your ideas about the progranms, or nove straight
on to the next part of the Prinmer: "Application programm ng” in topic 3.0.

o +
Id Transacti on Prograns Used
ACCT Di spl ays nenu ACCTO00
ACO1 Anal yzes requests; processes nhanme ACCTO01/ 04*

search and display requests fully;
does first part of update and
print requests

ACO02 Conpl et es update requests ACCT02/ 04*
AC03 Conpl etes print requests ACCT03/ 04*
ACLG I nvokes ACO5 ACCT03/ 04*
ACO5 Prints the |og ACCT03/ 04*
ACEL I nvokes ACO6 ACCT03/ 04*
ACO06 Prints the error |og ACCTO03/ 04*

* Not e: ACCTO04 is used only if an error occurs.

Figure 27. The six transactions and five prograns

© Copyright IBM Corp. 1984, 1991
2931-1

CICS Application Programming Primer
Defining the programs--a final look

2.10 Defining the prograns--a final |ook
We' ve now defined five programs in support of our transactions. |In this
topic, we'll describe briefly what each program does. This materia
repeats that in "Refining the transaction design" in topic 2.5, but it's
arranged somewhat differently. Feel free to nove on to "Application
progranmm ng" in topic 3.0 if you already feel confortable with the program
structure that we've defined.

Subt opi cs

2.10.1 Program ACCT00: nenu display

2.10.2 Program ACCTO1: initial request processing
2.10.3 Program ACCT02: update processing

2.10.4 Program ACCT03: requests for printing
2.10.5 Program ACCTO04: error processing

© Copyright IBM Corp. 1984, 1991
2.10-1

CICS Application Programming Primer
Program ACCTO0O0: menu display

2.10.1 Program ACCT00: nenu display

This programis the first one executed when transaction ACCT is entered.
It displays the nenu screen, which pronpts the operator for request input,

and then ends (it returns control to CICS). |In returning, it specifies
that transaction ACOl is to be executed when the next input is received
fromthis term nal, which means that program ACCTO1 will be invoked to

process the input fromthe menu. The processing steps are:

1. Display the nenu on the screen

2. Go back to CICS, setting the next transid to ACO1.

© Copyright IBM Corp. 1984, 1991
2.101-1

CICS Application Programming Primer
Program ACCTOL1: initial request processing

2.10.2 Program ACCTO1: initial request processing

Thi s program anal yzes requests that are entered through the menu screen

(al |

requests except those for printing the log). |t processes nane

search and record display requests conpletely, does update requests up to

t he

poi nt where the user has to enter nmore information, and does print

requests except for the step that requires access to a printer term nal.
It's the first programinvoked when transaction ACOl is executed. The

mai n steps in the program are:

Find out what the user wants to do. This involves |ooking at the
input, both the actual data and the attention identifier (the key used
to send the data). The possibilities are:

a. A request to |eave the application (indicated by use of the CLEAR
key). Here control is returned to CICS, without any next transid.

b. A request to cancel the previous (partially conpleted) request and
start again with a menu screen. This neans sending a new nenu
screen and then returning control to CICS with the next transid
set to ACO1l (so that this same programwi ||l process the input from
that menu when it arrives).

c. A request to continue a name search that produced nore matching
records than would fit on a single screen (indicated by the user
pressing the PA2 key to nove on fromthe current (full) screen,
and view nore records on the next). |In this event, processing
resumes at step 5, using search control information that was saved
in the COMMAREA when this transaction was |ast executed for this
term nal .

d. A corrected request or a conpletely new request.

For a new request, get the input and exami ne the contents. The first
deci sion is whether the user wants a nane search or one of the other
functions.

If the user entered a nanme, check it for reasonableness. |If there's
an error, wite the appropriate error information to the screen and
return control to CICS. Once again, set the next transid to AC01, so
that this sane programwill get invoked to process the corrected

i nput .

If the names are correct, build the control information we need to do
the search, nanely:

O An index file key that is equal to or just before the input in
al phabeti cal sequence, so that we know where in the file to start
r eadi ng,

O Alimting value for that key to tell us when we've read too far
(al phabetically) in the file, and

O A range of al phabetical values for the given name, so that we can
exclude records which do not neet that criterion, if any was
speci fied.

Point to the first eligible record in the index file and begin readi ng
sequentially. For each record read, check to see if the given nane is
within the required range. If it is, build an output line for the
screen fromthe information in the record and then go on reading. |If
not, skip the record and go on reading. Continue this process until
the surname in the file exceeds the one we're | ooking for, or the end
of the file is reached, or there is no nore roomon the screen.

© Copyright IBM Corp. 1984, 1991
2.102-1

10.

11.

CICS Application Programming Primer

Program ACCTOL1: initial request processing
When this happens, send the results back to the user. |f we ran out
of space on the screen, add a message saying that there are nore nanes
and that they can be seen by using the PA2 key. Then return contro
to CICS, again setting the next transid to ACO1. |If there are nore
mat chi ng names, save the search control information in COVMWAREA as
wel |

If the request was other than a name search (display, print, add

nodi fy, delete, or even an error), check the request type, account
nunmber and printer name (if applicable) for correctness. Checking the
account nunber involves reading the account file. W check to make
sure the record isn't there for an add request but that it is there
for all the other request types. |If any of the checks fail, or if the
request itself is unrecognizable, wite the appropriate error
informati on back to the screen and return to CICS, once again with the
next transid set to ACOLl.

If the request is an update (add, modify or delete), read the
scratchpad to ensure that no other terminal is currently updating the
same account nunber. |If one is, treat the situation as an error in
the account nunmber and proceed as in the previous step. O herw se
write the necessary scratchpad record to reserve the nunber for this
term nal

Build a screen image to send to the user (or the printer). For add
requests, this will sinply be a skeleton screen, with only the account
nunmber filled in. For the others, however, it will involve noving the

information fromthe account file record (read in step 7) into the
detail screen. Also, the title, message area and certain other itens
in the screen need to be custom zed to the particular type of request.

For all requests except print requests, send this screen back to the
input termnal. Then return to CICS. The next transid for display
requests will be ACCT, as the next thing the user will want after

Il ooking at the record is a fresh nmenu screen. For the update
requests, the next transaction should be AC02.

For print requests, ask CICS to start another task (AC03) w th the
required printer as its termnal. Pass the screen inmage built in step
9 as data to that task. Then add a nmessage to the menu currently on
the screen saying that the printing has been schedul ed, and return to
CICS. Set the next transid to ACO1, as the nmenu is still on the
screen and therefore the next input should be processed by this sane
program

© Copyright IBM Corp. 1984, 1991
2.10.2-2

CICS Application Programming Primer
Program ACCTO02: update processing

2.10.3 Program ACCT02: update processing

ACCT02 is the first programinvoked by transaction AC02. It conpletes
updat e transactions, using the information supplied by the user on the
detail screen. The main steps are as follows:

Make sure that the user wants to conplete the update request. (It is
important in a situation like this to allow users some neans of
escape, in case they change their mnd about a file update they
started or in case they sinply don't have the right information to
conplete it. This application observes the convention that using the
CLEAR key at any time nmeans that the user wants to cancel the current
operation.)

If the user wants to quit, release control of the account nunber, send
a fresh menu screen with a nessage that the previous request has been
cancel ed, and return to CICS. Set the next transid to ACO1, since the

next input to be processed will conme in on that menu screen.
Ot herwi se, get the input. |If the request is to add a record, build a
new record fromthe information on the screen. |f the request is a

nmodi fication, read the old record and build a new record by nerging it
with the changes entered on the screen.

Check the input for correctness. For delete requests, the only
requirenent is that the user confirmthe deletion with a Y in the
"verify" field. For add and nodify requests, all the fields entered
must nmeet their respective edit requirements. |If there are any
errors, send the appropriate error information to the screen. Then
return control to CICS with the next transid set to AC02, so that this
same program processes the corrected input.

Read the scratchpad to make sure that the input terminal still has
control of the account number it is trying to update. (Iln other

wor ds, check that the scratchpad has neither been erased nor altered.
Check back to "...and howto avoid it" in topic 2.7.3.2, if you need
rem ndi ng about the scratchpad.)

If not, treat the situation in the same way as an input error (see
step 3 above), but with a different error nessage, of course.

Ot herwise, write the update information to the | og of changes. For

additions, this will be an imge of the new record. For
modi fications, it will be both the old and the new versions, and for
deletions, it will be the record being del eted.

Do the actual updates. For adds, this means adding the new record to
the account file and the corresponding index record to the index file.
For deletes, it means renmoving a record fromeach file. For

modi fications, it means rewiting the record in the account file. The
correspondi ng i ndex record may have to be rewritten as well, depending
on which fields in the account record changed. |f the surnane
changed, for exanple, the old index record nmust be del eted and a new
one added, because the key will have changed. (The first 12
characters of the surnane, together with the account number, formthe
key, rememnber.)

Rel ease ownership of the account nunber by erasing it fromthe
scrat chpad.

Send a fresh menu screen to the input termnal, with a nmessage saying
that the requested update has been conpleted. Then return control to
CICS with the next transid set to ACO1.

© Copyright IBM Corp. 1984, 1991
2.10.3-1

CICS Application Programming Primer
Program ACCTO03: requests for printing

2.10.4 Program ACCT03: requests for printing

ACCT03 does several jobs, all related to printed output (as opposed to

di splay output). When it is invoked by transaction AC03, it conpletes the
request for printed output of a record in the account file. Transaction
ACO1 processed the initial stages of the print request, checking the

i nput, reading the record to be printed, and building the detail screen
fromthe information in the file record. It then requested that
transaction ACO3 be started with the required printer as its term nal.

The processing in ACO3 is:

1. Retrieve the screen i mge prepared and saved for this purpose in
transacti on ACO1.

2. Send this screen to the term nal owned by this transaction (the
printer naned by the user in the print request).

3. Return control to CICS. Don't set any next transid because there's no
need to do so for term nals that never send unsolicited input. Also,
we don't know what transaction should be executed next at this
printer.

Transactions ACLG and ACO5 together process a user request to print the
|l og of changes to the account file. The user invokes transaction ACLG

directly, by entering this identifier at a display term nal. \en invoked
by ACLG, the program sinply requests CICS to start transaction ACO5, with
the hardcopy printer as its termnal. ACLGthen sends a nmessage to the

user saying that the printing has been schedul ed, and returns control to
CICS. No next transid is set, because we're not controlling the flow of
transactions at the input termnal, as we do when input requests are
entered through the menu screen.

Finally, transaction ACEL is a user request to print the error log. It
does so by requesting that transaction ACO6 be started when the | og
printer is available. AC06 transfers the error |log data from tenporary
storage to the printer.

We'l'l format our log as follows:

O For additions, we'll print the new record, using the sane format that
we use on the screen (the "detail" map).

O For nmodifications, we'll print both the old version of the record and
the new one, again using the map format. |In the message area of the
old record we'll note the areas that were changed (name, address, and

so on), to make it easy for the supervisor to check.

O For deletions, we'll print the old record.

O For all types:

1. We'll note the contents of the screen in the title line of the
map: NEW RECORD for additions, BEFORE CHANGE and AFTER CHANGE f or
the two i mages printed on a nodification, and DELETION on a
del ete.

2. We'll showthe tine and date of the update and the name of the
termnal at which it was entered. We'Ill put this information in
the nmessage area (for nodifications, it will be in the "new'
record i mage).

As a result of executing transaction ACLG, CICS starts ACO5 as soon as the
requested printer is available. \When invoked in this way, the program
reads through the data set containing the hard-copy |og sequentially,
transferring each entry to the printer. After the last itemis printed,

© Copyright IBM Corp. 1984, 1991
2.104-1

CICS Application Programming Primer
Program ACCTO03: requests for printing
it deletes the log. Then it returns control to CICS. Again, no next
transid is set, because there's no need to do so for term nals that never
send unsolicited input.

© Copyright IBM Corp. 1984, 1991
2.10.4-2

CICS Application Programming Primer
Program ACCTO4: error processing

2.10.5 Program ACCT04: error processing

This programis a general -purpose error routine. It isn't invoked
directly by any transaction, but instead receives control from prograns
ACCTO01, ACCT02, and ACCT03 when they meet a condition from which they
cannot recover. (Program ACCTO0 is so sinple that no such situation
arises.)

The program sends a screen to the term nal user (see Figure 28) with a
text description of the problem and a request to report it. The text is
based on the CICS command that failed and the particular error that
occurred on it. The name of the transaction and the program (and if
applicable, the file) involved are also shown. The conmand, error type,
and program name are passed to ACCT04 from the program which transferred
control to it; we get the other items fromthe CICS Exec |Interface Bl ock
(EIB). The EIBis a CICS control block associated with a task, containing
information accessible to the application program W'Il look at it in
more detail in "The EXEC Interface Block (EIB)" in topic 3.3.6.1.

After writing the screen, the programtermnates itself abnormally (it
abends), so that any updates to recoverabl e resources done in the
hal f-conpl eted transacti on get backed out.

You'll see ACCTO04 in action in the EDF session described in "A session
with EDF" in topic 5.1.3.1.7.

o o e — e e e e
|

! ACCOUNT FILE: ERROR REPORT

! TRANSACTION ____ HAS FAILED IN PROGRAM BECAUSE OF

i

' COMAND RESP

i

! PLEASE ASK YOUR SUPERVI SOR TO CONVEY THI S | NFORMATI ON TO THE

! OPERATI ONS STAFF.

! THEN PRESS "CLEAR'. THI'S TERM NAL | S NO LONGER UNDER CONTROL OF

' THE " ACCT" APPLI CATI ON.

i

o o e e o e

Figure 28. The transaction error screen

© Copyright IBM Corp. 1984, 1991
2.105-1

CICS Application Programming Primer
Application programming

3.0 Application progranm ng

+--- This part of the Primer: -------ommmmm e
i Describes CICS COBOL application prograns
| Exam nes the features of Basic Mapping Support (BMS)

| Deals with reading and witing files

i Covers communication and control between application and tasks
i Explains howto use CICS conmands such as START and RETRI EVE

|
|
|
|
|
|
I
|
I
|
I
1
i
i | Explains a scratchpad nechani smthat uses tenporary storage
|
I
|
I
|
I
|
|
i
i1 Covers errors and error recovery.

|

|

o e e e e e e
Subt opi cs

3.1 Witing CICS progranms in COBOL

3.2 Defining screens with basic mapping support (BMS)

3.3 Using BMS: nore detail

3.4 Handling files

3.5 Saving data and communicating between transactions

3.6 Program control

3.7 Starting another task, and other time services

3.8 Errors and exceptional conditions

© Copyright IBM Corp. 1984, 1991
3.0-1

CICS Application Programming Primer
Writing CICS programs in COBOL
3.1 Witing CICS progranms i n COBOL
In this topic we'll begin by explaining the basic differences between
batch and CICS prograns. |In later topics, we'll describe, by function,
the services that CICS provides: first termnal services, then file
services, and so on.

To show you how to use these services, we'll be coding parts of our
exanpl e application as we go. |In "The COBOL code of our exanple
application" in topic 4.0, we list the prograns in their entirety, with a
step-by-step description of what the code does.

Appendi x A, "Getting the application into your CICS systenm in topic A O
tells you where to find out how to prepare these prograns for execution
under Cl CS.

Subt opi cs

3.1.1 What's different about CICS prograns?
3.1.2 How to invoke CICS services

3.1.3 Restrictions in CICS COBOL

© Copyright IBM Corp. 1984, 1991
3.1-1

CICS Application Programming Primer
What's different about CICS programs?

3.1.1 What's different about CICS prograns?

Well, not so much is different. Here, for instance, are the steps a
typi cal batch program goes through

Oper ati ons
1. Initialize for the whole run (set all the counters to zero
and open the files)

| 1
| 1
I 1
| I
I 1
| I
i i
I 2. Initialize for the next input. '
i 3. Read it. '
I 4. Process it.

i 5. Wite the related outputs.

| 6. Repeat Steps 2 to 5 until you run out of input.

I 7. Finish (add up the counters, print any summary results and

' close the files).

| i
E S I T N o, +

Figure 29. The steps of a typical batch program

A typical CICS transaction is very simlar, but it includes only steps 2
through 5. That is, it's like the core of a batch program where a single
input is processed. CICS takes care of opening and closing the files for
you. The reports and summari es associated with batch jobs can often be

di spensed with in an online environnment, or they may be produced
periodically by a different transaction or even by a batch job

The other big differences are

O You request "operating system' services, such as file input/output, b
issuing a CICS conmand instead of using the correspondi ng | anguage
facility (READ, WRI TE, and so on)

O You aren't allowed to use the | anguage facilities for which CICS ha
provi ded substitutes.

O You cannot use | anguage features and conpiler options that nee
operating system services during execution. The SORT and TRACE
facilities are exanples.

© Copyright IBM Corp. 1984, 1991
31.1-1

CICS Application Programming Primer
How to invoke CICS services

3.1.2 How to invoke CICS services

When you need a CICS system service, for exanple when reading a record
froma file, you just include a CICS command in your code. Don't forget:
t hroughout this book, we're only dealing with the command-|evel or
exec-level programmng interface. |In COBOL, conmand-|evel CICS commands
I ook like this:

The "function" is the thing you want to do. Reading a file is READ,
writing to a termnal is SEND, and so on.

An "option" is some specification that's associated with the function.
Options are expressed as keywords, some of which need a value in

parent heses after the keyword. For exanple, the options for the READ
command include FILE, RIDFLD, UPDATE, and others. FILE tells CICS which
file you want to read, and is always followed by a value indicating or
pointing to the file nanme.

RIDFLD (record identification field, that is, the key) tells CICS which
record and |ikew se needs a value. The UPDATE option, on the other hand,
sinmply means that you intend to change the record (thereby invoking the
CICS protections we discussed earlier) and doesn't take any value. So, to
read, with intent to nmodify, a record froma file known to CICS as

ACCTFI L, using a key that we've stored in working storage at ACCTC, we'd

i ssue a command that |ooks |ike this:

EXEC CI CS READ FI LE(' ACCTFI L") RI DFLD(ACCTC)
UPDATE ... END-EXEC.

When you specify a value, you may either use a literal, as we did for FILE
above, or you nay point to a data area in your program where the val ue you

want is stored, as we did for RIDFLD above. In other words, we m ght have
written:
E T +

MOVE ' ACCTFIL' TO DSNAME
EXEC Cl CS READ FI LE(DSNAME) RI DFLD(ACCTC)

UPDATE ... END- EXEC.
T +
instead of our earlier command. |If you use a literal, follow the usual
COBOL rules and put it in quotes unless it's a nunber. In other types of

commands, these values nmay be paragraph names in your program telling
CICS where to go if a certain type of exceptional condition arises. Don't
use quotes around paragraph nanes.

You may be curious about what the COBOL conpiler does with what is (to it)
a strange-|ooking English-like statement |ike the one above. The answer?
The conpiler doesn't see that statenment. Processing a CICS program for
execution starts with a translation step. The translator converts your

ClI CS commands into COBOL, in the formof CALL statenments. You then
conpile and link edit this in the normal way. The generated CALL
statements never contain periods, by the way, unless you include one

© Copyright IBM Corp. 1984, 1991
31.2-1

CICS Application Programming Primer
How to invoke CICS services
explicitly after the END-EXEC. This neans you can use CICS conmands
within IF statements (by |eaving the period out of the conmand), or you
can end a sentence with the command (by including the period).

© Copyright IBM Corp. 1984, 1991
31.2-2

CICS Application Programming Primer
Restrictions in CICS COBOL

3.1.3 Restrictions in CICS COBOL

1. The biggest difference between batch and CICS COBOL progranms is that
you don't define your files in a CICS program |Instead, they are
defined using either RDO FILE definitions or DFHFCT nacro statenents
that are stored in a CICS table, the file control table, which we
cover in "Handling files" in topic 3.4. So:

O You cannot use the entries in the ENVI RONMENT DI VI SION and the
DATA DI VI SION that are normally associated with files. In
particular, the entire FILE SECTIONis omtted fromthe DATA
DIVISION. Put the record formats that usually appear there in
ei ther the WORKI NG STORAGE or LI NKAGE secti ons.

] You cannot use the COBOL READ, WRI TE, OPEN, and CLOSE statenents.

2. You cannot use conpiler features that require the use of operating
system facilities. For exanple:

O Speci al features of the COBOL conpilers, namely:

ACCEPT DI SPLAY EXH BIT REPORT WRI TER
SEGMENTATI ON SORT TRACE

O Features that require an operating system GETMAI N (the nbst common
of which is CURRENT- DATE).

O Certain conpiler options:

COUNT ENDJ OB FLOW DYNAM STOP RUN
SYNMDUMP STATE SYST TEST

3. Your program nust be what CICS calls "quasi-reentrant." Technically,
this nmeans your program nmust not modify itself between calls for CICS
services. For this purpose, in command-|level CICS, your
WORKI NG- STORAGE section is not considered part of the program (neither
is anything in the LINKAGE section). Consequently, you rarely have a
chance to break the "quasi-reentrant” rule.

4. There are significant differences between VS COBOL || and other |evels
of the COBOL | anguage. For exanple, unless you are using VS COBOL I1I,
the following restriction is in force:

O When separate COBCL prograns are link edited together, only the
first may invoke CICS services.

These are the major restrictions, and the only ones you are likely to
encounter using the commands described in this Primer. The CICS/ ESA
Application Progranmm ng Reference contains definitive application
progranm ng interface information on this subject. We'Il often cite this
manual in this part of the Priner.

© Copyright IBM Corp. 1984, 1991
313-1

CICS Application Programming Primer
Defining screens with basic mapping support (BMS)
3.2 Defining screens with basic mapping support (BMS)
It may be that your DP departnent currently uses a screen definition
program product such as Screen Definition Facility, or perhaps the screen
painting facility of Cross Systens Product. However, we're going to
assunme you'll be using basic mapping support (BMS) and the BMS mmcros.

That said, let's now plunge in and try to code our exanple application.
If we start at the beginning of the first program we specified (ACCT00),
the first thing we need is to wite a formatted screen to the input
termnal. This requires the use of CICS term nal input/output services.
In particular, we'll need to use Basic Mapping Support (BMS).

First, sonme background: CICS supports a wide variety of termnals, from
teletypewriters to subsystens such as intelligent cluster controllers,
under a variety of communications access nethods. In this Prinmer,
however, we cover only the mpst common CICS term nals, those of the |BM
3270 system Specifically the 3277 and 3278 di splay devices (with a
screen size of 24 lines and 80 colums) and the associated printer

term nals: 3284, 3286, 3287 and 3289.

We don't use features that depend on a particular term nal access nethod,
and we only cover formatted output. Nor do we cover nmany of the
formatting services; instead we concentrate on the basic things you need
to get an ordinary application going. After we've explained these
fundamentals, we'll tell you what else you can do when you're feeling
advent urous, and where to | ook for guidance on how to do it.

Subt opi cs

3.2.1 What BMS does

.2 The BMS mmcros

.3 Map definitions for the exanple
.4 Summary

.5 Optional exercise

NNNN

© Copyright IBM Corp. 1984, 1991
3.2-1

CICS Application Programming Primer
What BMS does

3.2.1 What BMS does

As you read through this topic (and the next) you may start to feel a bit
overwhel med by all the detail you'll be |earning about BMS. So let's get
a couple of things straight right fromthe word "go". BMS sinplifies your
programi ng job, keeping your code |largely independent of any changes in
your network of term nals and of any changes in the term nal types. And
after you' ve witten your first few maps, you'll find they aren't so bad!

Before we start to | ook at the BMS commands, we need to explain in a
little nore detail what BMS does for you. |It's probably easiest to define
what BMS does by exam ning the menu screen we need. You can see what it

| ooks like in Figure 30.

To help us in this discussion, we've added row and col um nunbers to the
figure and underlined the fields that would otherw se not show unl ess
filled in with data. We've also marked the position of the attribute byte
for the "stopper" fields with a vertical bar (|) and for other fields with
a plus sign (+). These markers won't show up on the screen we're
building; it will look just as it did in Figure 12 in topic 2.3.2.3.

1234567890123456789012345678901234567890123456789012345678901234567890
1+ACCOUNT FI LE: MENU

+TO SEARCH BY NAME, ENTER: +ONLY SURNAME
+REQUI RED. ElI THER
+SURNAME: +_ + FIRST NAME:+___ | +MAY BE PARTI AL.
+FOR | NDI VI DUAL RECORDS, ENTER:
+PRI NTER REQUI RED
+REQUEST TYPE: +_+ ACCOUNT:+___ + PRINTER +__+ ONLY FOR PRI NT
+REQUESTS
Dl SPLAY A = ADD X = DELETE
PRI NT M = MODI FY

© 00 NO U b WN

-
o

+REQUEST TYPES: D
+P

-
N
1

[
AW

+THEN PRESS " ENTER" +- OR- PRESS "CLEAR"' TO EXIT

15

16+ACCT SURNANME FI RST M TTL ADDRESS ST LIMT
17+

18+

19+

20+

21+

22+

23

24+ (nmeg area)

[N
[N

Figure 30. A detailed | ook at the menu screen

You define this screen with BMS macros, which are a form of assenbler

| anguage. When you' ve defined the whole nap, you put sone job control

| anguage (JCL) around it and assenble it. You assenble it twice, in fact.
One of the assenblies produces the physical map. This gets stored in one
of the execution-tinme libraries, just like a program and CICS uses it
when it executes a programusing this particular screen.

The physical map contains the information BMS needs to:

© Copyright IBM Corp. 1984, 1991
321-1

CICS Application Programming Primer
What BMS does
O Build the screen, with all the titles and |abels in their prope
places and all the proper attributes for the various fields.

O Merge the variable data fromyour programin the proper places on the
screen when the screen is sent to the termnal.

O Extract the variable data for your program when the screen is read.

The information is in an encoded form conprehensible only to BMS, but
fortunately we never need to exam ne this ourselves.

The other assenmbly produces a COBOL structure which we call the synbolic
description map or DSECT (an assenbly | anguage termfor this type of data
structure, standing for dummy control section). This structure defines
all of the variable fields (the ones you mght read or wite in your
program), so that you can refer to them by name. The data structure gets
placed in a library along with simlar COPY structures like file record

| ayouts, and you sinply copy it into your program

© Copyright IBM Corp. 1984, 1991
321-2

CICS Application Programming Primer
The BMS macros

3.2.2 The BMS nmcros

To show you how this works, let's go ahead and define the menu map. We'll
explain the three map-definition macros as we go. Don't be put off by the
syntax; it's really quite sinple when you get used to it. We'Ill go from
the inside out, starting with the individual fields.

Subt opi cs

3.2.2.1 The DFHMDF macro: generate BMS field definition
3.2.2.2 The DFHMDI macro: generate BMS map definition
2.2.3 The DFHMSD macro: generate BMS map set definition

3.
3.2.2.4 Rules on macro formats

© Copyright IBM Corp. 1984, 1991
322-1

CICS Application Programming Primer

The DFHMDF macro: generate BMS field definition

3.2.2.1 The DFHMDF nmacro: generate BMS field definition

For each field on the screen, you need one DFHVMDF macro, which |ooks like

this:

f1 dname DFHMDF POS=(I|i ne, col um), LENGTH=number,
I NI TI AL=" t ext' , OCCURS=number ,
ATTRB=(attrl,attr2,....)

colum 72 of each line except the last.)

The itens in this macro have the foll owi ng meanings:

(You need a continuation character--any character except a space--in

fl dname
This is the nane of the field, as you'll use it in your program (or
al rost so, as we'll explain). Name every field that you intend to

read or write in your program but don't nane any field that's
constant (ACCOUNT FI LE: MENU. .. and other |abels, or the stopper
fields in this screen). The name nust begin with a letter, contain
only letters and nunbers, and be no nore than seven characters |ong.

DFHVDF

This is the macro identifier, which nust be present. It shows that

you are defining a field.

POS=(1i ne, col um)

This is the position on the screen where the field should appear.
fact, it's the position relative to the beginning of the map. For
purposes of this Prinmer, however, screen and map position are the
same.) Remenber that a field starts with its attribute byte, so if
you code POS=(1,1), the attribute byte for that field is on line 1 in
colum 1, and the actual data starts in colum 2. For the type of
maps in this Priner, you need this paraneter for every field.

LENGTH=nunmber

This is the length of the field, not counting the attribute byte.
You'll have to specify length for the type of maps in this Priner.

I NI TI AL=" t ext"'

(In
t he

This is the character data for an output field. |It's how we specify
| abels and titles for the screen and keep them i ndependent of the
program For the first field in the menu screen, for exanple, we'll

code:

I'NI TI AL=" ACCOUNT FILE: MENU

ATTRB=(attr1,attr2,...)
These are the attributes of the field, and there are four

di fferent

characteristics you can specify. The first is the display intensity

of the field, and your choices are:

NORM
Nor mal display intensity.

BRT
Bright (highlighted) intensity.

DRK
Dark (not displayed).

The second characteristic governs what the user can do at

© Copyright IBM Corp. 1984, 1991
3.221-1

t he

CICS Application Programming Primer
The DFHMDF macro: generate BMS field definition

keyboard. Here your choices are:

ASKI P
The field cannot be keyed into, and the cursor will skip over it
if the user fills the preceding field.

PROT
The field cannot be keyed into, but the cursor will not skip over
it if the user fills the preceding field.

UNPROT
The field can be keyed into.

NUM
The field can be keyed into, but only numbers, decimal points and
m nus signs are allowed, if you have the NUM LOCK feature.

The third characteristic governs the nodified data tag that we
di scussed in "3270 input data streani’ in topic 2.2.4:

FSET
Turns on the nodified data tag. This causes the field to be sent
on the subsequent read whether or not the user keys into it. |If
you don't specify this, the field is sent only if the user changes
it.

The fourth characteristic that you can specify as part of the
"attributes" has nothing to do with the attribute byte on the screen.
It gives you a way of specifying that you want the cursor to be in
this field. To do so, code:

IC
Pl aces the cursor under the first position of the field. Since
there is only one cursor, you should specify IC for only one
field. |If you specify it for nore than one, the | ast one
specified will be the one used.

You don't need the ATTRB paraneter. |f you omt it, the field will be

ASKIP and NORM, with no FSET and no I C specified. |f you specify
either the protection or the intensity characteristics, however, it
will be clearer if you specify both, because the specification of one
can change the default for the other.

OCCURS=nunber
This paraneter gives you a way to specify several fields at once,
provi ded they all have the same characteristics and are adjacent. |If
you specify a field of length 10 at position (4,1) that is ASKIP and
NORM wi t h OCCURS=3, you'll get three fields of length 10, autoskip and
normal intensity, at positions (4,1), (4,12), and (4,23). This is an
exception to the "one DFHVDF macro for every field" rule we gave you
earlier.

Now we can define the fields in our menu map. We'll "do" the fields in
order. Although this is no longer required in CICS, it's a good idea for
clarity. Figure 31 shows the DFHMDF nmacros for the menu map.

o +
| 1
I 1
' Col Col Col Col !
Lo 9 16 72 !
Lok MVENU MAP. !
! ACCTMNU DFHMDI Sl ZE=(24, 80) , CTRL=(PRI NT, FREEKB) !
! DFHVMDF POS=(1, 1), ATTRB=(ASKI P, NORM) , LENGTH=18, X !
! I NI TI AL=' ACCOUNT FI LE: MENU !
! DFHVDF POS=(3, 4) , ATTRB=(ASKI P, NORM) , LENGTH=25, X !

© Copyright IBM Corp. 1984, 1991
3.221-2

CICS Application Programming Primer
The DFHMDF macro: generate BMS field definition

I'NI TI AL=" TO SEARCH BY NAME, ENTER:'

DFHMDF POS=(3, 63) , ATTRB=(ASKI P, NORM) , LENGTH=12, X
I'NI TI AL=" ONLY SURNAMNE'

DFHMDF POS=(4, 63), ATTRB=(ASKI P, NORM , LENGTH=16, X
I NI TI AL=" REQUI RED. EI THER'

DFHMVDF POS=(5, 7) , ATTRB=(ASKI P, BRT) , LENGTH=8, X

| NI TI AL=" SURNAME: '
SNAMEM DFHVDF POS=(5, 16) , ATTRB=(UNPROT, NORM | C) , LENGTH=12
DFHVDF POS=(5, 29), ATTRB=(PROT, BRT) , LENGTH=13, X
NI TIAL=" FI RST NAME:'
FNAMEM DFHVDF POS=(5, 43), ATTRB=(UNPROT, NORM) , LENGTH=7
DFHMDF POS=(5, 51) , ATTRB=(PROT, NORM) , LENGTH=1

DFHMDF POS=(5, 63), ATTRB=(ASKI P, NORM) , LENGTH=15, X
I' NI TI AL=" MAY BE PARTI AL."'

DFHVDF POS=(7, 4) , ATTRB=(ASKI P, NORM) , LENGTH=30, X
I NI TI AL=" FOR | NDI VI DUAL RECORDS, ENTER:'

DFHMDF POS=(8, 63), ATTRB=(ASKI P, NORM , LENGTH=16, X
I NI TI AL=" PRI NTER REQUI RED

DFHVDF POS=(9, 7), ATTRB=(ASKI P, BRT) , LENGTH=13, X

I NI TI AL=' REQUEST TYPE:"
REQM DFHVDF POS=(9, 21), ATTRB=(UNPROT, NORM) , LENGTH=1
DFHMDF POS=(9, 23), ATTRB=(ASKI P, BRT) , LENGTH=10, X
I NI TIAL=' ACCOUNT: *
ACCTM DFHMDF POS=(9, 34), ATTRB=(NUM NORM , LENGTH=5
DFHVDF POS=(9, 40) , ATTRB=(ASKI P, BRT) , LENGTH=10, X
INITIAL=' PRI NTER:
PRTRM DFHMDF POS=(9, 51), ATTRB=(UNPROT, NORM) , LENGTH=4

DFHMDF POS=(9, 56) , ATTRB=(ASKI P, NORM) , LENGTH=21, X
I NI TI AL=' ONLY FOR PRI NT'

DFHMDF POS=(10, 63) , ATTRB=(ASKI P, NORM) , LENGTH=9, X
I NI TI AL=' REQUESTS.

DFHMDF POS=(11, 7), ATTRB=(ASKI P, NORM) , LENGTH=53, X
I NI TI AL=' REQUEST TYPES: D = DI SPLAY A = ADD X = X
DELETE'

DFHMDF POS=(12, 23), ATTRB=(ASKI P, NORM) , LENGTH=25, X
NI TIAL=' P = PRINT M = MODI FY'

DFHMDF POS=(14, 4) , ATTRB=(ASKI P, NORM) , LENGTH=18, X
I NI TI AL=' THEN PRESS " ENTER""

DFHMDF POS=(14, 35), ATTRB=(ASKI P, NORM) , LENGTH=28, X
NI TIAL='-OR- PRESS "CLEAR' TO EXIT'

SUMTTLM DFHVDF POS=(16, 1), ATTRB=(ASK| P, DRK) , LENGTH=79, X
| NI TI AL=" ACCT SURNANE FIRST M TTL ADDRESS
ST LIMT

SUMLNM DFHMDF POS=(17, 1), ATTRB=(ASKI P, NORM , LENGTH=79, OCCURS=6
MSGM DFHVDF POS=(24, 1) , ATTRB=(ASKI P, BRT) , LENGTH=60

Figure 31. The DFHMDF macros for the menu map

© Copyright IBM Corp. 1984, 1991
3.221-3

CICS Application Programming Primer
The DFHMDI macro: generate BMS map definition

3.2.2.2 The DFHMDI nmcro: generate BMS map definition

Now t hat we've sorted out the mddle of the map (all the fields) we need
to wap some control information around it. To start any map, you need a
di fferent kind of macro:

mapname DFHMDI Sl ZE=(Ili ne, col um),
CTRL=(ctrl 1,ctrl2,...)

The items in this macro are:

mapname
This is the map's nane, which you'll use when you issue a ClICS commnd
to read or wite the map. It's required. Like a field nane, it mnust

start with a letter, contain only letters and nunbers, and be no nore
than seven characters | ong.

DFHNVDI
This is the macro identifier, also required. It shows that you're
starting a new map.

SI ZE=(1i ne, col um)
This parameter gives the size of the map. You need it for the type of
maps we're using. BMS allows you to build a screen using several
maps, and this paraneter becomes inportant when you are doing that.
In this Prinmer, however, we'll keep to the sinpler situation where
there's only one map per screen. |In this case, there's no point in
using a size other than the screen capacity (that is, SIZE=(24,80) for
a 3276, 3277, 3278, or 3279 Model 2).

CTRL=(ctrl 1l,ctrl2,...)
Thi s parameter shows the screen and keyboard control information that
you want sent along with a map. You can specify any conbi nati on of
the follow ng:

PRI NT
Specify this for any map that m ght be sent to a printer term nal.

Since it costs nothing to add this (and it can cause a |lot of
grief if you accidentally onmit it when you do need it), we always
try to remenber to specify it.

FREEKB
This neans "free the keyboard."

The keyboard | ocks automatically as soon as the user sends any
input to the processor, and it stays |ocked until some transaction
unl ocks it, or the user presses the RESET key. So you'll al npost
al ways want to specify FREEKB when you send a screen to the
terminal, to save the user fromhaving to press RESET before

meki ng the next entry.

ALARM
Thi s paranmeter sounds the audible alarmat the termnal (if the
term nal has this feature; otherwise it does nothing). You m ght
want to use this when displaying an error map, for exanple. W
chose not to.

The DFHVDI macro we need to start our nmenu map, which we'll call ACCTM\U,

is shown in Figure 32:

© Copyright IBM Corp. 1984, 1991
3.222-1

CICS Application Programming Primer
The DFHMDI macro: generate BMS map definition

ACCTMNU DFHMDI Sl ZE=(24, 80), CTRL=(PRI NT, FREEKB)

Figure 32. The DFHMDI macro for the menu map

© Copyright IBM Corp. 1984, 1991
3.222-2

CICS Application Programming Primer
The DFHMSD macro: generate BMS map set definition

3.2.2.3 The DFHMSD nacro: generate BMS map set definition

You can put several nmaps together into a nmap set and assenble them all
together. In fact, all maps (even a single map) nust forma map set. For
efficiency reasons, it's a good idea to put related naps that are
generally used in the same transactions in the sane map set. All the maps
in a map set get assenbled together, and they're | oaded together at
execution time as well.

When you' ve defined all the maps for a set, you put another macro in front
of all the others to define the map set. This is the DFHMSD macro:

set name DFHMSD TYPE=t ype, MODE=npde, LANG=COBCL,
STORAGE=AUTO, Tl OAPFX=YES,
CTRL=(ctrl1,ctrl2,...)

The itens in this nmacro have the foll owi ng meanings:

set nane
This is the nane of the map set. You'll use it when you issue a CICS
command to read or wite one of the maps in the set. |It's required.

Like a field name, it nust start with a letter, consist of only
| etters and nunmbers, and be no nore then seven characters |ong.

Because this nane goes into the list of installed program definitions,
make sure your system progranmer (or whoever nmintains these lists)
knows what the nane is, and that neither of you changes it without

telling the other. It's the |oad nmodul e nane.
DFHMSD
This is the macro identifier, also required. It shows that you're

starting a map set.

TYPE=t ype
TYPE governs whether the assenbly produces the physical map or the
synmbolic description (DSECT). As we pointed out in "What BMS does" in
topic 3.2.1, you do your assenbly twi ce, once with TYPE=MAP specified
and once with TYPE=DSECT specified. The TYPE paraneter is required.
See "Symbolic description maps (DSECT structures)" in topic 3.3.1.

MODE=node
Thi s shows whether the maps are used only for input (MODE=IN), only
for output (MODE=OUT), or for both (MODE=I NOUT).

LANG=COBOL
This decides the | anguage of the DSECT structure, for copying into the
application program For the exanples in this Primer, the |anguage
wi |l always be COBOL. However, you can programin PL/I as well (in
whi ch case you would code LANG=PLI), or in assenbler (LANG=ASM.

STORAGE=AUTO
For a COBOL program this operand causes the DSECT structures for

different maps in a map set not to overlay each other. |If you omt
it, storage for each successive map in a map set redefines that for
the first map. |If you don't use these maps at the sanme time, you

should omt STORAGE=AUTO to cut down the size of your WORKI NG STORAGE.
However, when several maps are in the same map set, they're nost
likely to be used at the sanme tinme, and then you should specify
STORAGE=AUTO. This is the case in the exanple application, where we
use the nenu and other maps in the same transaction.

© Copyright IBM Corp. 1984, 1991
3.223-1

CICS Application Programming Primer
The DFHMSD macro: generate BMS map set definition

CTRL=(ctrl1,ctrl2,...)

This parameter has the same neaning as in the DFHMDI macro. Control
specifications in the DFHVMSD nmacro apply to all the maps in the set;
those on the DFHVDI nmacro apply only to that particular mp, so you
can use the DFHMDI options to override, tenporarily, those of the
DFHMSD macr o.

Tl OAPFX=YES

Al ways use this paraneter in command-|evel programs, such as the ones
we're writing in this Primer. See the paragraph begi nning "The first

12 characters” in topic 3.3.1.2.

Since all the maps in the exanple application are used together in one
transaction or another, we'll put themall into a single map set, and cal
it ACCTSET. The DFHVMSD macro we need, then, is:

ACCTSET DFHMSD TYPE=MAP, MODE=I NOUT, LANG=COBCL,

STORAGE=AUTO, Tl OAPFX=YES

The only thing now m ssing fromour map definition is the control
informati on to show where the map set ends. This is very sinple: |It's
anot her macro, DFHMSD TYPE=FI NAL, foll owed by the assenbl er END st at enent

DFHMSD TYPE=FI NAL
END

© Copyright IBM Corp. 1984, 1991
3.223-2

CICS Application Programming Primer
Rules on macro formats

3.2.2.4 Rules on nmacro formats

When you write assenbl er |anguage (which is what you are doi ng when using
these macros) you have to observe some syntax rules. Here's a sinple set
of format rules that works. This is by no means the only acceptable
format.

O Start the map set, map, or field name (if any) in colum 1

O Put the macro nanme DFHVDF, DFHMDI, or DFHMSD) in columms 9 through 14
(END goes in 9 through 11).

O Start your paraneters in colum 16. You can put themin any order yo
l'i ke.

O Separate the parameters by one conma (no spaces), but do not put
comm after the |ast one.

O If you cannot get everything into 71 columms, stop after the comm
that follows the |ast paraneter that fits on the line, and resune in
colum 16 of the next line.

O The I NI TI AL paraneter is an exception to the rule just stated, because
the text portion may be very long. Be sure you can get the word
INI TI AL, the equal sign, the first quote mark, and at |east one
character of text in by colum 71. |If you can't, start a newline in
colum 16, as you would with any other parameter. Once you've started
the I NI TI AL paraneter, continue across as many lines as you need,
using all the colums from 16 to 71. After the |last character of your
text, put a final quote nmark.

O Where you have nmore than one line for a single macro (because o
initial values or any other parameters), put an X (or any character
except a space) in colum 72 of all lines except the last. This
continuation character is very inportant. |[It's easy to forget, but
this upsets the assenbler.

O Al ways surround initial values by single quote marks. |If you need
single quote within your text, use two successive single quotes, and
the assenbler will know you want just one. Simlarly with a single

"&" character. For exanple:

P
=
>
—
I
3
Q
[
m
>
Py}
wn
g
R0
o
vs]
Cc
(o
-

O If you want to put a comment into your map, use a separate line. Pu
an asterisk (*) in colum 1, and use any part of colums 2 through 71
for your text. Do not go beyond 71.

© Copyright IBM Corp. 1984, 1991
3.224-1

CICS Application Programming Primer
Map definitions for the example

3.2.3 Map definitions for the exanple

Now t hat we've all the information we need for building maps, and now that
we' ve done the menu map, let's define the other maps and the map set we
need for our exanple application.

Subt opi cs

3.2.3.1 Defining the account detail map
3.2.3.2 Defining the error map

2.3.3 Defining the message map

3.
3.2.3.4 The map set

© Copyright IBM Corp. 1984, 1991
323-1

CICS Application Programming Primer
Defining the account detail map

3.2.3.1 Defining the account detail map

Figure 33 shows the map for displaying the detail in an account record.
It's used for displaying and printing the record, and for additions,
nmodi fications, and deletions. As you can see, the attribute bytes are
mar ked, and we've added |ine and col um nunbers as before.

S
i

' 1 2 3 4 5 6 7
' 1234567890123456789012345678901234567890123456789012345678901234567890
! 1+ACCOUNT FI LE: +RECORD DI SPLAY

P2

I 3+ACCOUNT NO +____ SURNAME: +__ |

14 FI RST: o + M:+_+ TITLE +____

| S5+TELEPHONE: +___ ADDRESS: + [

i 6 + I

P 7 + I

| 8+0OTHERS WHO MAY CHARGE:

P9+ [+ I

i 10+ |+ I

P11

i 12+NO. CARDS | SSUED: +_+ DATE | SSUED: +__+__+__+ REASON: +_|

! 13+CARD CODE: C APPROVED BY: +___| +SPECI AL CODES: +_+_+_

I 14

| 15+ACCOUNT STATUS: +__+ CHARGE LIMT:+___ |

I 16

I 17+HI STORY: BALANCE Bl LLED AMOUNT PAI D AMOUNT

| 18 + I N e
119 o I I e
I 20 o I I e
121

|22+ (message area)

i

o e mmmmemmmmmmmmmmmmmm e e e e e e mm -

Figure 33. The account detail map

Figure 34 shows the map definition for this screen; after the code there
are notes on sone of the macros.

o +
i i
! Col Col Col Col |
rog 9 16 72 |
Lok DETAI L MAP. !
! ACCTDTL DFHMDI S| ZE=(24, 80), CTRL=(FREEKB, PRI NT) !
! DFHVDF POS=(1, 1), ATTRB=(ASKI P, NORM) , LENGTH=13, X !
! I NI TI AL=" ACCOUNT FILE: !
' TITLED DFHVDF POS=(1, 15), ATTRB=(ASKI P, NORM) , LENGTH=14, 1 X |
! I NI TI AL=' RECORD DI SPLAY' 2 !
! DFHVDF POS=(3, 1), ATTRB=(ASKI P, NORM) , LENGTH=11, X !
! | NI TI AL=" ACCOUNT NO: ' !
! ACCTD DFHMDF POS=(3, 13), ATTRB=(ASKI P, NORM) , LENGTH=5 !
! DFHVDF POS=(3, 25) , ATTRB=(ASKI P, NORM) , LENGTH=10, X !
! I NI TI AL=' SURNAME: 3 !
! SNAMED DFHMDF POS=(3, 36), ATTRB=(UNPROT, NORM |) , 4 X !
! LENGTH=18 !
! DFHVDF POS=(3, 55) , ATTRB=(PROT, NORM) , LENGTH=1 5 !
! DFHVDF POS=(4, 25) , ATTRB=(ASKI P, NORM) , LENGTH=10, X !
! I NI TI AL=' FI RST: ' !
! ENAMED DFHMDF POS=(4, 36), ATTRB=(UNPROT, NORM) , LENGTH=12 !
! DFHVDF POS=(4, 49) , ATTRB=(PROT, NORM) , LENGTH=6, 6 X |

© Copyright IBM Corp. 1984, 1991
3.231-1

TTLD

TELD

ADDR1D

ADDR2D

ADDR3D

AUTH1D

AUTH2D

AUTH3D

AUTH4D

CARDSD

| MOD
| DAYD
I YRD

RSND

CCODED

APPRD

SCODE1D
SCODE2D
SCODE3D
STATTLD

STATD
LI MITLD

LIMTD
HI STTLD

HI ST1D

DFHVDF
DFHVDF

DFHVDF
DFHVDF
DFHVDF

DFHVDF
DFHVDF

DFHMDF
DFHVDF
DFHVDF
DFHVDF
DFHVDF
DFHVDF
DFHVDF

DFHVDF
DFHVDF
DFHVDF
DFHMDF
DFHMDF
DFHVDF
DFHVDF
DFHVDF
DFHVDF

Col

9
DFHVDF
DFHVDF

DFHVDF
DFHVDF
DFHVDF
DFHMDF

DFHVDF
DFHVDF
DFHVDF

DFHVDF
DFHVDF
DFHVDF

DFHVDF
DFHVDF
DFHNVDF

DFHVDF
DFHVDF
DFHVDF
DFHVDF
DFHVDF

DFHVDF
DFHVDF

DFHVDF
DFHVDF

DFHVDF

CICS Application Programming Primer
Defining the account detail map
I'NI'TI AL=' M:'
POS=(4, 56) , ATTRB=(UNPROT, NORM , LENGTH=1
POS=(4, 58) , ATTRB=(ASKI P, NORM) , LENGTH=7,
I NI TI AL=" TITLE:'
POS=(4, 66) , ATTRB=(UNPROT, NORM) , LENGTH=4
POS=(4, 71) , ATTRB=(PROT, NORM , LENGTH=1
POS=(5, 1), ATTRB=(ASKI P, NORM , LENGTH=10,
I NI TI AL=" TELEPHONE: '
POS=(5, 12) , ATTRB=(NUM NORM , LENGTH=10
POS=(5, 23), ATTRB=(ASKI P, NORM) , LENGTH=12,
I NI TI AL=" ADDRESS: '
POS=(5, 36) , ATTRB=(UNPROT, NORM , LENGTH=24
POS=(5, 61) , ATTRB=(PROT, NORM) , LENGTH=1
POS=(6, 36) , ATTRB=(UNPROT, NORM) , LENGTH=24
POS=(6, 61), ATTRB=(PROT, NORM) , LENGTH=1
POS=(7, 36) , ATTRB=(UNPROT, NORM) , LENGTH=24
POS=(7, 61) , ATTRB=(PROT, NORM , LENGTH=1
POS=(8, 1), ATTRB=(ASKI P, NORM) , LENGTH=22,
I NI TI AL=" OTHERS WHO MAY CHARGE:'
POS=(9, 1), ATTRB=(UNPROT, NORM , LENGTH=32
POS=(9, 34), ATTRB=(PROT, NORM , LENGTH=1
POS=(9, 36) , ATTRB=(UNPROT, NORM) , LENGTH=32
POS=(9, 69), ATTRB=(PROT, NORM , LENGTH=1
POS=(10, 1) , ATTRB=(UNPROT, NORM , LENGTH=32
POS=(10, 34) , ATTRB=(PROT, NORM) , LENGTH=1
POS=(10, 36) , ATTRB=(UNPROT, NORM) , LENGTH=32
POS=(10, 69), ATTRB=(PROT, NORM , LENGTH=1
POS=(12, 1), ATTRB=(ASKI P, NORM) , LENGTH=17,
I NI TI AL=" NO. CARDS | SSUED: '
Col
16
POS=(12, 19), ATTRB=(NUM NORM , LENGTH=1
POS=(12, 21) , ATTRB=(ASKI P, NORM , LENGTH=16,
I NI TI AL=" DATE | SSUED: '
POS=(12, 38) , ATTRB=(UNPROT, NORM , LENGTH=2 7
POS=(12, 41) , ATTRB=(UNPROT, NORM) , LENGTH=2
POS=(12, 44) , ATTRB=(UNPROT, NORM) , LENGTH=2
POS=(12, 47) , ATTRB=(ASKI P, NORM) , LENGTH=12,
I'NI TI AL=' REASON: '
PGOS=(12, 60) , ATTRB=(UNPROT, NORM , LENGTH=1
POS=(12, 62) , ATTRB=(ASKI P, NORM , LENGTH=1
POS=(13, 1), ATTRB=(ASKI P, NORM) , LENGTH=10,
I NI TI AL=" CARD CODE: '
POS=(13, 12) , ATTRB=(UNPROT, NORM , LENGTH=1
POS=(13, 14) , ATTRB=(ASKI P, NORM , LENGTH=1
POS=(13, 25), ATTRB=(ASKI P, NORM) , LENGTH=12,
I NI TI AL=" APPROVED BY:'
POS=(13, 38) , ATTRB=(UNPROT, NORM) , LENGTH=3
POS=(13, 42) , ATTRB=(ASKI P, NORM , LENGTH=1
POS=(13, 52), ATTRB=(ASKI P, NORM) , LENGTH=14,
I NI TI AL=" SPECI AL CODES:"
POS=(13, 67) , ATTRB=(UNPROT, NORM) , LENGTH=1
POS=(13, 69), ATTRB=(UNPROT, NORM , LENGTH=1
POS=(13, 71) , ATTRB=(UNPROT, NORM , LENGTH=1
POS=(13, 73), ATTRB=(ASKI P, NORM , LENGTH=1
POS=(15, 1), ATTRB=(ASKI P, NORM) , LENGTH=15,
I NI TI AL=" ACCOUNT STATUS: '
POS=(15, 17) , ATTRB=(ASKI P, NORM) , LENGTH=2
POS=(15, 20) , ATTRB=(ASKI P, NORM , LENGTH=18,
I NI TI AL= CHARGE LIMT:"
POS=(15, 39) , ATTRB=(ASKI P, NORM , LENGTH=8
POS=(17, 1), ATTRB=(ASKI P, NORM , LENGTH=71, 8
I NI TI AL=" HI STORY: BALANCE Bl LLED
PAI D AMOUNT' 9
POS=(18, 11) , ATTRB=(ASKI P, NORM) , LENGTH=61 10

© Copyright IBM Corp. 1984, 1991
3.231-2

HI ST2D
HI ST3D
MSGD
VFYD

Fi gure 34.

Subt opi cs
3.2.3.1.1

CICS Application Programming Primer
Defining the account detail map
DFHVMDF POS=(19, 11), ATTRB=(ASKI P, NORM) , LENGTH=61
DFHMDF POS=(20, 11), ATTRB=(ASKI P, NORM) , LENGTH=61
DFHMDF POS=(22, 1), ATTRB=(ASKI P, BRT) , LENGTH=60
DFHMDF POS=(22, 62) , ATTRB=(ASKI P, NORM , LENGTH=1 11

The account detail map definition

Notes on the detail map

© Copyright IBM Corp. 1984, 1991
3.231-3

CICS Application Programming Primer
Notes on the detail map

3.2.3.1.1 Notes on the detail map
The N comments are not part of the code.

1 W've put a suffix on each of the labels to tell us which map the
field is from in this map the suffix is D, for detail. W did the sanme
thing in the menu (M--see Figure 31 in topic 3.2.2.1--and will do so in
subsequent maps. Thus, the account nunber is ACCTM in the menu map and
ACCTD in the detail map. This is sinmply for clarity and to avoid having
to use COBOL qualifiers to distinguish between fields with the same nane.
We could just as easily have used a prefix instead of a suffix; neither is
a BMS requirenent.

2 Inthis field, we've specified the value for the nobst common
situation: record displays. This initial value is not a constant, as it
isin the fields without labels, but a default. The field will be set to
a different value by the program for adds, nodifies, and other uses of the
screen.

Notice that it has a |label, so that the program has access to it.

3 \Where you have a data field following a constant field, and there are
three or fewer space characters between the end of the constant and the
attribute byte for the data field, it's a good idea to fill out the
constant to neet the data field. This allows BMS to omit the address for
the data field (since it is adjacent to the previous field).

You cut down the length of the transmtted datastreamthis way, although
the definition works perfectly well wi thout this nicety, of course.

This field could have a length of 8 and an initial value of SURNAME: the
appearance of the map woul d be exactly the sane.

4 This is normally the first field into which the user is to enter data,
and so we've specified that the cursor should be here. This is a default
specification; the programcan and often will override it.

5 We've defined this stopper field as protected, rather than autoskip,
because the preceding field is of variable | ength.

As we said earlier, this choice warns users who try to key too nany
characters for the field, because the keyboard | ocks as soon as they get
to the protected field.

6 We've conbined a stopper field with the |abel field following it here.
Since any field that begins right after the input field can act as a
stopper, we've sinply |l engthened the field following the input field (the
|l abel M here) with |eading spaces, to conbine our stopper and |abel in
one field.

Generally, if there are fewer than four characters between the end of one
field and the start of another, and they are constant (unlabeled) fields
with the sane attributes, it's better to conmbine them The resulting data
streamis shorter, and there's | ess BMS code.

7 You don't need a stopper field for an input field if another input
field foll ows inmediately.

8 These title fields are supposed to appear on all the displays except
the skel eton screen for addi ng new records. It's easiest to put themin
the map, therefore, and sinply knock them out (not allow them to appear)
for an add operati on.

We'll do this by setting the attribute byte to "nondisplay" in that one
case. To enable the programto access the attribute bytes, we have to put

© Copyright IBM Corp. 1984, 1991
3.2311-1

CICS Application Programming Primer
Notes on the detail map

| abels on the fields.

9 This field is an exanple of a long I NI TIAL val ue paraneter, for which
two lines are required.

10 These are conposite fields. If we wanted, we could define each of
the "history" lines on the bottom of the screen as seven different fields,
one for each item of data, and we'd do this if data was being entered on
this Iine. However, since it's only being displayed, we don't need the
attribute and cursor control that separate fields would provide.

It's easier to treat these seven itens as a conposite field, formatting
the line within the program |f you | ook back at Figure 31 in

topic 3.2.2.1, you'll notice that we used the same techni que for the nane
search output in the menu nap.

11 This field is used only for deletions, so the default value for the

attribute byte will be autoskip. That way the user won't even be aware of
the field when using the map for other transactions. For deletions, the
program wi || change the attribute byte to be unprotected.

© Copyright IBM Corp. 1984, 1991
3.2311-2

CICS Application Programming Primer
Defining the error map

3.2.3.2 Defining the error map

Next is the error map, to produce the screen shown in Figure 28 in
topic 2.10.5. Figure 35 shows the error screen map, with row and col um
nunber s added.

18 THE " ACCT" APPLI CATI ON.

|

I

! 1 2 3 4 5 6
! 12345678901234567890123456789012345678901234567890123456789012345678
rog

ro2

ro3

! 4 ACCOUNT FILE: ERROR REPORT

15

! 6 TRANSACTION ___ HAS FAILED IN PROGRAM BECAUSE OF
L7

I

19

! 10 COMMAND __ RESP

ro11

112

113

! 14 PLEASE ASK YOUR SUPERVI SOR TO CONVEY THI S | NFORVATI ON TO THE
! 15 OPERATI ONS STAFF

116

! 17 THEN PRESS "CLEAR'. THI'S TERM NAL IS NO LONGER UNDER CONTROL OF
I

I

I

I

Figure 35. The error screen nap

When CICS abends our transaction, the ABEND nessage appears towards the
foot of this screen. It normally appears at the current cursor position,
al t hough your system programrer can override this. (If you exam ne the
ACCT behavi or under EDF in "Execution diagnostic facility (EDF)" in
topic 5.1.3.1, you'll see an exanple of this.)

Figure 36 shows the nmacro definition we need to produce this error screen.

e +

Col Col Col Col
1 9 16 72
* ERROR MAP.
ACCTERR DFHMDI SI ZE=(24, 80) , CTRL=FREEKB

DFHVDF POS=(4, 1), ATTRB=(ASKI P, NORM) , LENGTH=26, X

I NI TI AL=" ACCOUNT FI LE: ERROR REPORT'
DFHVDF POS=(6, 1) , ATTRB=(ASKI P, NORM) , LENGTH=12, X

| NI TI AL=" TRANSACTI ON
TRANE DFHMDF POS=(6, 14), ATTRB=(ASKI P, BRT) , LENGTH=4
DFHMDF POS=(6, 19) , ATTRB=(ASKI P, NORM) , LENGTH=23, X
NI TIAL='" HAS FAILED I N PROGRAM '
PGMVE DFHMDF POS=(6, 43) , ATTRB=(ASKI P, BRT) , LENGTH=8
DFHMDF POS=(6, 52) , ATTRB=(ASKI P, NORM) , LENGTH=11, X
I NI TIAL=" BECAUSE OF
RSNE DFHMVDF POS=(8, 1), ATTRB=(ASKI P, BRT) , LENGTH=60
DFHVDF POS=(10, 1), ATTRB=(ASKI P, NORM) , LENGTH=8, X
I NI TI AL=" COMVAND
CMVDE DFHMDF POS=(10, 10) , ATTRB=(ASKI P, BRT) , LENGTH=20
DFHMDF POS=(10, 31) , ATTRB=(ASKI P, NORM) , LENGTH=5, X
| NI TI AL=' RESP

© Copyright IBM Corp. 1984, 1991
3.232-1

RESPE DFHMDF
FILEE DFHMDF
DFHVDF

DFHVDF

DFHVDF

DFHIVDF

CICS Application Programming Primer
Defining the error map

POS=(10, 37), ATTRB=(ASKI P, BRT) , LENGTH=12
POS=(12, 1), ATTRB=(ASKI P, BRT) , LENGTH=22
POS=(14, 1), ATTRB=(ASKI P, NORM , LENGTH=60,
I NI TI AL=' PLEASE ASK YOUR SUPERVI SOR TO CONVEY
THI S | NFORMATI ON TO THE'
POS=(15, 1), ATTRB=(ASKI P, NORM , LENGTH=17,
I NI TI AL=" OPERATI ONS STAFF.'
POS=(17, 1), ATTRB=(ASKI P, NORM , LENGTH=64,
I NI TI AL=" THEN PRESS "CLEAR'. THI'S TERM NAL |S
NO LONGER UNDER CONTROL OF'
POS=(18, 1), ATTRB=(ASKI P, NORM , LENGTH=23,
I'NI TI AL=" THE " ACCT" APPLI CATI ON. '

Figure 36. The error screen map definition

© Copyright IBM Corp. 1984, 1991
3.232-2

CICS Application Programming Primer
Defining the message map

3.2.3.3 Defining the nessage map

Finally, there's the message map, which has just a single field, in which
to send a nessage to the user.

We need this map in program ACCT03, to confirm (at the input term nal)

that a request to print the log of changes to the account file has been
processed. In other words, it's for the response to an ACLG (log print)
transaction entered by the supervisor. Figure 37 shows the definition:

T N N NS +
i i
! Col Col Col Col !
tog 9 16 72 |
Lox MESSAGE MAP. !
! ACCTMSG DFHMDI S| ZE=(24, 80) , CTRL=FREEKB !
I VBG DFHVDF POS=(1, 1), ATTRB=(ASKI P, NORM) , LENGTH=79 !
| |
L T T T i T T I P +

Figure 37. The message map definition

After we've executed:

MOVE ' PRI NTI NG OF LOG HAS BEEN SCHEDULED TO MSGO.

we send this message back to the requesting terminal, confirm ng that the
requested work has been scheduled. Unlike all the other types of requests
that make up this application, a request to print the log isn't entered
through the menu screen. So it isn't appropriate to use the nmessage area
of the menu screen, which is why we need our separate nessage map to send
this nmessage. As you can see, ACCTMSG is sinply a one-line map consisting
of an area for a message.

© Copyright IBM Corp. 1984, 1991
3.233-1

CICS Application Programming Primer
The map set

3.2.3.4 The map set

If we put together the four maps that we've now defined (the nenu map,
detail map, error map, and nessage nmap), Figure 38 shows the result.

o
i

i ACCTSET DFHMSD TYPE=MAP, MODE=| NOUT, LANG=COBOL,

' STORAGE=AUTO, TI OAPFX=YES

P MENU MAP.

i ACCTMNU DFHMDI Sl ZE=(24, 80), CTRL=(PRI NT, FREEKB)

' DFHMVMDF ... (all macros for the menu nmap)

| *

I

b DETAI L MAP.

| ACCTDTL DFHMDI Sl ZE=(24, 80), CTRL=(FREEKB, PRI NT)

' DFHVMDF ... (all macros for the detail nmap)

| *

|

P ERROR MAP.

i ACCTERR DFHMDI S| ZE=(24, 80) , CTRL=FREEKB

' DFHVMDF ... (all macros for the error map)

I *

|

P MESSAGE MAP.

i ACCTMSG DFHMDI S| ZE=(24, 80) , CTRL=FREEKB

1 MG DFHMDF POS=(1, 1), ATTRB=(ASKI P, NORM) , LENGTH=79
! DFHMSD TYPE=FI NAL

! END

i

e e meeeeeeeeeeee-e-sssmsmmmmemcmcccccccmmmmmemeemmmeeeeemeeemmmm .. —————a-

Figure 38. All four nmaps

© Copyright IBM Corp. 1984, 1991
3.234-1

CICS Application Programming Primer

Summary
3.2.4 Summary
e e meeeeeeeeeeee-e-sssmsmmmmemcmcccccccmmmmmemeemmmeeeeemeeemmmm .. —————a-
i
I Item Comment s
i
i fldnane Use only on fields your programwi |l access
| mapnane 1-7 characters, starting al pha, no special characters
| setnane As mapnanme. Co-ordinate setname with the entry in the
' list of installed program definitions
1 POS G ves position of attribute byte, not first data character
i LENGTH Does not include attribute byte.
i
o e mm =

© Copyright IBM Corp. 1984, 1991
324-1

CICS Application Programming Primer
Optional exercise

3.2.5 Optional exercise

For those of you with a termnal, the CICS COBOL sanple programs, and a
running CICS system

You can use the CICS conmand interpreter CEClI (not covered in this Prinmer)
to see what a map | ooks |ike on the screen:

I
1
| CECI SEND MAP (' DFH$AGA') MAPONLY
I
1

This will display the operator instructions menu for the assenbler

| anguage version of the File A sanple that's supplied with CICS as part of
its own sanple transaction set. Don't worry about trying to decipher the
map now, though--wait until you've read the next topic.

Alternatively, you can get a rough idea of how the ACCT exanple
application behaves by skimm ng through the EDF session shown in
"Execution diagnostic facility (EDF)" in topic 5.1.3.1.

© Copyright IBM Corp. 1984, 1991
325-1

CICS Application Programming Primer
Using BMS: more detail

3.3 Using BMS: nore detail

Subt opi cs

W wWwwwwww

3.

o ~NOo o~ WN

1

Synbol i ¢ description maps (DSECT structures)
Sending a map to a termnnal

Posi tioning the cursor

Sendi ng control information w thout data
Receiving input froma termnnal

Fi ndi ng out what key the operator pressed
Errors on BMS commands

Ot her features of BMS

© Copyright IBM Corp. 1984, 1991
33-1

CICS Application Programming Primer
Symbolic description maps (DSECT structures)

3.3.1 Synbolic description maps (DSECT structures)

As we said earlier, assenbling the macros with TYPE=MAP specified in the
DFHMSD macro produces the physical map that CICS uses at execution tinme.
After you've done this assenbly, you do it all over again, this tinme
speci fying TYPE=DSECT. This second assenbly produces the symbolic
description map, a COBOL structure that you copy into your program |It's
stored in the copybook library specified in the JCL, and its name in that
library is the map set name specified in the DFHVSD macro.

This structure is a set of data definitions for all the display fields on
the screen, plus information about those fields. It allows your program
to refer to these display data fields by name and to mani pulate the way in
whi ch they are displayed, w thout worrying about their size or position on
the screen.

Subt opi cs
3.3.1.1 Copying the map DSECT into a program
3.3.1.2 The generated subfields

© Copyright IBM Corp. 1984, 1991
331-1

CICS Application Programming Primer
Copying the map DSECT into a program

3.3.1.1 Copying the map DSECT into a program

To copy the DSECT structures for the maps in a map set into a program you
wite a COPY statement like this:

Q
5
<
0
e
>
o
3

Here, "setname" is the name of the map set. This COPY statenent usually
appears i n WORKI NG STORAGE, al though later you may find reasons to put it
in the LINKAGE SECTION. We'll cover only the WORKI NG STORAGE situation.
To get the synbolic descriptions for our maps in a program we'll write:

Q
5
<
8
9
(92}
m
-

Figure 39 shows you the first few lines of what is copied into your
program as a result of this COPY statenment. The part shown is generated
by the first map in the set, the menu map. |It's followed by simlar
structures for the other maps. We've not shown all of them here because
they're very long and very simlar in form They're all in "The result of
t he SYSPARM=DSECT assenbly" in topic A 2.1.

01 ACCTMNUI .
02 FILLER PIC X(12).
02 SNAMEML COMP PIC S9(4).
02 SNANEMF PI CTURE X.
02 FILLER REDEFI NES SNANENF.
03 SNAMEMA PI CTURE X.
02 SNAMEM PIC X(12).
02 FNAMEM COMP PIC S9(4).
02 FNANEMF PI CTURE X.
02 FILLER REDEFI NES FNANMEMF.
03 FNAMEMA Pl CTURE X.
02 FNAMEM PIC X(7).
02 REQML COWP PIC S9(4).
02 REQWF PI CTURE X.
02 FILLER REDEFI NES REQVF.
03 REQVA PI CTURE X.
02 REQM PIC X(1).
02 ACCTM. COVP PIC S9(4).
02 ACCTMF PI CTURE X.
02 FILLER REDEFI NES ACCTMF.
03 ACCTMA PI CTURE X.
02 ACCTM PIC X(5).
02 PRTRM COMP PIC S9(4).
02 PRTRVF PI CTURE X.
02 FILLER REDEFI NES PRTRVF.

Figure 39. Copying the menu map into your program

Because we asked for a nap to be used for both input and output (by coding
MODE=I NOUT in the DFHMSD macro), the resulting structure has two parts.

© Copyright IBM Corp. 1984, 1991
3311-1

CICS Application Programming Primer
Copying the map DSECT into a program
The first part corresponds to the input screen, and is always |abelled (at
the 01 level) with the map nane, suffixed by the letter | (for "input").
The second part corresponds to the output screen, and is |labeled with the
map nane followed by the letter O The output map al ways redefines the
input map. If we'd specified MODE=IN, only the input part would have been
generated, and simlarly, MODE=OUT woul d've produced only the output part.

© Copyright IBM Corp. 1984, 1991
3311-2

CICS Application Programming Primer
The generated subfields

3.3.1.2 The generated subfields

We gave names to eight field definitions in the menu map: SNAMEM FNAMEM
REQM ACCTM, PRTRM, SUMITLM, SUMLNM and MSGM (One of these, SUMLNM
has an OCCURS cl ause causing it to define six different fields, but we'll
get to that shortly.) Notice that for each of these map fields, five data
subfi el ds are generated. Each subfield has a name consisting of the field
name in the map and a one-letter suffix. (We're using "subfields" to

di stinguish themfromthe single "map" field fromwhich they originate.)

We can explain the contents of the subfields better by using a specific
set of data. Suppose soneone has filled in the menu screen, as shown in
Fi gure 40:

o o e — e e e e
i

! ACCOUNT FILE: MENU

! TO SEARCH BY NAME, ENTER: ONLY SURNANE

! REQUI RED. EI THER
! SURNAME: SM TH FI RST NAME: J MAY BE PARTIAL.

! FOR | NDI VI DUAL RECORDS, ENTER:

! PRI NTER REQUI RED
! REQUEST TYPE: ACCOUNT: PRI NTER: ONLY FOR PRI NT

! REQUESTS

! REQUEST TYPES: D = DISPLAY A = ADD X = DELETE

! P = PRINT M = MODI FY

! THEN PRESS "ENTER" -OR- PRESS "CLEAR' TO EXI T

i

e o e — i — -

Figure 40. The nmenu screen at work

Utimtely, BMS puts the user's data into our program s WORKI NG STORAGE,
along with some control information. Look at Figure 39 as you study what
foll ows.

The first 12 characters in the DSECT (FILLER) are there because we said
Tl OAPFX=YES when we defined the map set. They're reserved for CICS
control information, and are of no concern to the application program

The first suffix is L, which stands for "length." SNAMEM. is the nunber
of characters that the user keyed into the SNAMEM field (or, if the
program put some data there and turned on the nodified data tag, the

Il ength of that data). In the exanple shown above, SNAMEML will be 5 (the
length of "SMTH"), FNAMEM. will be 1, and REQWML, ACCTM. and all the
others will be zero.

The second suffix is F (neaning "flag"), and this subfield tells you

whet her or not the user changed the corresponding field on the screen by
erasing it (setting it to nulls with the ERASE EOF key). Such a subfield
of course always has a length (L subfield) of zero; the flag allows you to
tell whether it was witten on the screen that way or whether the user
erased sonething that was there. A flag value of X 80" shows that the
field was changed by erasing; otherwise the flag value is X 00" (nulls, or
LOMVALUE in COBOL). In the filled-in nenu screen, all the flag fields
will contain X 00', because there was no field sent which could be erased.

Pressi ng ERASE EOF causes the flag to be set even if the field was enpty
to start with, and whether or not you type in sonme data before changing
your mind and erasing the field.

The flag val ue becones inportant in connection with nodifications, as
we'll see later. The other suffix is I, for "input." This is the actual

© Copyright IBM Corp. 1984, 1991
3312-1

CICS Application Programming Primer
The generated subfields

content of the field on the screen, provided that the nodified data tag is

on for the field. The tag will be on if the user changed the field or if
it was sent with the FSET attribute specified. |If the tag isn't on, the

program doesn't read what's on the screen, and the | subfield will contain
nulls.

The | subfield is defined as a character string of the length you specify
in the map. Because the SNAMEM field in the menu map has a length of 12,
the SNAMEM subfield is given a PICTURE value of X(12) in the symbolic map
description. (BMS provides a parameter called PICIN that you can use in
the DFHVDF macro for a field that changes the picture generated, however,
if you wish to do so.)

If the user doesn't fill in the whole field, as in the case of the two
name fields here, BMS pads out the field to its maximumlength. If a
field has the NUM attribute, it's filled on the left with |eading
(decimal) zeros; otherwise it's filled on the right with spaces. 1In this
screen, then, SNAMEM would equal "SMTH ", and FNAMEM woul d be J--the
unkeyed part of each field being filled with spaces.

The remaining two data fields for a map field concern output rather than

i nput, even though one of them appears in the "input" part of an | NOUT
map. This is the one suffixed by A (for "attribute"). When you're
sending a map, and you want a field to have a different set of attributes
than you specified in the map, you can override the map specification by
setting this field. For exanple, suppose the user had typed SMLTH i nstead
of SMTH We'd want to bounce the menu screen straight back to the user
with the surname field highlighted, to show our displeasure at finding the
nunmeric character 1 there. To do so, we'd sinply need to nove the
character that represented the attributes we wanted to SNAMEMA.

The character we need to do this is the one actually used in the 3270

out put data stream These character representations are quite hard to
remenber, so CICS provides you with a |library menmber containing nost of
the useful conbinations, defined with meani ngful nanes. To get access to
it, you sinmply put the statenent:

in your WORKI NG STORAGE. This generates a |list of definitions Iike the
one shown in Figure 41:

01 DFHBMSCA.

I 1
I 1
i i
! 02 DFHBMPEM Pl CTURE X VALUE IS ' ', !
! 02 DFHBMPNL Pl CTURE X VALUE IS ' ', !
! 02 DFHBMASK PI CTURE X VALUE IS '0'". !
' 02 DFHBMUNP Pl CTURE X VALUE IS ' '. !
' 02 DFHBMUNN Pl CTURE X VALUE IS '&' . '
' 02 DFHBMPRO Pl CTURE X VALUE IS '-". '
' 02 DFHBMBRY Pl CTURE X VALUE IS "H . '
' 02 DFHBNMDAR Pl CTURE X VALUE IS '<'. '
' 02 DFHBMFSE Pl CTURE X VALUE IS "A" . '
' 02 DFHBMPRF Pl CTURE X VALUE IS '/"'. i
i i
I 1
I 1
o m eeeeaooo- +

Figure 41. Attribute values for the IBM 3270 data stream

You'll find a conplete list of these definitions in the Cl CS/ESA

© Copyright IBM Corp. 1984, 1991
3312-2

CICS Application Programming Primer
The generated subfields
Application Progranm ng Reference. The values which appear to be spaces
are not; they are bit conbinations that do not represent a printed
character, although they are all valid EBCDI C characters. The definitions
generated (that apply to this Primer) are shown in Figure 42.

E S I T N o, +
| i
' Vari abl e Protection Intensity Modi fi ed '
' Dat a Tag '
' DFHBMUNP Unpr ot ect ed Nor mal Of f i
' DFHBMUNN Nuneri c Nor mal Of f '
' DFHBMPRO Prot ect ed Nor nal O f '
' DFHBMASK Aut oski p Nor nal Of f '
' DFHBMBRY Unpr ot ect ed Bri ght of f '
' DFHPROTI Protected Bri ght O f '
' DFHBMASB Aut oski p Bri ght Of f '
' DFHBVDAR Unpr ot ect ed Non- di spl ay Of f 1
' DFHPROTN Prot ected Non- di spl ay Of f H
' DFHBMFSE Unpr ot ect ed Nor mal On '
' DFHUNNUM Numeric Nor mal On '
' DFHBMPRF Protected Nor mal On '
' DFHBMASF Aut oski p Nor mal On '
' DFHUNI VD Unpr ot ect ed Bri ght On i
' DFHUNI NT Nurmeri c Bri ght On '
! DFHUNNOD Unpr ot ect ed Non- di spl ay On !
' DFHUNNON Nureri c Non- di spl ay On '
| i
B +

Figure 42. Attribute values used in the Priner

Referring back to our exanple, to highlight the surname we:

:
'IQI
@
:
=z
o
g
m
=

before sending the map back to the termnal. W're using DFHBMBRY, rather
than one of the other "bright" variables because, unlike sonme other

hi gh-intensity val ues, DFHBMBRY | eaves the field unprotected, so the user
will be able to rekey the nane properly. It also sets the nodified data
tag off (a choice we'll discuss later).

The last of the five data subfields for a map field is named with a suffix
of O (for "output"). |It's the data that you want displayed in the map
field when you send it. Like the input subfield, the output subfield
defaults to a character string of the length specified in the map; you can
speci fy some other PICTURE by using the PI COUT paraneter in the DFHMDF
macro that defines the field. For programming interface information on

PI COUT and PICIN, see the section on the DFHVDF macro in the CI CS/ ESA
Application Programm ng Reference.

Subt opi cs
3.3.1.2.1 Fields defined with the OCCURS= paraneter
3.3.1.2.2 Sonme things to keep in mnd about these DSECTs

© Copyright IBM Corp. 1984, 1991
3.312-3

CICS Application Programming Primer
Fields defined with the OCCURS= parameter

3.3.1.2.1 Fields defined with the OCCURS= paraneter

The only field on the screen that has generated a slightly different
structure from what we've just described is the SUMNM field, and this is
because we've said it OCCURS six tines.

Have another | ook at the DSECT. This tine, you'll need to | ook at the
full version, in "The result of the SYSPARM=DSECT assenbly" in
topic A 2.1.

For the SUMLNM field there's another level to the COBOL structure, a group
named SUMLNMD, with an OCCURS val ue of 6. This group contains the
SUMLNML, SUMLNMF, and SUMLNM fields, which represent the length, flag

val ue, and input for SUMLNM just as you'd expect. The attribute field
appears in the output section, where an extra group level is also
introduced. This one's called DFHMS1 (an arbitrarily generated name); it,
too, OCCURS six tines and contains the SUMLNMA and SUMLNMO fields. So you
refer to the attribute value of the fourth occurrence of this field as
SUMLNMA(4), the input for the second occurrence as SUMLNM (2), and so on.

© Copyright IBM Corp. 1984, 1991
33121-1

CICS Application Programming Primer
Some things to keep in mind about these DSECTs

3.3.1.2.2 Sone things to keep in m nd about these DSECTs

0

Because of the way the input and output parts of the map structur
overlay each other, the -1 and the -O subfields for a given map field
al ways redefine each other. That is, SNAMEM and SNAMEMO occupy the
same storage, FNAMEM and FNAMEMO do al so, and so on. This turns out
to be convenient in coding.

The attribute and flag subfields occupy the same space REQW overl ays
REQVA, ACCTMF overlays ACCTMA, and so on). You don't have to worry
about renoving these flags when you're sendi ng out put, however. Since
the two input flag values (X 80" and X 00') don't represent acceptable
output attribute byte values, BMS can distinguish on output between a
| eftover flag and a new attribute.

When you write a map, you don't have to put anything in the |engt

field. BMS knows how long the field is fromthe information in the
physical map. The only tine you use the length field for an output
field is to set the cursor position, a matter we'll explain shortly.

© Copyright IBM Corp. 1984, 1991
33.122-1

CICS Application Programming Primer
Sending a map to a terminal

3.3.2 Sending a map to a term nal

Now t hat we've defined our maps, we can think about writing themto the
term nal .

The terminal to which we'll wite, of course, is the one that sent the

i nput and thereby invoked the transaction. This is the only termnal to
which a transaction can wite directly, as mentioned in "Transacti ons and
term nals" in topic 2.9.3.

Subt opi cs
3.3.2.1 The SEND MAP conmand
3.3.2.2 Using SEND MAP in the ACCT exanple

© Copyright IBM Corp. 1984, 1991
332-1

CICS Application Programming Primer
The SEND MAP command

3.3.2.1 The SEND MAP commmand

The SEND MAP conmand writes formatted output to a termnal. It |ooks |ike
this:
E S I T N o, +

EXEC CI CS SEND MAP(mapname) MAPSET(set nane)
option option ... END- EXEC.

mapname
is the name of the map you want to send. |It's required. Put it in
quotes if it's a literal.

set nane
is the name of the map set that contains the mapname. Put the name in
quotes if it's a literal. The map set name is needed unless it's the
same as the map name. Code it for documentation purposes, anyway.

Not e: It's inadvisable to use the sane nane for the map and the map
set. (If you generate the map set with the suffix for ALL of
3270--the default--the map suffix used is a blank. This means the map
name and map set name are identical, and causes the subsequent
assenbly to fail because two | abels in the code are the sane.)

option
There are a nunber of options that you can specify; they affect what's
sent and how it is sent. Except where noted, you can use any

combi nation of them The possibilities are:

MAPONLY
means that no data from your programis to be nerged into the map;
only the information in the map is transmtted. |In our exanple
application, we'll use this option when we send the menu map the
first time, because we'll have no information to put into it.
DATAONLY

is the logical opposite of MAPONLY. You use it to nodify the

vari able data in a display that's already been created. Only the
data fromyour programis sent to the screen. The constants in
the map aren't sent; so you can use this option only after you've
sent the same map without using the DATAONLY option. We'Il see an
exanpl e when we send the results of a name search to the term nal
in program ACCTOL1.

ERASE
causes the entire screen to be erased before what you're sending
i's shown.

ERASEAUP
(erase all unprotected fields), in contrast to ERASE, causes just

the unprotected fields on the screen (those with either the UNPROT
or NUM attribute) to be erased before your output is placed on the
screen. |It's nost often used in preparing to read new data from a
map that's already on the screen. Don't use it at the same tinme
as ERASE; ERASE makes ERASEAUP neani ngl ess.

FRSET
(flag reset) turns off the nodified data tag in the attribute
bytes for all the fields on the screen before what you're sending
is placed there. (Once set on, whether by the user or the
program a nodified data tag stays on until turned off explicitly,
even over several transm ssions of the screen. It can be turned

© Copyright IBM Corp. 1984, 1991
3321-1

CICS Application Programming Primer
The SEND MAP command
off by the program sending a new attribute byte, an FRSET option,
or an ERASE, or an ERASEAUP, or by the user pressing the CLEAR
key.) Like ERASEAUP, the FRSET option is nost often used in

preparing to read new data froma map already on the screen. It
can al so reduce the anmpbunt of data re-sent on an error cycle, as
we'll explain in coding our exanple.

CURSOR
can be used in two ways to position the cursor. |If you specify a

value after CURSOR, it's the relative position on the screen where
the cursor is to be put. Use a single nunber, such as CURSOR(81)
for line 2, colum 2 (counting starts at zero and goes across the
lines, which on an I BM 3270-system di splay Model 2 are 80
characters wide). Why columm 2? Because the attribute byte goes

in colum 1, and we want the cursor to appear under the first
character of data.

Sone people prefer to put the attribute at the end of the previous
line (for exanple, POS=(1,80)) to let the data in the field start
in screen colum 1.

Alternatively, you can specify CURSOR wi thout a value, and use the
Il ength subfields in the output map to show which field is to get
the cursor. See "Positioning the cursor” in topic 3.3.3. In
general, we recomend you to position the cursor in this second
manner, rather than the first, so that changes in the map | ayout
don't lead to changes in the program Both kinds of CURSOR
specification override the cursor placement specified in the map.

ALARM
means the same thing in the SEND command as it does in the DFHMSD
and DFHVMDI nmacros for the map: it causes the audible alarmto be
sounded. The alarmwill sound if you specify ALARMin either the
map definition or the SEND command.

FREEKB
i kewi se neans the sane thing as it does in the map definition:
the keyboard is unlocked if you specify FREEKB in either the map
or the SEND command.

PRI NT
all ows the output of a SEND conmmand to be printed on a printer,
just as it does in the map definition. It is in force if
specified in either the map or the command.

FORMFEED
causes the printer to restore the paper to the top of the next
page before the output is printed. This specification has no
effect on maps sent to a display, to printers without the features
which all ow sensing the top of the form or to printers for which
the "fornfeed" feature is not specified in the CICS Term nal
Control Table.

© Copyright IBM Corp. 1984, 1991
3.321-2

CICS Application Programming Primer
Using SEND MAP in the ACCT example

3.3.2.2 Using SEND MAP in the ACCT exanple

The first tine we need to send a map to a termnal occurs in program
ACCT00, where we display the nenu screen. The conmand we need is:

EXEC CI CS SEND MAP(' ACCTMNU) MAPSET(' ACCTSET') MAPONLY
ERASE FREEKB END- EXEC.

This is a very sinple situation. Because we don't have any variable data
to put in the map, we can use the MAPONLY option, and we don't have to
worry about preparing variable data for merging with the physical nmap.

If we were sending sone data to the screen with the map, we could not use
MAPONLY, and CI CS woul d expect the data to be used for filling in the map
to be in a structure whose nane is the map name (as specified in the MAP
option) suffixed with the letter O. So, when we issue the command:

EXEC CI CS SEND MAP(' ACCTMNU) MAPSET(' ACCTSET')
END- EXEC.

CI CS expects the data for the map to be in a structure within the program
(of exactly the sort generated by the DSECT assenbly) named ACCTMNUO.

This structure is usually in your WORKING STORAGE Section, but it m ght be
in a LI NKAGE area instead. (There's an option on the SEND MAP command
that lets you specify a data structure other than the one assunmed by CICS.
We won't cover it here, but you can find guidance on using it in the

Cl CS/ ESA Application Programm ng Guide. wunder "Sending Data to a

Di splay.")

Let's ook at the nmobre common situation in which we're nmerging program
data into the map. |n program ACCT0l1, we're supposed to build a detail

di splay map for one record and send it to the screen. Since the contents
of the screen vary sonewhat with the type of request, and we're using the
same screen for all types, this will entail the follow ng:

1. Putting the appropriate title on the map (add, modify, or whatever it
happens to be).

2. Mowving the data fromthe file record to the synbolic map (except for
adds) .

3. Adjusting the attribute bytes. The input fields nust be protected in
a display or delete operation; the "verify" field nust be unprotected
for deletes, and the titles at the bottom of the screen nust be made

nondi spl ay for adds.

4. Putting the appropriate user instructions (about what to do next) into
the message area.

5. Putting the cursor in the right place.

Figure 43 shows how the necessary code m ght | ook.

Col
7 12

9

© Copyright IBM Corp. 1984, 1991
3322-1

CICS Application Programming Primer
Using SEND MAP in the ACCT example
BUI LD- MAP.
IF REQC = ' X' MOVE ' DELETION' TO TI TLEDQ,
MOVE -1 TO VFYDL, MOVE DFHBMUNP TO VFYDA,
MOVE ' ENTER "Y" TO CONFI RM OR "CLEAR' TO CANCEL'
TO MSGDO,
ELSE MOVE -1 TO SNAMEDL.
IF REQC = "A' MOVE ' NEW RECORD' TO TI TLEDO,
MOVE DFHPROTN TO STATTLDA, LIMITLDA, HI STTLDA,
MOVE ACCTC TO ACCTDI ,
MOVE ' FILL I N AND PRESS "ENTER," OR "CLEAR"' TO CANCEL'
TO MSGDO,
GO TO SEND- DETAI L.
IF REQC = 'M MOVE ' RECORD CHANGE' TO TI TLEDQ,
MOVE ' MAKE CHANGES AND "ENTER" OR "CLEAR' TO CANCEL'
TO MSGDO,
ELSE |F REQC = 'D',
MOVE ' PRESS "CLEAR' OR "ENTER" WHEN FI NI SHED
TO MSGDO.
MOVE CORRESPONDI NG ACCTREC TO ACCTDTLO.
MOVE CORRESPONDI NG PAY-HI ST (1) TO PAY- LI NE.
MOVE PAY- LI NE TO HI ST1DO.
MOVE CORRESPONDI NG PAY-HI ST (2) TO PAY- LI NE.
MOVE PAY- LI NE TO HI ST2DO.
MOVE CORRESPONDI NG PAY- HI ST (3) TO PAY- LI NE.
MOVE PAY- LI NE TO HI ST3DO.
IF REQC ='M GO TO SEND- DETAI L,
ELSE IF REQC = 'P' GO TO PRI NT- PRCC.
MOVE DFHBMASK TO
SNAMEDA, FNAMEDA, M DA, TTLDA, TELDA, ADDR1DA,
ADDR2DA, ADDR3DA, AUTH1DA, AUTH2DA, AUTH3DA,
AUTH4ADA, CARDSDA, | MODA, | DAYDA, | YRDA, RSNDA,
CCODEDA, APPRDA, SCODE1DA, SCODE2DA, SCODE3DA.
* SEND THE RECORD DETAIL MAP TO THE TERM NAL.
SEND- DETAI L.
EXEC CI CS SEND MAP(' ACCTDTL') MAPSET(' ACCTSET') ERASE FREEKB
CURSOR END- EXEC.

Figure 43. Building the detail display map

Here are sone explanatory notes.

REQC (request code) was nmoved to a working-storage field earlier in the
program It holds the user's "request code."

What is happening in this code is as follows:

O If the user request is to delete a record IF REQC = X):

1. The map title is changed fromits default to DELETI ON.

2. The cursor is placed under the "verify" field (MOVE -1 TO VFYDL)
by a technique we'll explain shortly.

3. The attribute byte for that field is changed fromits map default
of autoskip to unprotected.

4. Instructions for what to do next are put in the nmessage area.

O The cursor is placed under the surname field for all other types o
user requests (ELSE MOVE -1 to SNAMEDL).

O If the request is for an addition

© Copyright IBM Corp. 1984, 1991
3.322-2

CICS Application Programming Primer
Using SEND MAP in the ACCT example

1. The title is made NEW RECORD.
2. The titles at the bottomof the screen are given a nondi spl ay

attribute.
3. The account field (fromthe request input) is placed in the output
map.
4. Instructions are put into the nessage area.
O If the request is a nodification, the title and the nessage area ar

set appropriately.

O If the request is a display, instructions for what to do after th
di splay are put in the nessage area.

O For all types of requests except adds, the display is built fromth
record on file (MOVE CORRESPONDI NG ACCTREC . .. through ... MOVE
PAY- LI NE TO HI ST3DO) .

O If the request is to print a record, control goes to code a
PRI NT- PROC that will do the special processing required to wite to a
term nal other than the input term nal.

O If the request is to display or delete, the attribute bytes of all th
data fields that can be entered or changed on an addition or a
nmodi fication are changed to autoskip. This nmakes it clear to users
that they cannot change these fields in the current transaction.

O For all request types except printing, the map is sent to the inpu
term nal.

We need to use a sonmewhat different type of SEND MAP command later in the
same program when we have to redisplay the input (nenu) map because of
some error, or to put a nessage on the screen. Because the map is already
on the screen, it is unnecessary (and wasteful of line capacity) to send
what is already there again. So we use the DATAONLY option, and we do not
erase the screen:

EXEC CI CS SEND MAP(' ACCTMNU') MAPSET(' ACCTSET')
CURSOR DATAONLY FRSET ERASEAUP FREEKB END- EXEC.

We al so specify FRSET in this command. This prevents fields that were
entered during the previous term nal interaction, and not rekeyed, from
bei ng sent on the next transmission. That is, only fields that the user
changes (probably because of an error) will be transmtted the next tinme
the term nal sends. This reduces line transm ssion, but it requires the
transaction to save the input fromthe previous execution for the next
one. We've a bit nmore to say about how to use FRSET in the notes that
acconpany Line 163 of the program source code of ACCTOl1. You'll find
these in "Program ACCTO1l: initial request processing"” in topic 2.10.2.

© Copyright IBM Corp. 1984, 1991
3.322-3

CICS Application Programming Primer
Positioning the cursor

3.3.3 Positioning the cursor

We said earlier howvital it is to put the cursor where the user will want
to start entering data on the screen. One small piece of source code from
you can save hundreds of users a couple of seconds each and every tine
they use your application.

In the first SEND MAP exanple, we relied on the cursor position specified
in the map definition. This puts the cursor under the first data position
of the surnane field, which is where we want it. 1In the second and third
exanpl es, however, we don't necessarily want the cursor where the map
definition puts it. In the second exanple, where we're using the detai
map, we want to use the map default (the SNAMED field) for adds and

nodi fies. For display operations, it doesn't nuch matter, since there are
no fields into which the user may key. For del etes, however, the cursor
shoul d be under the verify (VFY) field. 1In the third exanple, we want the
cursor under the first field where the user entered incorrect information

As we said, there are two ways to override the position specified by the
IC specification in the map definition:

1. You can specify a screen position, relative to line 1, colum 1 (that
is, position 0) in the CURSOR option on the SEND MAP command (the
procedure we advi sed agai nst earlier)

2. You can show that you want the cursor placed under a particular field
by setting the associated | ength subfield to m nus one (-1) and
speci fying CURSOR wi t hout a value in your SEND MAP command. This
causes BMS to place the cursor under the first data position of the
field with this length value. |If several fields are flagged by this
speci al length subfield value, the cursor is placed under the first
one (as opposed to the last one with ATTRB=IC).

The second procedure is called symbolic cursor positioning, and is a very
handy nethod of positioning the cursor for, say, correcting errors. As
the program checks the input, it sets the length subfield to -1 for every
field found to be in error. Then, when the map is redisplayed for
corrections, BMS automatically puts the cursor under the first field that
the user will have to correct.

To place the cursor under the verify field on a delete, therefore, all we
have to do is:

and specify CURSOR in our SEND MAP conmmand

© Copyright IBM Corp. 1984, 1991
333-1

CICS Application Programming Primer
Sending control information without data

3.3.4 Sending control information without data

In addition to the SEND MAP command, there is another term nal output
command cal |l ed SEND CONTROL. It allows you to send control information to
the term nal without sending any data. That is, you can open the
keyboard, erase all the unprotected fields, and so on, w thout sending a
map.

Subt opi cs
3.3.4.1 The SEND CONTROL command

© Copyright IBM Corp. 1984, 1991
334-1

CICS Application Programming Primer
The SEND CONTROL command
3.3.4.1 The SEND CONTROL conmand

The SEND CONTROL command | ooks like this:

EXEC CI CS SEND CONTROL option option ... END-EXEC

The options you can use are the same as on a SEND MAP command: ERASE,
ERASEAUP, FRSET, ALARM FREEKB, CURSOR, PRI NT, and FORMFEED.

There's an exanple of this conmand in program ACCTOl. The term nal user
has just cleared the screen (of the nenu map) to indicate that he or she
wants to exit fromthe control of the online account application. The
program is supposed to open the keyboard before returning control to ClICS.

Normal |y, you would do this when witing a nessage to the term nal. But
since we're not doing that at this point, we nust unlock the keyboard by
an explicit command, instead. The command is:

m
>
m
9]
Q
)
m
pd
S
g
8
T
P3|
m
m
=
)
m
pd
o
m
>
m
e)

If we didn't know the user had just cleared the screen, we'd probably want
to add the ERASE option to the command above, so that the user would be
all ready to start a new transaction.

© Copyright IBM Corp. 1984, 1991
3341-1

CICS Application Programming Primer
Receiving input from a terminal

3.3.5 Receiving input froma term nal

Subt opi cs
3.3.5.1 The RECEI VE MAP command

© Copyright IBM Corp. 1984, 1991
335-1

CICS Application Programming Primer
The RECEIVE MAP command

3.3.5.1 The RECEI VE MAP command

When you want to receive input froma termnal, you use the RECElI VE MAP
command, which | ooks like this:

EXEC CI CS RECEI VE MAP(mapnane) MAPSET(set nane)
END- EXEC.

The MAP and MAPSET paraneters have exactly the same meaning as for the
SEND MAP command. MAP is required and so is MAPSET, unless it is the sanme
as the map name. Again, it does no harmto include it for documentation
pur poses.

We're showi ng you a form of the RECEI VE MAP command t hat does not specify
where the input data is to be placed. This causes CICS to bring the data
into a structure whose name is the map nanme suffixed with the letter 1,

which is assumed to be in either your WORKI NG STORAGE or LI NKAGE Secti on.

For exanpl e, program ACCTO02 requires that we receive the filled-in detail
map. The command to do this:

EXEC CI CS RECEI VE MAP(' ACCTDTL') MAPSET(' ACCTSET')
RESP(RESPONSE) END- EXEC.

will bring the input data into a data area named ACCTDTLI, which is
expected to have exactly the format produced by the DSECT for map ACCTDTL
(We'll explain RESP(RESPONSE) in "Errors and exceptional conditions" in
topic 3.8.)

As soon as the map is read in, we have access to all the data subfields

associated with the map fields. For exanple, we can test whether the user
made any entry in the request field of the menu map:

IF REQVL > 0, MOVE ...

O we could examine the input in that field:

T +
| i
' IF REM ="A" GO TO i
| i
B +
Note: Although it generally will not affect your programlogic, you

shoul d be aware that the first time in a transaction that you use the
RECEI VE MAP command, it has a slightly different effect from subsequent
times. Since it is input fromthe terminal that causes a transaction to
get started in the first place, CICS has always read the first input by
the time the transaction starts to execute. Therefore, on this first
RECEI VE MAP command, CICS sinply arranges the input it already has into
the format dictated by your map, and puts the results in a place
accessible to your program

© Copyright IBM Corp. 1984, 1991
3.351-1

CICS Application Programming Primer
The RECEIVE MAP command

On subsequent RECEI VE MAP conmands in the sanme task, CICS actually waits
for and reads input fromthe term nal. These subsequent RECElI VE MAPs are
what make a task conversational. By contrast, a pseudoconversational task
executes at nost one RECEI VE MAP conmand.

© Copyright IBM Corp. 1984, 1991
3.351-2

CICS Application Programming Primer
Finding out what key the operator pressed

3.3.6 Finding out what key the operator pressed

There is another technique you may wi sh to use for processing input froma
terminal. As we pointed out in "3270 input data strean' in topic 2.2.4,
the 3270 input stream contains an indication of what attention key caused
the input to be transmtted (ENTER, CLEAR, or one of the PA or PF keys).

You can use the EIBAID field to cause your programto change the flow of
control in your program based on which of these attention keys was used.
(Al D stands for attention identifier.)

Subt opi cs
3.3.6.1 The EXEC Interface Bl ock (ElB)

© Copyright IBM Corp. 1984, 1991
336-1

CICS Application Programming Primer
The EXEC Interface Block (EIB)

3.3.6.1 The EXEC Interface Bl ock (ElB)

Before we explain howto find out what key was used to send the input, we
need to introduce one CICS control block. This is the EIB, which stands
for EXEC Interface Block, and it is the only one that you need to know
anyt hing about for the type of applications described in this Priner.

You can write programs without using even this one, but it contains
informati on that can be very useful and is worth knowi ng about.

There is one EIB for each task, and it exists for the duration of the
task. Every programthat executes as part of the task has access to the
same EIB. You can address the fields in it directly in your COBOL
program without any prelimnaries. You should only read these fields,
however, not try to nodify them Al of the EIB fields are discussed in
detail in the ClICS/ESA Application Programm ng Reference manual, but the
ones that apply to the commands and options in this Prinmer are:

El BAI D
The attention identifier (AID), which tells you which keyboard key was
used to transmt the last input. This field is one byte long ("PIC
X(1)"). It is encoded as shown in "AID byte definitions" in
topic 3.3.6.1.1.

El BCALEN
The length of the communicati on area (COMVAREA) that has been passed
to this program either froma programthat invoked it using a CICS
command (LI NK or XCTL--see "Commands for passing programcontrol” in
topic 3.6.2), or froma previous transaction in a pseudoconversati onal
sequence. It is in halfword binary form (PIC S9(4) COW). See
"Program control" in topic 3.6 and "Saving data and communi cati ng
bet ween transactions" in topic 3.5 for nore informati on on COVMMAREA.

El BCPOSN
The position of the cursor at the tinme of the last input command, for
3270-1i ke devices only. This position is expressed as a single number
relative to position zero on the screen (row 1, colum 1), in the sane
way that you specify the CURSOR parameter on a SEND MAP command. It's
also in halfword binary form ("PIC S9(4) COW").

After a RECElI VE MAP conmand, your program can find the inbound cursor
position by inspecting the value held in EI BCPOSN.

ElI BDATE
The date on which the current task started, in Julian form with two
| eading zeros. The COBOL "PICTURE" for the field is "S9(7) COW-3",
and the format is: "O00YYDDD+".

El BDS
The name of the last file used in a file command (for exanple, read a
record, wite a record). This field is eight characters long ("PIC
X(8)") and is the value in the "FILE" paranmeter of the npbst recent
file command.

El BFN
A code indicating the last command that was issued by the task, in
"PIC X(2)" form The first byte of this two-byte field indicates the
type of command. File commands have a code of X 06', BMS commmands are
18, and so on. The second byte tells which particular commnd: 0602
means READ, 0604 means WRITE, and so on. A full list of the codes
appears in the ClICS/ESA Application Programm ng Reference , and the
subset that applies to the comand and option conbinati ons we use al so
appears in "Program ACCTO04: error processing” in topic 2.10.5. The
codes involved appear in the table HEX-LIST (line 27). in "Program
ACCTO04: error processing” in topic 2.10.5 of this Priner. The codes

© Copyright IBM Corp. 1984, 1991
3.36.1-1

CICS Application Programming Primer
The EXEC Interface Block (EIB)

invol ved appear in the table HEX-LIST (line 27).

El BRCODE
The response code resulting fromexecuting the |last command. This is
a six-byte field ("PIC X(6)"), but for the command types covered in
this Primer, you need concern yourself only with the first byte. The
HEX- LI ST table we nmentioned above also contains a |list of all the
codes that can result from our subset of commands and options. The
ClI CS/ ESA Application Programm ng Reference contains a full list of the
possibilities.

El BRESP
This contains a nunber corresponding to the condition that has been
rai sed. DFHRESP, which you'll see in "Program ACCT04: error
processing” in topic 2.10.5, contains the nunmbers and their neanings
There is a conplete list of these nunbers in the ClICS/ ESA Application
Programm ng Reference

El BRESP2
This contains nore detailed information that may hel p explain why the
RESP conditi on has been raised. This field contains meani ngful val ues
(as deci mal nunbers) for specific commands. Values relating to
gener al -usage programm ng i nterface commands such as | NQUI RE, SET, and
JES spool er conmands are in the ClICS/ ESA System Progranm ng Reference
Val ues relating to product-sensitive progranmm ng interface commands
are in the in the Cl CS/ ESA Application Progranm ng Reference

El BRSRCE
The name of the resource used in the nobst recent command that used
such a resource. For file commands, this value is the FILE paraneter,
so that EIBRSRCE has the sane value as EIBDS after such a conmand.
For tenporary storage conmands, it is the name of the queue (the QUEUE
paraneter), and for BMS commands it is the name of the terminal (the
four-character name of the input terminal, or EIBTRMD in the context
of this Primer). Eight characters are provided for this information
("PIC X(8)"), although sonme nanes, |ike those of termnals, fill only
the first four positions.

El BTASKN
The task nunber, as a seven-digit packed deci mal nunber ("PIC S9(7)
COWP-3"). CICS assigns a sequential nunber to each task it executes

and this nunmber is used to identify entries for the task in the Trace
Table (for further guidance, see the sections on dunp and trace in the
Cl CS/ ESA Probl em Determ nation Cuide)

El BTI ME
The time at which the current task started, also in "PIC S9(7) COwWP-3"
form with one | eading zero: "OHHMMSS+".

El BTRM D
The name of the termi nal associated with the task (the input term nal
usual ly, or sometinmes a printer, as in our ACO3 and ACO5 transaction
types). This nane is four characters long, and the COBOL "PICTURE" is
"X(4)".

ElI BTRNI D
The transaction identifier of the current task, four characters |ong
("PIC X(4)").

Subt opi cs
3.3.6.1.1 AID byte definitions

© Copyright IBM Corp. 1984, 1991
3.36.1-2

CICS Application Programming Primer
AID byte definitions

3.3.6.1.1 AID byte definitions

Getting back to the attention identifier, we can also tell what key was
used to send the input by |ooking at the EIBAID field, as noted above.

When a transaction is started, EIBAID is set according to the key used to

send the input that caused the transaction to get started. It retains
this value through the first RECEIVE command, which only formats the input
al ready read, until after a subsequent RECEIVE, at which time it is set to

the value used to send that input fromthe termnal.

EIBAID is one byte long and holds the actual attention identifier value
used in the 3270 input stream As it is hard to remenber these val ues and
hard to understand code containing them it is a good idea to use synbolic
rather than absolute values when testing EIBAID. CICS provides you with a
precoded set which you sinply copy into your programby witing:

3
<
:
v}

Figure 44 shows sone of the definitions this brings into your program

ot +
i i
! 01 DFHAID.

! 02 DFHNULL PIC X VALUE IS ' '.

! 02 DFHENTER PIC X VALUE IS """,

! 02 DFHCLEAR PIC X VALUE 1S ' _'.

! 02 DFHCLRP PIC X VALUE IS ' .

! 02 DFHPEN PIC X VALUE IS ' ='.

! 02 DFHOPI D PIC X VALUE IS 'W. !
! 02 DFHVSRE PIC X VALUE IS ' X' . !
! 02 DFHSTRF PIC X VALUE IS ' .

! 02 DFHTRIG PIC X VALUE IS '"". !
! 02 DFHPAL PIC X VALUE IS ' % . !
! 02 DFHPA2 PIC X VALUE IS ' >'.

! 02 DFHPA3 PIC X VALUE IS ', ".

! 02 DFHPF1 PIC X VALUE IS '1'.

! 02 DFHPF2 PIC X VALUE IS '2'.

i i
i S i
! 02 DFHPF23 PIC X VALUE IS '.". !
! 02 DFHPF24 PIC X VALUE IS '<' . !
i i
Ao m o m o eeeeiaaooo- +

Figure 44. The standard attention identifier values

DFHENTER i s the ENTER key, DFHPAl is Program Access (PA) Key 1, DFHPF1 is
Program Function Key 1, and so on. As in the case of the DFHBMSCA nacro,
any val ues above that appear to be spaces are not; they correspond to bit
patterns for which there is no printable character.

© Copyright IBM Corp. 1984, 1991
3.36.11-1

CICS Application Programming Primer
Errors on BMS commands

3.3.7 Errors on BMS commands

As we cover each group of commands in this Primer, we'll discuss what can
go wong. We'Ill classify errors according to the categories described in
"Handling errors and exceptional conditions" in topic 2.9.2, and suggest
how you m ght want to handle themin your coding. Later, in "Passing
control to a specified label"” in topic 3.8.2, we'll explain howto branch
when an error occurs.

There are two types of errors that can occur in the subset of BMS conmands
and map options that we've covered here. They are known as MAPFAIL and

I NVMPSZ. (Others may occur if you use the additional features of BMS
outlined in the next section. They are all listed in the ClICS/ESA
Application Programm ng Reference .)

Subt opi cs
3.3.7.1 MAPFAIL errors
3.3.7.2 I NVMPSZ errors

© Copyright IBM Corp. 1984, 1991
337-1

CICS Application Programming Primer
MAPFAIL errors

3.3.7.1 MAPFAIL errors

MAPFAI L occurs on a RECElI VE MAP conmand when there are no fields at all on
the screen for BMS to map for you. This will happen if you issue a

RECEI VE MAP after the user has used one of the "short-read" keys (CLEAR or
a program access key) that we discussed in "3270 input data streani in
topic 2.2.4. It can also occur even if the user does not use a short-read
key. If, for exanple, you send a screen to be filled in (w thout any
fields in which the map or the programturns on the nodified-data tag),
and the user presses the ENTER key or one of the program function keys

wi t hout keying any data into the screen, you'll get MAPFAIL.

The reason for the failure is essentially the same in both cases. Wth
the short read, the term nal does not send any screen data; hence no
fields. 1In the other case, there are no fields to send, because no
nodi fi ed-data tags have been turned on.

MAPFAIL is alnost invariably a user error (or an expected program
condition). It may occur on al nost any RECEI VE MAP, and therefore you
should handle it explicitly in the program For instance, Figure 45 shows
the code that the exanple application contains to deal with a MAPFAIL that
occurs when the nmenu map is received:

MENU- RESEND.
MOVE REQC TO REQM .
MOVE ACCTC TO ACCTM .
MOVE PRTRC TO PRTRM .
MOVE SNAMEC TO SNAMEM .
MOVE FNAMEC TO FNAMEM .
MOVE MSG- TEXT (MSG- NO) TO MSGMO.
EXEC CI CS SEND MAP(' ACCTMNU) MAPSET(' ACCTSET')
CURSOR DATAONLY FRSET ERASEAUP FREEKB END- EXEC.
NO- MAP.
MOVE 2 TO MSG-NO, MOVE -1 TO SNAMEM., GO TO MENU- RESEND.
NEW MENU.
EXEC CI CS SEND MAP(' ACCTMNU) MAPSET(' ACCTSET')
FREEKB ERASE END- EXEC.

Fi gure 45. Code to handl e MAPFAI L

This code is executed if the MAPFAIL condition is raised because the test
of the RESP val ue brings us here. It first tests what key was used to
send. (We know it isn't the CLEAR key, having checked that point earlier
to find out if the user wanted to "escape" fromthe current procedure.)

If it was one of the other short-read keys, or if it was ENTER wi t hout any
data, we know that the screen is still intact and we sinply wite a
message into the nessage area of the screen rem nding the user to use only
ENTER or CLEAR, and to key some data in unless he or she is using the
CLEAR key to escape. |If the failure has some other cause, the program
writes the whole map back to the screen, including a simlar nessage, to
ensure that the user is |ooking at a good screen and knows what to do
next .

© Copyright IBM Corp. 1984, 1991
3371-1

CICS Application Programming Primer
INVMPSZ errors

3.3.7.2 INVMPSZ errors

I NVMPSZ usually results froma coding error. It occurs on either SEND MAP
or RECEIVE MAP if the size of the map specified is too wide for the
screen. Therefore, you usually do not need to wite code to handle it.

If it occurs during debugging, the transaction will end abnormally with a
code indicating this error. The cause is either that the SIZE paraneter
on the DFHMDI macro is wong, or the terminal is defined incorrectly, or
the application is being used froma termnal it does not support. Note
that if the last-nmentioned cause was a possibility, you m ght want to
write code to send the user a nessage explaining the problem

© Copyright IBM Corp. 1984, 1991
3372-1

CICS Application Programming Primer
Other features of BMS

3.3.8 Ocher features of BMS

BMS is a very powerful conmponent of CICS and offers many facilities beyond
those we've discussed so far. We'Ill list sone of the nobre interesting
ones here. You can find guidance on more of the features of BMS in the

Cl CS/ ESA Application Programrming Guide , and a list of all its macros,
commands, and options in the CICS/ ESA Application Programm ng Reference.
These features of BMS I et you do the foll ow ng:

O

Copy what is on a screen to a printer. You can use the | SSUE PRI NT
command or the local copy facilities of CICS to do this.

Send formatted data to printers in other formats. In this Primer, we
di scuss only one nmethod of formatting the data for a printer, which is
to use a map just like the display screen for the printer, in
conmbination with the PRINT option. However, there are other ways to
control the format of printed output, by inserting new-line characters
where you want them and so on.

Build a single screen with a series of SEND MAP commands, using nore
than one map in the process. This is done with the ACCUM option of
SEND MAP.

Buil d output nmessages of nore than one screen. You can send out put
messages that consist of a series of screens, which can be stored away
by BMS until the entire sequence is conplete. Then BMS provides a

met hod for the user to display these screens and page backward and
forward through themat will, w thout any support from your program
Mul ti pl e-screen outputs use the PAG NG option of SEND MAP. The PAG NG
and ACCUM options can be used together, incidentally.

Partition a single screen into sections, and treat each of these areas
as a separate screen. This needs a terminal with the appropriate
partition support, of course. You can wite to and read from one of
these mni-screens (or partitions, as the devices call them wi thout
af fecting any of the others.

Send output to termnals other than the one associated with the
transaction. This is called routing. It provides a second way,
different fromthe technique we'll use, to deal with the requirenent
in the exanpl e application of sending output to a printer.

Switch nessages. The routing facility provides a basis for a
transaction that can be used to send a message fromone termnal to
another. Not surprisingly, this is called nessage switching. CICS
provides the transaction, which has the identifier CMSG Any CICS
system that includes full-function BMS can make this transaction
avai | abl e.

Wite formatted data to termnals wi thout using maps (the SEND TEXT
command) .

Support additional 3270 features, such as color, the extended
attributes (extended col or, progranmed synbols, extended highlighting,
data validation), light pen, cursor select key, and magnetic sl ot
reader.

Support special facilities provided by VTAM such as outboard
formatting and | ogi cal device controls. Guidance information on these
facilities is the in sections of the same name in the CI CS/ ESA
Application Progranm ng Gui de.

Support a wide variety of termnals with different physical
characteristics. BMS even provides facilities for limting the
dependence of the program on the device characteristics; for guidance,

© Copyright IBM Corp. 1984, 1991
338-1

CICS Application Programming Primer
Other features of BMS
see the section on map set suffixing in the ClICS/ESA Application
Progranmm ng Gui de.

Now t hat you know how to talk to a terminal, the next thing you need to
know about is how to get sonething worthwhile to talk about. This means
accessing files, and is the next category of CICS services that we'll

cover.

© Copyright IBM Corp. 1984, 1991
3.38-2

CICS Application Programming Primer

Handling files
3.4 Handling files
CICS allows you to access file data in a variety of ways. |In an online
system nost file accesses are random because the transactions to be
processed aren't batched and sorted into any kind of order. Therefore
CI CS supports the usual direct access nethods: VSAM and DAM It also
al l ows you to access data using database managers

Of these, we'll cover only VSAM key-sequenced data sets, accessed by key,
inthis Primer. Mst of the material applies to DAM and other forms of
VSAM however. CICS also supports sequential access in several forns; one
of these, browsing, we'll cover in the com ng section. The others we'l
touch on later.

Bef ore describing how you read and wite files, we should explain briefly
about an inportant CICS table, the File Control Table (FCT). This table
contains one entry for each file used in any application in the system
(The entries in the FCT can cone from RDO FILE definitions that are
installed in the CICS system or from DFHFCT macro statements.) The nost
i mportant information kept for each file is the synbolic file name. This
must match the MVS DDNAME that you use in the JCL defining the file. The
JCL statenent, in turn, is what connects the nane with a real file. Wen
a ClICS program nakes a file request, it always uses the synbolic file
name. CICS |ooks up this name in the FCT, and fromthe information there
makes the appropriate request of the operating system This technique
keeps CICS prograns i ndependent not only of specific data sets (the JCL
does that), but of the JCL as well. Usually the synbolic file nanes are
assigned by the CICS systenms staff.

In the exanples which follow we'll use the symbolic file nanme "ACCTFIL"
for the account file and "ACCTI X" for its index

Subt opi cs

3.4.1 Read conmands

3.4.2 Wite comands

3.4.3 Errors on file comands
3.4.4 O her file services

© Copyright IBM Corp. 1984, 1991
34-1

CICS Application Programming Primer
Read commands

3.4.1 Read conmands

The read commands that you can use are READ and READNEXT.

Subt opi cs

3.4.1.1 Reading a file record

3.4.1.2 Browsing a file

3.4.1.3 Using the browse conmmands in the exanple application

© Copyright IBM Corp. 1984, 1991
341-1

CICS Application Programming Primer
Reading a file record

3.4.1.1 Reading a file record

The command to read a single record froma file is:

EXEC CI CS READ FI LE(filename) |INTO(recarea)
LENGTH(| engt h) RI DFLD(keyarea) option
option ... END-EXEC.

filename
is the name of the file fromwhich you wish to read. It is required
in all READ commands. This is the CICS synbolic file name which
identifies the FCT entry for the file. File names can be up to 8
characters long and, like any paraneter value, should be enclosed in
quotes if they are literals.

recarea
is the name of the data area into which the record is to be read,
usually a structure in working storage. The INTO is required for the
uses of the READ command di scussed in this Prinmer.

I ength
is the maxi mum nunber of characters that nmay be read into the data
area specified. The LENGTH paranmeter is required for the uses of the
READ command we're covering in this Primer, and it nust be a hal fword
bi nary value (that is, it nust have a PICTURE of "S9(4) COW"). After
the READ command is conpleted, CICS replaces the maxi num val ue you
specify with the true length of the record. For this reason, you nust
speci fy LENGTH as the nanme of a data area rather than a literal. For
the same reason, you nust re-initialize this data area if you use it
for LENGTH nmore than once in the program An overlength record wll
rai se an error condition.

keyar ea
is the name of the data area containing the key of the record you w sh
to read. This paranmeter is also required.

option
can be any of the follow ng options which apply to this conmmand.
Except where noted, you can use themin any conbination.

UPDATE
means that you intend to update the record in the current
transaction. Specifying UPDATE gives your transaction exclusive
control of the requested record (possibly the whole control
interval in the case of VSAM and invokes the file protection
mechani sms we di scussed in "Pseudoconversational or not?" in
topic 2.7. Consequently, you should use it only when you actually
need it; that is, when you are ready to modify and rewite the
record.

EQUAL
means that you want only the record whose key exactly matches that
specified by RIDFLD. This is a default option, which you get if
you either specify it or fail to specify GTEQ

GTEQ
means that you want the first record whose key is greater than or
equal to the key you specified. You cannot use this option at the
same time as EQUAL. It provides one neans of doing a generic read
(a read where only the first part of the key is required to match)
and we use it for this purpose in our application.

© Copyright IBM Corp. 1984, 1991
3411-1

CICS Application Programming Primer
Reading a file record

So, how do we read an account file record? Well, in program ACCTO1l, we
need to read the account file to find out whether the requested record is
there or not. The comand we need is

EXEC CI CS READ FILE(' ACCTFIL') RIDFLD(ACCTC) RESP(RESPONSE)
I NTO{ ACCTREC) LENGTH(ACCT- LNG) END- EXEC.

Here ACCTC is where we've stored the account nunmber taken fromthe nenu
map, and ACCT-LNG is a constant in working storage defined as the expected
length of a record in the account file:

02 ACCT-LNG PIC S9(4) COW VALUE +383.

We've asked that the record be placed in the data area naned "ACCTREC," so
ACCTREC shoul d be a data structure corresponding to the file record. We
could define this structure directly in the program but we'll also need
it in program ACCT02. So we'll put the record definition into a library
and copy it into this programinstead

01 ACCTREC. COPY ACCTREC.

In any application, in fact, it is a good idea to keep your record |ayouts
in a library and copy theminto the programs that need them Even in the
si nmpl est of applications, the same record is usually used by severa
progranms, and this procedure prevents programs from using different
definitions of the same thing

This argunent applies equally well to any structure used in comon by

mul tiple prograns. Map DSECTs are a prime exanple, as are paranmeter lists
and communi cation areas, which we'll discuss later. Apart fromits value
in the initial programm ng stage of an application, this technique greatly
reduces the effort and hazards associated with any change to a record or
map format. You can make the changes in just one place (your library) and
then sinply reconpile all the affected prograns.

Subt opi cs
3.4.1.1.1 The account file record format
3.4.1.1.2 The index file record formt

© Copyright IBM Corp. 1984, 1991
3411-2

CICS Application Programming Primer
The account file record format

3.4.1.1.1 The account file record format

Figure 46 shows the COBOL record definition we need for the account file
in the exanpl e application.

e m e e e m ==
i

! * ACCTREC - ACCOUNT FI LE RECORD

! 02 ACCTDO PIC X(5).
! 02 SNAMEDO PI C X(18).
! 02 FNAMEDO PIC X(12).
! 02 MDO PIC X

! 02 TTLDO PIC X(4).
! 02 TELDO PI C X(10).
! 02 ADDRLDO PI C X(24).
! 02 ADDR2DO PI C X(24).
! 02 ADDR3DO PI C X(24).
! 02 AUTHLDO PI C X(32).
! 02 AUTH2DO PI C X(32).
! 02 AUTH3DO PI C X(32).
! 02 AUTH4DO PI C X(32).
! 02 CARDSDO PIC X

! 02 | MODO PIC X(2).

! 02 | DAYDO PIC X(2).

! 02 | YRDO PIC X(2).
! 02 RSNDO PIC X

! 02 CCODEDO PIC X

! 02 APPRDO PIC X(3).

! 02 SCODE1DO PIC X

! 02 SCODE2DO PIC X

! 02 SCODE3DO PIC X

! 02 STATDO PIC X(2).

! 02 LIMTDO PIC X(8).
! 02 PAY-HI ST OCCURS 3.

! 04 BAL PIC X(8).
! 04 BMO PIC 9(2).
! 04 BDAY PIC 9(2).
! 04 BYR PIC 9(2).
! 04 BAMT PIC X(8).
! 04 PMO PIC 9(2).
! 04 PDAY PIC 9(2).
! 04 PYR PIC 9(2).
! 04 PAMT PIC X(8).
i

o e mmm o m =

Figure 46. The COBOL record definition for the account file

We'll not dwell on the nam ng conventions of the data itens that we're
| eaving to our assuned batch processing system Nor shall we have
anything nuch to say about the behavior of this batch system |In other

words, don't worry about it!

© Copyright IBM Corp. 1984, 1991
34111-1

CICS Application Programming Primer
The index file record format
3.4.1.1.2 The index file record formt
We al so need a record definition for the index file records. See
Figure 47.

ot +
i i
! * ACI XREC - | NDEX FI LE RECORD !
! 02 SNAMEDO PIC X(12). !
! 02 ACCTDO PIC 9(5). !
! 02 FNAMEDO PIC X(7). !
! 02 MDO PIC X !
! 02 TTLDO PIC X(4). !
! 02 ADDRLDO PI C X(24). !
! 02 STATDO PIC X(2). !
! 02 LIMTDO PIC X(8). !
i i
ot +

Figure 47. The COBOL record definition for the index file records

You may notice that we've chosen many of the field names in the account
record to match the output subfields in the detail map. We did this
because when we display a record fromthe file on the screen, we have to
move many fields fromthe record to the synbolic description map. This
choice of nanmes allows us to use MOVE CORRESPONDI NG i nstead of writing out
the individual nmoves. It allows us to do the sane thing going fromthe
screen to the file, because the input and output fields on the screen
overlay each other exactly, as we noted earlier.

© Copyright IBM Corp. 1984, 1991
34112-1

CICS Application Programming Primer
Browsing a file

3.4.1.2 Browsing a file

In program ACCTO01, when we search by name, we need to point to a
particular record in the file, based on a random key. Then we start
reading the file sequentially fromthat point on. The need for this
conmbi nati on of random and sequential file access, called browsing, arises
frequently in online applications. Consequently, CICS provides a specia
set of browse commands: STARTBR, READNEXT, and ENDBR

Before we | ook at these commands, a few words about the performance

i mplications of browsing. Transactions that produce |lots of output
screens can nonopolize systemresources. A file browse is often guilty of
this. Just having a | ong browse can put a severe |load on the system

| ocki ng out other transactions and increasing overall response tine.

You see, CICS assunes the termnal operator initiates a transaction that
accesses a few data records, processes the information, and returns the
results to the operator. This process involves nunerous waits that allow
CICS to do sone nultitasking. However, CICS is not an interrupt-driven
mul titasking system tasks that involve small amunts of I/Orelative to
processi ng can nonopolize the systemregardl ess of priority. A browse of
a highly-blocked file is just such a transaction

You can issue DELAY or SUSPEND commands fromtime to time, so that other
tasks can get control. |If the browse does indeed produce paged output,
you shoul d probably break the transaction up in one of the ways suggested
in the topic on designing efficient applications in the CICS/ ESA
Application Progranm ng CGuide.

Subt opi cs

3.4.1.2.1 Starting the browse operation
3.4.1.2.2 Reading the next record
3.4.1.2.3 Finishing the browse operation

© Copyright IBM Corp. 1984, 1991
3412-1

CICS Application Programming Primer
Starting the browse operation

3.4.1.2.1 Starting the browse operation

The STARTBR (start browse) conmand gets the process started. It tells
CICS where in the file you want to start reading. The format is:

EXEC CI CS STARTBR FI LE(fil enane)
RI DFLD(keyar ea) option END- EXEC.

The FILE and RIDFLD paraneters are the same as in a READ conmand. The
options allowed are GTEQ and EQUAL; you cannot use them both. They are
defined as for READ, except that this time GTEQ is assumed by default.
UPDATE isn't allowed; file browsing is strictly a read-only operation.

© Copyright IBM Corp. 1984, 1991
34121-1

CICS Application Programming Primer
Reading the next record

3.4.1.2.2 Reading the next record

Starting a browse does not make the first eligible record available to
your progranm it merely tells CICS where you want to start when you begin
i ssuing the sequential read commmands.

To get the first record, and for each one in sequence after that, you use
t he READNEXT command:

EXEC CI CS READNEXT FI LE(fil enane)
I NTO(recarea) LENGTH(I engt h)
RI DFLD(f dbkar ea) END- EXEC.

The FILE, I NTO and LENGTH paraneters are defined in the sane way as they
are in the READ command. You only need the FILE paraneter because CICS
all ows you to browse several files at once, and this tells which one you
want to read next. Note, however, that you cannot nane a file in a
READNEXT conmand unl ess you've first issued a STARTBR conmand for it.

The RIDFLD parameter is used in a somewhat different way. On the READ and
STARTBR conmands, RIDFLD carries information fromthe programto CICS; on
READNEXT, the flowis primarily in the other direction: RI DFLD points to a

data area into which CICS will "feed back" the key of the record it just
read. Do nmake sure that RIDFLD points to an area |large enough to contain
the full key; otherwi se the adjacent field(s) in storage will be
overwitten. Don't change it, either, because you'll interrupt the

sequential flow of the browse operation.

(There is a way to do what is called "skip sequential" processing in VSAM
by altering the contents of this key area between READNEXT commands.

Al t hough we won't be covering this here, we nmention it only to explain why
you should not inadvertently change the contents of "fdbkarea" while
browsing the file.)

© Copyright IBM Corp. 1984, 1991
34.122-1

CICS Application Programming Primer
Finishing the browse operation

3.4.1.2.3 Finishing the browse operation

When you' ve finished reading a file sequentially, you term nate the browse
with the ENDBR conmand:

m
by
m
o}
O
m
z
[}
v3]
P!
L
—
m
[¢]
]
3
m
pd
v}
m
<
m
(9]

Here FILE functions as it did in the READNEXT command; it tells CICS which
browse is being term nated, and it nmust name a file for which a STARTBR
has been issued earlier.

© Copyright IBM Corp. 1984, 1991
34.123-1

CICS Application Programming Primer
Using the browse commands in the example application

3.4.1.3 Using the browse commands in the exanple application

Let's wite the code we need to do the exanple. The first thing we have
to do is construct a key that will start the browse in the right place.
The key of the index file consists of the first 12 characters of the
surnane followed by an account number. We want to build a key that

consi sts of the characters the user keyed in as the surname, followed by
something smaller than any file key that starts out the sane way. Then we
can use the GTEQ option on our STARTBR conmand to get the first qualifying
record. |If we define:

04 BRKEY.
06 BRKEY- SNAME PIC X(12).
06 BRKEY-ACCT PIC X(5).

MOVE SNAMEC TO BRKEY- SNAME.
MOVE LOW VALUES TO BRKEY- ACCT.

should do the trick. SNAMEC is where we saved the surnane from the input
menu (SNAMEM) earlier in the code. Because CICS pads what the user keys
with spaces to produce SNAMEM , and spaces are lower in the collating
sequence than any letter, we can be sure that BRKEY will be smaller than
the key of any eligible record in the file.

We al so need to know where to stop the browse.

Certainly we'll stop when we overflow the display capacity of the screen,
but we may run out of eligible names before that. So we need to construct
a surname value that is the highest al phabetically that could meet our
match criteria. |If the surname in the record exceeds this value, we will
know t hat we've read all the (possibly) eligible records. |If this
limting value is named MAX- SNAME and has a picture of "X(12)," then:

MOVE SNAMEC TO MAX- SNAME.
TRANSFORM MAX- SNAME FROM SPACES TO HI GH- VALUES.

shoul d give the right cutoff.

Finally, as we read, we need to test whether the first name matches
sufficiently to display the record on the screen or not. |If we define

M N- FNAME as the snmmllest all owabl e value and MAX- FNAME as the |argest,
and if FNAMEC is where we held the first name fromthe input screen, then
we need the follow ng code:

MOVE FNAMEC TO M N- FNAME, MAX- FNAME.
TRANSFORM M N- FNAME FROM SPACES TO LOW VALUES.
TRANSFORM MAX- FNAME FROM SPACES TO HI GH- VALUES.

© Copyright IBM Corp. 1984, 1991
3413-1

CICS Application Programming Primer
Using the browse commands in the example application

Thus, Figure 48 in topic 3.4.1.3 shows the code we need to produce the
name sunmary.

SRCH- RESUME.

SRCH- LOOP.

SRCH- DONE.

EXEC CI CS STARTBR FI LE(' ACCTI X') RI DFLD(BRKEY) GTEQ
RESP(RESP) END- EXEC.

| F RESP = DFHRESP(NOTFND) GO TO SRCH- ANY.

I F RESP NOT = DFHRESP(NORMAL) GO TO OTHER- ERRORS.

BUI LD NAME DI SPLAY.

EXEC CI CS READNEXT FI LE(' ACCTI X') | NTO(ACI XREC)
LENGTH(ACl X- LNG) RI DFLD(BRKEY) RESP(RESP) END- EXEC.
| F RESP = DFHRESP(ENDFI LE) GO TO SRCH- DONE.
| F RESP NOT = DFHRESP(NORMAL) GO TO OTHER- ERRORS.
| F SNAMEDO | N ACI XREC > MAX- SNAVME GO TO SRCH- DONE.
| F FNAMEDO | N ACl XREC < M N- FNAME OR
FNAMEDO | N ACI XREC > MAX- FNAME, GO TO SRCH- LOOP.
ADD 1 TO LI NE- CNT.
| F LI NE-CNT > MAX- LI NES,
MOVE MSG- TEXT (15) TO MSGMO,
MOVE DFHBMBRY TO MSGMA, GO TO SRCH- DONE.
MOVE CORRESPONDI NG ACI XREC TO SUM LI NE.
MOVE SUM- LI NE TO SUMLNMO (LI NE- CNT).
GO TO SRCH- LOOP.

EXEC CI CS ENDBR FI LE("' ACCTI X') END- EXEC.

Figure 48. The nane summary search code

This code first starts a browse on the index file. Then it begins a |oop
in which it:

1.

Reads the next sequential record in the file.

This may result in an ENDFI LE condition, causing a transfer to
par agr aph SRCH- DONE.

Tests whether the surnane in the record is beyond the last in the file
that m ght qualify, and exits the loop to SRCH-DONE if so.

Ot herwi se, determines if the record is eligible on the basis of first
nanme and, if not, returns to the beginning of the |oop to check the
next record.

Determnes, if the record is eligible, if it will still fit on the
screen. (We need to read one "hit" beyond the point of using up all
the space on the screen so that we can tell the user whether there are
going to be nobre nanes or not.)

Adds a nessage to the output map if the current nane won't fit, saying
there are nore names and how to get them and then exits the |oop at
SRCH- DONE.

Builds an output line for the map if the nane will fit, and returns to
the begi nning of the loop to check for nore hits.

After the |oop, at SRCH-DONE, when all eligible nanes have been read or
the screen is full, the programterm nates the browse. At this point, the
nane search output is essentially ready to be sent back to the user.

There are two other browse conmmands. We'll not cover them here, but you

© Copyright IBM Corp. 1984, 1991
3.413-2

CICS Application Programming Primer
Using the browse commands in the example application
can find a conplete list of themin the Cl CS/ ESA Application Progranm ng
Ref erence. The READPREV command is al nost |ike READNEXT, except that it
|l ets you proceed backward through a data set instead of forward. The
RESETBR command all ows you to reset your starting point in the m ddle of
browse.

© Copyright IBM Corp. 1984, 1991
3.413-3

CICS Application Programming Primer
Write commands

3.4.2 Wite conmmands

There are three file output comands: REWRI TE nodifies a record that is
already on a file, WRITE adds a new record, DELETE del etes an existing
record froma file.

Subt opi cs

3.4.2.1 Rewriting a file record

3.4.2.2 Adding (witing) a file record

3.4.2.3 Deleting a file record

3.4.2.4 Using the write conmands in the exanple application

© Copyright IBM Corp. 1984, 1991
342-1

CICS Application Programming Primer
Rewriting a file record

3.4.2.1 Rewriting a file record

The REWRI TE command updates the record you've just read. You can use it
only after you've performed a "read for update" by executing a READ
command for the same record with UPDATE specified. REWRITE |ooks like
this:

EXEC CI CS REWRI TE FI LE(fil enane)
FROM r ecar ea) LENGTH(| engt h) END- EXEC.

filename
has the sanme neaning as in the READ command: it is the CICS name of
the file you are updating. You nust specify it.

recarea

is the name of the data area that contains the updated version of the
record to be witten to the file. This parameter is also required.

I engt h
is the length of the (updated) version of the record. You nust
specify length, as in a READ command, and it nust be a hal fword binary
val ue.

© Copyright IBM Corp. 1984, 1991
3421-1

CICS Application Programming Primer
Adding (writing) a file record

3.4.2.2 Adding (writing) a file record

The WRITE conmmand adds a new record to the file. The parameters for WRI TE
are al nost the sane as for REWRI TE, except that you have to identify the
record with the RIDFLD option. (You do not do this with the REWRI TE
command because the record was identified by the previous READ operation
on the same data set.) The format of the WRITE command is:

EXEC CICS WRITE FILE(fil ename) FROMrecarea)
LENGTH(| engt h) RI DFLD(keyar ea) END- EXEC.

keyar ea
is the data area containing the key of the record to be witten. The
RI DFLD paraneter is required on the WRI TE conmand.

© Copyright IBM Corp. 1984, 1991
3422-1

CICS Application Programming Primer
Deleting a file record

3.4.2.3 Deleting a file record

The DELETE conmand deletes a record fromthe file, and | ooks like this:

EXEC CI CS DELETE FI LE(fil enane)
RI DFLD(keyar ea) END- EXEC.

The parameters are defined in the same way as for the WRI TE and REWRI TE
commands. You can delete a record directly, without reading it for update
first. When you do this you nust specify the key of the record to be

del eted by using RIDFLD. Alternatively, you can decide to delete a record
after you've read it for update. In this case, you nust omt RIDFLD.

© Copyright IBM Corp. 1984, 1991
3.423-1

CICS Application Programming Primer
Using the write commands in the example application

3.4.2.4 Using the write commands in the exanple application

Program ACCTO02 uses all three of the file output comands. For add
requests, the programfirst constructs a new record in a structure named
NEW ACCTREC. It then issues the conmand:

EXEC CI CS WRI TE FI LE(' ACCTFIL') FROM NEW ACCTREC)
RI DFLD(ACCTC) LENGTH(ACCT- LNG) END- EXEC.

(The variabl es ACCTC and ACCT- LNG have the same definition as they did in
the exanple of the READ command in "Reading a file record" in
topic 3.4.1.1.)

For a nodification, the programfirst reads the record in question, with
UPDATE speci fi ed:

o e mmm o m =
|

! |F REQC NOT = 'A',

! EXEC CI CS READ FI LE(' ACCTFIL') | NTQ(OLD- ACCTREC)

! RI DFLD(ACCTC) UPDATE LENGTH(ACCT- LNG) END- EXEC.

|

o o e e o e m e e e e —

Then it builds a new version of the record, again at NEW ACCTREC, by
conmbi ning the new data fromthe screen with the old record. Finally it
replaces the old record with the new one, in the commnd:

EXEC CI CS REWRI TE FI LE(" ACCTFIL') FROM (NEW ACCTREC)
LENGTH(ACCT- LNG) END- EXEC.

For a deletion, the program uses the same READ command as in a
nodi fication. Therefore the key (RIDFLD) isn't specified in the DELETE
command, which is:

© Copyright IBM Corp. 1984, 1991
3424-1

CICS Application Programming Primer
Errors on file commands

3.4.3 Errors on file conmands

In contrast to the situation with BMS commands, a wi de variety of things
can go wong on the file conmands. Here are the errors that can arise
when you use the subset of file commands that we've just described

DI SABLED
occurs if a file is disabled. A file may be disabl ed because

O It was initially defined as di sabl ed and has not been enabled
since

O It has been disabled by an EXEC CI CS SET command or by the CEMT
transaction.

DUPKEY
means that if a VSAMrecord is retrieved by way of an alternate index
with the NONUNI QUEKEY attribute, and another alternate index record
with the same key follows. |t does not occur as a result of a
READNEXT conmand that reads the |ast of the records having the
nonuni que key.

DUPREC
means that there is already a record in the file with the same key as
the one that you are trying to add with a WRITE command. This
condition may result froma user error or may be expected by the
program In either of these cases, there should be specific code to
handl e the situation

It can also fall into the "shoul d-not-occur" category, the third type
in the list under "Handling errors and exceptional conditions" in
topic 2.9.2, as it would in our exanple application. 1In this case no

speci al code is required beyond identifying the problemto the user
The message to the user should tell himor her what to say to the
supervisor (or to the operations staff) and what he or she is allowed
to do next.

ENDFI LE
means that you've attenpted to read sequentially beyond the end of the
file in a browse (using the READNEXT command). This is a condition

that you should program for in any browse. |In the exanple
application, for instance, a search on "Zuckerman" or a simlar nanme
m ght cause ENDFILE, and we'll code for it explicitly by sending

control to SRCH-DONE when it occurs

FI LENOTFOUND
means that the synbolic file name in a file command cannot be found in
the File Control Table. This is usually a coding error; look for a
difference in spelling between the command and the FCT entry. If it
happens after the programis put into actual use ("in production")
|l ook for an accidental change to the entry for that file in the FCT.

ILLOG C
is a catch-all class for errors detected by VSAM that don't fall into
one of the other categories that CICS recognizes. The RESP2 val ue
will tell you the specific error

Note: Before CICS/VS 1.7, by far the nbpst common cause used to be
trying to read fromor wite into a brand-new (enpty) VSAM
key-sequenced data set (KSDS). In order to use a KSDS in CICS, you
had to batch load at | east one record into it, because VSAM does not
build the index conmponent until the first record arrives, and ClICS was
unabl e to cope with a KSDS whose index isn't built.

| NVREQ

© Copyright IBM Corp. 1984, 1991
343-1

CICS Application Programming Primer
Errors on file commands
means that CICS regards your command as an invalid request for one of
the foll ow ng reasons:

O You requested a type of operation (add, update, browse, and so on)
that wasn't included in the "service requests" (SERVREQ) paraneter
of the FCT entry for the file in question.

O You tried to REWRITE a record without first reading it for update.

O You i ssued a DELETE command wit hout specifying a key (RIDFLD), and
wi thout first reading the target record for update.

O You i ssued a DELETE command specifying a key (RIDFLD) for a VSAM
file when a read for update command i s outstanding.

O After one read for update, you issued another read for update for
anot her record in the same file w thout disposing of the first
record (by a REWRI TE, UNLOCK, or DELETE conmand).

O You i ssued a READNEXT or an ENDBR command wi thout first doing a
STARTBR on the sanme file.

Al nost all of these INVREQ situations result from programlogic errors
and shoul d di sappear during the course of debugging. The first one,
however, can also result from an inadvertent change to the "service
requests" paranmeter in the FCT entry for the file.

| OERR
means that the operating systemis unable to read or wite the file,
presumably because of physical damage. This can happen at any time,
and there is usually nothing to do in the program except to abend the
transaction and inform the user of the problem

I SCI NVREQ
means that the renmpte systemindicates a failure which does not
correspond to a known condition.

LENGERR
coul d mean one of the follow ng:

O You onmitted the LENGTH paraneter from a READ, READNEXT, WRITE or
REWRI TE command.

O The |l ength you specified on a WR TE or REWRI TE operati on was
greater than the maxi mum record size for the file. (See the
description of LENGTH options in the CICS/ESA Application
Progranmm ng Reference for a description of a safe upper limt.)

O You specified a |l ength shorter than the actual record | ength on a
READ operation to a file of variable length records.

0O You indicated a wwong | ength on a READ, READNEXT, WR TE or REWR TE
command to a file containing fixed-length records.

LENGERR i s usually caused by a coding error.

NOSPACE
means that there's no space in the file to fit the record you've just
tried to put there with a WRITE or REWRI TE conmand. This doesn't mean
that there's no space at all in the data set; it sinply nmeans that the
record with the particular key you specified will not fit until the
file is extended or reorgani zed. Like IOERR, this condition may occur
at any tine, and should be handl ed accordingly.

NOTAUTH

© Copyright IBM Corp. 1984, 1991
343-2

CICS Application Programming Primer
Errors on file commands

means that a resource or conmand security check has failed

NOTFND condi ti on

means that there is no record in the file with the key specified in
the RIDFLD, paranmeter on a READ, READNEXT, STARTBR, or DELETE
command. (4) NOTFND may result from a user error, may be expected by
the program or may indicate an error in the programlogic. |In our
exanpl e application, we provide code to handle all three of these
situations.

I'n program ACCT01, when we check to see if the requested account
record is on file, we expect NOTFND if the request is to add a record
However, it shows a user error (in the account nunmber) if it happens
on any other type of request. For both these cases, we need to
provi de recovery code. On the other hand, by the time we get to
program ACCT02, we should have removed all the possibilities for
getting a "not found" response on a read. So its occurrence here
woul d signal an error in our logic, to be handled like any other
unexpected error

NOTOPEN

SYSI

(4)

occurs if:

O The requested file is CLOSED and UNENABLED. The CLOSED, UNENABLED
state is reached after a close request has been received against
an OPEN ENABLED file and the file is no longer in use

O The requested file is still open and in use by other requests, but
a close request against the file has been received. Existing
users are allowed to conplete.

This condition can occur only during the execution of the follow ng
commuands:

READ

VWRI TE

The first command in a WRI TE MASSI NSERT sequence
DELETE

The first command in a DELETE GENERI C sequence
STARTBR

OOooOooOooao

Ot her conmands cannot raise this condition because they are part of an
active request.

This condition does not occur if the request is made to either a
CLOSED, ENABLED file or a CLOSED, DISABLED file. In the first case
the file is opened as part of executing the request. In the second
case, the DI SABLED condition is raised.

This condition nmay al so occur when a file control conmmand refers to a
file defined as REMOTE, where the renmpte systemis a release of CICS
earlier than 1.7. The condition can then occur in response to any
file control command.

As you have probably gathered fromthis description, NOTOPEN usually
results from an operations problem and you may want to notify the
operations staff of the problem or send a nessage to the user to do
so

DERR

means that the SYSID option specifies either a name that is not
defined in the intersystemtable or a systemto which the link is
cl osed.

It is possible to raise NOTFND on a READNEXT conmmand, but

© Copyright IBM Corp. 1984, 1991
343-3

CICS Application Programming Primer
Errors on file commands

only in connection with skip sequential processing--and
that's beyond the scope of the Priner.

© Copyright IBM Corp. 1984, 1991
343-4

CICS Application Programming Primer
Other file services

3.4.4 Oher file services

Before leaving the topic of file commands, we'll |ist sone of the other
facilities that are available. You can find guidance information on using
file control in the CICS/ESA Application Progranm ng Guide , and a full
list of commands, options, and exceptional conditions in the ClICS/ ESA
Application Programm ng Reference.

O You can use relative-record VSAM files (RRDS) as well as key-sequence
files (KSDS), and you can access a KSDS by relative byte address (RBA)
instead of a key.

] You can use VSAM files with alternate indexes

O You can use BDAM fil es

O You can specify a partial generic) key for a VSAM KSDS. The effect
is simlar, but not identical, to what we did in the browse exanple,
where we used a full-key filled out with spaces and | owvalues in
combi nation with the GTEQ opti on.

O You can release a record that you've read for update if you decide no
to update after all. The UNLOCK conmand is the neans of doing this.

O You can access records without moving theminto your program by usin
the SET option on the READ conmmand.

O You can delete a whole block of adjacent records in a VSAMfile with
single command (using the "generic delete" option).

O You can insert a whole block of records at once into a VSAMfil
("mss insert" option).

O You al so can use VSAM entry-sequenced data sets (ESDS)

ESDS i s another type of sequentially organized data for which support is
provided in CICS (the first was browsing). Two other forns of sequential
support are also available, but they aren't considered to be part of
CICS's file services. One of these is the extrapartition transient data
facility, which allows you to read or wite SAMfiles. |n addition, the
intrapartition transient data and tenporary storage facilities provide a
means for reading and witing data in queues, providing another form of
sequential support. See "Saving data and comuni cati ng between
transactions" in topic 3.5.

© Copyright IBM Corp. 1984, 1991
344-1

CICS Application Programming Primer
Saving data and communicating between transactions

3.5 Saving data and communi cati ng between transactions

Subt opi cs

3.5.1 The need for scratchpad and queuing facilities
3.5.2 Tenporary storage

3.5.3 Transient data

© Copyright IBM Corp. 1984, 1991
35-1

CICS Application Programming Primer
The need for scratchpad and queuing facilities

3.5.1 The need for scratchpad and queuing facilities

Most of the sequential file facilities we mentioned in the previous topic
are provi ded because we need to save data fromthe execution of one
transaction, passing it on to another that occurs later. W' ve already
seen two instances of this requirenent in our exanple application.

The first resulted from our decision to use pseudoconversati onal
transactions; we need to save data fromone interaction with the term nal
to the next, even though no task exists for that term nal for nost of the
intervening time. For this we need sonme sort of scratchpad facility.

The second requirenent came fromour need to |log the changes to the
account file. Here we require some sort of queuing facility: a way to add
items to a list (one in each update transaction) and read themlater (in
the log-print transaction).

There are several different scratchpad areas in CICS that you can use to
transfer and save data, within or between transactions. One of themis
tenmporary storage, which we'll cover in a nonent. Others are listed

bel ow. The CI CS/ ESA Application Programm ng Reference gives you a
conplete Iist of the conmands you can use to get access to these areas.

O A Communi cation Area or COMAREA. This is an area used for passing
data both between progranms within a transaction and between
transactions at a given termnal. W'Il describe it in connection
with the program control commands in "Programcontrol" in topic 3.6.
The COMMAREA is the recommended scratchpad area.

It's the COMMAREA that offers an alternative solution to our double
updating problem For exanple, it would be perfectly feasible for
ACCTO1 to pass the contents of the account file record over to ACCT02
in the COMMAREA. ACCT02 could then re-retrieve the account record for
update and conpare it with the version passed in COMWAREA. Any

di fference would show that sone other task had changed the account
record.

Al t hough this solution may be easier to code, it isn't as good from
the user's point of view. You see, with this schene, we don't find
out about any conflict over the record until we're ready to update it.
Unfortunately, that means we then have to tell one user that his or
her update cannot be nade, but we can't tell themuntil they've keyed
in all the changed data.

O The Common Work Area (known as the CWA). Any transaction can access
the CWA, and since there's only one CWA for the whole system the
format and use of this area nust be agreed upon by all transactions in
all applications that use it.

O The Transaction Work Area (TWA). The TWA exists only for the duration
of a transaction. Consequently, you can use it to pass data anong
prograns executed in the same transaction (like COVMMAREA), but not
between transactions (unlike COMWAREA). The TWA isn't commonly used
in command | evel prograns.

© Copyright IBM Corp. 1984, 1991
351-1

CICS Application Programming Primer
Temporary storage

3.5.2 Tenporary storage

CICS provides two queuing facilities: tenporary storage and transient

data. The follow ng paragraphs tell you how to use tenporary storage

both for queuing and as a scratchpad. Later, in "Transient data" in

topic 3.5.3, we give a brief description of transient data, outline the

di fferences between the two facilities, and suggest when you mi ght use one
or the other.

Tenporary storage is just a sequential file; a VSAM data set on a disk, or
an area of mmin storage

The CICS tenporary storage facilities allow a task to create a queue of
items, stored under a name selected by the task. This queue, which you
can think of as a mniature sequential file, exists until sonme task
deletes it. The task that deletes it isn't usually the sane task that
created it, although of course it could be. The queue can hold any number
of items (fromjust one to 32767) and any nunber of different tasks can
add to it, read it, or change the contents of itenms in it.

When there is just one itemin a queue, we think of this facility as a
scrat chpad; when there is nore than one, we think of it as a queuing
facility. The items can be of alnobst any |length, and they can be of
different lengths for the same queue. |f you are using the queue as a
temporary sequential file, you can think of the itenms in it as records.

Subt opi cs

5.2 Addi ng to, and creating, a tenporary storage queue
Replacing itens in a tenporary storage queue
Readi ng tenporary storage queues

Del eting tenporary storage queues

Nanmi ng tenporary storage queues

Using tenmporary storage in the exanple application
Errors on tenporary storage conmands

W wwwe e o

o oo oaoaa

N DN DNDNDN
~N o O WN P

© Copyright IBM Corp. 1984, 1991
352-1

CICS Application Programming Primer
Adding to, and creating, a temporary storage queue

3.5.2.1 Adding to, and creating, a tenporary storage queue

The command to add one itemto an existing tenporary storage queue, or to
create a brand new queue with one itemin it, looks like this:

EXEC CI CS WRI TEQ TS QUEUE(gnane) FROMrecarea)

LENGTH(| ength) option option ... END- EXEC.
T N N NS +
gname

is the name of the queue to which an itemis to be added. |If there is
no queue with the name you specify, CICS will create one, with the

itemyou specified as the first (and only) itemin the queue. Queue
names are up to eight characters long. CICS inposes no restrictions
on what nanes nay be used, but there are sone things to be considered
in choosing names, as we will point out later. You should put this
name in quotes if it is aliteral.

recarea
is the name of the data area containing the itemto be added.

I ength

is the length of that item (record). As in the file commands, |length
is given as a halfword binary value ("PIC S9(4) COW").

option
may be any of the follow ng:

MAI N
causes the itemto be witten to an area of main storage rather

than to disk. Only use this option for queues of small size and
very short lifetines.

AUXI LI ARY
is the opposite of MAIN and causes the itemto be witten to a
speci al VSAM data set on disk. This is the default (you get it if
you specify AUXILIARY or if you fail to specify MAIN) and is what
you should use in npbst circunstances.

| TEM i t ermo)
causes CICS to feed back the nunber of itenms held in the queue
after conpletion of the command. This number is placed in the
"itemo" data area, and you can check the contents after issuing
the command. Like the length, the item nunber is always a
hal fword binary val ue.

The MAIN or AUXI LI ARY option is effective only on the initial wite that
creates a new queue because a single tenporary storage queue cannot be
split between main storage and auxiliary storage. It is ignored on
subsequent writes.

© Copyright IBM Corp. 1984, 1991
3521-1

CICS Application Programming Primer
Replacing items in a temporary storage queue

3.5.2.2 Replacing itens in a tenporary storage queue

Besi des adding itens to a queue, you can also replace any itemin an
exi sting queue by specifying the REWRI TE option. The command:

EXEC CI CS WRI TEQ TS QUEUE(gnane) FROMrecarea)
LENGTH(| ength) 1 TEMitemo) REWRI TE END- EXEC.

repl aces the item whose nunber is stored in the "itemo" data area.
Notice that the function of the ITEMoption is quite different fromits
function when you write a newitem On a REWRITE, it is required, and
passes information fromyour programto CICS. When you are addi ng new
items to a queue, it is optional, and is used to return information from
CICS to your program The other paraneters have the same meani ngs as
above.

© Copyright IBM Corp. 1984, 1991
3522-1

CICS Application Programming Primer
Reading temporary storage queues

3.5.2.3 Reading tenporary storage queues

To read an item from a tenporary storage queue, you use:

EXEC CI CS READQ TS QUEUE(gnane) | NTQ(recarea)
LENGTH(| engt h) opti on END- EXEC.

gname
is the nane of the queue you want to read. Put qgname in quotes if it
is aliteral.

recarea
is the nane of the data area into which you want to read the item

| ength
is the name of a data area (defined as a binary halfword) with two
functions:

1. Before issuing the command, you place in this area the maxi mum

Il ength of record that the programwill accept (that is, the length
of "recarea"), so that storage overlay will not occur if you read
an unexpectedly long record. |If the record is longer than this

length, CICS will truncate it to this size and also turn on the
LENGERR condi ti on (about which nmore later).

2. CICs also returns the true length of the record (before any
truncation) in this area at the conpletion of the command.

option
may be either of two choices to indicate which record you want:

| TEM i t ermo)
indicates that the nunmber of the itemto be read is stored at
"itemo" (in halfword binary form.

NEXT
means that the next itemon the queue is to be read. The first
time a READQ TS NEXT is issued for a queue by any transaction, the
first itemis provided. The next tine this command is issued, by
any transaction, the second itemis provided, and so on.
Mor eover, the use of the | TEM option by any transaction resets
what CICS considers the "next" itemto the one follow ng that
specified in the I TEM option. Therefore, if nore than one
transaction can be reading a single queue, you nmay want to use the
| TEM option to ensure that you read the intended item NEXT is
the default, if you do not indicate either NEXT or |TEM

You can read tenporary storage queues, wholly or in part, any nunber of
times. So, reading the queue does not affect the contents of the queue.

© Copyright IBM Corp. 1984, 1991
3523-1

CICS Application Programming Primer
Deleting temporary storage queues

3.5.2.4 Deleting tenporary storage queues

Once a tenporary storage queue has been created, it stays in existence

until explicitly deleted by sone transaction. The command to delete a
queue is:

E S I T N o, +
I 1
| 1
' EXEC CI CS DELETEQ TS QUEUE(gnane) END- EXEC. '
i i
L R T +

where "qgname" has the same neaning as on a READQ or WRI TEQ conmand.

Notice that you cannot delete individual items froma tenporary storage
queue; you have to delete the whol e queue.

© Copyright IBM Corp. 1984, 1991
3524-1

CICS Application Programming Primer
Naming temporary storage queues

3.5.2.5 Nanming tenporary storage queues

In witing any application that uses tenporary storage, you should choose
your queue names with care. First of all, you should follow a convention
for constructing names to ensure that unrelated transacti ons don't

i nadvertently use the same queue name. For this reason, many
installations insist that all queue names begin with characters that
identify the application involved. Usually two to four characters are
reserved for this purpose, depending on the installation. |In our exanple,
for instance, we start all our tenporary storage queue names with the
letters AC.

Queue nanmes in CICS also provide a nmeans of random access to scratchpad
information. |In our exanple, we're interested in keeping information
about account nunmbers in a scratchpad area. |If we include the account
nunber in the queue name, we can read the scratchpad information
concerning that account number directly, w thout any need to search the
scrat chpad.

Anot her exanpl e of using the queue name as an index occurs when you store
data between transactions for a particular termnal. |In this case, the
first of two transactions stores the data to be passed in a queue whose
name is formed fromthe term nal name plus some constant. The |ast four
letters of the queue name are nost often used for the term nal identifier.
Then the second transaction can find the data for its termnal directly,
by constructing the queue nane fromthe name of its own input term nal

pl us the sanme constant.

© Copyright IBM Corp. 1984, 1991
3525-1

CICS Application Programming Primer
Using temporary storage in the example application

3.5.2.6 Using tenporary storage in the exanple application

Let's see how we'll use tenporary storage in the exanple application for
our scratchpad requirements. |In program ACCT01, we need to find out
whet her any other task is currently updating the account record that our
term nal has asked to update.

We want to observe the house rule that all tenporary storage for this
particul ar application should start with the letters "AC', and at the sane
time take advantage of the indexing aspect of tenporary storage nanes; so
we'll do as follows: we'll have one tenporary storage queue for each
account nunmber in use. The name of the queue will be "AC0" followed by
the account nunber, defined as follows in working storage. (The 0 nerely
fills out the queue nanme to the allowed eight characters.)

02 USE-Q D.
04 USE-Q D1 PI C X(3) VALUE ' ACO'.
04 USE-Q D2 PI C X(5).

The queue will contain just one item which will tell what termnal is
updating the record for that account nunber, and the date and tine at
which it started doing so. The definition of this record, also in working
storage, wll be:

02 USE- REC.
04 USE- TERM PI C X(4) VALUE SPACES.
04 USE-TI ME PIC S9(7) COWP-3.
04 USE- DATE PIC S9(7) COWP-3.

We include the date and time along with the termnal nane in the
scratchpad entry, so that we can find out whether the account nunber is
currently in use, or whether the scratchpad record is there because of an
earlier update attenpt that wasn't conpleted properly. See
"Pseudoconversational or not?" in topic 2.7 for a discussion of this
possibility.

The first test to check whether the record is in use, then, is:

MOVE ACCTC TO USE- Ql D2.
EXEC Cl CS READQ TS QUEUE(USE- QI D) | NTO(USE- REC)
| TEM USE- | TEM LENGTH(USE- LNG) RESP(RESPONSE) END- EXEC.

Here USE-1 TEM and USE- LNG are defined in working storage and have initial
val ues of 1 and 12, respectively.

The response we're hoping for on this command is that the read failed
because no such queue exists. This will raise the Q DERR exception
condition. If we do not get this response, we'll have to |ook at the
scratchpad entry that we read to see whether this is a recent entry or an
old, expired one. To do this we'll sinply conpare the time and date in
the scratchpad entry with the tinme and date when the current transaction
started (information that is available in the EIB).

© Copyright IBM Corp. 1984, 1991
3526-1

CICS Application Programming Primer
Using temporary storage in the example application
If we find out that the account number is not in use, then the next step
istoclaimit for the termnal that entered the input. |If there is no
scratchpad record for this nunber, then we need:

MOVE EI BTRM D TO USE- TERM MOVE EI BTI ME TO USE- TI ME.

MOVE El BDATE TO USE- DATE.

EXEC CI CS WRI TEQ TS QUEUE(USE- Q D) FROM USE- REC)
LENGTH(12) END- EXEC.

If, on the other hand, there was an old, expired record in tenporary
storage for this number, then the code required is:

MOVE EI BTRM D TO USE- TERM MOVE EI BTI ME TO USE- Tl ME.

MOVE EI BDATE TO USE- DATE.

EXEC CI CS WRI TEQ TS QUEUE(USE- Qf D) FROM USE- REC)
LENGTH(12) | TEM USE-|I TEM REWRI TE END- EXEC.

Here again USE-ITEM is defined to be a halfword binary value of 1, because
we want to rewite the first (and presumably only) itemin the queue.

This sane scratchpad entry gets erased in program ACCT02 when we've
finished updating, with the command:

m
X
m
(@}
o)
)
m
[
m
m
Vo)
_‘
wn
m
Cc
m
C
wn
m
Q
g
m
Z
o}
m
X
m
0

where the data area USE-Q D has been defined and set up in the same way as
it was in program ACCTOL.

© Copyright IBM Corp. 1984, 1991
35.26-2

CICS Application Programming Primer
Errors on temporary storage commands

3.5.2.7 Errors on tenporary storage conmmands

You can experience six different types of error on the tenporary storage
commands that we've descri bed:

I NVREQ
means that the record length you specified is invalid (zero or
negative). This is alnost always the result of a problemin the code.
| CERR

means the sanme thing on a tenporary storage conmand as it does on a
file command. It neans that there is an unrecoverabl e input/output
error, in this case on the tenporary storage file, a VSAM
entry-sequenced data set (ESDS).

| SCI NVREQ
means that the renpte systemindicates a failure that does not
correspond to a known condition.

| TEMERR
means that you specified an item nunber that does not exist. This can
happen on either a READQ TS command or a WRITEQ TS with REWRI TE
speci fied. |TEMERR may be a condition the program expects, such as
when a programreads until it exhausts a queue, or it may result from
an error in the program | ogic.

LENGERR
occurs when you read an itemthat is longer than the maxi mum specified
in the LENGTH parameter. |t usually means a problemin the program
| ogi c.

NOSPACE

means that there isn't enough space left in the tenporary storage data
set, or in main storage (if MAIN is specified) for the record you just
wrote. Unlike what happens with nost other error conditions, CICS
does not term nate your task when this occurs. |f you provide code to
handl e the possibility, CICS sends control there, as it does for any
unusual condition. |If you don't, CICS sinply suspends the task unti
some other task in the systemrel eases enough tenporary storage space
for your record to fit.

NOTAUTH
means that a resource or command security check has failed. There is
a conplete list of reasons for such failures in the section on NOTAUTH
in the CICS/ESA Application Programm ng Reference.

Q DERR
means that the queue that you' ve named in a READQ conmmand, or in a
WRI TEQ wi th REWRI TE specified, does not exist. |t might indicate a

programerror, or it mght be a condition expected by the program
When we read tenmporary storage to find out whether a particular
account number is in use, for exanple, Q DERR is the expected response
and i ndicates that the account nunber in question is not in use.

SYSI DERR
means that the SYSID option specifies either a name which is not
defined in the intersystemtable, or a systemto which the link is
cl osed.

© Copyright IBM Corp. 1984, 1991
3527-1

CICS Application Programming Primer
Transient data

3.5.3 Transient data

There is another facility in CICS, called transient data, one form of
which is very simlar to tenporary storage. |t comes in two
flavors--intrapartition and extrapartition--and it is intrapartition
transient data that is so much |ike tenporary storage. Both tenporary
storage and transient data allow you to wite and read queues of data
items, which are often essentially small sequential files. Like tenporary
storage queues, intrapartition transient data queues are kept in a single
VSAM dat a set managed by CICS.

There are sonme inportant differences, however:

O You nust define the name and certain other characteristics of ever
transi ent data queue to CICS in the Destination Control Table (DCT).
This neans that the names nust be known before CICS is brought up, so
you cannot just create a transient data queue with an arbitrary nane,
as we did for tenporary storage in the exanple.

O You cannot modify an itemin a transient data queue; you can only ad
new itenms to the end of the queue. The Wite Transient Data command
has not hing corresponding to the | TEM opti on.

O Transi ent data queues nust be read sequentially. That is, the Rea
Transi ent Data command has not hing corresponding to the | TEM opti on.

Furthernore, a read operation on transient data is a destructive read.
That is, once a transaction has read an item on the queue, that item
cannot be read again by that transaction or by any other.

O Transient data cones with a very useful mechani sm known as a trigger.
You can request, in the DCT, that CICS initiate a transacti on whenever
the nunber of items in a transient data queue reaches a certain val ue.
The DCT entry for the queue tells what this critical number of items
is (the "trigger level"), and the name of the transaction to be
initiated. You can also specify that a particular term nal nust be
available to this transaction. (You do this sinply by giving the sanme
name to both the termnal and the queue.) In this case, the
transaction doesn't start until both the trigger level is reached and
the termnal in question is avail able.

This can be very useful for printing, as you'll soon see.

O Transi ent data queues are always witten to a file; there is n
counterpart to the MAIN option that is used in tenporary storage
commands.

O The recovery options for transient data are nore varied

Extrapartition transient data is the neans by which CICS supports standard
sequential (SAM files. The conmands used for extrapartition queues are
the same as for intrapartition queues, and each queue requires a DCT
entry. In this case, however, a read or wite operation is actually a
read or wite to a sequential file, and each queue is a file. You can
either read or wite an extrapartition queue, but not both. The trigger
mechani sm and the recovery options nentioned above do not apply to
extrapartition queues.

In the exanple application, we could have used transient data instead of
tenmporary storage for our |og of changes, and it would have been a natural
choice. |If we had chosen an intrapartition queue, then we'd still need a
transaction to print the log (very simlar to the one we defined using
temporary storage). We might even have specified in the DCT that we

want ed that transaction started every time the nunber of items |ogged (the
| ength of the queue) reached 100, or sone other limt.

© Copyright IBM Corp. 1984, 1991
353-1

CICS Application Programming Primer
Transient data

Alternatively, we m ght have selected an extrapartition queue. In this
case we'd be creating a SAMfile, which could be printed by a batch
program In fact, if you need to use or create SAMfiles in a CICS

application, you nust use transient data.

On the other hand, transient data isn't appropriate for our scratchpad use
of tenporary storage. Because all the queue nanes have to be defined

bef orehand, we could not use the trick of including the account nunber in
the name to get direct access to the scratchpad item we want. Moreover,
the fact that an item on the queue can be read only once woul d have caused
us trouble.

© Copyright IBM Corp. 1984, 1991
353-2

CICS Application Programming Primer
Program control
3.6 Program control
As we explained earlier, a transaction (task) may execute several
in the course of conpleting its work.

Subt opi cs

6.1 Associating prograns and transactions

Commands for passing program control

Passing control and data between prograns and transactions
Errors on the program control conmands

Abendi ng a transaction

Ot her program control conmands

oo o oo
o b wN

© Copyright IBM Corp. 1984, 1991
36-1

progr ans

CICS Application Programming Primer
Associating programs and transactions

3.6.1 Associating progranms and transactions

The installed programdefinition contains one entry for every program used
by any application in the CICS system Each entry holds, anmong ot her
things, three particularly inmportant pieces of information:

1. The language in which the programis witten, which CICS needs to know
in order to set up its linkages and control blocks properly

2. How many tasks are using the program at the nonent

3. \Where the programis (in muin storage and/or on disk).

In addition to the executable progranms, anything that CICS nust load in
order to respond to a command needs an entry in this installed program
definition. For exanple, a physical map.

The installed transaction definition has an entry for every transaction
identifier in the system (using "transaction" in the CICS sense of the
word). The inportant information kept about each transaction is the
transaction identifier and the nane of the first programto be executed on
behal f of the transaction.

You can see how these two sets of definitions work in concert:

1. The user types in a transaction identifier at the termnal (or the
previous transaction determned it).

2. CICS |looks up this identifier in the list of installed program
definitions.

3. This tells CICS which programto invoke first.

4. CICS | ooks up this programin the list of installed transaction
definitions, finds out where it is, and loads it if it isn't already
in main storage.

5. CICS builds the control blocks necessary for this particular
conbi nation of transaction and termnal, using information from both
sets of definitions. For prograns in command-|level COBOL, |ike ours,
this includes making a private copy of working storage for this
particul ar execution of the program

6. CICS passes control to the program which begins running using the
control blocks for this termnal. This program may pass control to
any other programin the list of installed programdefinitions, if
necessary, in the course of conpleting the transaction.

© Copyright IBM Corp. 1984, 1991
36.1-1

CICS Application Programming Primer
Commands for passing program control

3.6.2 Commands for passing program control

There are two CICS commands for passing control from one programto
another. One is the LINK conmand, which is simlar to a CALL statement in
COBOL. The other is the XCTL (transfer control) command, which has no
COBOL counterpart. When one programlinks to another, the first program
stays in main storage. Wen the second (linked-to) program finishes and
gives up control, the first programresunes at the point after the LINK.
The linked-to programis considered to be operating at one |ogical |evel

| ower than the program that does the Iinking.

R e I e +
| 1
I 1
I Level +-----cmmmon + !
i 0 | dcs i i
jacsi p<ot :
! oo + 1 i
| (1) | (M1 |
| I I I
1 1 I 1
! AR L + :
i Level| Program1 R i
g 1 | LINK . H
g i 1 .. RETURN | <-----mmmmmmmma oo + '
! oo e + (6) | i
| (2) | i i
| 1 I |
I 1 1 I
! B TS | + B T + !
| Level| Program 2 ' " Program 3 +--+--+ '
' 2 } XCTL----------- +----> LINK . '
i AR +(3) | I ... RETURN |<-+ !
| S - + ! !
| (4) | (5) | i
I 1 1 I
1 I I 1
! Foe o Vem e . !
. Level i Program 4 +--+4--+ :
P03 i b i
' | ... RETURN | '
! B + !
| 1
I 1
B +

Figure 49. Transferring control between progranms (normal returns)

In contrast, when one programtransfers control to another, the first
programis considered ternm nated, and the second program operates at the
same |evel as the first. When the second program finishes, control is
returned not to the first program but to whatever programlast issued a
LI NK command.

Sonme people like to think of CICS itself as the highest programlevel in
this process, with the first programin the transaction as the next |evel
down, and so on. If you look at it fromthis point of view, CICS links to
the programnamed in the list of installed transaction definitions when it
initiates the transaction. \Wen the transaction is conplete, this program
(or another one operating at the same level) returns control to the next

hi gher 1level, which happens to be CICS itself. Figure 49 may hel p.

Subt opi cs

3.6.2.1 The LI NK command

2.2 The XCTL command

. 2.3 The RETURN conmand

.2.4 The COBOL CALL statement
2.5 Subroutines revisited

000

© Copyright IBM Corp. 1984, 1991
362-1

CICS Application Programming Primer
The LINK command

3.6.2.1 The LINK conmand

The LINK conmand | ooks |ike this:

e

i

' EXEC CI CS LI NK PROGRAM pgmmane)

' COMMAREA (commarea) LENGTH(! ength) END- EXEC.

i

o m e m e mm ==

pgmane
is the name of the programto which you wish to link. |If the nane is
aliteral, enclose it in quotes. Program names can be up to eight
characters |ong.

commar ea
is an optional parameter. It is the name of the area containing the
data to be passed and/or the area to which results are to be returned.
You use it only if you want to pass information to or receive
information fromthe program being |inked to.

I engt h

is the length of "commarea." This parameter is required only if
COMMAREA is present. Otherwise don't use it. Like the length
paraneter in other commands, it nust be a hal fword binary val ue.

© Copyright IBM Corp. 1984, 1991
36.21-1

CICS Application Programming Primer
The XCTL command

3.6.2.2 The XCTL conmmand

The XCTL command to transfer control is identical to the LINK command
except for the command verb itself:

EXEC CI CS XCTL PROGRAM pgmmane)
COMMAREA(conmar ea) LENGTH(| engt h) END- EXEC.

© Copyright IBM Corp. 1984, 1991
3.6.22-1

CICS Application Programming Primer
The RETURN command

3.6.2.3 The RETURN command

The command to return control to the next higher level within a
transaction is sinply:

m
P
m
o]
Q
b
m
_‘
C
pe
Z
m
Z
O
U
e
m
0

When the program at the highest level for the transaction (Level 1 in the
di agram) returns control to CICS, however, there are two additional
options that you can specify:

1. You can say what transaction is to be executed when the next input
comes fromthe sane terminal. (This is how we get into
pseudoconversati onal node.)

2. You can specify data that's to be passed on to that next transaction.

In this case the RETURN conmand has a slightly different form

EXEC CI CS RETURN TRANSI D(nexti d)
COMVAREA(commar ea) LENGTH(I engt h) END- EXEC.

nextid
is the identifier of the next transaction (next transid) to be
executed fromthe term nal associated with the current transaction.
This next transaction is the one that gets executed the next time the
term nal sends input, regardless of any transaction identifier in that
input. (Here's a way of overriding any user's input.) The identifier
shoul d be enclosed in quotes if it is aliteral. TRANSID is an
optional paraneter.

commar ea
is the nane of the data area containing the data to be passed to the
next transaction. COMMAREA is also optional.

| ength
is the length of "commarea." LENGTH is required if COMMAREA is
present, and nust not be there if COMMAREA was not specified.

© Copyright IBM Corp. 1984, 1991
3.6.23-1

CICS Application Programming Primer
The COBOL CALL statement

3.6.2.4 The COBOL CALL statenent

As well as passing control to other prograns by nmeans of LINK and XCTL
commands, a CICS COBOL program can invoke another programw th a COBOL
CALL statenment. Although there's sonewhat | ess system overhead (in other
words, a shorter path length) with this nethod, there are sone

consi derations that may count against it. For exanple:

O A CALLed programremains in its last-used state after it return
control, so a second CALL finds the programin this state. LINK and
XCTL commands, on the other hand, always find the "new' programin its
initial state.

O Wth static calls, you nust link-edit the calling and called program
together and present themto CICS as a single unit, with one name and
one entry in the list of installed programdefinitions. This has two
consequences:

- It may result in a module that is quite |large
- It prevents two progranms that call the same program from sharing a
copy of the called program

© Copyright IBM Corp. 1984, 1991
3.6.24-1

CICS Application Programming Primer
Subroutines revisited

3.6.2.5 Subroutines revisited

Now, the answer to that problem we met earlier--whether and how to break
of f a substantial routine. For single-task efficiency, generally in-line
code is best, PERFORM next, straight CALL third, XCTL next, and LINK | ast.
However, any of the first three choices may make for a very long | oad
unit, and that can inpact system behavior and response to other users.

Al ways use XCTL if it will do, of course, rather than LINK. That's just a
program |l ogi c i ssue; you either need control back or you don't. In our
exanple, as you'll see, we've broken our own rule and used a LINK (rather
than an XCTL) to the error-handling program However, we do have an
excuse ready.... See "Errors within the exanple application" in

topic 3.8.3.

The probability of the code getting used is another issue. |If you have a

Il ong conplex routine for calculating withholding tax for veterans in a
payroll system but you use it only if salary or dependents change and you
have hardly any veterans, then by all neans put it in a separate routine
and LINK to it.

Finally, how about breaking code into two parts? For exanple, let's take

a standard "edit and update if OK" nodule, |ike ACCTO2 in our application.
Figure 50 shows the outline |ogic.

PI CTURE 15

Figure 50. Qutline logic of a standard "edit and update" nodul e.

If the edit and update logic are short, then it makes sense for the whole
thing to be one nodule. |f both are rather long, on the other hand,
there's a natural break after the edit has been declared okay; the first
program does up to point "A" and then there's an XCTL to a second program

© Copyright IBM Corp. 1984, 1991
3.6.25-1

CICS Application Programming Primer
Passing control and data between programs and transactions

3.6.3 Passing control and data between progranms and transactions

Now t hat we've explai ned how to pass data from one transaction to another,
you may be wondering how the receiving program accesses this data. To
show this, let's code a few program control commands for the exanple
application.

In several of the prograns, when we nmeet an error from which we cannot
recover, we transfer control to the general -purpose error program ACCTO04.

We pass three itenms of information to ACCT04:

1. The name of the program that passed control (and where the error was
det ect ed)

2. The function that failed

3. The return code fromthe command that failed.

Figure 51 shows how this information |ooks in program ACCTO1l's worKking
st orage:

02 COVMVAREA- FOR- ACCT04.

I 1
I 1
| |
! 04 ERR- PGRM D PIC X(8) VALUE ' ACCTO1'. !
! 04 ERR-FN PIC X !
! 04 ERR- RCODE PIC X !
! 04 ERR- COMVAND PI C XX. !
! 04 ERR- RESPONSE PI C 99. !
| |
o +

Figure 51. Passing information to the error program

The code in ACCTOl1l to pass control to ACCTO04 is:

EXEC CI CS LI NK PROGRAM ' ACCT04')
COMVAREA(COMVAREA- FOR- ACCT04) LENGTH(14) END- EXEC.

Not es:

1. VS COBOL Il avoids the need for the progranmer to compute LENGTH.

2. We'Il discuss the use of LINK rather than XCTL in "Errors within the
exanpl e application" in topic 3.8.3.

The program receiving control, ACCT04 in this case, defines this same area
inits Linkage Section, as shown in Figure 52.

LI NKAGE SECTI ON.
01 DFHCOVVAREA.

i i
i i
i i
! 02 ERR-PGRM D PIC X(8). !
! 02 ERR- CODE. !
! 04 ERR FN PIC X. !
! 04 ERR- RCODE PIC X !
! 02 ERR- COMMAND PI C XX. !
! 02 ERR- RESPONSE PIC 99. !
i i
ot +

Figure 52. Receiving information in the error program

© Copyright IBM Corp. 1984, 1991
363-1

CICS Application Programming Primer
Passing control and data between programs and transactions

This area must be the first 01 level in the Linkage Section, and you nust
call it DFHCOMVAREA as shown in the exanple. You can then use the
contents directly, as follows:

.
m
3
T
9
=
o
o
o
:

Subt opi cs
3.6.3.1 Communi cating between transactions in the exanple application

© Copyright IBM Corp. 1984, 1991
3.63-2

CICS Application Programming Primer
Communicating between transactions in the example application

3.6.3.1 Conmuni cating between transactions in the exanple application

Apart fromthe LINK to our error-handling program ACCT04, which is
sonmet hi ng of a special case, there's no instance of one programlinking to
anot her in the exanple application, and so no instance of return to a

hi gher level within the transaction either.

However, there are several different types of return to CICS. The

si mpl est occurs in program ACCTO1l, after the user has indicated a wish to
exit fromthe application. No next transid is set, and no data is passed
forward to the next transaction. The return command is just:

m
<
m
o]
Q
0
»
sl
m
_|
c
sl
4
m
z
v}
m
<
m
0

In program ACCT00, in contrast, we need to indicate that the next
transaction to be executed fromthe sanme termnal is ACO0l, so the RETURN
command is witten:

m
s
m
o}
(@]
2
m
_‘
c
T
z
2
Z
%)
2
8
o
R
m
z
9]
m
s
m
(9]

Later, in program ACCTO1l, after we conplete the initial processing of an
updat e request, we need to show that the next transaction to be executed
is ACO2. Not only that, but we need to pass data to it as well. The data
is the request-type code and the account nunber that came in on the
original map. The conmunications area in Wrking-Storage where we've
stored this information | ooks |ike this:

Ao m e m o ee e eeeeiaao-- +
I 1
I 1
! 04 | N-REQ !
! 06 REQC PI C X VALUE SPACES. !
! 06 ACCTC PI C X(5) VALUE SPACES. !
! 06 PRTRC PI C X(4) VALUE SPACES. !
i i
ot +

EXEC ClI CS RETURN TRANSI D(' AC02')
COMMAREA(| N- REQ) LENGTH(6) END- EXEC.

When program ACCTO02 is invoked, it finds the data passed to it in the same
way as a programto which control is passed by means of an XCTL or LINK
command. That is, the area is defined in the first 01 level in the

Li nkage Section, which is naned DFHCOMMAREA and has the same format as it
did in the passing program (W happened to use the same names in these
programs for the itenms passed, but that, of course, isn't required.) So
program ACCTO02 contains the follow ng:

LI NKAGE SECTI ON.
01 DFHCOMVAREA.

© Copyright IBM Corp. 1984, 1991
3.631-1

CICS Application Programming Primer
Communicating between transactions in the example application
02 REQC PI C X.
02 ACCTC PI C X(5).

These variables are directly available to the program (the transl ator
generates the code necessary to make this happen).

Incidentally, if you wanted to pass a conmunications area from say,
program 1 to program 3, you can sinply define the area in the |inkage
section of program 2, even though it's not used in that program and pass
it as COMMAREA on the LINK (or XCTL) to program 3.

© Copyright IBM Corp. 1984, 1991
3.6.31-2

3. 6.

CICS Application Programming Primer
Errors on the program control commands

4 Errors on the program control commands

CI CS recogni zes the foll owi ng exceptional conditions on program control
comrands:

| NVREQ

means that one of two things happened. Either (1) you specified
COVMMAREA or LENGTH on a RETURN conmand in a program that was not at
the highest level (that is, a RETURN that would not term nate the
transaction by returning control to CICS), or (2) you specified the
TRANSI D option on a RETURN from a task that had no term nal associated
with it. (There are such tasks; see "Starting another task, and other
time services" in topic 3.7.) In either form |INVREQ usually neans a
progranmm ng error.

LENGERR

means that the length of the data, specified using the RETURN command
with the Iength option, is outside the valid range of 1 to 32763.

NOTAUTH

PGM

means that a resource or command security check has failed. There is
a conplete list of reasons for such failures in the section on NOTAUTH
in the CICS/ESA Application Programm ng Reference.

DERR

means that the program to which control was passed, on a LINK or an
XCTL command, cannot be found in the list of installed program
definitions or isn't in the library, or has been disabled. It
corresponds to FILENOTFOUND on a file command, and has simlar causes.
If it occurs during the testing phase, look for a spelling msmatch;
if it occurs once the system has been put into actual use ("in
production"), have your systems people check the list of installed
program definitions for damage.

© Copyright IBM Corp. 1984, 1991
364-1

CICS Application Programming Primer
Abending a transaction

3.6.5 Abending a transaction

In addition to the normal return sequences that we've described, there is
anot her conmand that you use in abnormal circunstances. This is the ABEND
command. It returns control to CICS directly. Figure 49 showed a normal
return fromprogram4 to program 3, and fromprogram 3 to program 1. |If,
in contrast, an ABEND conmmand had been issued in program4, the picture
woul d then be as shown in Figure 53

R e T +
| 1
| 1
| Level +---------mmmn--- + '
i 0 | dcs i i
i CICs | | AR LR T + 1
! R + i |
| (1) | i i
| 1 I |
| 1 I I
! R O + i i
i Level| Program1 H 1 '
' 1 | LINK ' H |
' ' | ...RETURN | (5) 1 '
! oo + i

i (2) 1 i i
| 1 I |
| 1 I |
! B TS | + B + !
i Level| Program 2 H i Program 3 - '
' 2 } XCTL----------- +----> LINK o '
i R +(3) | i ...RETURN | | !
' B T + '
| (4) | | |
| I I |
| I I |
| T T !
i Level i Program 4 . H
' 3 1 ... ABEND- - - +- - + !
! oo + !
| 1
| 1
R e I e +

Figure 53. Transferring control between prograns (after an abend)

Use the ABEND command when a situation arises that the program cannot
handl e. This may be a condition beyond control of the program such as an
i nput/output error on a file, or it may sinply be a conbi nation of
circunmstances that "should not occur" if the programlogic is correct. In
either case, ABEND is the right command to term nate the transaction. The
format is:

L T T T T +
i i
' EXEC CI CS ABEND ABCODE(abcode) END- EXEC.
| i
T +
abcode
is sinply a four-character code identifying the particul ar ABEND
command. It does two jobs: it tells CICS that you want a dunp of your

transaction, and it identifies the dunp. Enclose it in quotes if it
is aliteral

In addition to returning control to CICS, the ABEND command has anot her

very inmportant property: it causes CICS to back out all of the changes

made by this transaction to recoverable resources (see "Maintaining file
integrity" in topic 2.7.3 if you've forgotten what "back out" neans).

In our exanple application, we use this command at the end of program
ACCT04, where we send control when we've encountered a situation which

© Copyright IBM Corp. 1984, 1991
365-1

CICS Application Programming Primer
Abending a transaction

prevents us from continuing the requested transaction. The code is:

m
<
m
o}
@]
3
>
©
m
Z
S
>
o
o
m
2
Q
m
Z
o
m
<
m
O

Suppose, for exanple, that program ACCT02 successfully adds a new record
to the account file, but meets a "no-space" condition when trying to add
the corresponding new record to the index file. The resulting ABEND
command i ssued in program ACCT04 will:

O Produce a dunp of all the main storage areas related to th
transaction

O Renmove the new record fromthe account file, so that the two files ar
still synchronized with each other, even after the failure

O Return control to CICS

© Copyright IBM Corp. 1984, 1991
3.65-2

CICS Application Programming Primer
Other program control commands

3.6.6 O her program control conmmands

There are two other program control conmands that we'll mention here, but
not cover in detail.

The LOAD command brings a "progranl' (any phase or |load nodule in the list
of installed programdefinitions) into main storage but doesn't give it
control. This is useful for tables of the type that are assenbl ed and
stored in a programlibrary, but that don't contain executable code.

The RELEASE command tells CICS that you've finished using such a
"progran'.

© Copyright IBM Corp. 1984, 1991
366-1

CICS Application Programming Primer

Starting another task, and other time services
3.7 Starting another task, and other time services
CICS allows one transaction (task) to start another one, as we noted in
our discussion about printed output. The usual reason for doing this is
the one that arose in our exanple: the originating task needs access to
some facility it does not own, usually a term nal other than the input
terminal. In our case, we needed a printer to print the | og of account
file changes.

There are sonmetines other reasons as well. You m ght want a task to be
executed at a particular time, or you might want it to run at a different
priority fromthe original task, for instance.

Subt opi cs

3.7.1 Starting another task

.2 Retrieving data passed in the START command

.3 Using the START and RETRI EVE conmands in the exanple application
.4 Errors on the START and RETRI EVE commands

.5 Other time services

N NN~

© Copyright IBM Corp. 1984, 1991
3.7-1

CICS Application Programming Primer
Starting another task

3.7.1 Starting another task

The command to start another task is:

EXEC CI CS START TRANSI D(transid) TERM D(term d)
FROM recarea) LENGTH(I ength) option END- EXEC

o eeeiaaaos +

transid
is the identifier of the transaction that is to be started. This
paraneter is required. If the identifier is aliteral, enclose it in
quot es.

ternmd

is the identifier of the termnal that nust be made available to the
task being started. This parameter is optional, and should only be

specified if the transaction requires a termnal. Again, if it is a
literal, it nmust be enclosed in quotes
You may have to get this name from your systens people. |It's the name

they put in the Term nal Control Table (TCT)

recarea
is the name of the data area that contains data to be passed to the
transaction being started. This parameter is optional

| ength
is the length of the data being passed (that is, the length of
RECAREA), in halfword binary form The LENGTH paranmeter is required
if FROMis present, but should not be present otherw se.

option
can be either INTERVAL or TIME

I NTERVAL(hhmss)
tells CICS to start the transaction in hh hours, nmm nutes and ss
seconds fromthe current tine. The hours may be fromO0 to 99, but
the m nutes and seconds should not exceed 59. To start a task in
40 hours and 10 m nutes, you would wite "I NTERVAL(401000)" in
your START command.

TI ME(hhmss)
tells CICS to start the transaction at a specific time, nanely
"hh:mmss.” Wite the start time in the same format as the
interval, using 24-hour mlitary tine.

Note: Whereas an | NTERVAL al ways specifies a time in the future
(the current time plus the interval specified), the time given in
a TIME paranmeter may be in either the future or the past relative
to the time at which the command is executed. The rules that CICS
uses are as follows:

O If the current time is 060000 (6 a.m) or later, and the TIME
value is less than 6 hours before the current tine, CICS
assumes that you nean a time in the past, and so the
transaction is started as soon as possible, just as if you had
speci fied | NTERVAL(0)

O If the current time is less than 060000, and the expiration
time is less than the current tine, then the TIME is also
considered to be in the past. Note, however, that the TIME
given is never taken to be before m dnight of the current day.

© Copyright IBM Corp. 1984, 1991
3.7.1-1

CICS Application Programming Primer
Starting another task

O Ot herwise, CICS assunes that the time is in the future.

O I f you specify a time with an hours conponent greater than 23,
you are specifying a time on a day follow ng the current one.
That is: a TIME of 250000 neans 1 a.m on the day follow ng
the current one, and 490000 neans 1 a.m on the day after
t hat .

If you don't specify either I NTERVAL or TIME, CICS assunes that
you woul d like | NTERVAL(O), which means right away.

© Copyright IBM Corp. 1984, 1991
3.7.1-2

CICS Application Programming Primer
Retrieving data passed in the START command

3.7.2 Retrieving data passed in the START conmand

If data is passed in the START conmand, the transaction that gets started
uses the RETRIEVE command to get access to this data. The RETRI EVE
command | ooks like this:

EXEC CI CS RETRI EVE | NTO(recarea) LENGTH(I| ength)
END- EXEC.

Notice the difference between this RETRI EVE command and the RECEI VE
command described in "The RECEI VE MAP conmand" in topic 3.3.5.1. Both
commands may be used to get the initial input to a transaction, but they
aren't interchangeable: RECElIVE nust be used in transactions that are
initiated by input froma termnal, and RETRI EVE nust be used in
transactions that were STARTed by another transaction.

recarea
is the name of the data area into which the data is to be pl aced.
Thi s paranmeter is required.

I ength
is the maxi mum |l ength of data that can be read into recarea (that is,
the length of recarea). LENGIH is also required, and nust be a
hal fword binary val ue.

© Copyright IBM Corp. 1984, 1991
3.7.2-1

CICS Application Programming Primer
Using the START and RETRIEVE commands in the example application

3.7.3 Using the START and RETRI EVE commands in the exanple application

In our exanple application, program ACCTOl uses the START conmand when a
user asks for a record to be printed:

EXEC CI CS START TRANSI D(' AC03') FROM ACCTDTLO)
LENGTH(DTL- LNG) TERM D(PRTRC) RESP(RESPONSE) END- EXEC.

This START command tells CICS to start transacti on ACO3 as soon as
possi bl e after the printer whose name is in data area PRTRC is avail able
to be its termnal.

Program ACCTO03, running on behalf of this transaction, in turn issues the
foll owi ng RETRIEVE command to retrieve the data passed from program
ACCTO1:

m
o
m
0
0
by
m
_|
py}
m
<
m
zZ
_‘
Q
>
8
g
_'
[
r
m
]
x
—
®
-
z
Q
m
z
o
m
P
m
o)

ACCTDTLO and ACCTDTLI refer to the symbolic map structure, located in
Wor ki ng- Storage in both prograns. The nmap, of course, contains the data
read by transaction ACOl. This data is to be printed by AC0O3. DTL-LNG is
in the Working-Storage of program ACCT01 and is defined to be

PI C S9(4) COW VALUE +751

whi ch happens to be the length of the synmbolic map area. TS-LNG has the
same definition in the Working-Storage of program ACCT03.

© Copyright IBM Corp. 1984, 1991
3.73-1

CICS Application Programming Primer
Errors on the START and RETRIEVE commands

3.7.4 Errors on the START and RETRI EVE commands

A number of different problenms may arise in connection with the START and
RETRI EVE commands that we've described.

I NVTSREQ
means that the CICS system support for tenporary storage, which is
required for START commmands that specify the FROM option, was not
present when a RETRI EVE conmand was issued. This error is an exanple
of the system application msmatch (category 4) described in "Handling
errors and exceptional conditions" in topic 2.9.2.

I OERR
on a RETRIEVE or START command means exactly what it does on a
tenmporary storage command: an input/output error on the tenporary
storage data set where the data to be passed is stored.

LENGERR
occurs when the length of the data retrieved by a RETRI EVE command
exceeds the value specified in the LENGTH paranmeter for the command.
LENGERR usual Iy means an error in the program | ogic.

NOTFND
on a RETRIEVE comand neans that the requested data could not be found
in temporary storage. |If a task issuing a RETRIEVE conmand was not

started by a START conmand, or if it was started by a START conmand
with no FROM paranmeter (in other words, no data), this condition wll
occur. Again, it usually means a progranmm ng error.

TERM DERR
occurs when the term nal specified in the TERMD paraneter in a START
command cannot be found in the Terminal Control Table. TERMDERR is
l'i ke FILENOTFOUND for files and PGM DERR on Program Control commands.
During the test phase it usually indicates a problemin the program
|l ogic; on a production system it usually means that sonething has
happened to the TCT.

TRANSI DERR
means that the transaction identifier specified in a START conmand
cannot be found in the list of installed transaction definitions.
Li ke TERM DERR, it usually means a programm ng error during the
devel opnent of an application, or table damage if it occurs on a
production system

© Copyright IBM Corp. 1984, 1991
3.74-1

CICS Application Programming Primer
Other time services

3.7.5 Other time services

CI CS provides a number of other tine services, as well as some extra bits
and pieces on the START and RETRI EVE conmands. Anmong other things, a
transaction in execution can:

O Synchronize its operations with those of other tasks. Three differen
commands are provided for this purpose:

- The DELAY command suspends the processing of the issuing task
until some specified tinme or for a specified interval.

- The POST conmmand requests that the issuing task be notified when a
particular interval of tinme has el apsed or when some event has
occurred.

- The WAIT comand suspends the issuing task until sone specified
event occurs.

O Cancel the request issued in a previous START command, or in a POS
command, through the use of the CANCEL conmand.

O Ask for the time and date to be updated in the EIB (through the use o
t he ASKTI ME command) .

O Assign a nane to the data to be passed fromthe originating task t
the started task, through the use of the REQ D option on the START and
RETRI EVE conmmands.

O Queue up nmultiple items of data for a single task to be started
through the use of the QUEUE option on the START command.

We don't use any of these in our exanple application, but at |east you now
know t hey exi st.

© Copyright IBM Corp. 1984, 1991
3.75-1

CICS Application Programming Primer
Errors and exceptional conditions

3.8 Errors and exceptional conditions
Thr oughout the previous sections, we've cited ways in which CICS commands
may produce results other than those you intended (what CICS cheerfully
calls "exceptional conditions"). These are passed back by the CICS Exec
interface programto your application. By |looking at the condition
rai sed, you'll be able to tell what failed, and possibly why it failed

Commands are checked for validity as far as possible by the CICS
translator. |If errors are detected at translate tine the translator

i ssues a suitable diagnostic and gives a return code greater than 4. Such
commands are said to be "syntactically invalid." Prograns containing
syntactically invalid commands should never be executed and we'll not

di scuss them any further

Commands which are syntactically valid may nevertheless fail to execute
successfully for a variety of reasons. (And how!)

If a CICS command executes successfully, the command is said to have a

normal response. Unless you take special action, CICS will check that a
command executes normally. |If it doesn't, CICS will take sone appropriate
action and will not, in general, return control to the application. The

special action is called "system default action" and is usually to abend
("abnormally end") the transaction. As we pointed out in "Handling errors
and exceptional conditions" in topic 2.9.2, this is alnpst never what you
want in these situations.

For many applications the CICS system default action will be inappropriate
and you'll need to wite some special code to be invoked in the event of
non-normal response. What sort of code?

Basically, you have three choices when an exceptional condition arises

1. Let the program continue

2. Pass control to a specified |abe

3. Do nothing, and rely on the system default action

CICS provides you with a nunber of programm ng options applicable to each
choice, and the CICS/ ESA Application Programm ng Guide gives you ful
details of all these options. To save you reading through the whol e of
the relevant topic in that book, however (although you'll probably need to
study that book when you cone to wite your own application prograns),
here's the information that specifically relates to the exanple
application programs in this book.

When you | ook through the exanple COBOL prograns described in this book to
find out what they do when an exceptional condition arises, you'll find
that only the first two choices have been used: to |let the program
continue, or to pass control to a specified |abel

Subt opi cs

3.8.1 Letting the program continue

3.8.2 Passing control to a specified |abe

3.8.3 Errors within the exanple application

3.8.4 Other facilities for exceptional conditions

© Copyright IBM Corp. 1984, 1991
3.8-1

CICS Application Programming Primer
Letting the program continue

3.8.1 Letting the program continue

Letting the program continue means allowing control to return fromCICS to
the next instruction in the programimediately followi ng the one that has
failed. At the same time, CICS sets a return code in EIBRESP so that you
can test for particular conditions right after each command. (This
approach is particularly useful when you are structuring your code,
incidentally.)

CICS makes it very easy to test the RESP value by supplying a built-in
function called DFHRESP for you to use. So you can execute each CICS
command and then immediately find out what the RESP value was for it. |If
the RESP value is NORMAL, this means the command worked. (Even if the
value isn't NORMAL, this nay be both expected and acceptable.)

And that's not all. Your code can also exam ne RESP values by their

synmbol i ¢ names (for exanple, DFHRESP(LENGERR) when testing for a condition
by the synmbolic nane of LENGERR). This avoids having to mess around with
hexadeci mal val ues.

Let's have a look at a section of the ACCTO02 code where we've used the
RESP opti on:

Ao m e m o ee e eeeeiaao-- +
I 1
| 1
1110 ¢ !
Po111 GET | NPUT AND BUI LD NEW RECORD. !
1112 EXEC Cl CS RECEI VE MAP(' ACCTDTL') MAPSET(' ACCTSET') !
1113 RESP(RESPONSE) END- EXEC. !
1114 | F RESPONSE = DFHRESP(MAPFAIL) GO TO NO- MAP. !
115 | F RESPONSE NOT = DFHRESP(NORMAL) GO TO NO- GOOD. !
i i
o e m e m eeeeoeaoo- +

A MAPFAI L condition can be raised on this conmand, as indeed can several
other conditions. So we've specified the RESP option to find out, after
execution, what condition has been raised on the RECEIVE MAP. The program
can then check the value of RESP in the RESPONSE variable (defined earlier
in the program) to see if any errors have occurred.

What conditions can we provide for? Well, there are six exceptional
condi tions that we've chosen to deal with in this way:

1. A no input (MAPFAIL) condition when we read the input map.

This generally results froma keying error, and we would certainly
annoy the user if we allowed CICS to abend the transaction for this
conparatively mnor slip. Therefore, we want to send a nessage to |et
the user correct the input instead.

(I'n the section of the ACCT02 code given above, we start by | ooking
explicitly for the MAPFAIL condition, because this condition can occur
wi t hout there being any serious error (if, for exanple, the user
presses CLEAR at this point in the application). If the MAPFAIL

condition is raised, control will go to NO-MAP. If there is sone
other sort of error (any NOT NORMAL condition), control will go to
NO- GOQD.)

2. A record not found (NOTFND) condition when we read the index file for
a custonmer nane entered by the user.

This situation isn't an error; it sinply neans that there are no
custonmers with that particular nane, and so we'll informthe user.

3. A record not found (NOTFND) condition when we try to read the account

© Copyright IBM Corp. 1984, 1991
381-1

5.

6.

CICS Application Programming Primer
Letting the program continue

file record named in the input.

NOTFND in this instance may actually be correct (if the user is trying
to add a record) and is at worst an error in the account nunber, to be
treated like any other input error.

An end of file (ENDFILE) condition when we're browsing through the
index file |l ooking for all the matching records on a nane search.

This isn't an error either, just a sign that we've run out of
candi date nanes.

A no such entry (Q DERR) response to reading the scratchpad.
This is the expected result when we read tenporary storage to see if
anyone else is updating the record we want to update. It neans no one

is using "our" record.

A terminal id error (TERM DERR) when we start the ACO3 transaction to
print a record.

This condition neans that the user entered a printer nane that is
unknown to CICS. We'll treat it like any other type of input error.

© Copyright IBM Corp. 1984, 1991
3.8.1-2

CICS Application Programming Primer
Passing control to a specified label

3.8.2 Passing control to a specified |abel
There are two ways you can do this:
O HANDLE CONDI TI ON condi tion(l abel) command

where condition is the name of the condition you want to handl e.
O HANDLE CONDI TI ON ERROR(| abel) conmand.

The only HANDLE CONDI TI ON command that we use in the exanple COBOL program
is the HANDLE CONDI TI ON ERROR(| abel) conmmand, however, so that's the one
we' |l be concentrating on.

The HANDLE CONDI TI ON command tells CICS where to go when an exceptional
condition occurs. It looks like this:

EXEC CI CS HANDLE CONDI TI ON condi ti on(!| abel)
condi tion(l abel)
condition condition ... END-EXEC.

condi tion
is the CICS name of the unusual condition for which you wish to
establish special processing (or return to default processing, as
expl ai ned below). It can be any of the exceptions that we've
described in this part: | OERR, LENGERR, NOTFND, and so on, and you can
name up to 16 conditions in one HANDLE CONDI TI ON comand.

| abel
is the name of the paragraph in your programto which CICS is to pass
control when the condition occurs. The paragraph nane follow ng a
condition is optional; if you specify it, you are saying that you want
to deal with the condition in question with code in the program |If
you omit it, you are saying that you want CICS to use its default
procedure for the condition (or, nore likely, that you want to
reestablish the CICS default action after you had specified other
handling for the condition earlier).

For the handling code to take effect, a HANDLE CONDI TI ON conmand nust be
i ssued before you execute any command on which one of the conditions you
list mght arise. Nothing visible happens when you execute the HANDLE
CONDI TI ON command, al though CICS updates its table of conditions, of
course. The effects are seen |later, when a commmand is executed that
produces one of the exceptional conditions now covered by the HANDLE
CONDI TI ON.

The ERROR condition in this conmand covers all exceptional conditions,
except:

O Those cited by name in this conmand or another HANDLE CONDI TI ON
command executed previously in the program and

O Those for which the CICS default action is not abnormal term nation of
t he program

We' ve specified ERROR here because there are many ot her exceptional
conditions that can arise on the commnds that we'll issue in this
program besides those |listed above. (Figure 54 in topic 3.8.3 shows

whi ch conditions apply to each command.) These conditions are all serious
enough to prevent successful conpletion of the transaction, and we don't
want to deal with each one individually, but we do want our programto
regain control |ong enough to send the user a nmessage sayi ng what happened

© Copyright IBM Corp. 1984, 1991
382-1

CICS Application Programming Primer
Passing control to a specified label

and what to do next.

Subt opi cs
3.8.2.1 Changing the HANDLE CONDI TI ON "desti nati ons"

© Copyright IBM Corp. 1984, 1991
3.8.2-2

CICS Application Programming Primer
Changing the HANDLE CONDITION "destinations"

3.8.2.1 Changing the HANDLE CONDI TI ON "desti nati ons"

Maki ng control go to different places on different occasions is no problem
if you use the RESP option. It can also be nmanaged, al beit somewhat nore
awkwardly, with HANDLE CONDI TI ON cormmands. Wth these, if we wanted
control to go to different places on different occasions, we'd have to do
one of two things:

O I ssue a single HANDLE CONDI TI ON command and test which file was
invol ved at, for exanple, the beginning of the paragraph naned to deal
with the NOTFND condition. The EIBDS field in the EIB tells which data
set was used nmost recently in a command and can be used for such a
test.

O | ssue a HANDLE CONDI TI ON command appropriate for a NOTFND on the first
command i ssued that may encounter it (in our case, the READ of the
index file) and then, before the next command on which we want to
specify a different paragraph name for that same condition, issue
anot her HANDLE CONDI TI ON conmand.

© Copyright IBM Corp. 1984, 1991
3.821-1

CICS Application Programming Primer
Errors within the example application

3.8.3 Errors within the exanple application

To sunmmarize, we've designed our error handling as foll ows:

Using RESP, we specifically deal with exceptional conditions if they
are expected and can be dealt with in the application's |ogic.

For exanpl e, we expect a NOTFND condition when the user tries to add a
new customer account--we read the account record just to nake sure
that it's not already in the file.

We use a HANDLE CONDI TI ON ERROR (whatever) conmand as a catch-all to
deal with unexpected exceptional conditions. W've put this command
near the start of ACCTO1l, ACCT02, and ACCTO03.

I f and when sonething unexpected happens, CICS passes control to our
error routine (either as a result of an |F RESPONSE NOT =

DFHRESP(NORMAL) GO TO... test or to the paragraph named in the HANDLE
CONDI TI ON ERROR "catch-all" code). The first thing the error routine
must do is issue another HANDLE CONDI TI ON ERROR, but without a | abel,
to prevent a possible error handling | oop.

Next, the error routine gives control to ACCT04, passing the first
byte of EIBFN and EI BRCODE. We use a LINK, rather than an XCTL, so
that we'll get the failing programand its Working-Storage in the
transaction dunp. (If we use XCTL, CICS rel eases the storage
associ ated with the program we're "XCTLi ng" from)

ACCT04 finds out what's wong, builds and displays an appropriate
error screen, and finally issues an ABEND conmand with a code of EACC,
telling CICS to produce the transaction dunp.

So the dunp will contain a predictable sequence of actions between
the occurrence of the actual error and ACCT04's last act. We'Ill show
you how to follow this sequence of events in "A session with EDF" in
topic 5.1.3.1.7.

There is a way of using XCTL rather than LINK when transferring
control to our error-handling program |It's also a perfectly
reasonabl e alternative: put an EXEC DUMP command i mredi ately before
each appropriate XCTL conmmand in prograns ACCT01, ACCT02, and ACCTO03.

Of course, you'd probably want to remove these DUMP commands before
putting the systeminto production.

Qur solution manages with just one ABEND command (a side effect of
which is the transaction dunp we want) but has to use a LINK instead
of the more efficient XCTL.

Because of our "catch-all" HANDLE CONDI TI ON ERROR command, we should be
protected against the results of an unexpected CICS abend.

Figure 54 lists which unusual conditions may occur for the commands and
options covered in this Primer. Note that other exceptions may arise if
you use options or facilities of CICS beyond the scope of this Priner.

__ +
i

Conmand Condi ti ons '
SEND MAP I NVMPSZ '
SEND CONTROL (none) '
RECEI VE MAP I NVMPSZ, MAPFAI L '
HANDLE Al D (none) !
READ FI LENOTFOUND, |LLOG C, | NVREQ | CERR, '
I

1

LENGERR, NOTFND, NOTOPEN

© Copyright IBM Corp. 1984, 1991
383-1

CICS Application Programming Primer
Errors within the example application
REWRI TE, WRI TE FI LENOTFOUND, DUPREC, |LLOG C, | CERR,
| NVREQ, LENGERR, NOSPACE, NOTOPEN
DELETE, STARTBR FI LENOTFOUND, |LLOG C, | NVREQ | OERR,
NOTFND, NOTOPEN

HANDLE CONDI TI ON (none)

| I
I 1
| :
| I
| I
| i
| READNEXT FI LENOTFOUND, ENDFI LE, 1LLOGI C, | CERR, '
' I N\VREQ, LENGERR, NOTOPEN '
i ENDBR FI LENOTFOUND, |LLOG C, | NVREQ, NOTOPEN '
I WRITEQ TS I NVREQ, | CERR, | TEMERR, Q DERR, '
' NOSPACE (See bel ow.) '
i READQ TS | OERR, | TEMERR, LENGERR, Q DERR '
i DELETEQ TS Q DERR '
i LINK, XCTL PGM DERR '
! RETURN I NVREQ !
I ABEND (none) '
| START I N\VREQ, | OERR, TERM DERR, '
' TRANSI DERR '
| RETRI EVE I NVREQ, | NVTSREQ, | OERR, LENGERR, '
' NOTFND !
| i
| 1
| 1

Figure 54. The exception conditions for the Prinmer's subset of CICS
commuands

O all these conditions, NOSPACE on the WRITEQ TS conmand is the only one
for which CICS default processing is not to terminate the transaction.
When this condition is encountered, the default processing is for CICS to
suspend the transaction until space becones available. (The theory is
that since many transactions use tenporary storage, others will eventually
gi ve up enough space for this one to continue.)

© Copyright IBM Corp. 1984, 1991
3.83-2

CICS Application Programming Primer
Other facilities for exceptional conditions

3.8.4 Oher facilities for exceptional conditions

As nentioned at the start of the topic, CICS provides other means to
control the processing sequence when exception conditions occur:

O There's a conmand to intercept control directly when CICS determ ne
that a transaction should be term nated abnormally (the HANDLE ABEND
command). This is rather a last-ditch nethod in npst cases.

O The set of paragraph nanes specified to deal with exceptiona
conditions in a programcan be suspended tenporarily (the PUSH HANDLE
command), replaced by others (with HANDLE CONDI TI ON commands) and then
restored (with a POP HANDLE command). This is useful for closed
subroutines within a program especially if they contain
error-processi ng code.

PUSH HANDLE and POP HANDLE apply to the paragraph names specified on
HANDLE Al D and HANDLE ABEND conditions, as well as those specified
wi th HANDLE CONDI TI ON.

These facilities are all described in the ClICS/ESA Application Progranmm ng
Gui de.

© Copyright IBM Corp. 1984, 1991
384-1

CICS Application Programming Primer
The COBOL code of our example application

4.0 The COBOL code of our exanple application

+--- This part of the Primer lists: ----cmmmmmm e
i ACCTO0O- - menu di spl ay

i ACCTO1l--initial request analysis

I ACCTO02- -updat e processing

\ ACCTO03--requests for printing

i\ ACCTO4--error processing

i Other itens.

Subt opi cs

4.1 Program ACCT00: nenu display

Program ACCTO1: initial request analysis
Program ACCT02: update processing
Program ACCT03: requests for printing
Program ACCTO04: error processing

bl
O N wWN

© Copyright IBM Corp. 1984, 1991
40-1

CICS Application Programming Primer
Program ACCTO0O0: menu display

4.1 Program ACCT00: nenu display

001 | DENTI FI CATI ON DI VI SI ON.
002 PROGRAM- | D. ACCTO0O0.
003 *REMARKS. THI S PROGRAM | S THE FI RST | NVOKED BY THE ' ACCT'

004 * TRANSACTION. I T DI SPLAYS A MENU SCREEN FOR THE ONLI NE
005 * ACCOUNT FI LE APPLI CATI ON, WHI CH PROWPTS THE USER FOR
006 * I'NPUT. TRANSACTI ON ' ACO1" IS | NVOKED WHEN THAT | NPUT
007 * I' S RECEI VED.

008 ENVI RONMENT DI VI SI ON.

009 DATA DI VI SI ON.

010 PROCEDURE DI VI SI ON.

011 I NI TI AL- MAP.

012 EXEC CI CS SEND MAP(' ACCTMNU) MAPSET(' ACCTSET') MAPONLY
013 ERASE FREEKB END- EXEC.

Lines 12 through 13 (IN TIAL-MAP): This command sends the nenu map to the
input termnal. W use the MAPONLY option because the map itself is the
only thing being sent; we have no variable data fromthe programto nerge
intoit. W also specify the ERASE option, to clear the screen of the

i nput and anything else left over from previous activity.

FREEKB unl ocks the keyboard for the user's next input. W' re specifying
it just for docunentation purposes.

B +
i i
1 014 EXEC CI CS RETURN TRANSI D(' ACO1') END- EXEC. !
i i
E T +
Line 14: After sending the map, we return control to CICS. |In doing so,

we specify that the next transaction to be executed fromthe term nal that
sent this one should be AC01, which analyzes inputs sent through the nenu

o
=
5
>
Q
A

Line 15: This COBOL statenent is never executed, because control does not
return to a CICS program after it executes a RETURN conmand. However, the
transl ator expands all CICS commands to COBOL CALL statenents, and

al though CICS does not return to the programfromthis call, the conpiler
does expect control to be returned. Consequently, you need this |ogical
"end of prograni’ to keep the conpiler happy.

© Copyright IBM Corp. 1984, 1991
41-1

4.2 Program ACCTO1:

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040

041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

CICS Application Programming Primer
Program ACCTO1: initial request analysis

initial

| DENTI FI CATI ON DI VI SI ON.
PROGRAM- | D. ACCTO1.
* REMARKS.

ENVI RONMENT DI VI SI ON.
DATA DI VI SI ON.
WORKI NG STORAGE SECTI ON.

request analysis

THI'S PROGRAM | S THE FI RST | NVOKED BY THE ' ACOl1'

01 M SC

02
02
02
02
02
02
02

02

02
02
02
02

02
02
02
02

02

RESPONSE

MSG- NO

ACCT- LNG

ACI X- LNG

DTL- LNG

STARS

USE- Q D.

04 USE-Q D1

04 USE-Q D2

USE- REC.

04 USE- TERM

04 USE-TIME

04 USE- DATE

USE-LIMT

USE- | TEM

USE- LNG

| N- AREA.

04 I N-TYPE

04 | N-REQ
06 REQC
06 ACCTC
06 PRTRC

04 | N- NAMES.
06 SNAMEC
06 FNAMEC

PI C S9(8)
PI C S9(4)
PI C S9(4)
PI C S9(4)
PI C S9(4)
PIC X(12)

COWP.

PIC X(3) VALUE ' ACO' .

PI C X(5).

COVP VALUE
COWP VALUE
COVP VALUE
COWP VALUE
VALUE Thkhkkhkkhkkkkkok ok okt .

+0.
+383.
+63.
+751.

PI C X(4) VALUE SPACES.

PI C S9(7)
PI C S9(7)
PI C S9(7)
PI C S9(4)
PI C S9(4)

COwP- 3.
COwP- 3.

PIC X VALUE 'R .

PI C X VALUE SPACES.

COWP- 3 VALUE +1000.
COWP VALUE +1.
COVP VALUE +12.

PIC X(5) VALUE SPACES.
PIC X(4) VALUE SPACES.

PI C X(18) VALUE SPACES.
PI C X(12) VALUE SPACES.

COMMAREA- FOR- ACCT04.

04 ERR-PGRM D
04 ERR-FN
04 ERR- RCODE

04 ERR- COVMAND

04 ERR- RESP
LI NE- CNT
MAX- LI NES

I X

SRCH- CTRL.

04 FILLER
04 BRKEY.

06 BRKEY- SNAME
06 BRKEY- ACCT

04 MAX- SNAME
04 MAX- FNAME
04 M N- FNAME
SUM- LI NE.

PI C X(8) VALUE 'ACCTO1'.

PIC X
PIC X
PI C XX.
PI C 99.

PI C S9(4) COMP VALUE +0.
PI C S9(4) COMP VALUE +6.

PI C S9(4) COWP.

PIC X VALUE 'S'.

PIC X(12).
PIC X(5).
PIC X(12).
PIC X(7).
PIC X(7).

© Copyright IBM Corp. 1984, 1991
42-1

* TRANSACTI ON. | T ANALYZES ALL REQUESTS, AND COMPLETES

* THOSE FOR NAME | NQUI RI ES AND RECORD DI SPLAYS. FOR

* UPDATE TRANSACTI ONS, | T SENDS THE APPROPRI ATE DATA ENTRY]
* SCREEN AND SETS THE NEXT TRANSACTI ON | DENTI FI ER TO

* " AC02', WHI CH COMPLETES THE UPDATE OPERATI ON. FOR PRI NT
* REQUESTS, | T STARTS TRANSACTI ON ' AC03' TO DO THE ACTUAL
* PRI NTI NG.

CICS Application Programming Primer
Program ACCTO1: initial request analysis

! 058 04 ACCTDO PI C X(5).

! 059 04 FILLER PI C X(3) VALUE SPACES. !
' 060 04 SNANMEDO PIC X(12).

061 04 FILLER PI C X(2) VALUE SPACES. !
062 04 FNANMEDO PIC X(7).

! 063 04 FILLER PI C X(2) VALUE SPACES. !
' 064 04 M DO PIC X(1).

! 065 04 FILLER PIC X(2) VALUE SPACES. !
! 066 04 TTLDO PIC X(4).

! 067 04 FILLER PIC X(2) VALUE SPACES. !
! 068 04 ADDRLDO PI C X(24).

' 069 04 FILLER PIC X(2) VALUE SPACES. !
' 070 04 STATDO PIC X(2).

1071 04 FILLER PI C X(3) VALUE SPACES. !
1 072 04 LIMTDO PIC X(8).

1 073 02 PAY- LI NE.

1 074 04 BAL PIC X(8).

' 075 04 FILLER PI C X(6) VALUE SPACES. !
' 076 04 BMO PIC 9(2).

1077 04 FILLER PIC X VALUE '/"'. !
1 078 04 BDAY PIC 9(2).

' 079 04 FILLER PIC X VALUE '/"'. !
! 080 04 BYR PIC 9(2).

' 081 04 FILLER PI C X(4) VALUE SPACES. !
! 082 04 BAMT PIC X(8).

! 083 04 FILLER PI C X(7) VALUE SPACES. !
' 084 04 PMO PIC 9(2).

I 085 04 FILLER PIC X VALUE '/"'. !
' 086 04 PDAY PIC 9(2).

1 087 04 FILLER PIC X VALUE ' /. !
! 088 04 PYR PIC 9(2).

! 089 04 FILLER PI C X(4) VALUE SPACES. !
' 090 04 PAMT PIC X(8).

i i
Ao m o m o eeeeiaaooo- +

Lines 13 through 90: These lines are the working storage area of the
program I ndividual variables will be explained in the comments bel ow, as
they are used.

COPY DFHBMSCA.
092 COPY DFHAI D.

o
©
s

Lines 91 through 92: These two lines bring in the definitions of the
attribute bytes and attention identifiers that CICS provides for COBOL
programers. See "Synbolic description maps (DSECT structures)" in

topic 3.3.1 and "Finding out what key the operator pressed" in
topic 3.3.6.

093 01 ACCTREC. COPY ACCTREC.

Line 93: This line fetches the record format for the account file,
copying it fromthe library in which it was stored.

094 01 ACI XREC. COPY ACI XREC.

© Copyright IBM Corp. 1984, 1991
42-2

CICS Application Programming Primer
Program ACCTO1: initial request analysis

Line 94: Simlarly, this Iine fetches the record format for the index
file, copying it fromthe library in which it was stored.

o
©
al
Q
9
<
8
49
(92}
m
-

Line 95: This line copies in the synmbolic map structure (DSECT) for the
BMS maps for the application.

We created the library menber that we're copying here by assenbling the

map with TYPE=DSECT specified. (See "Synbolic description maps (DSECT
structures)" in topic 3.3.1.)

096 01 MSG- LI ST.

i i
i i
! 097 02 FILLER PI C X(60) VALUE !
' 098 ' NAVMES MUST BE ALPHABETI C, AND SURNAME | S REQUI RED. ' .

' 099 02 FILLER PI C X(60) VALUE !
' 100 " ENTER SOME | NPUT AND PRESS "CLEAR' OR "ENTER'.'. !
1101 02 FILLER PI C X(60) VALUE !
1102 ' REQUEST TYPE REQUI RED, MUST BE "D', "P", "A", "M OR "X"'.'.
1103 02 FILLER PI C X(60) VALUE !
1104 ' PRI NTER NAME REQUI RED ON PRI NT REQUESTS' . !
1 105 02 FILLER PI C X(60) VALUE !
! 106 " ACCOUNT NUMBER REQUI RED (BETWEEN 10000 AND 79999)" .

1107 02 FILLER PI C X(60) VALUE !
1 108 * ACCOUNT NO. MUST BE NUMERI C AND FROM 10000 TO 79999 .

' 109 02 FILLER PI C X(60) VALUE !
' 110 ' NO NAMES ON FI LE MATCHI NG YOUR REQUEST' .

ro111 02 FILLER PI C X(60) VALUE !
1112 " ENTER El THER NAME OR A REQUEST TYPE AND ACCOUNT NUMBER .
1113 02 FILLER PI C X(60) VALUE !
1114 " THI' S ACCOUNT NUMBER ALREADY EXI STS' . !
1115 02 FILLER PI C X(60) VALUE !
1116 ' NO RECORD OF THI'S ACCOUNT NUMBER . !
1117 02 FILLER PI C X(47) VALUE !
1118 ' THI' S ACCOUNT NUMBER ALREADY | N USE AT TERM NAL ' .

1119 02 MSG TERM PIC X(13).

1120 02 FILLER PI C X(60) VALUE !
1121 " PRI NT REQUEST SCHEDULED . !
1122 02 FILLER PI C X(60) VALUE !
1123 ' PRI NTER NAME NOT RECOGNI ZED' . !
1124 02 FILLER PI C X(60) VALUE !
1 125 "1 NVALI D KEY PRESSED - USE ONLY "CLEAR' OR "ENTER' KEY'. !
1126 02 FILLER PI C X(60) VALUE !
1127 " THERE ARE MORE MATCHI NG NAMES. PRESS PA2 TO CONTI NUE. ' .

! 128 01 FILLER REDEFI NES MSG- LI ST. !
1129 02 MSG TEXT PI C X(60) OCCURS 15. !
i i
o +

Lines 96 through 129: These lines are nmore of the working storage of the
program in this case constants (nessages) used by the program

Note: All of these nessage constants will be physically repeated for each
concurrent task, because each task gets its own copy of working storage.
One way to avoid this would be to have the message constants as literals
in the program

© Copyright IBM Corp. 1984, 1991
42-3

CICS Application Programming Primer
Program ACCTO1: initial request analysis

130 LI NKAGE SECTI ON.
131 01 DFHCOMMAREA.

I 1
I 1
i i
i i
1132 02 SRCH- COMM !
! 133 03 | N- COVWM !
! 134 04 CTYPE PIC X. !
! 135 88 REPEAT- MAP VALUE 'R' . !
! 136 88 SEARCH- CONTI NUE VALUE 'S'. !
137 04 FILLER PIC X(40). !
! 138 03 FILLER PIC X(3). !
i i
ot +

Lines 130 through 138: The structure defined here and named DFHCOMVAREA
describes the data passed to this program by neans of COMMAREA (See
"Saving data and communi cati ng between transactions" in topic 3.5 and
"Passing control and data between programs and transactions" in

topic 3.6.3.) It nust have this particular nane and it nmust be the first
"01" level in the Linkage Section.

The two | evel 88 itens are value clauses specifying the initial contents
of data itenms REPEAT- MAP and SEARCH- CONTI NUE. (The val ue of
SEARCH- CONTI NUE i s eventually tested in line 158, for exanple.)

ot +
| 1
| 1
! 139 * !
! 140 PROCEDURE DI VI SI ON. !
o141 * !
1142 * !
! 143 * I NI TI ALI ZE. !
144 TRAP ANY UNEXPECTED ERRORS. !
' 145 EXEC CI CS HANDLE CONDI TI ON ERROR(OTHER- ERRORS) END- EXEC. !
| |
Ao m e m o ee e eeeeiaao-- +

Lines 139 through 145: These statenments tell CICS where control should go
if unexpected errors are encountered. Specific conditions that m ght
result fromuser errors and conditions that CICS regards as unusual, but
that the program expects, are handled with explicit code later in the
program by the RESP option. Exanples of these are MAPFAIL, NOTFND,

ENDFI LE, TERM DERR and Q DERR. The program does not attenpt to recover
from other unusual conditions, and therefore all of these are passed, by
means of this HANDLE CONDI TI ON ERROR command, to a single point in the
program (OTHER- ERRORS at Line 408), from which control is sent to an error
program This programin turn sends a nessage to the user and abends the
t ask.

Not hi ng happens, as the result of executing this HANDLE CONDI TI ON ERROR
command, that inmediately affects the flow of the programor the data
available to it. Instead, this conmand causes CICS to record information
for processing exceptional conditions in this particular program should
they occur subsequently.

You'll be able to find nore detailed guidance in the CICS/ESA Application
Progranm ng Gui de.

Ao m o m o eeeeiaaooo- +
I 1
I 1
1146 * :
147 MOVE LOW VALUES TO ACCTMNUI, ACCTDTLI . !
1148 MOVE SPACES TO SUMLNMO (1) SUMLNMO (2) SUMLNMO (3) !
1149 SUMLNMO (4) SUMLNMO (5) SUMLNMO (6) . !

© Copyright IBM Corp. 1984, 1991
42-4

CICS Application Programming Primer
Program ACCTO1: initial request analysis

150 MOVE SPACES TO MSGVO.

Lines 146 through 150: Both synmbolic map structures are set to nulls. W
do this to the menu map because when you i ssue a RECElI VE MAP command, BMS
sets the length and flag subfields for every field in the map, but it does
not set the input subfields unless the corresponding map field was
transmitted fromthe screen. (As we explained earlier, transm ssion
occurs if either the user changes the field or the nodified-data tag was
set on in the programor the map.) Therefore if you do not clear the
synbolic map before you receive, you cannot distinguish between input data
and data left over froma previous transaction, unless you check the

| ength subfield first.

The reason for clearing the output (detail) map is to prevent any
attribute or length subfields being unintentionally overwitten, and to
avoi d sending unintended data to a map field not otherw se set by the
program Specifying ACTION CLEAR in the linkage editor clears all parts
of working storage that aren't otherwise initialized to nulls, and
therefore has the same effect on ACCTMNU and ACCTDTLI as these two noves

(Failure either to nove nulls (X 00', LOWVALUES) in or to specify ACTI ON
CLEAR is a common cause of BMS trouble. The OS equival ent of ACTI ON CLEAR
occurs automatically.)

ot +
I 1
I 1
1151 o+ !
| 152 * CHECK BASI C REQUEST TYPE.

| 153 | F El BAI D = DFHCLEAR H
| 154 | F El BCALEN = 0,

i i
o e m e m eeeeoeaoo- +

Lines 151 through 154: This begins the analysis of what the user wants to
do in this transaction. We first test for the CLEAR key. In our
particul ar application, we've defined its use to nean either

O The user wants to escape fromthe application

O The user has finished (or given up trying to finish) a request starte
in a previous transaction, and now wants a fresh menu screen to enter
a new request.

If the user has pressed the CLEAR key, we've now got to find out which of
these situations applies. That, in turn, depends on what the user did
|l ast at the term nal.

Whenever a user enters a request that cannot be conpleted in the course of
the current transaction, this program saves information about the request
in COMAREA to pass to the next transaction at the sane termnal. (Qur
reason for witing the programin this way is discussed in connection with
Line 163.) |In the case of input errors or of a name search whose results
will not fit on a single screen, the next transaction is the same as this
one, and this sane program processes it. For an update request, the next
transaction is ACO2, and so this information is passed to program ACCT02
with an EXEC CI CS RETURN command. (See Lines 237, 365, and 396 for the
commands that pass on this information.)

Therefore, we can distinguish between the two uses of the CLEAR key listed
above by finding out whether the previous transaction fromthis term na
has passed data to this one through COMMAREA. There is a COMMAREA if it
has a positive length (EI BCALEN greater than zero).

© Copyright IBM Corp. 1984, 1991
42-5

CICS Application Programming Primer
Program ACCTO1: initial request analysis

T +
| i
| 155 EXEC CI CS SEND CONTROL FREEKB END- EXEC. '
I 156 EXEC CI CS RETURN END- EXEC. '
| i
E S I T N o, +
Li nes 155 through 156: |If the user wants to exit the application, we use

a SEND CONTROL command with the FREEKB option to open the keyboard. (The
keyboard | ocks on every send operation, including CLEAR. Usually, the
program needs to wite sonething back to the terminal, in which case the
FREEKB option can be included on the SEND MAP command. However, here we
do not want to wite anything, and therefore if we fail to unlock the

keyboard by this other means, the user will have to use the RESET key
before he or she can nake the next entry. This isn't a disaster, but it
i s annoying, especially because the user will get no other notification

that he or she has left control of the application and the termnal is
free for the next transaction.)

S +
i i
| 157 ELSE GO TO NEW MENU. |
i i
o m e ool +
Line 157: If a request was in progress, however, we pass control to code

at NEW MENU (Li ne 402) which puts out a fresh nenu screen (and returns to
CICS with no COMWAREA, indicating no request in progress).

| F EI BAID = DFHPA2 AND EI BCALEN > 0 AND SEARCH- CONTI NUE

[En
o1
[ee]

Line 158: After testing for the CLEAR key, the next possibility we test
for is that the previous request was for a name search on which not all
the eligible names could fit on the screen, and that the user has asked to
see nmore names. |If this is the case, the user will have sent the request
by pressing PA2, and the previous execution of the programw |l have saved
informati on in COWAREA for the current execution. COMMAREA will contain:

1. An indicator that the last request was a name search (variable CTYPE,
set to S by Line 50)

2. The nane limts required to control the search

3. The key for the next eligible nanme.

T +
| i
1 159 MOVE SRCH- COMM TO SRCH- CTRL, GO TO SRCH- RESUME. '
| i
B +
Line 159: If all requirements for continuing a nane search are net, the

name limts and starting key are restored from COMMAREA, and the search
resunes at SRCH- RESUME (Line 203).

o m o m eeeoiaooo- +
I 1
I 1
1 160 MOVE DFHBMDAR TO SUMITLMA. '
1161 | F El BAID NOT = DFHENTER MOVE 14 TO MSG NO !
1 162 GO TO MENU- RESEND. !
I 1
| 1

© Copyright IBM Corp. 1984, 1991
42-6

CICS Application Programming Primer
Program ACCTO1: initial request analysis

Lines 160 through 162: The SUMITLMA field will not be displayed because
the attribute byte has now been set to "dark".

If the ENTER key has not been pressed, MSGNO is set to 14 (this
represents the message in MSG LI ST.

"I NVALI D KEY PRESSED - USE ONLY "CLEAR' OR "ENTER"' KEY'

Control is passed to MENU-RESEND to redisplay the nmenu.

N
[
w
T
m
g
—
m
z
v
o
>
z
@)
Py}
m
T
2
-
5
m
7
g
_|
(@]
F
>
3|
m
>

Line 163: The next step in determ ning what the user wants to do is to

| ook at COMMAREA, to see if this transaction is a resubm ssion of a
previous transaction on which the user made an error. As we explained in
connection with Lines 152-153, COMMAREA will be present if a previous
request was in progress. This request m ght have been one on which the
user entered bad data, or it m ght have been a nanme search for which there
were nore matches than would fit on the screen. In order to distinguish
bet ween these two cases, the program saves a variable in COWAREA which is
initialized to S if the request was a nane search and R otherwi se (see
Lines 32 and 50). This variable becones CTYPE (Line 138) on the
subsequent execution of the transaction.

If the previous transaction was other than a name search and COVMMAREA is
present, then we can assume that this is a resubmi ssion after an error.
We therefore restore information saved fromthe previous execution to an
area in which we save the input, about which nore in a moment. |f
COVMMAREA isn't present, on the other hand, this transaction isn't a
resubm ssion of a previous request. The input save area is left as it was
initialized, in Lines 31-39, reflecting a newrequest. Simlarly, if the
previ ous transaction was a nane search, we ignore the information in
COVMAREA, if any. Because the PA2 key was not pressed, the user doesn't
want to continue the search. So the current entry is an entirely new
request.

At this point, an explanation of the input save area, called INAREA in
the program would be helpful. |In all but the very sinplest applications,
you have to expect that the user will sonetimes key in bad data. The
customary procedure, on receiving such data, is to send back a nessage or
sonme other indication of what's wrong.

If you're progranmm ng in pseudoconversational nmode, as we've chosen to do
in our exanple application, the transaction that detects the error usually
sends the error information back to the screen. It then returns control
to CICS with the next transid pointing to itself. \When the user corrects
the data, the sane transaction is invoked and starts all over again, this
time (we hope) with good input. |If the input still has errors, the cycle
is repeated until it is error-free or the user quits trying.

This is the sinplest method, in that the good input fields fromthe first
entry don't have to be forwarded to the next execution of the transaction.
That's because once the nodified-data tag of a screen field is turned on
(by the user entering data in the field), it remins on until turned off
by the program Thus, all the input fields are sent on each entry,
regardl ess of how many times the user changes and resends the same screen.

The di sadvantage to this approach is that line traffic increases because
all the input fields are transmtted every tine. This is not a

© Copyright IBM Corp. 1984, 1991
42-7

CICS Application Programming Primer
Program ACCTO1: initial request analysis
significant problem and you need try to avoid it only if all of the
following are true

O The screen is very ful
O Line traffic is heav
O The incidence of errors and correction cycles is high

However, for the times when increased line traffic would be a significant
problem there's a second technique. |In this method, the transaction
checking the input noves the input fields to a save area. |If it detects
errors, it passes this copy of the original input along to the next
execution of the transaction. COMMAREA is the handiest place to do this,
but you can al so use tenporary storage. The transaction then turns off
all the nodified-data tags on the screen, by specifying FRSET when it
wites the error message(s). Only the fields that have actually changed
are sent. On this second tinme through (and any subsequent ones, if the
user still nmakes m stakes) the transaction nerges the new data with that
saved from previous rounds.

We' ve used this second method in the ACO1l transaction, which this program
(ACCT01) supports. For this reason, we collect all the input in |IN-AREA.
If the user nmakes a m stake, we pass the input from | N-AREA, through

COVMMAREA (in Line 396), to the next execution of the transaction. In
program ACCT02, however, we use the nore customary technique. W show
both methods just to illustrate the difference; there isn't enough data in

the nenu screen used in ACOL to worry about resending it on an error
cycle.

ot +
I 1
I 1
1164 * !
! 165 * GET I NPUT AND CHECK REQUEST TYPE FURTHER. !
! 166 EXEC Cl CS RECEI VE MAP(' ACCTM\U') !
167 MAPSET(' ACCTSET') RESP(RESPONSE) END- EXEC. !
i i
Ao m e m o ee e eeeeiaao-- +

Lines 164 through 167: This statenment causes CICS to rearrange the input
into the synbolic map format dictated by map ACCTMNU, and to place this

information in working storage at ACCTMNUI. (CICS had already read this
input, as we noted earlier; it was the arrival of this input that caused
the current transaction to start.)

A MAPFAI L condition can be raised on this conmand, as indeed can several

ot her conditions. So we've specified the RESP option to find out, after
execution, what condition has been raised on the RECEI VE MAP. The program
can then check the value of RESP in the RESPONSE vari abl e (defined on line
15) to see if any errors have occurred.

The RESP option allows processing to continue with the next COBOL

st atenment.

o m o m m o e e e e o eeeao - +
i i
| 168 | F RESPONSE = DFHRESP(MAPFAI L) GO TO NO- MAP. '
1 169 | F RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER- ERRORS. '
i i
s +

Lines 168 through 169: After issuing the RECEIVE command with the RESP
option, the response is checked. First the program checks for the MAPFAIL
condition and, if this has occurred, transfers control to NO MAP.

Ot herwi se the program just checks to see if a NORMAL response has not been
produced; if this is the case, it transfers control to OTHER- ERRORS.

© Copyright IBM Corp. 1984, 1991
42-8

CICS Application Programming Primer
Program ACCTO1: initial request analysis
The use of the RESP option on a CICS command foll owed by the explicit test
of the key field has the sane effect as EXEC CI CS HANDLE CONDI TI ON
(label), but inmproves the structure of the programas well as making it
easier to understand and follow.

S +
i i
1 170 IF REQVL > 0 MOVE REQM TO REQC. '
i i
o m e oo +
Line 170: If the user keyed a request code, we save it in |I N AREA at

REQC. (REQC was initialized to a space, so we can tell |ater whether or

not such a code has been entered by checking REQC to see if it still
contains a space.)

I F REQW NOT = LOW VALUE, MOVE SPACE TO REQC.

=
~
[N

Line 171: Next we check whether the user has erased a request code that
was entered on an earlier transaction. The length field of the request

subfield will be zero, meaning no input, but the old code will have been
restored to REQC at Line 163. So we need to test the flag subfield as
well as the length. |If the flag is on, we need to erase the value in
REQC. This check of the flag is an extra step associated with the second
techni que for handling errors described before Lines 166-167. |If all the
input fields come in fresh every time, as in the first approach, the
length will tell you whether there is data there or not.

E T +
i i
p172 IF ACCTM. > 0 MOVE ACCTM TO ACCTC. '
1 173 | F ACCTMF NOT = LOW VALUE, MOVE SPACES TO ACCTC. '
1174 IF PRTRML > 0 MOVE PRTRM TO PRTRC. '
1175 | F PRTRMF NOT = LOW VALUE, MOVE SPACES TO PRTRC. '
I 176 I F SNAMEML > 0 MOVE SNAMEM TO SNAMEC. '
Vo177 | F SNAMEMF NOT = LOW VALUE, MOVE SPACES TO SNAMEC. '
1 178 | F FNAMEML > 0 MOVE FNAMEM TO FNAMEC. '
1179 I F FNAMEMF NOT = LOW VALUE, MOVE SPACES TO FNAMEC. '
i i
E S I T N o, +

Lines 172 through 179: These statements process the other input fields in
the same way as Lines 170-171 process the request code.

B
[o¢]
o
o
9
<
>
|
C
m
wn
_|
O
>
g
s
c

Line 180: We clear the symbolic map area for the nenu map to nulls again.
We do this in case any new information (error nmessages or nane search
output) has to be sent using the sane map. Clearing prevents information
that is on the screen and not changed frombeing retransmtted, because
BMS does not send null fields.

I'F I N-NAMES = SPACES GO TO CK- ANY.

N
©
N

© Copyright IBM Corp. 1984, 1991
42-9

CICS Application Programming Primer
Program ACCTO1: initial request analysis

Line 181: Here we find out whether we have a nane search request (by
checking for the presence of some nane input). |If not, we skip to
statement CK-ANY at Line 242.

182 *

183 ~* NAME | NQUI RY PROCESSI NG.

184 * VALI DATE NAME | NPUT.

185 I F FNAMEC NOT ALPHABETIC, MOVE 1 TO MSG- NQO,

186 MOVE -1 TO FNAMEM., MOVE DFHBMBRY TO FNAMEMA.

Lines 182 through 186: At this point, we know that the user wants a nane
search and we check the input name(s) for mstakes. In this programwe'l]l

indicate errors in the nanes, and other fields as well, as follows:

O The field(s) in error will be highlighted MOVE DFHBMBRY TO FNAMEA t o
set the bright attribute, for exanple).

O The cursor will be placed under the first field that is in erro
(we'll move -1 to the length subfield for every such field, and CICS
will find the first one for us).

O A nessage explaining the particular error or conbination of error
will be placed in the message area of the screen (MOVE 1 TO MSG-NO in
conmbi nation with Lines 393-395). The nessage nunmber is used as an
index to the actual error nessage. Message number 1 produces the
error nessage:

NAMES MUST BE ALPHABETI C, AND SURNAME | S REQUI RED

(see Line 98).

O If the user fails to fill in a required field, we'll place asterisk
in the field as a convention to warn the user that we want himor her
to fill it in:

MOVE STARS TO SNAMEMO

ot +
i i
1 187 | F SNAMEC ALPHABETI C AND SNAMEC NOT = SPACES GO TO CK- NAME. |
! 188 MOVE 1 TO MSG- NO. !
! 189 MOVE -1 TO SNAMEM., MOVE DFHBMVBRY TO SNAMEMA. !
! 190 CK- NAME. !
1191 IF MSG-NO > 0 GO TO MENU- RESEND. !
i i
ot +

Lines 187 through 191: These statenents conplete the validating of the
nanmes on which a search is requested. The surnane is required and nust be
al phabetic; the first name is optional but nust be al phabetic if present.
At the end of these tests, we |look at MSGNO to see if there were any

errors. It will be zero if there were none, because we initialized it
that way in Line 15, and we'll continue at the next statement. Otherw se
it will be the nunmber of the error nmessage to be put in the nmessage area

when the menu is redisplayed (at MENU- RESEND, Line 387).

193 * BUI LD KEY AND LI M TI NG NAME VALUES FOR SEARCH.

© Copyright IBM Corp. 1984, 1991
4.2-10

CICS Application Programming Primer
Program ACCTO1: initial request analysis

194 SRCH- I NI'T.

I I
| I
1195 MOVE SNAMEC TO BRKEY- SNAME, MAX- SNAME. '
1 196 MOVE LOW VALUES TO BRKEY- ACCT. '
1197 | NSPECT MAX- SNAME REPLACI NG ALL SPACES BY HI GH- VALUES. '
| 198 MOVE FNAMEC TO M N- FNAME, MAX- FNAME. 1
1199 I NSPECT M N- FNAME REPLACI NG ALL SPACES BY LOW VALUES. '
1 200 | NSPECT MAX- FNAME REPLACI NG ALL SPACES BY HI GH- VALUES. '
i i
s +

Lines 192 through 200 (SRCH-INIT): These statenments initialize for the
name search, as explained in connection with the STARTBR conmand in
"Browsing a file" in topic 3.4.1.2.

O MAX- SNAME is just higher in the al phabetical sequence than any surnane
that is eligible on the search.

O M N- FNAME and MAX- FNAME are the | owest and highest first names that
are eligible on the search.

O BRKEY is just |lower than the key of the first eligible record in the

index file.
o o m e e e e e e e e e e oo +
i i
| 201 ~* !
| 202 * I NI TI ALI ZE FOR SEQUENTI AL SEARCH. !
| 203 SRCH- RESUME. !
I 204 EXEC CI CS STARTBR FI LE(' ACCTI X') RI DFLD(BRKEY) GTEQ !
I 205 RESP(RESPONSE) END- EXEC. !
I 206 | F RESPONSE = DFHRESP(NOTFND) GO TO SRCH- ANY. !
1 207 | F RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER- ERRORS. '
i i
E T +

Li nes 201 through 206 (SRCH-RESUME): At this point we've either conputed
all the values we need to performa name search, or we've restored them
from COMAREA, where they were put by the previous execution of this
transaction for this termnal (see Line 159).

We now begin the search of the file by pointing to the first eligible
record in the index file with a STARTBR command, asking for the first
record with a key equal to or greater than BRKEY.

Of the several unusual results that can occur on this commnd, we've
concerned ourselves only with NOTFND, which occurs if we've constructed a
starting key that is larger than the largest key in the file. This
situation does not indicate a user or programerror; it sinply neans that
the user tried to search for a name not in the file and very late in the
al phabet. So, if this happens, we send control to the same place that it
goes after checking all the possibly eligible records in the file (nanely,
SRCH- ANY at Line 227).

ot +
i i
1 208 * !
1 209 * BUI LD NAME DI SPLAY. !
! 210 SRCH- LOOP. !
1211 EXEC ClI CS READNEXT FILE(' ACCTI X') | NTO(ACl XREC) !
1212 LENGTH(ACI X- LNG) RI DFLD(BRKEY) RESP(RESPONSE) END- EXEC. !
1 213 | F RESPONSE = DFHRESP(ENDFI LE) GO TO SRCH- DONE. !
1214 | F RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER- ERRORS. !
i i
ot +

© Copyright IBM Corp. 1984, 1991
42-11

CICS Application Programming Primer

Program ACCTO1: initial request analysis
Lines 211 through 214 (SRCH-LOOP): This conmmand brings in the first (or
next) record fromthe index file, starting at the point established in the
STARTBR conmand. The only unusual conditions that we need to deal with on
this command are ENDFILE, which will occur if the last name in the file
isn't greater than the | argest surname we allow, and anything other than a
normal response to the conmand. So these are the only conditions we
explicitly test RESP for. |If an ENDFILE condition has arisen, we pass
control to the same place that finding a nanme |arger than the |argest
al | owabl e surname woul d take us, (nanely, SRCH DONE at Line 225).

L R T +
| i
1 215 I F SNAMEDO | N AClI XREC > MAX- SNAME GO TO SRCH- DONE. '
| i
B +
Line 215: |If the surnane in the index record is higher in the al phabetic

sequence than the | argest surname we allow, then we've read all the
records that m ght be matches. We therefore go to SRCH-DONE (Line 225) to
investigate the results of the search.

L T T T T +
i i
1 216 I F FNAMEDO | N ACI XREC < M N- FNAME OR '
1217 FNAMEDO | N ACI XREC > MAX- FNAME, GO TO SRCH- LOOP. 1
| i
B +
Lines 216 through 217: |If the surnane is in range, we test whether the

first name is also inrange. |If it is not, we sinply |loop back to Line

211 to read the next record.

E T +
| 1
I 1
| 218 ADD 1 TO LI NE- CNT. |
i i
T N N NS +
Line 218: |f both names match, we add one to our count of matches in

LI NE- CNT.
e +
i i
1 219 I F LI NE- CNT > MAX- LI NES, '
I 220 MOVE MSG- TEXT (15) TO MSGMO, !
1221 MOVE DFHBMBRY TO MSGMVA, GO TO SRCH- DONE. '
i i
I S NN NS +

Lines 219 through 221: Next we work out if there's any roomon the screen
for the latest match. If there isn't (if LINE-CNT is greater than

MAX- LI NES, a constant that indicates how many search output lines there
are on the menu screen), we know that we have to tell the user that there
are nore matches. We therefore nove the appropriate text to the nessage
area of the map.

o +
i i
1222 MOVE CORRESPONDI NG ACI XREC TO SUM LI NE. !
1223 MOVE SUM LI NE TO SUMLNMO (LI NE- CNT) . !
224 GO TO SRCH- LOOP. !
i i
ot +

Li nes 222 through 224: On the other hand, if there is roomon the screen

© Copyright IBM Corp. 1984, 1991
4.2-12

CICS Application Programming Primer
Program ACCTO1: initial request analysis
for the current name, we format the information in the record into a
display line and nove it to the next available line in the map. Then we
go back to continue reading the index file at SRCH LOOP (Line 211)

225 SRCH- DONE
226 EXEC CI CS ENDBR FI LE(' ACCTI X') END- EXEC.

Line 225 through 226 (SRCH-DONE): This is the end of the | oop for reading
i ndex records, which we reach if:

1. We've no nore roomon the screen
. We've read beyond the largest allowable surnane
3. We've reached the end of the file.

Al'l of the candidate records have been read at this point, so we end the
browse.

227 SRCH- ANY
I'F LINE-CNT = 0, MOVE 7 TO MSG- NO
229 MOVE -1 TO SNAMEM., GO TO MENU- RESEND

N
N
[ee]

Li nes 228 through 229 (SRCH- ANY): Next we check whether there were any
mat ches at all to the nane search. |If not, we send a nmessage to this
effect to the user. Even though this isn't really an error, the
processing is simlar to error processing and so we use the code at
MENU- RESEND (Li ne 393)

o o m e e e e e e e e e e oo +
I 1
I 1
| 230 * !
1231 * SEND THE NAME SEARCH RESULTS TO TERM NAL.

I 232 MOVE DFHBMASB TO MSGMA, SUMTTLMA. !
i i
s +

Lines 230 through 232: W change sonme attribute bytes in the menu map in
preparation for sending the results of the search to the terminal, for
reasons explained in the next paragraph. Specifically, we first change
the attributes of both the search output |lines and the nessage field from
their default in the map (autoskip) to unprotected. W also change the
search output header line, which we want to show only in name search
output, from nondisplay to autoskip. (This header and the nmessage field

are brightened at the same tinme, for enphasis.)

233 EXEC CI CS SEND MAP(' ACCTMNU') MAPSET(' ACCTSET')
234 FREEKB ERASE END- EXEC.

Lines 233 through 234: Finally we send out results. FREEKB unlocks the
keyboard for the user's next input, and appears on all of the SEND MAP
commands in this application (see Lines 155 to 157). We specify ERASE to
erase anything that nay have been left on the screen froma previous
execution of this transaction

© Copyright IBM Corp. 1984, 1991
4.2-13

CICS Application Programming Primer
Program ACCTO1: initial request analysis

T +
| i
I 235 I F LI NE-CNT NOT > MAX- LI NES, '
I 236 EXEC CI CS RETURN TRANSI D(' ACO1') END- EXEC. '
| i
E S I T N o, +
Lines 235 through 236: If all the eligible names fit on the current

screen, we return control to CICS, requesting that this sane transaction
be the next one executed. Nothing is saved i n COMWAREA, because the

current request is conplete and the next one will be entirely new.

o m o e o ee— e +
| 1
I 1
I 237 ELSE EXEC CI CS RETURN TRANSI D(' ACO1') COMMAREA(SRCH- CTRL) '
| 238 LENGTH(44) END- EXEC. !
i i
o m m e m e mm e +
Li nes 237 through 238: |If, however, there are eligible names remaining,

we save all the search variables and the request type in COVMAREA so that
the next transaction can resune the search if the user so requests.

Ao m e m o ee e eeeeiaao-- +
i i
! 239 * !
1240 * DI SPLAY, PRI NT, ADD, MODI FY AND DELETE PROCESS! NG. !
1241 * CHECK ACCOUNT NUMBER. !
' 242 CK- ANY. !
243 | F IN-REQ = SPACES, MOVE -1 TO SNAMEML, !
244 MOVE 8 TO MSG-NO, GO TO MENU- RESEND. !
i i
o e m e m eeeeoeaoo- +

Lines 239 through 244 (CK-ANY): By this point in the code, we've found
out that the user doesn't want a name search (because he or she didn't
fill in a nane), and we begin checking for other request types. First we
ensure that we got some input. |If we didn't, we set the cursor to its
normal position, set the error message accordingly, and go to send it at
MENU- RESEND (Li ne 393).

245 CK- ACCTNG- 1.

I 1
I 1
i i
| 246 I F ACCTC = SPACES '
| 247 MOVE 5 TO MSG-NO, GO TO ACCT- ERR. '
| 248 I F (ACCTC < '10000' OR ACCTC > '79999' OR ACCTC NOT NUMERI C), |
| 249 MOVE 6 TO MSG-NO, GO TO ACCT- ERR. i
i i
Ao m o m m o eeeeaaoo- +

Li nes 245 through 249 (CK-ACCTNG-1): Next we nmake sure the input is
valid. All the remmining request types require an account nunber, which
must be nunmeric and between 10 000 and 79 999. W use the sane diagnostic
conventions for this and the remaining fields as for the nane fields:

hi ghlighting (done in Line 262), asterisks if the field was omtted but is
required (Line 246), cursor under the first error (Line 262), and an
appropriate error nmessage (Lines 247 and 249).

250 CK- ACCTNO- 2.
251 EXEC CI CS READ FI LE(' ACCTFIL') RIDFLD(ACCTC) RESP(RESPONSE)
252 I NTO(ACCTREC) LENGTH(ACCT- LNG) END- EXEC.

© Copyright IBM Corp. 1984, 1991
42-14

CICS Application Programming Primer
Program ACCTO1: initial request analysis

Li nes 250 through 252: This conmand reads the account file record
i ndi cated by the account nunmber in the input.

o +
i i
! 253 | F RESPONSE = DFHRESP(NOTFND) GO TO NO- ACCT- RECORD. !
! 254 | F RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER- ERRORS. !
! 255 IF REQC = 'A', !
! 256 MOVE 9 TO MSG-NO, GO TO ACCT- ERR, !
! 257 ELSE GO TO CK- REQ !
i i
ot +

Li nes 253 through 257: We explicitly test RESP for two conditions. |If
there is no such record (the NOTFND condition), control will go to

NO- ACCT- RECORD (Li ne 258), because of the command just executed in Line
253. If there is sone other sort of error (any NOT NORMAL condition),
control will go to OTHER- ERRORS at Line 408.

On the other hand, if we reach statenent 255, we know that we've
successfully read the record with the key in ACCTCinto the area ACCTREC.
We next test to see whether this is the result we expected. |If the
request was to add a record, the user has made an error, because there is
already a record in the file with this nunber. |In this case, therefore,
we save the message nunber assigned to represent this particular error
situation (to use as an index to the actual error nessage) and go to

ACCT- ERR (Line 261) to diagnose an error in the account nunmber. For other
request types, however, this is the response we expect, and we continue
processing at CK-REQ (Line 265).

258 NO- ACCT- RECORD.
259 IF REQC = 'A', GO TO CK- REQ

Li nes 258 through 259 (NO- ACCT- RECORD): This statenent is executed only
if the record that we try to read in line 251 isn't in the account file.
If the user has asked to add a record, this is the only correct response
to the READ command, and we continue processing at CK-REQ |ine 265.

N
o
o
g
=
o
_‘
(@]
&
O
b
(@]

Line 260: |If the user has asked to display, print, modify or delete,
however, this not-found response neans that the account nunber is wong.
We set the nessage nunmber accordingly, and continue at the next line to
conpl ete diagnosing an error in the account nunber.

261 ACCT- ERR.
262 MOVE -1 TO ACCTM., MOVE DFHBMBRY TO ACCTMA.

Line 261 (ACCT-ERR): Control reaches these statements from several points
earlier in the program after an error in the account number has been
detected and the appropriate message nunber set. The statements conplete

© Copyright IBM Corp. 1984, 1991
4.2-15

CICS Application Programming Primer
Program ACCTO1: initial request analysis
the processing of an error in the account number, by brightening the field
and positioning the cursor.

263 *

264 * CHECK REQUEST TYPE.

265 CK- REQ.

266 IFREQC= 'D OR'P OR'A OR'M OR'X,

267 IF MSG-NO = 0 GO TO CK-USE, ELSE GO TO MENU- RESEND.

Li nes 263 through 267 (CK-REQ : The next input field we check is the

request type. If it is one of the types permitted, we |ook at MSG NO,
which tells us whether there was an error detected earlier (in the account
field). |If it is zero (no error), we continue checking the input at

CK-USE (line 273); otherwi se we go to MENU-RESEND (line 387) to send out
the di agnostic information.

o e m e m eeeeoeaoo- +
I 1
I 1
! 268 MOVE -1 TO REQWML, MOVE DFHBVBRY TO REQVA, !
1 269 MOVE 3 TO MSG- NO. !
1 270 GO TO MENU- RESEND. !
| |
ot +

Lines 268 through 270: Control reaches this point when we do not have a
good request type. We process an error in this field in the sane way as
one in the account field (see explanation for lines 245-249), and then go
to MENU- RESEND (Line 387) to send the error information.

L T i T i I Il I P +
I 1
1 1
Lo271 ¢ !
Lo272 o+ TEST | F ACCOUNT NUMBER | N USE, ON UPDATES ONLY. !
! 273 CK- USE. i
! 274 IF REQC = 'P' OR'D GO TO BUI LD- MAP. !
| |
e +

Line 273 (CK-USE): At this point we have a good request for a good
account nunber. |If the request is for an update, however, we need to meke
a further check to ensure that no one else is updating this record at the

moment. This test isn't required for a display or print request, however,
and this statement skips the check on these types of requests.

Ao m e m o ee e eeeeiaao-- +
i i
! 275 MOVE ACCTC TO USE- Qi D2. !
! 276 EXEC CI CS READQ TS QUEUE(USE- QI D) | NTO(USE- REC) !
1277 | TEM USE- | TEM) LENGTH(USE- LNG) RESP(RESPONSE) END- EXEC. |
i i
ot +

Li nes 275 through 277: This command begins the test to ensure that the
account nunber is available for update. W read the tenporary storage
queue whose name is ACO followed by the account number in question (see

lines 21 to 23 for the structure and initialization of this nane).

|

I

| 278 | F RESPONSE = DFHRESP(Q DERR) GO TO RSRV-1.

1279 | F RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER- ERRORS.

© Copyright IBM Corp. 1984, 1991
4.2-16

CICS Application Programming Primer
Program ACCTO1: initial request analysis

Lines 278 through 279: W explicitly test RESP for two conditions. |If
there is no tenporary storage queue with that name (the Q DERR condition)

which, in turn, nmeans that the nunber isn't in use, control will go to
RSRV-1 (Line 296), where we'll reserve the number for ourselves. |If there
is some other sort of error (any NOT NORMAL condition), control will go to

OTHER- ERRORS at Line 408.

o m eeeeaooo- +
i i
| 280 ADD USE-LIM T TO USE- Tl ME. !
| 281 I F USE-TI ME > 236000, ADD 1 TO USE- DATE, !
| 282 SUBTRACT 236000 FROM USE- Tl ME. !
| 283 | F USE- DATE > EI BDATE OR '
| 284 (USE- DATE = EI BDATE AND USE- TI ME NOT < EI BTI ME) '
| 285 MOVE USE- TERM TO MSG- TERM MOVE 11 TO MSG NO, '
| 286 MOVE -1 TO ACCTM., MOVE DFHBMBRY TO ACCTMA, '
| 287 GO TO MENU- RESEND. '
i i
o m o m eeeoiaooo- +

Li nes 280 through 287: On a normal response to our READQ TS command
(normal in the CICS sense, that is), control cones to this statenent, the

one followi ng the command. This response nmeans either that the nunber is
in use or that a scratchpad entry for it has been left in tenporary
storage because of an accident on an earlier update agai nst the sane
record. (See "Pseudoconversational or not?" in topic 2.7 for a discussion
of how this m ght occur.)

As we explained earlier, we'll distinguish between the two cases by

conmparing the tinme in the scratchpad record (USE-TI ME on USE- DATE) with
the time that the current transaction started (EIBTIME on EIBDATE). |If
more than a certain amount of tinme has passed, we'll go ahead and claim

the number for ourselves at RSRV in Line 290. Otherwi se we tell the user
that the account nunmber is in use. |In the code, we treat the latter
situation as an error in the account nunber (Lines 285-287); the only
difference is that we custom ze the error nessage by noving in the nane of
the term nal using the nunmber (stored at USE-TERMin the tenporary storage
record). The allowed tine is stored in the constant USE-LIMT, defined in
Line 28 to be 10 m nutes and 00 seconds. (The code in Line 281 takes care
of the possibility that the scratchpad was witten just before m dnight,
assunming that USE-LIMT is less than an hour.)

o e m e m eeeeoeaoo- +
i i
1 288 * !
! 289 * RESERVE ACCOUNT NUMBER. !
! 2900 RSRV. !
1291 MOVE EI BTRM D TO USE- TERM MOVE El BTI ME TO USE- Tl ME. !
1 292 MOVE El BDATE TO USE- DATE. !
1 293 EXEC Cl CS WRI TEQ TS QUEUE(USE- Ql D) FROM USE- REC) !
1 294 LENGTH(12) | TEM USE- | TEM REWRI TE END- EXEC. !
! 295 GO TO BUI LD- MAP. !
i i
o +

Lines 288 through 295 (RSRV): These statenments are executed if there was
an old scratchpad record for the account nunber whose tine has expired
They reserve the account nunmber for use by the current terminal. The
scratchpad record is built fromthe name of the current input term nal and
the time and date that the current transaction started. This record is
then written to tenporary storage, replacing the expired record. The
REWRI TE option causes repl acement of the queue record whose nunber is in

© Copyright IBM Corp. 1984, 1991
4.2-17

CICS Application Programming Primer

Program ACCTO1: initial request analysis
USE-I TEM This nunber, defined at Line 29, is always 1, because we've
desi gned our scratchpad to use single-item queues. |If there are any
errors in executing this command, control will go to OTHER- ERRORS, (Line
408), as dictated by Line 143. Oherwi se we pass control to BU LD MAP, i
Li ne 303, where we build the output screen for the inpendi ng update.

296 RSRV- 1.

297 MOVE ElI BTRM D TO USE- TERM MOVE El BTI ME TO USE- TI ME.
298 MOVE El BDATE TO USE- DATE.

299 EXEC CI CS WRI TEQ TS QUEUE(USE- QI D) FROM USE- REC)

300 LENGTH(12) END- EXEC.

Li nes 296 through 300 (RSRV-1): These statenents are executed if there
was nho scratchpad record for the account number. They serve the sanme
purpose as Lines 290-295 (reserving the account nunber for the current
input termnal), but a different formof the WRITEQ TS command i s needed,
because we're creating a new queue.

I

I

1301 *

I 302 = BUI LD THE RECORD DI SPLAY.

! 303 BUI LD MAP.

1304 IF REQC = ' X' MOVE ' DELETION TO TI TLEDO,

' 305 MOVE -1 TO VFYDL, MOVE DFHBMUNP TO VFYDA,

' 306 MOVE ' ENTER "Y' TO CONFI RM OR "CLEAR' TO CANCEL'
1307 TO MSGDO,

' 308 ELSE MOVE -1 TO SNAMEDL.

' 309 IF REQC = ' A MOVE ' NEW RECORD' TO TI TLEDO,

1 310 MOVE DFHPROTN TO STATTLDA, LIMITLDA, Hi STTLDA,
1311 MOVE ACCTC TO ACCTDI ,

312 MOVE ' FILL I N AND PRESS "ENTER " OR "CLEAR' TO CANCEL'
' 313 TO MSGDO,

| 314 GO TO SEND- DETAI L.

1 315 IF REQC = 'M MOVE ' RECORD CHANGE' TO TI TLEDO,

' 316 MOVE ' MAKE CHANGES AND "ENTER' OR "CLEAR' TO CANCEL'
317 TO MSGDO,

' 318 ELSE IF REQC = ' D,

1319 MOVE ' PRESS "CLEAR' OR "ENTER' WHEN FI NI SHED
1320 TO MSGDO.

1321 MOVE ACCTDO | N ACCTREC TO ACCTDO | N ACCTDTLO.
1322 MOVE SNAMEDO | N ACCTREC TO SNAMEDO | N ACCTDTLO.

1 323 MOVE FNAMEDO | N ACCTREC TO FNAMEDO | N ACCTDTLO.
1324 MOVE M DO | N ACCTREC TO M DO | N ACCTDTLO.

1 325 MOVE TTLDO | N ACCTREC TO TTLDO | N ACCTDTLO.

I 326 MOVE TELDO | N ACCTREC TO TELDO I N ACCTDTLO.

1327 MOVE ADDR1DO | N ACCTREC TO ADDR1DO | N ACCTDTLO.

1 328 MOVE ADDR2DO | N ACCTREC TO ADDR2DO | N ACCTDTLO.
1329 MOVE ADDR3DO | N ACCTREC TO ADDR3DO | N ACCTDTLO.

' 330 MOVE AUTH1DO | N ACCTREC TO AUTHLDO | N ACCTDTLO.
331 MOVE AUTH2DO | N ACCTREC TO AUTH2DO | N ACCTDTLO.

1 332 MOVE AUTH3DO | N ACCTREC TO AUTH3DO | N ACCTDTLO.

1 333 MOVE AUTH4DO | N ACCTREC TO AUTH4DO | N ACCTDTLO.

1 334 MOVE CARDSDO | N ACCTREC TO CARDSDO | N ACCTDTLO.

1 335 MOVE | MODO | N ACCTREC TO | MODO | N ACCTDTLO.

! 336 MOVE | DAYDO | N ACCTREC TO | DAYDO | N ACCTDTLO.

1 337 MOVE | YRDO | N ACCTREC TO | YRDO | N ACCTDTLO.

! 338 MOVE RSNDO | N ACCTREC TO RSNDO | N ACCTDTLO.

! 339 MOVE CCODEDO | N ACCTREC TO CCODEDO | N ACCTDTLO.

' 340 MOVE APPRDO | N ACCTREC TO APPRDO | N ACCTDTLO.
341 MOVE SCODE1DO | N ACCTREC TO SCODE1DO | N ACCTDTLO.

© Copyright IBM Corp. 1984, 1991
4.2-18

n

CICS Application Programming Primer
Program ACCTO1: initial request analysis

1 342 MOVE SCODE2DO | N ACCTREC TO SCODE2DO | N ACCTDTLO. !
I 343 MOVE SCODE3DO | N ACCTREC TO SCODE3DO | N ACCTDTLO. !
| 344 MOVE STATDO | N ACCTREC TO STATDO I N ACCTDTLO. !
| 345 MOVE LI M TDO I N ACCTREC TO LI M TDO I N ACCTDTLO. '
| 346 MOVE CORRESPONDI NG PAY-HI ST (1) TO PAY- LI NE. '
| 347 MOVE PAY- LI NE TO HI ST1DO. '
| 348 MOVE CORRESPONDI NG PAY- HI ST (2) TO PAY- LI NE. '
| 349 MOVE PAY- LI NE TO HI ST2DO. '
1 350 MOVE CORRESPONDI NG PAY- HI ST (3) TO PAY- LI NE. '
| 351 MOVE PAY-LI NE TO HI ST3DO. i
i i
o o m e e e e e e e e e e oo +
o +
i i
| 352 IF REQC ='M GO TO SEND- DETAI L, '
| 353 ELSE IF REQC = 'P' GO TO PRI NT- PRCC. 1
| 354 MOVE DFHBMASK TO '
i 355 SNAMEDA, FNAMEDA, M DA, TTLDA, TELDA, ADDR1DA, '
| 356 ADDR2DA, ADDR3DA, AUTH1DA, AUTH2DA, AUTHIDA, '
| 357 AUTHADA, CARDSDA, | MODA, | DAYDA, | YRDA, RSNDA, '
| 358 CCODEDA, APPRDA, SCODE1DA, SCODE2DA, SCODE3DA. '
i i
o o m e e e e e e e e e e oo +

Li nes 304 through 348 (BU LD-MAP): At this point we're ready to build the
out put screen. Since we're using the same map for all types of requests
we have to nake certain adjustnments, depending on the type of request.
Specifically, we mnust:

1. Put a text description of the request type in the title line. (Lines
304, 309, 315 do this for delete, add, and nodify requests,
respectively. The default in the nmap takes care of the nost conmmon
case, a display request, and also applies to print requests.)

2. Arrange for the cursor to be under the proper field. For a deletion,
this is the verify field (see line 305, first part). For other
requests, it is the surname field (line 308).

3. For deletions, change the attribute of the verify field (VFYDA) from
autoskip to unprotected (line 305, second part).

4. Tell the user, in the message area, what to do next after conpleting
the screen. Lines 306 through 307 do this for deletes; Lines 312
through 313 are for adds, 314 through 315 for nodifications and 318
through 320 for display requests. W do not want any such nmessage in
the output for a print request, so the nessage area is left enpty in
this case.

5. For additions, darken the title lines for the payment history at the
bottom of the screen, since this part of the screen does not apply to
add requests (line 310).

6. Also for additions, put the account nunber in the input request into
the screen (line 311). This is the only field that can be filled in
on an addition; we put the account nunber there for two reasons: to
save the user the trouble, and to make sure he or she doesn't change

it. (Having gone to sone lengths to ensure that it was a good nunber
and not in use at another termi nal, we cannot |et the user change it
now.)

7. For requests other than additions, nove the contents of the account
file record for the requested account number into the map (lines 321
to 327).

© Copyright IBM Corp. 1984, 1991
4.2-19

CICS Application Programming Primer
Program ACCTO1: initial request analysis
8. For display and del ete requests, protect all of the fields fromthe
record that aren't protected by default in the map. This rem nds
users that they cannot change the record in display or delete
operations (Lines 354 to 358).

359 ~*

360 * SEND THE RECORD DETAIL MAP TO THE TERM NAL.

361 SEND- DETAI L.

362 EXEC CI CS SEND MAP(' ACCTDTL') MAPSET(' ACCTSET') ERASE FREEKB
363 CURSOR END- EXEC.

Li nes 359 through 363 (SEND-DETAIL): This command sends the output map
(prepared in the preceding statenents) to the (input) termnal, for all
types of requests except print requests. The ERASE option is used,
because a new map is being displayed. W specify CURSOR without a val ue,
to tell CICS to put the cursor in the first field with a | ength val ue of
- 1.

'"D', EXEC ClI CS RETURN TRANSI D(' ACCT') END- EXEC,

w
[e2)
N
-
Y]
m
3
1l

Line 364: Now we return control to CICS, after sending output to the
terminal. |If the request was to display a record (that is, REQC=D), the
request is conplete at this point. The requested record is on the screen,
and the user has been instructed to use either the CLEAR or ENTER key
after inspecting the record. Since the next thing the user will want to
see is a nmenu screen, we set the next transaction identifier to ACCT,
which will display the menu screen, whatever key is next used to send
input. We do not specify a COMVAREA, because there is no information
about the current transaction that needs to be passed to the next one.

365 ELSE EXEC Cl CS RETURN TRANSI D(' AC02')
COMMAREA(| N- REQ) LENGTH(6) END- EXEC.

w
(]
(o]

Li nes 365 through 366: On the other hand, if the request was an add,
modi fy or delete, we set the next transaction identifier to AC02, which

does the second part of an update request, and we pass the account number
and the request type to that transaction through COVWAREA.

ot +
I 1
| 1
1367 * !
1 368 * START UP A TASK TO PRI NT THE RECORD. !
! 369 PRI NT- PROC. !
1370 | F PRTRC = SPACES !
1371 MOVE 4 TO MSG-NO, GO TO TERM D- ERRL. !
i i
Ao m o m o eeeeiaaooo- +

Lines 369 through 372 (PRINT-PROC): This code applies only to print
requests. Control is brought here by the test in Line 353, because output
to be printed cannot be sent to the input terminal. W've not checked, up
to this point, whether the user has given us a good printer name. W
didn't do this with the earlier validating because doing so requires

© Copyright IBM Corp. 1984, 1991
4.2-20

CICS Application Programming Primer

Program ACCTO1: initial request analysis
interrogation of the term nal control table (TCT). You can do this in
CICS, but not with the type of commands included in the Primer. However
you get the same check automatically with the START command, so we've
waited until now to nake this test.

If the printer name is omtted or is all spaces, you know you have
troubl e, because spaces aren't an acceptable terminal identifier. So we
check for this error first. If we findit, we fill the field with
asterisks to show that it is required, and we reinforce this with an
appropriate nessage. Then we go directly to the code that conpletes
noting an error in this field (TERM D-ERRL at Line 382).

EXEC CI CS START TRANSI D(' AC03') FROM ACCTDTLO)
373 LENGTH(DTL- LNG) TERM D(PRTRC) RESP(RESPONSE) END- EXEC.

w
~
N

Lines 372 through 373: Otherwi se we issue the START command to initiate
the transaction that will do the printing. The name of this transaction
is ACO3, and the data that we'll pass it consists of the detail map we
built (at ACCTDTLO) in Lines 304 to 353. The length of this data,
DTL-LNG, is stored at a constant defined in Line 19. The name of the
term nal that nust be available to the transaction before it can be
started is at PRTRC. Because we didn't specify any TIME or | NTERVAL
paraneter, CICS will start the transaction as soon as it can after the
required termnal is free.

| F RESPONSE = DFHRESP(TERM DERR) GO TO TERM D- ERR.
375 | F RESPONSE NOT = DFHRESP(NORMAL) GO TO OTHER- ERRORS.

w
~
D

Lines 374 through 375: We explicitly test RESP for two conditions. The
nost probable result of this read will be TERM DERR, neaning that there is
no termnal identifier corresponding to the one that has been entered. In
this case, control will go to TERMD-ERR (Line 380). |If there is sone
other sort of error (any NOT NORMAL condition), control will go to

OTHER- ERRORS at Line 408.

E S I T N o, +
I 1
| 1
! 376 MOVE MSG- TEXT (12) TO MSGMO. !
1377 EXEC CI CS SEND MAP(' ACCTWMNU) MAPSET (' ACCTSET') DATAONLY '
| 378 ERASEAUP FREEKB END- EXEC. '
| i
T +
Lines 376 through 378: |f the START conmand is successful, control falls

through to this statement. We need to send a nessage, saying that the
user's print request has been schedul ed. W use the DATAONLY option, so
that the only thing we send is the message itself. And we use ERASEAUP to
erase the print request input, so that the user is all set to enter the
next request.

w
~
©
m
P
m
)
o)
by
m
_|
c
by
Zz
3
Z
(%2}
2
8
Lo
m
z
o
m
P
m
0O

Line 379: Finally we return control to CICS. The next transaction

© Copyright IBM Corp. 1984, 1991
42-21

CICS Application Programming Primer
Program ACCTO1: initial request analysis
identifier is set to ACO1, because the menu is still on the screen.
However, there is no COMWAREA, because the current request has been
conpl et ed.

e
|

| 380 TERM D- ERR.

| 381 MOVE 13 TO MSG- NO.

| 382 TERM D- ERRL.

| 383 MOVE -1 TO PRTRM., MOVE DFHBMBRY TO PRTRMA.

|

o e mmm e e e e e e e e e mmmm o m ===
Li nes 380 through 383 (TERMD-ERR): |f, on the other hand, the term nal
to which we attenpted to START a transaction isn't in the TCT, control is
sent here (see Lines 145 and 370 through 371). |In this case, we choose a

message appropriate to the situation and flag the error in the usual
fashi on.

e m e e e m ==
|

! 384 *

! 385 * ERROR PROCESSI NG, FOR ALL REQUESTS.

! 386 * RESEND MENU SCREEN.

! 387 MENU- RESEND.

! 388 MOVE REQC TO REQM .

! 389 MOVE ACCTC TO ACCTM .

' 390 MOVE PRTRC TO PRTRM .

! 301 MOVE SNAMEC TO SNAMEM .

! 392 MOVE FNAMEC TO FNAMEM .

! 393 MOVE NMSG- TEXT (MSG-NO) TO MSGMO,

|

o e mmm o m =

Li nes 384 through 393 (MENU-RESEND): This statenent begins the code used
to display input errors. It first noves the applicable error nessage to
the menu map, using the nessage nunber that was set earlier in the
program

394 EXEC CI CS SEND MAP(' ACCTMNU') MAPSET(' ACCTSET')
395 CURSOR DATAONLY FRSET ERASEAUP FREEKB END- EXEC.

Lines 394 through 395: This command sends the changes and additions to
the screen. We cleared the map to nulls (Line 147) before the editing

began, and we specify DATAONLY here. So the only data that will be sent
is:

1. The changed attribute bytes
2. Any fields we filled with asterisks
3. The nessage field (if any).

This is where we specify FRSET, so that only changed fields are sent on
the next transm ssion, as we explained at Line 163.

396 EXEC CI CS RETURN TRANSI D(' AC01') COMMAREA(| N- AREA)
397 LENGTH(41) END- EXEC.

© Copyright IBM Corp. 1984, 1991
4.2-22

CICS Application Programming Primer
Program ACCTO1: initial request analysis

Lines 396 through 397: After we've added to the nenu display, we return
control to CICS. Because the menu screen is on display, we set the next
transaction identifier to this same transaction, AC0l. And because sone
sort of error occurred on this request, we also save the input fromthe
current execution in COVMMAREA for use in the next execution of the
transaction

398 *

399 ~* PROCESSI NG FOR MAP FAI LURES, CLEARS.

400 NO- MAP.

401 MOVE 2 TO MSG-NO, MOVE -1 TO SNAMEM., GO TO MENU- RESEND.

Li nes 400 through 401 (NO- MAP): Control reaches this point if MAPFAIL
occurs when we RECEI VE the input map. MAPFAIL could happen in this
situation if the user pressed the ENTER key, or one of the PF keys,

wi t hout keying anything into the screen. This is because no nodified-data
tags are turned on by the programor the map, so that if the user does
this, there will be no fields sent (MAPFAIL by definition). It could also
happen if one of the short-read keys that we've not already tested for is
used. So the first thing we do is find out whether the user pressed ENTER
or one of these short-read keys. |If so, we send a nessage pointing out
that he or she has to enter some data and use either the ENTER or CLEAR
keys, once again using the error code at Lines 393 through 397.

402 NEW MENU.

| 1
| 1
i i
! 403 EXEC ClI CS SEND MAP(' ACCTMNU) MAPSET(' ACCTSET') !
| 404 FREEKB ERASE END- EXEC. '
| 405 EXEC CI CS RETURN TRANSI D (' AC01') END- EXEC. '
i i
o m e ool +
Lines 402 through 405: |f the user managed to get a MAPFAIL in sone other

way, we send a nessage saying there has been an input error and inviting
anot her attenpt, using only the CLEAR and ENTER keys. W send this on an
entirely fresh map, since we cannot be sure what's on the screen at this
point. Then we return control to CICS. The next transid is ACO0l, because
we've just put the menu on the screen. There is no COWAREA, because we
want a fresh start.

406 *

407 * PROCESSI NG FOR UNEXPECTED ERRORS.

408 OTHER- ERRORS.

409 MOVE ElI BFN TO ERR- FN, MOVE ElI BRCODE TO ERR- RCODE.
410 MOVE ElI BFN TO ERR- COMMAND, MOVE El BRESP TO ERR- RESP.

Li nes 408 through 410 (OTHER- ERRORS): This statenment begins the code that
is executed on any unusual response to a CICS command except MAPFAIL,
NOTFND, ENDFI LE, Q DERR, and TERM DERR. CICS sends control here, rather

t han abendi ng the task, because of the ERROR(OTHER- ERRORS) option on our
HANDLE CONDI TI ON ERROR command in Line 145. The first thing we do is save
the type of command we were trying to execute at the tinme of the error
(which is at EIBFN) and the response code we got (which is at EI BRCODE).
We nust do this before we issue any other CICS command, or this vital
information will be overwritten.

© Copyright IBM Corp. 1984, 1991
4.2-23

CICS Application Programming Primer
Program ACCTO1: initial request analysis

5
[
[
m
X
m
(@]
Q
3
=
Z
v
=
m
Q
2
]
-
2
m
Py
P
3
m
b
o}
m
X
m
0O

Line 411: Next we disable the HANDLE CONDI TI ON ERROR request that brought
us to this paragraph. W do so to prevent any possibility of a loop. |If
we did not, and we experienced sone unusual condition on the LINK command
that follows, the program would | oop.

Note: We would also "unhandl e" any other specifically handl ed conditions
that could occur at this point, if there was any possibility of them
occurring on the LINK conmmand that's com ng up next. (However, there are
none as we've instead chosen to test RESP options on our CICS conmmands.)

EXEC CI CS LI NK PROGRAM ' ACCT04')
413 COVMMAREA(COMVAREA- FOR- ACCT04) LENGTH(14) END- EXEC.

N
=
N

Lines 412 through 413: Finally, we transfer control to program ACCT04,
which will send the user a message about the nature of the error. Notice

we're using LINK rather than XCTL -- see "Errors within the exanple
application" in topic 3.8.3.

We pass three itenms of information along to this program in the area
naned COMMAREA- FOR- ACCT04 (see Lines 40-45). These itenms are the function
and response codes just saved and the nane of the current program
(ACCTO01).

IN
i
i
>
(@]
A

Line 414: This GOBACK statenent is actually never executed, because
control doesn't return fromour error handling program ACCTO4. However,
this logical "end of progranl' keeps the conpiler happy.

© Copyright IBM Corp. 1984, 1991
4.2-24

CICS Application Programming Primer
Program ACCTO02: update processing

4.3 Program ACCT02: update processing

001 | DENTI FI CATI ON DI VI SI ON.
002 PROGRAM- | D. ACCTO2.
003 *REMARKS. THI S PROGRAM | S THE FI RST | NVOKED BY THE ' AC02'

004 * TRANSACTI ON. I T COVWPLETES REQUESTS FOR ACCOUNT FI LE
005 * UPDATES (ADDS, MODI FI ES, AND DELETES), AFTER THE USER
006 * ENTERED THE UPDATE | NFORMATI ON.

007 ENVI RONMENT DI VI SI ON.
008 DATA DI VI SI ON.

009 WORKI NG STORAGE SECTI ON.
010 01 M SC

I

I

I

I

I

I

I

I

I

I

|

I

|

I

I

I

I

I

I

I

I

|

1011 02 RESPONSE PI C S9(8) COWP.

1 012 02 OWN-FLAG PIC 9.

1 013 02 MENU- MSGNO PI C S9(4) COMP VALUE +1.
1 014 02 DTL- MSGNO PIC S9(4) COMP VALUE +0.
! 015 02 ACCT-LNG PIC S9(4) COMP VALUE +383.
' 016 02 ACl X-LNG PI C S9(4) COMP VALUE +63.
1017 02 DTL-LNG PI C S9(4) COMP VALUE +751.
! 018 02 DUMWY PIC S9(4) COMP VALUE +128.
' 019 02 FILLER REDEFI NES DUMW.

! 020 04 FILLER PIC X

1021 04 HEX80 PIC X.

1 022 02 STARS PIC X(12) VALUE ' *****kkssxxxr
' 023 02 USE-Ql D.

024 04 USE-Q D1 PIC X(3) VALUE ' ACO' .

! 025 04 USE- QD2 PIC X(5).

' 026 02 USE- REC.

1027 04 USE- TERM PIC X(4).

! 028 04 USE-TI ME PIC S9(7) COMP-3.

' 029 04 USE- DATE PIC S9(7) COMP-3.

! 030 02 USE-LNG PIC S9(4) COMP VALUE +12.
! 031 02 OLD- I XKEY.

! 032 04 | XOLD- SNANE PIC X(12).

! 033 04 | XOLD- ACCT PIC X(5).

! 034 02 COMMAREA- FOR- ACCTO4.

! 035 04 ERR- PGRM D PI C X(8) VALUE ' ACCTO02' .
' 036 04 ERR-FN PIC X

' 037 04 ERR- RCODE PIC X

! 038 04 ERR- COMMAND PI C XX.

' 039 04 ERR- RESP PI C 99.

' 040 02 PAY-INIT PI C X(36) VALUE

1041 ' 0. 00000000 0. 00000000 0.00'.

|

I

042 * MESSAGES DI SPLAYED ON MENU SCREEN

I

!

| 043 02 MENU- MSG- LI ST.

| 044 04 FILLER PI C X(60) VALUE

| 045 ' PREVI OUS REQUEST CANCELLED AS REQUESTED' .

| 046 04 FILLER PI C X(60) VALUE

| 047 ' REQUESTED ADDI TI ON COVPLETED' .

| 048 04 FILLER PI C X(60) VALUE

1 049 ' REQUESTED MODI FI CATI ON COVMPLETED' .

1 050 04 FILLER PI C X(60) VALUE

; 051 ' REQUESTED DELETI ON COMPLETED' .

; 052 * MESSAGES DI SPLAYED ON DETAI L SCREEN

| 053 02 MENU- MSG REDEFI NES MENU- MSG- LI ST PI C X(60) OCCURS 4.
| 054 02 DTL- MSG- LI ST.

| 055 04 FILLER PI C X(60) VALUE

| 056 " EI THER ENTER "Y" TO CONFI RM OR "CLEAR" TO CANCEL'.
| 057 04 FILLER PI C X(60) VALUE

© Copyright IBM Corp. 1984, 1991
43-1

CICS Application Programming Primer
Program ACCTO02: update processing

! 058 ' YOUR REQUEST WAS | NTERRUPTED; PLEASE CANCEL AND RETRY'. !
! 059 04 FILLER PI C X(60) VALUE !
' 060 ' CORRECT Hl GHLI GHTED | TEMS (STARS MEAN | TEM REQUI RED)' . !
061 04 FILLER PI C X(60) VALUE !
062 " USE ONLY "ENTER' (TO PROCEED) OR "CLEAR' (TO CANCEL)'. |
! 063 04 FILLER PI C X(60) VALUE !
' 064 ' MAKE SOME ENTRI ES AND "ENTER' OR "CLEAR' TO CANCEL'. !
! 065 02 DTL- MSG REDEFI NES DTL- MSG- LI ST PI C X(60) OCCURS 5. !
! 066 02 MOD- LI NE. !
! 067 04 FILLER PI C X(25) VALUE !
' 068 ' ==========> CHANGES TO '. !
' 069 04 MOD- NAME PIC X(6) VALUE SPACES. !
' 070 04 MOD- TELE PI C X(5) VALUE SPACES. !
1071 04 MOD- ADDR PI C X(6) VALUE SPACES. !
1 072 04 MOD- AUTH PI C X(6) VALUE SPACES. !
1 073 04 MOD- CARD PIC X(6) VALUE SPACES. !
1 074 04 MOD- CODE PIC X(5) VALUE SPACES. !
1 075 02 UPDT- LI NE. !
' 076 04 FILLER PI C X(30) VALUE !
1077 ' ==========> UPDATED AT TERM '. !
1 078 04 UPDT- TERM PIC X(4). !
' 079 04 FILLER PIC X(6) VALUE ' AT . !
! 080 04 UPDT-TI ME PIC 9(7). !
' 081 04 FILLER PIC X(6) VALUE' ON . !
! 082 04 UPDT- DATE PIC 9(7). !
i i
ot +

Lines 10 through 82:
program | ndi vi dual
they are used.

These lines are the working storage area of the
vari ables will be explained in the coments bel ow as

o e m e m eeeeoeaoo- +
i i
! 083 01 NEWACCTREC. COPY ACCTREC. !
! 084 01 OLD ACCTREC. COPY ACCTREC. !
! 085 01 NEWACIXREC. COPY ACI XREC. !
! 086 01 OLD-ACI XREC. COPY ACI XREC. !
i i
ot +

Lines 83 through 86: These lines copy in the record formats for the
account and index files. There's space for two records for each file--one
for the old version of the record (before nodification or deletion) and
one for the new version (for modifications and additions).

See "The account file record format" in topic 3.4.1.1.1 and "The index
file record format" in topic 3.4.1.1.2. for the source code of ACCTREC
and ACI XREC.

T +
| i
| 087 COPY ACCTSET. '
| i
e +
Line 87: This line brings in a copy of the synbolic description map
structure.
L T T T T +
| 1
| 1
| 088 COPY DFHAI D. '
1 089 COPY DFHBMSCA. !
| i
B +

© Copyright IBM Corp. 1984, 1991
43-2

CICS Application Programming Primer
Program ACCTO02: update processing

Lines 88 through 89: These lines bring in the definitions of the
attention identifiers and attri bute bytes that CICS provides for COBOL
progranmmers (See "Finding out what key the operator pressed" in

topic 3.3.6 and "Synbolic description maps (DSECT structures)" in
topic 3.3.1.)

090 LI NKAGE SECTI ON.
091 01 DFHCOMMAREA.

092 02 REQC PIC X.
093 02 ACCTC PI C X(5).

Lines 90 through 93: The structure defined here and named DFHCOMVAREA
describes the data passed to this program by neans of COMMAREA.

o +
| 1
I 1
1 094 * !
! 095 PROCEDURE DI VI SI ON. !
1 096 * !
' 097 MAIN SECTI ON. !
1 098 * | NI TI ALI ZE. !
' 099 MOVE LOW VALUES TO ACCTDTLI . !
| |
ot +

Line 99: This MOVE statenent initializes the synbolic map structure for
the detail map to nulls, in preparation for receiving input (see notes for
Line 143 in program ACCTO01).

MOVE SPACES TO OLD- ACCTREC, NEW ACCTREC,
101 OLD- ACI XREC, NEW ACI XREC.

=
o
o

Lines 100 through 101: The areas in which new account and index file
records will be built (and read) are initialized to spaces.

102 * CATER FOR UNEXPECTED ERRORS
EXEC CI CS HANDLE CONDI TI ON ERROR(NO- GOOD) END- EXEC.

iy
o
w

Line 103: This conmand tells CICS where control should go if unexpected
errors are encountered. Specific conditions that m ght result from user
errors and conditions that CICS regards as unusual, but that the program
expects, are handled with explicit code later in the programby the RESP
option. Exanples of these are MAPFAIL, LENGERR, and Q DERR. The program
does not attenpt to recover from other unusual conditions, and therefore
all of these are passed, by means of this HANDLE CONDI TI ON ERROR command,
to a single point in the program (NO-GOOD at Line 172), from which control
is sent to an error program This programin turn sends a nessage to the
user and abends the task.

Not hi ng happens, as the result of executing this HANDLE CONDI TI ON ERROR
command, that imediately affects the flow of the programor the data
available to it. |Instead, this conmand causes CICS to record information

© Copyright IBM Corp. 1984, 1991
43-3

CICS Application Programming Primer
Program ACCTO02: update processing
for processing exceptional conditions in this particular program should
they occur subsequently.

See the preface for some general comments about error handling in the ACCT
application for this edition of the Primer. You'll also be able to find
nmore detail ed guidance in the CICS/ESA Application Progranmm ng Guide.

o e m e m eeeeoeaoo- +
i i
' 104 I F EI BAID = DFHCLEAR THEN !
' 105 PERFORM CK- OWN !
' 106 IF O FLAG = 1 GO TO NO- OWN ELSE !
' 107 GO TO RELEASE- ACCT. !
' 108 | F EI BAID NOT = DFHENTER THEN !
' 109 GO TO PA- KEY. !
i i
ot +

Lines 104 through 109: |If the user has pressed the CLEAR key, control
passes to CK-OMN in Line 317. |If the user has not pressed the ENTER key,
control passes to PA-KEY in Line 168.

Ao m o m o eeeeiaaooo- +
| |
1110 ¢ !
Lo111 GET | NPUT AND BUI LD NEW RECORD. !
1112 EXEC CI CS RECEI VE MAP(' ACCTDTL') MAPSET(' ACCTSET') !
1113 RESP(RESPONSE) END- EXEC. !
i i
ot +

Lines 110 through 113: This command tells CICS:

1. To convert the terminal input (whose arrival caused the current
transaction to be initiated) into the synbolic map format required by
map ACCTDTL

2. To place this information in working storage at ACCTDTLI.

A MAPFAIL condition can be raised on this comand, as indeed can several

ot her conditions. So we've specified the RESP option to find out, after
execution, what condition has been raised on the RECEI VE MAP. The program
can then check the value of RESP in the RESPONSE variable (defined on line
11) to see if any errors have occurred.

The RESP option allows processing to continue with the next COBOL
st at ement .

114 | F RESPONSE = DFHRESP(MAPFAI L) GO TO NO- MAP.
| F RESPONSE NOT = DFHRESP(NORMAL) GO TO NO- GOOD.

=
=
[63]

Lines 114 through 115: W explicitly test RESP for two conditions. The
nmost probable error condition arising fromthis read will be MAPFAIL, in
whi ch case control will go to NO-MAP (Line 163). |If there is some other
sort of error (any NOT NORMAL condition), control will go to NO GOOD at

Line 172.

1
1
116 I F REQC NOT = "A', '
117 EXEC CI CS READ FI LE(' ACCTFIL") | NTQ(OLD- ACCTREC) i

© Copyright IBM Corp. 1984, 1991
43-4

CICS Application Programming Primer
Program ACCTO02: update processing

118 Rl DFLD(ACCTC) UPDATE LENGTH(ACCT- LNG) END- EXEC.

Lines 116 through 118: Next we test to find out what kind of request

we're processing. The request code, you'll renenber, has been passed from
the previous transaction, ACO0l1, to this one in COMWAREA in the variable
REQC. If the request is to nmodify or delete a record, as opposed to

addi ng one, we read the target record fromthe account file. (The key for
this record was al so passed through COMWAREA, in the variable ACCTC.) The
record is placed in the structure OLD-ACCTREC. Notice that we specify
UPDATE, since that is what we're about to do. We nust also specify a

maxi mum | ength, which we do with the constant in ACCT-LNG

Unl i ke program ACCTO01, this program does not expect, and has no code to
handl e, any of the many irregularities possible on a file read. So, if
anyt hi ng unusual happens during this read, CICS will pass control to
paragraph NO- GOOD at Line 172 (because of the HANDLE CONDI TI ON ERROR
command at Line 103).

[N
[N
©
-
o}
8
9
py)
m
(@]
—
o
P
m
=
>
3
-
Py
m
o

Line 119: After a successful read, a new version of the account record is
initialized to the contents of the old record.

MOVE SNAMEDO I N OLD- ACCTREC TO | XOLD- SNAME,
121 MOVE ACCTC TO | XOLD- ACCT.

=
N
o

Lines 120 through 121: W also build the key of the index file record
associated with this account record, defined in Lines 31 to 33, for use
later in the program

ot +
I 1
I 1
1122 IF REQC = ' X', !
1 123 IF VFYDI = 'Y', GO TO NO-EDI T !
1124 ELSE MOVE -1 TO VFYDL, MOVE DFHUNI MD TO VFYDA, !
1125 MOVE 1 TO DTL- MSGNO, !
' 126 GO TO | NPUT- REDI SPLAY. !
i i
Ao m e m o ee e eeeeiaao-- +

Lines 122 through 126: These statements do the sinple verification
checking we need for delete requests.

If the user has confirnmed the requested deletion by putting "Y' in the
"verify" field, then the only test requirenment is met, and the program
goes on to ensure that there has been no lapse in control of the account
nunber in question (in other words, the user still "owns" that account
record) at CK-OWN (Line 317). However, if this field contains anything
el se, the program assumes an error ("Y" in the "verify" field or a CLEAR
are the only acceptable responses in this situation).

128 PERFORM EDI T.

© Copyright IBM Corp. 1984, 1991
43-5

CICS Application Programming Primer
Program ACCTO02: update processing
1129 | F DTL- MSGNO = 3 OR DTL-MSGNO = 5
1 130 GO TO | NPUT- REDI SPLAY.
|
|

Lines 128 through 130 (PERFORM EDI T): The sane diagnostic conventions are
used in this programas in ACCTOl (see discussion of Lines 172-173 in that
program). DTL-MSGNO is the nunber of the error message that is sent to
the screen (which is displaying the detail map).

Ao m e m o ee e eeeeiaao-- +
I 1
I 1
1131 !
! 132 NO-EDIT. !
! 133 PERFORM CK- OWN. !
1134 IF OWN-FLAG = 1 GO TO NO- OWN. !
i i
ot +

Lines 132 through 134 (NO-EDIT): W go to CK-OWN (Lines 320-321) to check
the ownership of the account nunber, otherwise if we do not have exclusive
control of the account nunber we're trying to update, we go to NO OMNN
(Line 160).

.
w
»
o
m
Py}
3
<
c
g
_|
m

Line 136 (PERFORM UPDTE): This is where the program carries out the
PERFORM UPDTE operation on the files.

o m o m eeeoiaooo- +
I 1
I 1
1137 ¢ !
| 138 * RELEASE OWNERSHI P OF ACCOUNT NUMBER. '
I 139 RELEASE- ACCT. !
I 140 EXEC CI CS DELETEQ TS QUEUE(USE- Qf D) END- EXEC. !
i i
o o eeeeooos +

Line 140 (RELEASE-ACCT): At this point, the files have been updated, and
we can rel ease exclusive control of the account nunmber. We do this by
del eting the corresponding scratchpad record.

Ao m o m o eeeeiaaooo- +
| |
L1441 * !
I 142 o+ SEND MENU MAP BACK TO TERM NAL. !
! 143 MENU- REFRESH. !
144 MOVE LOW VALUES TO ACCTMNUO. !
145 MOVE MENU- MSG (MENU- MSGNO) TO MSGMO. !
146 EXEC ClI CS SEND MAP(' ACCTMNU') MAPSET(' ACCTSET') ERASE FREEKB !
1147 END- EXEC. !
i i
o e m e m eeeeoeaoo- +

Lines 143 through 147 (MENU-REFRESH): The final step in processing an
update is to redisplay the nmenu screen, with a nmessage in the message area
confirm ng that the requested update has been conpleted. Line 145 noves
in the appropriate nmessage, based on the nessage nunber set up in Line
412, 421, or 442; and the next two lines send the screen. W send an
entirely new map and use the ERASE option, since another map (the detail

© Copyright IBM Corp. 1984, 1991
43-6

CICS Application Programming Primer
Program ACCTO02: update processing

map) is currently on the screen.

-
S
o]
m
>
m
@)
@]
Py
m
_|
c
Py
z
3
=
(2}
2
8
=
m
pd
o
m
>
m
O

Line 148: Then we return control to CICS. The next transid is set to
ACO01 because the menu map is on the screen, ready for a new request to be
ent er ed.

ot +
i i
1149 !
1 150 * FOR | NPUT ERRORS, RESEND DETAIL MAP. !
! 151 | NPUT- REDI SPLAY. !
152 MOVE DTL- MSG (DTL- MSGNO) TO MSGDO. !
i i
o +

Line 152 (I NPUT- REDI SPLAY): This statenment begins a block of code that is
executed if the program detects any errors in the input. First, the
appropriate error nmessage is nmoved to the nessage area of the map.

IF DTL-MSGNO = 2 OR 4 OR 5, MOVE -1 TO SNAMEDL.

=
()]
w

Line 153: Next, if the error isn't one that would place the cursor

el sewhere, the cursor is placed under the surnane field. (The errors that
pl ace the cursor elsewhere are field errors and failures to confirm

del etions.)

154 EXEC CI CS SEND MAP(' ACCTDTL') MAPSET(' ACCTSET') DATAONLY
CURSOR FREEKB END- EXEC.

=
ol
[63]

Li nes 154 through 155: Then the error information is sent. As in the
correspondi ng code in program ACCTO1 (Lines 377-378 there), we use the
DATAONLY option to send as little as possible to the screen. W also
specify CURSOR wi t hout a value, so that CICS will place the cursor under
the first field with a -1 in the length subfield. This will be the first
field in error if there has been a field error.

We don't specify FRSET as we did in ACCTO1, however. |If we did so, we'd
have to save the input fromthis execution of the ACO2 transaction,
because only the fields changed after this SEND MAP conmand woul d be
returned on the next RECElIVE conmand, as we explained in connection with
Li ne 155 of program ACCTO1.

156 EXEC Cl CS RETURN TRANSI D(' AC02') COMMAREA(DFHCOMVAREA)
LENGTH(6) END- EXEC.

-
o
~

Lines 156 through 157: Having written the error information to the
screen, we return control to CICS. W request that this sane transaction

© Copyright IBM Corp. 1984, 1991
43-7

CICS Application Programming Primer
Program ACCTO02: update processing
be the next one executed (to process the user's corrected input). W also
have to save the information passed by transaction ACO1 for this execution
of ACO02 for when we execute AC02 again. So we forward the COMMAREA passed
to the current execution of this transaction to its next execution

o +
i i
! 158 * !
! 159 * PROCESSI NG FOR RECOVERABLE ERRORS. !
! 160 NO- OW. !
161 | F EI BAID = DFHCLEAR OR MENU- MSGNO = 5 GO TO MENU- REFRESH. !
' 162 MOVE 2 TO DTL- MSGNO, GO TO | NPUT- REDI SPLAY. !
i i
ot +

Lines 161 through 162 (NO-OW): This is the code that is executed if we
find that we do not have exclusive control of the account number we're

trying to update. It may be that the user has cancelled a request, or a
MAPFAI L of unexpl ained origin has occurred (so that we're not sure about
the condition of the screen). In either case, we sinply refresh the nmenu

screen at Line 143 (MENU- REFRESH) with the applicable nessage (the nessage
nunmber is set in Line 13 or Line 167).

Ot herwi se, however, we nust treat the situation as an error. W tell the
user what has happened in the nmessage area and indicate that he or she
must cancel and start again (see the discussion in connection with Line
321).

163 NO- MAP.

I 1
I 1
i i
| 164 * | F MAPFAI L OCCURRED THEN REDI SPLAY W TH APPROPRI ATE MESSAGE. |
| 165 IF REQC = 'X' MOVE 1 TO DTL- MSGNO, MOVE -1 TO VFYDL H
| 166 ELSE MOVE 5 TO DTL- MSGNO. '
1167 GO TO | NPUT- REDI SPLAY. '
i i
o m eeeeaooo- +

Lines 164 through 166 (NO- MAP): This statement begins the code that is
executed if a MAPFAIL condition occurs when we receive the input map. |If
the ENTER key was used, we assune that the user didn't enter any data into
the detail map. We send a nmessage saying that at |east some entry is
necessary, using the code for other types of errors at | NPUT-REDI SPLAY
(Line 152).

If the ENTER key was not used, and if we know from Lines 104 and 108 that
neit her CLEAR nor one of the PA keys was used either, then the cause of
the MAPFAIL is nore obscure. In this unlikely event, we proceed as if the
user had cleared the screen, except that we use a different nmessage on the
menu screen when we display it. W therefore go to CK-OM (Lines 320-321)
to release the account nunber.

168 PA- KEY.
169 MOVE 4 TO DTL- MSGNO, GO TO | NPUT- REDI SPLAY.

Line 169 (PA-KEY): This line is executed if a PA key is used to send the
input. We handle the situation in the same way as the ENTER key wit hout
data, except for a different error nmessage (see Lines 164-165).

© Copyright IBM Corp. 1984, 1991
43-8

CICS Application Programming Primer
Program ACCTO02: update processing
170 *
171 * PROCESSI NG FOR UNRECOVERABLE ERRORS.
172 NO- GOQOD.

: |
: |
I 1
I 1
1173 MOVE El BFN TO ERR-FN, MOVE El BRCODE TO ERR- RCODE. !
1174 MOVE EI BFN TO ERR- COMMAND, MOVE ElI BRESP TO ERR- RESP. !
1 175 EXEC ClI CS HANDLE CONDI TI ON ERROR END- EXEC. !
1176 EXEC CI CS LI NK PROGRAM ' ACCT04') !
1177 COMMAREA(COMMAREA- FOR- ACCT04) LENGTH(14) END- EXEC. !
i i
Ao m o m o eeeeiaaooo- +

Lines 173 through 177 (NO-GOOD): These statenents are executed whenever
there is an unusual response to a CICS conmand, as shown by each I|IF
RESPONSE NOT = DFHRESP(NORMAL) test. The code is identical to the
correspondi ng code in Lines 409-413 of program ACCTO1.

[
]
®
>
Q
A

Line 178: This GOBACK perforns the same function that the GOBACK ending
ACCTO1 does. It satisfies the COBOL conpiler requirenent for a |ogical
end of program

180 EXI T.

Lines 179 through 180: This marks the end of the main-exit procedure, and
control is returned to CICS.

181 EDI T SECTI ON.
182 EDI T- START.

i i
i i
i i
| 183 | F SNAMEDL > 0 MOVE SNAMEDI TO SNAMEDO | N NEW ACCTREC. '
| 184 | F FNAMEDL > 0 MOVE FNAMEDI TO FNAMEDO | N NEW ACCTREC. '
| 185 IF MDL > 0 MOVE MDI TO M DO I N NEW ACCTREC. '
| 186 IF TTLDL > 0 MOVE TTLDI TO TTLDO I N NEW ACCTREC. '
| 187 I|F TELDL > 0 MOVE TELDI TO TELDO I N NEW ACCTREC. '
| 188 | F ADDR1DL > 0 MOVE ADDR1DI TO ADDR1DO I N NEW ACCTREC. '
1 189 | F ADDR2DL > 0 MOVE ADDR2DI TO ADDR2DO | N NEW ACCTREC. '
1 190 | F ADDR3DL > 0 MOVE ADDR3DI TO ADDR3DO I N NEW ACCTREC. '
1191 | F AUTHIDL > 0 MOVE AUTH1DI TO AUTH1DO I N NEW ACCTREC. '
1192 | F AUTH2DL > 0 MOVE AUTH2DI TO AUTH2DO I N NEW ACCTREC. !
1193 | F AUTH3DL > 0 MOVE AUTH3DI TO AUTH3DO I N NEW ACCTREC. !
1194 | F AUTHADL > 0 MOVE AUTH4DI TO AUTH4DO | N NEW ACCTREC. !
1 195 | F CARDSDL > 0 MOVE CARDSDI TO CARDSDO | N NEW ACCTREC. '
I 196 IF IMODL > 0O MOVE | MODI TO | MODO | N NEW ACCTREC. '
1197 I F I DAYDL > 0 MOVE | DAYDI TO | DAYDO I N NEW ACCTREC. '
1198 IF 1YRDL > 0 MOVE | YRDI TO | YRDO | N NEW ACCTREC. '
1199 IF RSNDL > 0 MOVE RSNDI TO RSNDO | N NEW ACCTREC. '
1 200 | F CCODEDL > 0 MOVE CCODEDI TO CCODEDO I N NEW ACCTREC. '
1 201 I F APPRDL > 0 MOVE APPRDI TO APPRDO I N NEW ACCTREC. i
1 202 | F SCODE1DL > 0 MOVE SCODE1DI TO SCODE1DO I N NEW ACCTREC. '
| 203 | F SCODE2DL > 0 MOVE SCODE2DI TO SCODE2DO | N NEW ACCTREC. '
| 204 | F SCODE3DL > 0 MOVE SCODE3DI TO SCODE3DO | N NEW ACCTREC. '
i i
o m e m o eeeeeaoo- +

© Copyright IBM Corp. 1984, 1991
43-9

CICS Application Programming Primer
Program ACCTO02: update processing
Lines 181 through 204: For all add and nodify requests, the fields that
the user filled in or changed (that is, that have a length subfield
greater than zero) are noved in to replace the corresponding fields in the
new versi on of the account record

e +
i i
| 205 IF REQC = "A'" GO TO EDI T-0. H
| 206 | F SNAMEDF = HEX80 MOVE SPACES TO SNAMEDO | N NEW ACCTREC. '
1207 | F FNAMEDF = HEX80 MOVE SPACES TO FNAMEDO | N NEW ACCTREC. i
| 208 I'F M DF = HEX80 MOVE SPACES TO M DO | N NEW ACCTREC. '
1 209 I'F TTLDF = HEX80 MOVE SPACES TO TTLDO I N NEW ACCTREC. '
1 210 | F TELDF = HEX80 MOVE SPACES TO TELDO I N NEW ACCTREC. !
1211 | F ADDR1DF = HEX80 MOVE SPACES TO ADDR1DO I N NEW ACCTREC. !
1212 | F ADDR2DF = HEX80 MOVE SPACES TO ADDR2DO | N NEW ACCTREC. !
| 213 | F ADDR3DF = HEX80 MOVE SPACES TO ADDR3DO | N NEW ACCTREC. !
1 214 | F AUTHLDF = HEX80 MOVE SPACES TO AUTH1DO I N NEW ACCTREC. '
| 215 | F AUTH2DF = HEX80 MOVE SPACES TO AUTH2DO I N NEW ACCTREC. '
| 216 | F AUTH3DF = HEX80 MOVE SPACES TO AUTH3DO I N NEW ACCTREC. '
1217 | F AUTHADF = HEX80 MOVE SPACES TO AUTH4DO I N NEW ACCTREC. '
| 218 | F CARDSDF = HEX80 MOVE SPACE TO CARDSDO | N NEW ACCTREC. '
1219 I'F | MODF = HEX80 MOVE ZERO TO | MODO | N NEW ACCTREC. i
1 220 I F 1 DAYDF = HEX80 MOVE ZERO TO | DAYDO I N NEW ACCTREC. H
1221 I'F I YRDF = HEX80 MOVE ZERO TO | YRDO | N NEW ACCTREC. '
1222 | F RSNDF = HEX80 MOVE SPACE TO RSNDO | N NEW ACCTREC. !
| 223 | F CCODEDF = HEX80 MOVE SPACES TO CCODEDO | N NEW ACCTREC. !
| 224 | F APPRDF = HEX80 MOVE SPACES TO APPRDO | N NEW ACCTREC. !
| 225 | F SCODE1DF = HEX80 MOVE SPACES TO SCODE1DO | N NEW ACCTREC. |
| 226 | F SCODE2DF = HEX80 MOVE SPACES TO SCODE2DO | N NEW ACCTREC. |
1227 | F SCODE3DF = HEX80 MOVE SPACES TO SCODE3DO | N NEW ACCTREC. |
i i
e +

Li nes 205 through 227: For nodifications only, we test to see if the user
erased the information in the old version of the record. (Erasure on the
screen sets the flag subfield to a value of hexadecimal 80.) Any field
erased on the screen is set to spaces in the new version of the record.

o m e m o eeeeeaoo- +
i i
| 228 | F OLD- ACCTREC = NEW ACCTREC, '
I 229 MOVE 5 TO DTL- MSGNO, H
1 230 GO TO EDI T-99. '
i i
s +

Lines 228 through 230: Also for nodifications, after the new record is
built, it is conpared to the old record. |If there is no difference, the
programtreats the situation as an error, and goes to | NPUT-REDI SPLAY
(Line 152) to send the appropriate nmessage.

ot +
I 1
I 1
1231 * EDI T | NPUT. !
! 232 EDIT-0. !
1 233 MOVE LOW VALUES TO ACCTDTLI . !
i i
o e m e m eeeeoeaoo- +

Line 233 (EDIT-0): The detail map structure is cleared to nulls, in
preparation for (maybe) having to use the area again to send error
information to the user. As in programACCT01, we'll send only the
informati on that needs to be changed on the screen. For sone fields this
will nean the entire field (as when we nove asterisks into a field); for
others it may mean only the attribute byte (when we just highlight the

© Copyright IBM Corp. 1984, 1991
4.3-10

CICS Application Programming Primer
Program ACCTO02: update processing

field).

o e e e e e e e oo +
| i
| 234 I F SNAMEDO | N NEW ACCTREC = SPACES, '
| 235 MOVE STARS TO SNAMEDI , '
| 236 ELSE | F SNAMEDO | N NEW ACCTREC ALPHABETI C GO TO EDI T-1. '
| 237 MOVE DFHUNI MD TO SNAMEDA, MOVE -1 TO SNAMEDL. '
i i
L T T T T +

Lines 234 through 237: These statenents begin the validation of each
individual field in the account record which the user may have entered on
the screen. The checks in this programare very sinple. 1In a rea
application, however, they are often so conplex that they can formthe
great bulk of the program s code. For this reason, they are sonetines
rel egated to a separate program which is executed by either a LINK

command or an XCTL command, dependi ng on whether control must return to
the original program or not.

The first field we check is the surname, which is required and nmust be

al phabetic. W use the sane diagnostic conventions as in program ACCTOL1.
If a field that is required has been left blank, we fill it with asterisks
to remind the user that it is required. |If there's any error in the
field, we set the length subfield to -1, so that CICS will place the
cursor under the first such field. W also highlight the field, to call
it to the user's attention.

Notice that we use a different value for highlighting in this programfrom
that used in program ACCTOl1. 1In this program we want an attribute byte
that neans bright, unprotected and nodified-data tag on, whereas in ACCTO1l
we wanted bright, unprotected and nodified-data tag off. This is because
here we want to be sure that anything the user keyed on any cycle of the
current request gets transmitted every time the screen is sent. In
ACCTO01, by contrast, we wanted just the fields changed on the nobst recent
cycle to be sent. (Refer to the discussion of Line 161 in programACCTO01
for nore information about this.)

238 EDI T- 1.

I 1
| 1
i i
I 239 I F FNAMEDO | N NEW ACCTREC = SPACES, '
| 240 MOVE STARS TO FNAMEDI , '
1241 ELSE | F FNAMEDO | N NEW ACCTREC ALPHABETI C, GO TO EDI T- 2. '
| 242 MOVE DFHUNI MD TO FNAMEDA, MOVE -1 TO FNAMEDL. '
i i
o m o m eeeoiaooo- +

Lines 239 through 242 (edit-1): These statenments check the first name,
which is required and nust be al phabetic.

243 EDI T- 2.
I'F M DO I N NEW ACCTREC NOT ALPHABETI C,
245 MOVE DFHUNI MD TO M DA, MOVE -1 TO M DL.

N
N
N

Li nes 243 through 245 (EDIT-2): The middle initial isn't required, but
nmust be al phabetic if present.

246 I'F TTLDO I N NEW ACCTREC NOT ALPHABETI C,

© Copyright IBM Corp. 1984, 1991
43-11

CICS Application Programming Primer
Program ACCTO02: update processing

247 MOVE DFHUNI MD TO TTLDA, MOVE -1 TO TTLDL.

Li nes 246 through 247: The title part of a name (Jr, Sr, and so on) nust
al so be al phabetic if present, but isn't required.

s +
i i
| 248 I'F (TELDO I N NEW ACCTREC NOT = SPACES AND '
I 249 TELDO | N NEW ACCTREC NOT NUMERI C), '
I 250 MOVE DFHUNI MD TO TELDA, MOVE -1 TO TELDL. '
i i
o m e m o eeeeeaoo- +

Li nes 248 through 250: The tel ephone nunmber isn't required, but if
present, nust be all numeric.

We should mention here that there is a tenptation to assume that if a
field (like the tel ephone number here) has the numeric attribute in the
map, the corresponding input subfield is automatically nuneric in the
COBOL sense. Unfortunately, this isn't necessarily true.

First, the user may not have entered anything into it, and it may contain
nulls. Second, if the user did enter something, it may contain periods
and m nus signs, which the 3278 considers to be nuneric. (On sone

keyboards, still other keys are allowed.) Such items may not be in the
right place in the field to nake sense, or they may not make sense at all
for the field in question (this one, for exanple). Finally, sone

term nals don't have the nunmeric | ock feature, which allows the 3270
system to distinguish between unprotected fields and nunmeric fields. So

we still have to check such fields for proper val ues.

E T +
i i
| 251 | F ADDR1DO I N NEW ACCTREC = SPACES, '
| 252 MOVE STARS TO ADDRLDI , '
| 253 MOVE DFHBVBRY TO ADDR1DA, MOVE -1 TO ADDR1DL. !
| 254 | F ADDR2DO | N NEW ACCTREC = SPACES, '
| 255 MOVE STARS TO ADDR2DI , !
| 256 MOVE DFHBMBRY TO ADDR2DA, MOVE -1 TO ADDR2DL. '
| i
e +

Li nes 251 through 256: An address consisting of at least two lines is
required, but there are no other checks on the (up to) four |ines of
address information.

Notice that we use DFHBMBRY (MDT off) instead of DFHUNI MD (MDT on) for
these two fields. You see, if we used DFHUNIMD, and the user didn't

repl ace the asterisks (STARS) that we put there (to show the field was
needed) then we'd get the asterisks sent back. And since all we're
requiring in the address is sonmething, these asterisks would pass our edit
check. This isn't a problemwi th other fields, such as the name, because

asterisks will fail the nmore demandi ng edit checks on these other fields.

E S I T N o, +
i i
| 257 | F CARDSDO | N NEW ACCTREC = SPACES, '
| 258 MOVE STARS TO CARDSDI , '
1 259 ELSE | F (CARDSDO | N NEW ACCTREC > ' 0' AND '
| 260 CARDSDO | N NEW ACCTREC NOT > '9'), GO TO EDI T-3. '
I 261 MOVE DFHUNI MD TO CARDSDA, MOVE -1 TO CARDSDL. !
| i
B +

© Copyright IBM Corp. 1984, 1991
43-12

CICS Application Programming Primer
Program ACCTO02: update processing

Li nes 257 through 261: The nunber of cards issued is needed and nust be
bet ween 1 and 9.

262 EDI T- 3.

i i
i i
! 263 I'F I MODO | N NEW ACCTREC = SPACES, !
! 264 MOVE STARS TO | MODI !
! 265 ELSE I F | MODO | N NEW ACCTREC NUMERI C AND !
! 266 | MODO | N NEW ACCTREC > ' 00' AND !
1267 | MODO | N NEW ACCTREC < ' 13', GO TO EDI T- 4. !
! 268 MOVE DFHUNI MD TO | MODA, MOVE -1 TO | MODL. !
! 269 EDIT-4. !
1 270 I F 1 DAYDO | N NEW ACCTREC = SPACES, !
1271 MOVE STARS TO | DAYDI , !
1272 ELSE | F | DAYDO | N NEW ACCTREC NUMERI C AND !
1273 | DAYDO | N NEW ACCTREC > ' 00' AND !
1274 I DAYDO | N NEW ACCTREC < ' 32', !
1275 GO TO EDI T-5. !
1 276 MOVE DFHUNI MD TO | DAYDA, MOVE -1 TO | DAYDL. !
! 277 EDIT-5. !
1 278 I'F | YRDO | N NEW ACCTREC = SPACES, !
1279 MOVE STARS TO | YRDI, !
! 280 ELSE | F | YRDO | N NEW ACCTREC NUMERI C AND !
1 281 | YRDO | N NEW ACCTREC > ' 75', GO TO EDI T- 6. !
1 282 MOVE DFHUNI MD TO | YRDA, MOVE -1 TO | YRDL. !
i i
ot +

Li nes 263 through 282 (EDIT-3, EDIT-4, EDIT-5): The date of issue, which
consists of a month, day and year, is required. The program checks that
the month is between 1 and 12, that the day is between 1 and 31, and that
the year is at least 75. This is clearly not a conplete date check,
because it lets in things |like June 31, to say nothing of |eap-year
problems. You'll probably want a nmuch tighter check in any real
application. (Thorough date checks can be so conplex that you may want to
use a separate routine.)

You can use a separate CICS programand LINK to it if you don't have too
many dates to check. |If you do, and you need a subroutine, it's nore
efficient to use a standard COBOL subroutine and link it into the program
with the linkage editor. (See "Subroutines revisited" in topic 3.6.2.5.)

283 EDI T- 6.

| 1
I 1
i i
! 284 I F RSNDO | N NEW ACCTREC = SPACES, !
! 285 MOVE STARS TO RSNDI, !
! 286 ELSE I F (RSNDO | N NEW ACCTREC = ' N OR !
1 287 RSNDO | N NEW ACCTREC = 'L' OR !
! 288 RSNDO | N NEW ACCTREC = 'S' OR !
1 289 RSNDO | N NEW ACCTREC = 'R), GO TO EDIT-7. !
1 290 MOVE DFHUNI MD TO RSNDA, MOVE -1 TO RSNDL. !
i i
o +

Li nes 284 through 290 (EDIT-6): The RSNDO (reason for issue) code nust be
filled in and nmust be either N (for new), L (lost), S (stolen), or R
(reissued--for some other reason).

|

I

1291 EDI T- 7.

1 292 I F CCODEDO | N NEW ACCTREC = SPACES,

© Copyright IBM Corp. 1984, 1991
43-13

CICS Application Programming Primer
Program ACCTO02: update processing

I 293 MOVE STARS TO CCODEDI , !
1 294 MOVE -1 TO CCODEDL, MOVE DFHBMBRY TO CCODEDA. !
I 295 | F APPRDO | N NEW ACCTREC = SPACES, !
I 296 MOVE STARS TO APPRDI , !
1 297 MOVE -1 TO APPRDL, MOVE DFHBMBRY TO APPRDA. '
i i
e +

Li nes 292 through 297 (EDIT-7): The "card code" and the initials of the
approver must both be present, and not spaces.

See Lines 251 through 256 for an explanation of the use of DFHVBRY.

298 | F ACCTDTLI NOT = LOW VALUES,
MOVE 3 TO DTL- MSGNO, GO TO EDI T- 99.

N
©
©

Li nes 298 through 299: All the checking is conplete at this point, so we
test to see if there were any errors by looking at the map area. If it is
all nulls, as we initialized it at EDIT-0 (Line 233), then there were no
errors. Otherwi se there were, and we send the error informtion at

I NPUT- REDI SPLAY (Line 152). We use the sane general nessage for all
field-checking errors (nanely that the highlighted fields contain errors),
rather than sending field-specific messages |ike the ones in ACCTOL.

o m o m m o e e e e o eeeao - +
i i
i 300 IF REQC = "A' MOVE ACCTC TO ACCTDO I N NEW ACCTREC, H
1 301 MOVE "N ' TO STATDO I N NEW ACCTREC, '
1 302 MOVE ' 1000. 00" TO LI M TDO I N NEW ACCTREC, '
1 303 MOVE PAY-IN T TO PAY-HI ST I N NEW ACCTREC (1), '
1 304 PAY-HI ST I N NEW ACCTREC (2), i
i 305 PAY-HI ST I N NEW ACCTREC (3). '
i i
Ao m o m m o eeeeaaoo- +

Li nes 300 through 305: These statements are for add requests only, and
initialize those fields in the new record that are maintained in the batch
system rather than online. The account status field is set to a value
meani ng "new account," the credit limt is set to an arbitrary $1000, and
the payment history fields are all set to zeros.

s +
i i
| 306 MOVE ACCTDO | N NEW ACCTREC TO ACCTDO | N NEW ACI XREC. '
1 307 MOVE SNAMEDO | N NEW ACCTREC TO SNAMEDO | N NEW ACI XREC. '
| 308 MOVE FNAMEDO | N NEW ACCTREC TO FNAMEDO | N NEW ACI XREC. !
I 309 MOVE M DO I N NEW ACCTREC TO M DO | N NEW ACI XREC. !
1 310 MOVE TTLDO I N NEW ACCTREC TO TTLDO I N NEW ACI XREC. !
1 311 MOVE ADDR1DO | N NEW ACCTREC TO ADDR1DO I N NEW ACI XREC. '
1 312 MOVE STATDO | N NEW ACCTREC TO STATDO | N NEW ACI XREC. 1
| 313 MOVE LI M TDO | N NEW ACCTREC TO LI M TDO I N NEW ACI XREC. '
i i
e +

Lines 306 through 313: Here we build the index record corresponding to
this account record. The index record will be needed on all add requests
and sonme nodification requests.

© Copyright IBM Corp. 1984, 1991
43-14

CICS Application Programming Primer
Program ACCTO02: update processing

Li nes 314 through 315: This marks the end of the editing procedures
referred to in |ines 228-230 and 298-299, and control is returned to CICS.

316 *
317 CK- OWN SECTI ON.
318 * CHECK OWNERSHI P OF ACCOUNT NUMBER.

319 CK-01.
320 MOVE 0 TO OWN- FLAG.
321 MOVE ACCTC TO USE- QI D2.
ot +

Lines 319 through 321 (CK-OWN): The lines that begin here ensure that the
account nunmber that is about to be updated is still exclusively controlled
by the term nal that entered this transaction.

We need to include this code because we've allowed for a time Iimt on the
owner ship of an account nunber, and we don't yet know how long it has been
since this particular user requested control of the nunber. (See
"Pseudoconversational or not?" in topic 2.7 for a discussion of how the
term nal that originated the update m ght | ose control of an account
nunber.)

It doesn't really matter if the time has expired, so long as our term nal
has had uninterrupted control of the nunmber. However, if sonmeone el se has
made or is making a change to this record in the neantime, we cannot |et
this user proceed with the update. At best, the current transaction wll
fail later because of a duplicate or mssing record. And because this
user is working with an old copy of the record, we could |ose the changes
made subsequently by another user.

This situation will occur rarely, and only if the user |eaves the
operation half-done for a long period of time, or if some sort of system
error occurs. When it does occur, we'll just send the user a nmessage
saying that the request has been interrupted and that it nust be
resubmtted. We'll not erase the screen, because the user may wish to

|l ook at it further, even though the only thing he or she can do next is to
cancel the transaction by pressing CLEAR

The first step in this rechecking process is to build the name of the
tenporary storage queue that contains the scratchpad information for this
account nunber.

322 EXEC CI CS READQ TS QUEUE(USE- QI D) | NTO(USE- REC)
LENGTH(USE- LNG) | TEM 1) RESP(RESPONSE) END- EXEC.

w
N
w

Lines 322 through 323: Next, we read the scratchpad entry for this
account nunmber. W specify the first itemin the queue, since that is
where we saved the information. (We might not get the first itemin the

queue if some other term nal had attenpted to use our nunber, because
program ACCTO1 woul d have read the first itemon behalf of that termnal,
and CICS would be ready to send the next itemto the next transaction that
read the queue.) We nmust also specify a maximumlength for the item
initialized to 12 in Line 30.

© Copyright IBM Corp. 1984, 1991
43-15

CICS Application Programming Primer
Program ACCTO02: update processing

ot +
i i
1 324 | F RESPONSE = DFHRESP(LENGERR) !
I 325 OR RESPONSE = DFHRESP(QI DERR) THEN !
1 326 MOVE 1 TO OWN- FLAG !
327 GO TO CK- EXI T. !
1 328 | F RESPONSE NOT = DFHRESP(NORMAL) GO TO NO- GOOD. !
i i
o e m e m eeeeoeaoo- +

Lines 324 through 328: W explicitly test RESP for three conditions. The
nost probable error conditions arising fromthis command will be LENGERR
(length error) and Q DERR (queue nane error), in which case control will
go to the CK-EXIT | abel with the OMN- FLAG val ue set to one. W thus
return to Line 134 (the line after the PERFORM verb that brought us here
in the first place), where we pronptly exam ne the value of OWN-FLAG.

If there is some other sort of error (any NOT NORMAL condition), control
will go to NO-GOOD at Line 173, and thus, ultimtely, to the
error-handling program ACCTO04.

Ao m o m o eeeeiaaooo- +
i i
1329 | F USE- TERM NOT = El BTRM D OR USE- LNG NOT = 12 !
1 330 MOVE 1 TO OWN- FLAG !
1331 GO TO CK- EXI T. !
i i
ot +

Li nes 329 through 331: Control cones here if we successfully read the
scratchpad. We then ensure that the name of the terminal that "owns" the

nunber is the same as the nane of the input termnal. W also ensure that
the length of the entry is correct, as a further check on the validity of
the entry. |If either condition fails, control will go to the CK-EXIT

| abel with the OANN- FLAG val ue set to one.

| F EI BAID = DFHCLEAR OR MENU-MSGNO = 5 GO TO CK-EXIT.

w
w
N

Line 325: At this point, we've established that the input termnal still
has control over the account nunmber. Now we have to recheck how we got
here. Three paths in the code m ght have brought us here:

1. A request to cancel (that is, use of the CLEAR key)

2. A MAPFAIL that was not caused by a short-read key (see NO MAP, Lines
164- 167)

3. A normal sequence (no errors, no cancellation).
For either of the first two conditions, we want to release control of the

nunber, so that some other task can use it. We do this at RELEASE- ACCT,
Li ne 140.

o e m e m eeeeoeaoo- +
I 1
I 1
! 333 * !
! 334 * WRI TE HARDCOPY LOG RECORDS. !
! 335 MOVE LOW VALUES TO ACCTDTLO. !
! 336 MOVE DFHBMDAR TO HI STTLDA, STATTLDA, STATDA, LI MTTLDA, !
! 337 LI M TDA. !
I 1
| 1

© Copyright IBM Corp. 1984, 1991
43-16

CICS Application Programming Primer
Program ACCTO02: update processing

Lines 335 through 337: Otherw se, we proceed with the update. The first
thing we do is to wite an entry to the hard-copy log that we're required
to produce. We'll format this log as follows:

O For additions, we'll print the new record,
we use on the screen (the "detail" map).

using the same format that

O For nodifications, we'll print both the old version of the record and
the new one, again using the map format. |In the message area of the
old record we'll note the areas that were changed (name, address, and

so on), to make it easy for the supervisor to check.
O For deletions, we'll print the old record.
O For all types:
1. We'll note the contents of the screen in the title line of the
map: NEW RECORD for additions, BEFORE CHANGE and AFTER CHANCE f or
the two i mages printed on a nodification, and DELETION on a
del ete.
2. We'll showthe time and date of the update and the name of the

we'll
nodi fi cations,

termnal at which it was entered. put this information in

the nmessage area (for it will be in the "new

record i mage).

These two statenments sinply get things ready for this process. The map is

cleared to nulls, and certain fields in the map that should not appear in
the |l og output are nmade nondisplay. (These are the title fields for the
information fromthe record that is maintained by the batch system and
not subject to online update.)
L T T T T +
| 1
| 1
| 338 IF REQC = "A'" MOVE ' NEW RECORD' TO TI TLEDO, GO TO LOG 1. '
| i
B +
Line 338: Next, we check the request type. |I|f the update's an addition,
the proper title is placed in the map and control goes to LOG 1 at Line
398, where the rest of the output will be built.

E T +

© Copyright IBM Corp. 1984, 1991

4.3-17

I 1
1 1
1 339 MOVE ACCTDO I N OLD- ACCTREC TO ACCTDO I N ACCTDTLO. '
1 340 MOVE SNAMEDO | N OLD- ACCTREC TO SNAMEDO | N ACCTDTLO. i
1 341 MOVE FNAMEDO | N OLD- ACCTREC TO FNAMEDO I N ACCTDTLO. '
| 342 MOVE M DO IN OLD- ACCTREC TO M DO | N ACCTDTLO. '
| 343 MOVE TTLDO I N OLD- ACCTREC TO TTLDO I N ACCTDTLO. '
| 344 MOVE TELDO I N OLD- ACCTREC TO TELDO I N ACCTDTLO. i
| 345 MOVE ADDR1DO I N OLD- ACCTREC TO ADDR1IDO I N ACCTDTLO. '
| 346 MOVE ADDR2DO I N OLD- ACCTREC TO ADDR2DO | N ACCTDTLO. '
| 347 MOVE ADDR3DO I N OLD- ACCTREC TO ADDR3DO | N ACCTDTLO. '
| 348 MOVE AUTH1DO I N OLD- ACCTREC TO AUTHLIDO I N ACCTDTLO. '
1 349 MOVE AUTH2DO I N OLD- ACCTREC TO AUTH2DO I N ACCTDTLO. '
1 350 MOVE AUTH3DO I N OLD- ACCTREC TO AUTH3DO I N ACCTDTLO. '
1 351 MOVE AUTH4DO I N OLD- ACCTREC TO AUTH4DO I N ACCTDTLO. i
1 352 MOVE CARDSDO | N OLD- ACCTREC TO CARDSDO | N ACCTDTLO. i
| 353 MOVE | MODO | N OLD- ACCTREC TO | MODO I N ACCTDTLO. '
| 354 MOVE | DAYDO | N OLD- ACCTREC TO | DAYDO | N ACCTDTLO. '
| 355 MOVE | YRDO | N OLD- ACCTREC TO | YRDO I N ACCTDTLO. '
| 356 MOVE RSNDO | N OLD- ACCTREC TO RSNDO I N ACCTDTLO. '
| 357 MOVE CCODEDO I N OLD- ACCTREC TO CCODEDO I N ACCTDTLO. i

CICS Application Programming Primer
Program ACCTO02: update processing

| 358 MOVE APPRDO | N OLD- ACCTREC TO APPRDO | N ACCTDTLO. !
I 359 MOVE SCODE1DO I N OLD- ACCTREC TO SCODE1DO I N ACCTDTLO. !
| 360 MOVE SCODE2DO I N OLD- ACCTREC TO SCODE2DO I N ACCTDTLO. '
1 361 MOVE SCODE3DO I N OLD- ACCTREC TO SCODE3DO I N ACCTDTLO. '
| 362 MOVE STATDO I N OLD- ACCTREC TO STATDO | N ACCTDTLO. H
| 363 MOVE LI M TDO I N OLD- ACCTREC TO LI M TDO I N ACCTDTLO. '
i i
s +

Lines 339 through 363: For del etions and nodifications, we build an inage
of the old version of the record in the map area.

IF REQC = ' X' MOVE 'DELETION' TO TITLEDO, GO TO LOG 2.

w
(<)
N

Line 364: For deletions, the title DELETION is added and then control
goes to Line 424 (LOG 2), where the update particul ars are added.

Ao m o m o eeeeiaaooo- +
i i
! 365 MOVE ' BEFORE CHANGE' TO TI TLEDO. !
! 366 I F SNAMEDO | N OLD- ACCTREC NOT = SNAMEDO | N NEW ACCTREC OR !
! 367 FNAMEDO | N OLD- ACCTREC NOT = FNAMEDO | N NEW ACCTREC !
! 368 OR M DO I N OLD- ACCTREC NOT = M DO | N NEW ACCTREC OR !
' 369 TTLDO | N OLD- ACCTREC NOT = TTLDO | N NEW ACCTREC !
1 370 MOVE ' NAME' TO MOD- NAME. !
1371 I F TELDO I N OLD- ACCTREC NOT = TELDO | N NEW ACCTREC !
1372 MOVE ' TEL' TO MOD- TELE. !
1373 | F ADDR1DO | N OLD- ACCTREC NOT = ADDR1DO | N NEW ACCTREC OR !
1374 ADDR2DO | N OLD- ACCTREC NOT = ADDR2DO | N NEW ACCTREC OR !
1 375 ADDR3DO | N OLD- ACCTREC NOT = ADDR3DO | N NEW ACCTREC !
! 376 MOVE ' ADDR TO MOD- ADDR. !
1377 I F AUTH1DO | N OLD- ACCTREC NOT = AUTH1DO | N NEW ACCTREC OR !
1 378 AUTH2DO | N OLD- ACCTREC NOT = AUTH2DO | N NEW ACCTREC OR !
1 379 AUTH3DO | N OLD- ACCTREC NOT = AUTH3DO | N NEW ACCTREC OR !
! 380 AUTHADO | N OLD- ACCTREC NOT = AUTH4DO | N NEW ACCTREC !
! 381 MOVE ' AUTH TO MOD- AUTH. !
1 382 I F CARDSDO | N OLD- ACCTREC NOT = CARDSDO | N NEW ACCTREC OR !
1 383 | MODO | N OLD- ACCTREC NOT = | MODO | N NEW ACCTREC OR !
1 384 | DAYDO | N OLD- ACCTREC NOT = | DAYDO | N NEW ACCTREC OR !
1 385 | YRDO | N OLD- ACCTREC NOT = | YRDO | N NEW ACCTREC OR !
! 386 RSNDO | N OLD- ACCTREC NOT = RSNDO | N NEW ACCTREC OR !
1 387 CCODEDO | N OLD- ACCTREC NOT = CCODEDO | N NEW ACCTREC OR |
! 388 APPRDO | N OLD- ACCTREC NOT = APPRDO | N NEW ACCTREC !
! 389 MOVE ' CARD' TO MOD- CARD. !
' 390 | F SCODE1DO | N OLD- ACCTREC NOT = SCODE1DO | N NEW ACCTREC OR !
1 391 SCODE2DO | N OLD- ACCTREC NOT = SCODE2DO | N NEW ACCTREC OR !
392 SCODE3DO | N OLD- ACCTREC NOT = SCODE3DO | N NEW ACCTREC !
! 393 MOVE ' CODES' TO MOD- CODE. !
304 MOVE MOD- LI NE TO MSGDO. !
i i
ot +

Li nes 365 through 394: For nodifications only, BEFORE CHANGE is placed in
the title line. Then the fields in the old record are conpared to those
in the new record in |logical groups, so that we can note the areas of the
record that got changed. The changes are listed in the nmessage area of
the map, using an abbreviated form of the group name. For this purpose,
the fields are grouped as follows: name (with the four conponent fields of
surname, first name, mddle initial, and title), tel ephone, address (the
four address lines), authorized users (four), card issue information
(seven fields), and special codes (three).

© Copyright IBM Corp. 1984, 1991
43-18

CICS Application Programming Primer
Program ACCTO02: update processing

EXEC CI CS WRI TEQ TS QUEUE(' ACCTLOG) FROM ACCTDTLO)
LENGTH(DTL- LNG) END- EXEC.

Li nes 395 through 396: The next process in handling nodifications is to
write the old-record i mage, which we've just finished building, to the
tenmporary storage queue that represents the log. W named this ACCTLOG
The length specified is the length of the synmbolic map description in

wor ki ng storage (available fromthe conpiler in the DVAP output).

Line 397: Finally, the title line in the map area is changed from BEFORE
CHANGE to AFTER CHANGE i n preparation for building an i mge of the new
record to put into the |og.

|

I

| 398 LOG 1.

I 399 MOVE ACCTDO | N NEW ACCTREC TO ACCTDO I N ACCTDTLO.

| 400 MOVE SNAMEDO | N NEW ACCTREC TO SNAMEDO | N ACCTDTLO.

| 401 MOVE FNAMEDO | N NEW ACCTREC TO FNAMEDO | N ACCTDTLO.

| 402 MOVE M DO I N NEW ACCTREC TO M DO I N ACCTDTLO.

| 403 MOVE TTLDO I N NEW ACCTREC TO TTLDO I N ACCTDTLO.

| 404 MOVE TELDO I N NEW ACCTREC TO TELDO I N ACCTDTLO.

| 405 MOVE ADDR1DO I N NEW ACCTREC TO ADDR1DO | N ACCTDTLO.

| 406 MOVE ADDR2DO | N NEW ACCTREC TO ADDR2DO I N ACCTDTLO.

| 407 MOVE ADDR3DO | N NEW ACCTREC TO ADDR3DO I N ACCTDTLO.

| 408 MOVE AUTH1DO I N NEW ACCTREC TO AUTHL1DO I N ACCTDTLO.

1 409 MOVE AUTH2DO | N NEW ACCTREC TO AUTH2DO I N ACCTDTLO.

| 410 MOVE AUTH3DO | N NEW ACCTREC TO AUTH3DO I N ACCTDTLO.

1 411 MOVE AUTHADO | N NEW ACCTREC TO AUTH4DO I N ACCTDTLO.

| 412 MOVE CARDSDO | N NEW ACCTREC TO CARDSDO | N ACCTDTLO.
| 413 MOVE | MODO | N NEW ACCTREC TO | MODO | N ACCTDTLO.

| 414 MOVE | DAYDO | N NEW ACCTREC TO | DAYDO | N ACCTDTLOQ.

| 415 MOVE | YRDO | N NEW ACCTREC TO | YRDO | N ACCTDTLO.

| 416 MOVE RSNDO | N NEW ACCTREC TO RSNDO | N ACCTDTLO.

| 417 MOVE CCODEDO | N NEW ACCTREC TO CCODEDO | N ACCTDTLO.

| 418 MOVE APPRDO | N NEW ACCTREC TO APPRDO | N ACCTDTLO.

1 419 MOVE SCODE1DO | N NEW ACCTREC TO SCODE1DO | N ACCTDTLO.
1 420 MOVE SCODE2DO | N NEW ACCTREC TO SCODE2DO | N ACCTDTLO.
1421 MOVE SCODE3DO | N NEW ACCTREC TO SCODE3DO | N ACCTDTLO.
| 422 MOVE STATDO I N NEW ACCTREC TO STATDO | N ACCTDTLO.

| 423 MOVE LI M TDO I N NEW ACCTREC TO LI M TDO I N ACCTDTLO.

|

|

Li nes 398 through 423 (LOG 1): For
of the new version of the record is conpleted in the map area,
fields in the new file record.

modi fications and additions, an inage

fromthe

424 LOG 2.
424 MOVE EI BTRM D TO UPDT- TERM MOVE El BTI ME TO UPDT- Tl ME,
426 MOVE EI BDATE TO UPDT- DATE, MOVE UPDT- LI NE TO MSGDO.

© Copyright IBM Corp. 1984, 1991
43-19

CICS Application Programming Primer
Program ACCTO02: update processing

Li nes 424 through 426 (LOG 2): At this point, we're ready to wite to the
| og, either:

O The second ("after") image, for nodifications, o
O The only imge, for additions and deletions

We add information about the update to the nmessage area of the map:
specifically, the tinme and date of the update and the term nal at which
the entry was made.

427 EXEC CI CS WRI TEQ TS QUEUE(' ACCTLOG) FROM ACCTDTLO)
LENGTH(DTL- LNG) END- EXEC.

N
N
(o]

Li nes 427 through 428: The last step in the logging process is to wite
this image to tenporary storage; this command is identical to that in
Li nes 395-396.

429 CK-EXIT.
430 EXI T.

Lines 429 through 430: This marks the end of the checking procedures
referred to in Iines 324 through 332, and control is returned to ClICS.

431 UPDTE SECTI ON.
432 * UPDATE THE FI LES FOR ADD REQUESTS.

433 IF REQC = "A" GO TO UPDT- ADD.
434 IF REQC = ' X' GO TO UPDT- DELETE.
435 IF REQC = 'M GO TO UPDT- MODI FY.
e m e m o e e e e o eeieao oo +

Li nes 433 through 435: These statements begin the updating of the files.
Addi tions, nodifications and del etions are handl ed separately in the code,
starting at Lines 436, 445, and 466 respectively.

436 UPDT- ADD.
437 MOVE 2 TO MENU- MSGNO.

Lines 436 through 437 (UPDT-ADD): The first step in adding a new record
is to nove a confirmati on nessage to the nessage area of the menu map that
wi |l be displayed when the update is finished.

438 EXEC CI CS WRI TE FI LE(' ACCTFIL') FROM NEW ACCTREC)
439 RI DFLD(ACCTC) LENGTH(ACCT- LNG) END- EXEC.

© Copyright IBM Corp. 1984, 1991
4.3-20

CICS Application Programming Primer
Program ACCTO02: update processing

Lines 438 through 439: Next, the new record is added to the account file.

440 EXEC CI CS WRI TE FI LE(' ACCTI X') FROM NEW ACI XREC)
441 RI DFLD(SNAMEDO | N NEW ACI XREC) LENGTH(ACI X- LNG) END- EXEC.

Lines 440 through 441: Then the index record corresponding to the new
account file record is added to the index file.

IS
IS
N
_|
(@]
c
g
-
m
x
.

Line 442: The updates for additions are conplete at this point and
control goes to RELEASE- ACCT (Line 140), where we give up exclusive
control of the new account number.

Ao m o m o eeeeiaaooo- +
I 1
I 1
I 443 * !
o444+ UPDATE THE FILES FOR MODI FY REQUESTS. !
! 445 UPDT- MODI FY. !
' 446 MOVE 3 TO MENU- MSGNO. !
i i
ot +

Li nes 443 through 446 (UPDT-MODI FY): The next 18 lines update the files
for modifications. As with an addition, the first step is to nmove the
appropriate confirmati on message to the nessage area of the menu map,
ready for the next output display.

447 EXEC CI CS REWRI TE FI LE(' ACCTFIL') FROM NEW ACCTREC)
LENGTH (ACCT- LNG) END- EXEC.

N
N
[e¢]

Li nes 447 through 448: Then we replace the old version of the account
record with the new version in the account file.

Ao m o m o eeeeiaaooo- +
i i
! 449 | F SNAMEDO | N NEW ACCTREC NOT = SNAMEDO | N OLD- ACCTREC !
I 450 EXEC Cl CS DELETE FI LE(' ACCTI X') RI DFLD(OLD- | XKEY) !
I 451 END- EXEC. !
I 452 EXEC CI CS WRI TE FI LE(' ACCTI X') FROM (NEW ACl XREC) !
I 453 RI DFLD (SNAMEDO | N NEW ACI XREC) LENGTH(ACI X- LNG) !
I 454 END- EXEC. !
i i
o +

Li nes 449 through 454: Next we find what has to be done to the
corresponding record in the index file. I f the surname has changed, then
the key of the index record has al so changed, and we nust delete the old

i ndex record and add a new one. Lines 449-450 do the deletion, using the
key generated in Lines 120-121. The addition follows inmmediately, in a
conmmand that's the same as the one we used in Lines 440-441 for processing
an addition. The index record was built at Lines 306-313 in preparation
for this step

© Copyright IBM Corp. 1984, 1991
43-21

CICS Application Programming Primer
Program ACCTO02: update processing

o m e m o eeeeeaoo- +
i i
| 455 ELSE | F FNAMEDO | N NEW ACCTREC NOT = FNAMEDO | N OLD- ACCTREC |
| 456 OR M DO I N NEW ACCTREC NOT = M DO IN OLD- ACCTREC OR '
| 457 TTLDO | N NEW ACCTREC NOT = TTLDO I N OLD- ACCTREC OR '
| 458 ADDR1DO I N NEW ACCTREC NOT = ADDR1DO I N OLD- ACCTREC '
| 459 EXEC CI CS READ FI LE(' ACCTI X') | NTO (OLD- ACl XREC) '
| 460 RI DFLD(OLD- | XKEY) LENGTH(ACI X- LNG) UPDATE END- EXEC. |
| 461 EXEC CI CS REWRI TE FI LE(' ACCTI X') FROM NEW ACI XREC) i
| 462 LENGTH(ACI X- LNG) END- EXEC. '
i i
Ao m o m m o eeeeaaoo- +

Li nes 455 through 462: Even if the surname hasn't changed, we may still
need to update the index file, because one of the fields in the index
record may have been changed in the nodification. So we conpare all the
fields that appear in the index record in the new and old versions of the
account record. |If any field has changed, we rewite the index record (in
Li nes 460-461). Before we do this, however, we have to read this record
(Li nes 458-459), because CICS doesn't let you rewite without first

readi ng the sanme record for update.

IS
o
@
_'
(e}
[
g
n
m
x
-

Line 463: The file updates for nodifications are conplete at this point,
and control goes to RELEASE-ACCT, just as it does for additions.

464 *
465 * UPDATE THE FI LES FOR DELETE REQUESTS.
466 UPDT- DELETE.

467 MOVE 4 TO MENU- MSGNO.
468 EXEC CI CS DELETE FI LE(' ACCTFIL') END- EXEC.
469 EXEC CI CS DELETE FI LE(' ACCTI X') RI DFLD(OLD- | XKEY)
470 END- EXEC.
e m e m o e e e e o eeieao oo +

Li nes 466 through 470 (UPDT-DELETE): As with the other types of updates,
processing a deletion begins by noving the appropriate confirmation
message to the menu map. Then the account record and the associ ated i ndex
record are deleted fromthe account and index files, respectively. Note
that we specify a key for the index file (the RIDFLD(OLD-1 XKEY) option),
but not for the account file. This is because we've read the account

record for update (in Lines 117-118), but we haven't read the index
record. In contrast to the situation with the REWRI TE command, CICS
all ows you to use the DELETE command wi thout first doing a
read- f or-update.

This was our bug! Our original version of Line 468 read:
EXEC CI CS DELETE FILE(' ACCTFIL') RIDFLD(ACCTC) END- EXEC.
You'll see the problenms this gave us when you nove on to "Testing and

di agnosi s" in topic 5.0 where we show you a session with the Execution
Di agnostic Facility, EDF.

© Copyright IBM Corp. 1984, 1991
43-22

CICS Application Programming Primer
Program ACCTO02: update processing

1471 UPDT- EXI T.
| 472 EXI T.
|
|

Lines 471 to 472: This marks the end of the updating procedures referred
to in lines 442 and 463, and control is returned to ClICS.

© Copyright IBM Corp. 1984, 1991
43-23

CICS A

pplication Programming Primer

Program ACCTO03: requests for printing

4.4 Program ACCT03: requests for printing

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

Lines 17 through 27:

* REMARKS.

*

*

*

*

| DENTI FI CATI ON DI VI SI ON.
PROGRAM- | D. ACCTO03.

THI'S PROGRAM IS THE FI RST | NVOKED BY TRANSACTI ONS
"AC03', "ACLG, 'ACO05', "ACEL' AND 'ACO06'. 'AC03'
COWPLETES A REQUEST FOR PRI NTI NG OF A CUSTOVER

RECORD, WHI CH WAS

PROCESSED | NI TI ALLY BY TRANSACTI ON

"ACO01'. "ACLG ' WHICH IS A USER REQUEST TO PRI NT THE
LOG MERELY REQUESTS ' ACO5' BE STARTED WHEN THE LOG

PRI NTER (' L860)

I'S AVAI LABLE. ' ACO05' TRANSFERS THE

LOG DATA FROM TEMPORARY STORAGE TO THE PRI NTER.
"ACEL,' WHICH IS A USER REQUEST TO PRI NT THE ERROR
LOG MERELY REQUESTS ' AC06' BE STARTED WHEN THE LOG

PRI NTER (' L860)

I'S AVAI LABLE. ' ACO6' TRANSFERS THE

ERROR LOG DATA FROM TEMPORARY STORAGE TO THE PRI NTER.
ENVI RONMVENT DI VI SI ON.
DATA DI VI SI ON.

WORKI NG STORAGE SECTI ON.

01 M SC
02 RESPONSE
01 COMMAREA- FOR- ACCT04.
02 ERR-PGM
02 ERR-FN
02 ERR- RCODE
02 ERR- COMVAND
02 ERR- RESP
01 TS-LNG
01 TS-ELNG

program
they are used.

Li ne 28:
structure.

029
030
031
032
033
034
035

Lines 29 through 35 (INT):

*

*

*

I ndi vi dual variables will

PI C S9(8) COWP.

PI C X(8) VALUE ' ACCTO3' .
PIC X

PIC X.

PI C XX.

PIC 99.

PI C S9(4) COWP VALUE +751.
PI C S9(4) COMP VALUE +156.

These lines are the working storage area of the

be explained in the conments bel ow as

This line brings in a copy of the synmbolic description map

PROCEDURE DI VI SI ON.

I' NI TI ALI ZE.

I'NIT.

CATER FOR UNEXPECTED ERRORS.
EXEC CI CS HANDLE CONDI TI ON ERROR(NO- GOOD) END- EXEC.

This command corresponds in function to the

HANDLE CONDI TI ON ERROR commands early in prograns ACCTOl1 (Line 143) and

ACCTO2 (Line 103).

unusual

response to any other CICS

It tells CICS where to transfer control if there's an

command.

© Copyright IBM Corp. 1984, 1991

44-1

CICS Application Programming Primer
Program ACCTO03: requests for printing

1 036 * !
1037 * TEST FOR TRANSACTI ON TYPE. !
1 038 IF EIBTRNID = ' ACO3' GO TO ACO3. !
' 039 IF EIBTRNID = ' ACLG GO TO ACLG. !
I 040 IF EIBTRNID = ' ACO5' GO TO ACO5. !
1041 IF EIBTRNID = ' ACEL' GO TO ACEL. !
1042 IF EIBTRNID = ' ACO6' GO TO ACOS. !
i i
o e m e m eeeeoeaoo- +

Lines 36 through 42: This program performs five independent functions,
each of which is invoked by a different transaction code. W could have
used separate progranms, but each would be so short that we've chosen
instead to conbine them |In these statements we |ook at the transaction
identifier to find out which function we want on this execution of the
program

ot +
I 1
I 1
! 043 * !
044 * PROCESS TRANSACTI ON ' ACO3' . !
! 045 ACOS3. !
' 046 EXEC Cl CS RETRI EVE | NTO(ACCTDTLI) LENGTH(TS-LNG) END-EXEC. !
| |
ot +

Lines 44 through 46 (AC03): The three lines beginning here conplete the
processing of a request to print a particular account file record.

Processing for this type of request begins in transaction ACO0l, which
reads the record fromthe file, assenbles the information into synbolic
map form and then invokes this transaction to finish the work. (See the
di scussion at Lines 372-373 of program ACCTO01.)

The first step here, therefore, is to get access to the symbolic map data
prepared in transaction ACOl. W use a RETRIEVE command to do this,
bringing the data into working storage, where we've defined the same
synmbolic map structure. W have to specify the maxi num | ength of data to
be retrieved in this command, and for this we use a variable, defined at
Line 26, and initialized to the length of the map. (We found this length
fromthe DVAP section of the COBOL conpil er output.)

EXEC CI CS SEND MAP(' ACCTDTL') MAPSET(' ACCTSET') PRI NT
048 ERASE END- EXEC.

o
5
~

Lines 47 through 48: Because the START conmmand that invoked this
transaction naned a term nal, we know that we can write to that term nal

directly, just as we send output back to the input term nal in other
transactions. This command wites the map prepared in ACOl to this
termnal, which is the printer that the user named in the original print
request. We specify the PRINT option here to enphasize that it is
required in either the command or the map if the terminal to which you are
writing is a printer. (Strictly speaking, we could omit it here because
we did include it in the map definition.) W also use ERASE, to rempve
any information in the device buffer left over fromthe previous print
operation.

o
IS
©
—
o
)
3
Py
4

© Copyright IBM Corp. 1984, 1991
44-2

CICS Application Programming Primer
Program ACCTO03: requests for printing

Line 49: The printing is now conplete and we return to CICS at Line 103
(RTRN) .

We should note here that some of the work done in the ACOl1 part of
processing a print request--reading the file and arranging the data into
map format--could have been done in this one instead. There are two
reasons for doing it where we did:

1. We cannot check the input properly without reading the file record (to
ensure that it really exists). W have to do this in transaction
AC01, because afterward there's no way to send an error nessage back
to the user (ACO03 doesn't have access to the input termnal)

2. There may be a del ay between the ACO1 and ACO03 hal ves of the request,
while CICS waits for the requested printer to become free. During
this tine the record may be nodified, so that the user will see a copy
that includes different information from what existed at the tinme of
his or her request.

It's true that this information will be more current than what was
requested, but it is probably not what the user wants. Wbrse, the
record could get deleted in this interval. Then the ACO3 part of the

request would fail, and there would be no way to tell the user what
had happened (short of starting still another transaction to send a
message back to the original input termnal, in the hope that the sane
user would still be there).
o m m e o e +
| 1
| 1
i 050 * H
| 051 * PROCESS TRANSACTI ON ' ACLG . '
| 052 ACLG. '
i 053 EXEC CI CS START TRANSI D(' AC05') TERM D(' L860) END- EXEC. '
i i
o m e ool +

Lines 50 through 53 (ACLG): The six |lines beginning here performthe
second function of this program which is to process the first part of a
request to print the log. Like a request to print an individual record, a
request to print the log has to be handled as two transactions, because
two different termnals are involved: the one that enters the request, and
the printer.

Thi s code processes the request froman input termnal. The first step is
to ask CICS to start up the second transacti on (ACO5) as soon as the
printer used for the log is free (this printer happens to be naned L860.
Thi s START command does this; there's no data for this transaction to
forward to the next one, and so we have no FROM option

ot +
i i
! 054 MOVE LOW VALUES TO ACCTMSGO. !
! 055 MOVE ' PRI NTI NG OF LOG HAS BEEN SCHEDULED TO MSGO. !
! 056 EXEC ClI CS SEND MAP(' ACCTMSG) MAPSET(' ACCTSET') !
! 057 FREEKB END- EXEC. !
i i
o e m e m eeeeoeaoo- +

Lines 54 through 57: As usual, we clear the map to nulls (LOW VALUES)
before filling it in.

Then we send a nmessage back to the requesting termnal, confirm ng that
the requested work has been scheduled. In contrast to all the other types
of requests that make up this application, a request to print the |og

© Copyright IBM Corp. 1984, 1991
44-3

CICS Application Programming Primer
Program ACCTO03: requests for printing
isn't entered through the menu screen. So it isn't appropriate to use the
message area of the nenu screen, and we need a separate map to send this
message. This map is ACCTMSG, which is sinply a one-line map consisting
of an area for a message.

o
a1
®
_‘
o
Y
_|
py)
Z

Line 58: Then we return to CICS at Line 103.

ot +
i i
I 059 * !
1 060 * PROCESS TRANSACTI ON ' ACO5' . !
! 061 ACO5. !
062 EXEC ClI CS READQ TS QUEUE(' ACCTLOG) | NTO (ACCTDTLI) !
! 063 LENGTH(TS- LNG) NEXT RESP(RESPONSE) END- EXEC. !
! 064 | F RESPONSE = DFHRESP(QI DERR) !
! 065 GO TO RTRN. !
! 066 | F RESPONSE = DFHRESP(| TEMERR) !
' 067 GO TO LOG END. !
' 068 | F RESPONSE NOT = DFHRESP(NORMAL) !
' 069 GO TO NO- GOOD. !
' 070 EXEC ClI CS SEND MAP(' ACCTDTL') MAPSET(' ACCTSET') PRI NT ERASE !
1071 END- EXEC. !
1072 GO TO ACOS5. !
i i
o +

Li nes 59 through 72 (AC05): The code for handling the second half of a
request to print the transaction log is the next function of this program
It begins with a two-conmmand | oop, in which the first command (Lines
62-63) reads the next itemfromthe tenporary storage queue (ACCTLOG) that
represents the log. The second command sends this item which is a map

al ready formatted by program ACCTOl1 (at Lines 304-353), to the printer.
These two commands are repeated until all of the entries in the |og have
been printed.

Since this is the only transaction that reads this temporary storage
queue, we can omit the |ITEM nunber option and code the NEXT option in
reading it. Then the first time READQ is executed, the first itemon the
log is fetched; the next time, the second itemis fetched, and so on until
the end of the queue. (The end of the queue results in the | TEMERR
condition, at which control goes to LOG END -as explained in the next

par agraph.)

We explicitly test RESP for three error conditions: if a Q DERR has
occurred (neaning that there is no queue corresponding to the one that has
been entered), control will go to RTRN (Line 103). |If an |ITEMERR

condi tion has occurred (meaning that we're trying to read an itemthat
isn't there), this transfers control to LOGEND at Line 74. If there is
some ot her sort of error (any NOT NORMAL condition), control will go to

NO- GOOD at Line 107.

073 LOG END.
EXEC Cl CS DELETEQ TS QUEUE(' ACCTLOG) END- EXEC.
075 GO TO RTRN.

o
~
N

© Copyright IBM Corp. 1984, 1991
44-4

CICS Application Programming Primer
Program ACCTO03: requests for printing
Lines 73 through 75 (LOG END): Having printed the log, we now delete the
tenmporary storage queue in which it was collected, to free up tenporary
st orage.

Note: The next write to this deleted queue will cause CICS to create a
new queue, with the same name, and the accunul ation of change |og records
will begin all over again.

o e mmm o m =
i

I 076 *

1077 % PROCESS TRANSACTI ON ' ACEL' .

1 078 ACEL.

1 079 EXEC CI CS START TRANSI D(' AC06') TERM D(' L860) END- EXEC.

I 080 MOVE LOW VALUES TO ACCTMSGO.

| 081 MOVE ' PRI NTI NG OF ERROR LOG HAS BEEN SCHEDULED TO MSGO.

1 082 EXEC CI CS SEND MAP(' ACCTMSG) MAPSET(' ACCTSET')

| 083 FREEKB END- EXEC.

i

e m e e e m ==

Lines 76 through 83 (ACEL): We now i ssue the START command to initiate
the third transaction that will do the printing of the error log. The
name of this transaction is AC06. Like transaction ACLG a request to
print the error log has to be handled as two transactions, because two

different terminals are involved: the one that enters the request, and th
printer. Because we didn't specify any TIME or | NTERVAL paraneter, CICS

will start the transaction as soon as it can after the required term nal
is free.
As usual, we clear the map to nulls (LOW VALUES) before filling it in.

Then we send a nmessage back to the requesting terminal, confirmng that
the requested work has been schedul ed. Like the request to print the
transaction log, a request to print the error log isn't entered through
the menu screen. So it isn't appropriate to use the nessage area of the
menu screen, and we need a separate map to send this nmessage. This map i
ACCTMSG, which is sinply a one-line map consisting of an area for a
message.

Line 84: Then we return to CICS at Line 103.

I

|

1 085 *

! 086 * PROCESS TRANSACTI ON ' ACO6' .

! 087 ACO6.

1 088 EXEC Cl CS READQ TS QUEUE(' ACERLOG) | NTO (ACCTERRI)
1 089 LENGTH(TS- ELNG) NEXT RESP(RESPONSE) END- EXEC.

' 090 | F RESPONSE = DFHRESP(QI DERR)

' 091 GO TO RTRN.

' 092 | F RESPONSE = DFHRESP(| TEMERR)

' 093 GO TO ELOG- END.

' 094 | F RESPONSE NOT = DFHRESP(NORMAL)

! 095 GO TO NO- GOOD.

' 096 EXEC Cl CS SEND MAP(' ACCTERR) MAPSET(' ACCTSET') PRI NT ERASE
' 097 END- EXEC.

' 098 GO TO ACO6.

I

|

© Copyright IBM Corp. 1984, 1991
44-5

e

CICS Application Programming Primer
Program ACCTO03: requests for printing

Lines 85 through 98 (AC06): This is very simlar to ACO5, described in
lines 59 through 72. It begins with a two-comand | oop, in which the
first command (Lines 88-89) reads the next itemfromthe tenporary storage
queue (ACERLOG) that represents the error log. The second conmand sends
this item which is a map already formatted by program ACCTO1 (at Lines
304-353), to the printer. These two commands are repeated until all of
the entries in the error | og have been printed.

Since this is the only transaction that reads this temporary storage
queue, we can omt the |TEM nunber option and code the NEXT option in
reading it. Then the first time READQ is executed, the first itemon the
log is fetched; the next time, the second itemis fetched, and so on until
the end of the queue. (The end of the queue results in the | TEMERR
condi tion, at which control goes to ELOG END.)

ELOG- END.
100 EXEC CI CS DELETEQ TS QUEUE(' ACERLOG) END- EXEC.

o
©
©

Lines 99 through 100 (ELOG END): Having printed the error |og, we now
del ete the tenporary storage queue in which it was collected, to free up
tenmporary storage.

Note: The next write to this deleted queue will cause CICS to create a
new queue, with the sane nane, and the accunulation of error |og records
will begin all over again.

o e m e m eeeeoeaoo- +
| 1
I 1
1101 * !
1102 RETURN TO CI CS. !
! 103 RTRN. !
I 1
104 EXEC Cl CS RETURN END- EXEC. !
i i
ot +

Lines 101 through 104 (RTRN): This command returns control to CICS and is
shared by all the functions in the program Notice that no next transid
is set. The concept of next transid doesn't apply, of course, to

term nals that don't get input.

This explains its absence for the first and third transactions, because
the term nal associated with the transaction is a printer. |In the case of
the ACLG code, it is because the request is entered directly, and not
through the menu. Once again, since we're not controlling the contents of

the screen, we don't know what transaction the user will want next.

o m m e o e +
i i
! 105 * !
| 106 * PROCESS UNRECOVERABLE ERRORS. '
! 107 NO- GOOD. !
| 108 MOVE EI BFN TO ERR- FN, MOVE ElI BRCODE TO ERR- RCODE. '
1 109 MOVE ElI BFN TO ERR- COMMAND, MOVE EI BRESP TO ERR- RESP. '
1 110 EXEC CI CS HANDLE CONDI TI ON ERROR END- EXEC. i
1111 EXEC CI CS LI NK PROGRAM ' ACCT04"') '
1112 COMVAREA(COMMAREA- FOR- ACCT04) LENGTH(14) END- EXEC. '
i i
o m m eem e o +

© Copyright IBM Corp. 1984, 1991
44-6

CICS Application Programming Primer
Program ACCTO03: requests for printing
Lines 105 through 112 (NO-GOOD): This code handl es unrecoverable errors
on CICS conmands and is identical to the corresponding code in Lines
410- 413 of program ACCTO1.

[N
[N
w
>
Q
A

Line 113: This GOBACK has the same function as those that term nate the
ot her prograns.

© Copyright IBM Corp. 1984, 1991
44-7

CICS Application Programming Primer
Program ACCTO4: error processing

4.5 Program ACCT04: error processing

001 | DENTI FI CATI ON DI VI SI ON.
002 PROGRAM- | D. ACCTO04.
003 *REMARKS. THI S PROGRAM | S A GENERAL PURPOSE ERROR ROUTI NE.

004 * CONTROL |I'S TRANSFERRED TO I T BY OTHER PROGRAMS | N THE
005 * ONLI NE ACCOUNT FI LE APPLI CATI ON VHEN AN UNRECOVERABLE
006 * ERROR HAS OCCURRED.

007 * I T SENDS A MESSAGE TO | NPUT TERM NAL DESCRI BI NG THE
008 * TYPE OF ERROR AND ASKS THE OPERATOR TO REPORT IT.

009 * THEN | T ABENDS, SO THAT ANY UPDATES MADE | N THE

010 * UNCOWVPLETED TRANSACTI ON ARE BACKED OUT AND SO THAT AN
011 ~* ABEND DUMP | S AVAI LABLE.

012 ENVI RONMENT DI VI SI ON.
013 DATA DI VI SI ON.
014 WORKI NG STORAGE SECTI ON.

I

I

I

I

I

I

I

I

I

I

|

I

|

I

I

I

I

I

I

I

I

|

I

|

I

|

I

I

|

' 015 COPY ACCTSET

' 016 01 RESPTAB

1017 02 RESPO1 PIC X(12) VALUE ' ERROR'

' 018 02 RESP02 PIC X(12) VALUE ' RDATT'

' 019 02 RESP03 PIC X(12) VALUE ' WRBRK'

' 020 02 RESP04 PIC X(12) VALUE ' EOF'

' 021 02 RESP05 PIC X(12) VALUE ' EODS'
1022 02 RESP06 PIC X(12) VALUE ' EOC

' 023 02 RESPO7 PIC X(12) VALUE ' | NBFMH

' 024 02 RESP08 PIC X(12) VALUE ' ENDI NPT'
' 025 02 RESP09 PIC X(12) VALUE ' NONVAL'

' 026 02 RESP10 PIC X(12) VALUE ' NOSTART'
1027 02 RESP11 PIC X(12) VALUE ' TERM DERR
' 028 02 RESP12 PIC X(12) VALUE ' FI LENOTFOUND'
' 029 02 RESP13 PIC X(12) VALUE ' NOTFND

' 030 02 RESP14 PIC X(12) VALUE ' DUPREC

! 031 02 RESP15 PIC X(12) VALUE ' DUPKEY'

! 032 02 RESP16 PIC X(12) VALUE ' | NVREQ

! 033 02 RESP17 PIC X(12) VALUE ' | CERR

' 034 02 RESP18 PIC X(12) VALUE ' NOSPACE'
' 035 02 RESP19 PIC X(12) VALUE ' NOTOPEN
! 036 02 RESP20 PIC X(12) VALUE ' ENDFI LE'
! 037 02 RESP21 PIC X(12) VALUE 'ILLOGI C
' 038 02 RESP22 PIC X(12) VALUE ' LENGERR
' 039 02 RESP23 PIC X(12) VALUE ' QZERO

' 040 02 RESP24 PIC X(12) VALUE ' SI GNAL' .
' 041 02 RESP25 PIC X(12) VALUE ' QBUSY'

! 042 02 RESP26 PIC X(12) VALUE ' | TEMERR
! 043 02 RESP27 PIC X(12) VALUE ' PGM DERR
' 044 02 RESP28 PIC X(12) VALUE ' TRANSI DERR'
! 045 02 RESP29 PIC X(12) VALUE ' ENDDATA'
! 046 02 RESP30 PIC X(12) VALUE ' | NVTSREQ
047 02 RESP31 PIC X(12) VALUE ' EXP| RED
' 048 02 RESP32 PIC X(12) VALUE ' RETPAGE'
! 049 02 RESP33 PIC X(12) VALUE ' RTEFAI L'
|

e o e — e —m—
e m e e e m ==
I

I

' 050 02 RESP34 PIC X(12) VALUE ' RTESOVE'
! 051 02 RESP35 PIC X(12) VALUE ' TSI CERR
! 052 02 RESP36 PIC X(12) VALUE ' MAPFAI L'
! 053 02 RESP37 PIC X(12) VALUE ' | NVERRTERM
! 054 02 RESP38 PIC X(12) VALUE ' | NVMPSZ'
! 055 02 RESP39 PIC X(12) VALUE ' | GREQI D
! 056 02 RESP40 PIC X(12) VALUE ' OVERFLOW .
! 057 02 RESP41 PIC X(12) VALUE ' | NVLDC

© Copyright IBM Corp. 1984, 1991
45-1

CICS Application Programming Primer
Program ACCTO4: error processing

! 058 02 RESP42 PIC X(12) VALUE ' NOSTG

! 059 02 RESP43 PIC X(12) VALUE ' JI DERR' .

' 060 02 RESP44 PI C X(12) VALUE ' QI DERR' .

' 061 02 RESP45 PI C X(12) VALUE ' NOJBUFSP'

' 062 02 RESP46 PI C X(12) VALUE ' DSSTAT'

' 063 02 RESP47 PI C X(12) VALUE ' SELNERR

' 064 02 RESP48 PI C X(12) VALUE ' FUNCERR

' 065 02 RESP49 PI C X(12) VALUE ' UNEXPI N

' 066 02 RESP50 PI C X(12) VALUE ' NOPASSBKRD
' 067 02 RESP51 PI C X(12) VALUE ' NOPASSBKWR
' 068 02 RESP52 PIC X(12) VALUE ' *NOT VALI D*'
' 069 02 RESP53 PIC X(12) VALUE ' SYSI DERR

' 070 02 RESP54 PIC X(12) VALUE ' | SCI NVREQ
1071 02 RESP55 PIC X(12) VALUE ' ENQBUSY'
1072 02 RESP56 PIC X(12) VALUE ' ENVDEFERR'

1 073 02 RESP57 PI C X(12) VALUE ' | GREQCD'
1074 02 RESP58 PI C X(12) VALUE ' SESSI ONERR
' 075 02 RESP59 PI C X(12) VALUE ' SYSBUSY'

' 076 02 RESP60 PI C X(12) VALUE ' SESSBUSY'

1 077 02 RESP61 PI C X(12) VALUE ' NOTALLOC

' 078 02 RESP62 PI C X(12) VALUE ' CBI DERR

1 079 02 RESP63 PI C X(12) VALUE ' | NVEXI TREQ
' 080 02 RESP64 PIC X(12) VALUE ' | NVPARTNSET'
' 081 02 RESP65 PIC X(12) VALUE ' | NVPARTN'

1 082 02 RESP66 PIC X(12) VALUE ' PARTNFAI L' .
' 083 02 RESP67 PIC X(12) VALUE ' *NOT VALI D*'
! 084 02 RESP68 PIC X(12) VALUE ' *NOT VALI D*'
! 085 02 RESP69 PI C X(12) VALUE ' USERI DERR'

! 086 02 RESP70 PI C X(12) VALUE ' NOTAUTH'

' 087 02 RESP71 PI C X(12) VALUE ' VOLI DERR'

' 088 02 RESP72 PI C X(12) VALUE ' SUPPRESSED
' 089 02 RESP73 PI C X(12) VALUE ' *NOT VALID*'.
' 090 02 RESP74 PIC X(12) VALUE ' *NOT VALID*' .
' 091 02 RESP75 PI C X(12) VALUE ' RESI DERR

' 092 02 RESP76 PIC X(12) VALUE ' *NOT VALI D*'
' 093 02 RESP77 PIC X(12) VALUE ' *NOT VALI D*'
1094 02 RESP78 PIC X(12) VALUE ' *NOT VALI D*'
' 095 02 RESP79 PIC X(12) VALUE ' *NOT VALI D*'
! 096 02 RESP80 PIC X(12) VALUE ' NOSPOOL'

' 097 02 RESP81 PIC X(12) VALUE ' TERVERR'

' 098 02 RESP82 PI C X(12) VALUE ' ROLLEDBACK'
' 099 02 RESP83 PI C X(12) VALUE ' END'

' 100 02 RESP84 PI C X(12) VALUE ' DI SABLED'

' 101 02 RESP85 PI C X(12) VALUE ' ALLOCERR

' 102 02 RESP86 PI C X(12) VALUE ' STRELERR

|
o
o e m e e e e mm e m =
|

' 103 02 RESP87 PIC X(12) VALUE ' OPENERR

' 104 02 RESP88 PI C X(12) VALUE ' SPOLBUSY'

! 105 02 RESP89 PI C X(12) VALUE ' SPOLERR

! 106 02 RESP90 PI C X(12) VALUE ' NODEI DER'
107 02 RESP91 PIC X(12) VALUE ' TASKI DERR'

' 108 02 RESP92 PI C X(12) VALUE ' TCl DERR

' 109 02 RESP93 PI C X(12) VALUE ' DSNNOTFOUND' .
' 110 02 RESP- NOT- FOUND PIC X(12) VALUE ' *NOT VALI D*'
1111 01 FILLER REDEF| NES RESPTAB

1112 02 RESPVAL OCCURS 94

1113 PIC X(12).

1114 01 COMMAND- LI ST.

' 115 02 HEX-0202 PIC XX VALUE ' '.

1 116 02 HEX-0204 PIC XX VALUE ' '.

1117 02 HEX-0206 PIC XX VALUE ' '.

© Copyright IBM Corp. 1984, 1991
45-2

CICS Application Programming Primer
Program ACCTO4: error processing

1118 02 HEX-0208 PI C XX VALUE ' !
1119 02 HEX-020A PI C XX VALUE ‘' "
1 120 02 HEX-020C PI C XX VALUE ' '
1121 02 HEX-020E PI C XX VALUE ' '
1122 02 HEX-0210 PI C XX VALUE ' "
1123 02 HEX-0402 PI C XX VALUE ' '
1124 02 HEX-0404 PI C XX VALUE ' '
1 125 02 HEX-0406 PIC XX VALUE ' '.
1 126 02 HEX-0408 PIC XX VALUE ' .
1127 02 HEX- 040A PI C XX VALUE ' '
| 128 02 HEX-040C PI C XX VALUE ' '
1129 02 HEX- 040E PI C XX VALUE ' '
1 130 02 HEX-0410 PI C XX VALUE ' !
1131 02 HEX-0412 PI C XX VALUE ' "
1 132 02 HEX-0414 PI C XX VALUE ' "
| 133 02 HEX-0416 PI C XX VALUE ' '
| 134 02 HEX-0418 PI C XX VALUE ' "
| 135 02 HEX-041A PI C XX VALUE ' "
| 136 02 HEX-041C PI C XX VALUE ' '
1137 02 HEX-041E PI C XX VALUE ' '
| 138 02 HEX-0420 PIC XX VALUE ' .
1 139 02 HEX- 0422 PI C XX VALUE ' '
1 140 02 HEX-0424 PI C XX VALUE ' '
1141 02 HEX-0426 PI C XX VALUE ' '
1142 02 HEX-0428 PI C XX VALUE ' !
1143 02 HEX-042A PI C XX VALUE ' !
1 144 02 HEX-042C PI C XX VALUE ' '
| 145 02 HEX-042E PI C XX VALUE ' '
| 146 02 HEX-0430 PI C XX VALUE ' '
1147 02 HEX-0432 PI C XX VALUE ' "
| 148 02 HEX-0434 PI C XX VALUE ' '
1 149 02 HEX-0436 PI C XX VALUE ' '
1 150 02 HEX-0438 PIC XX VALUE ' .
1 151 02 HEX-043A PIC XX VALUE ' '.
| 152 02 HEX-043C PI C XX VALUE ' '
| 153 02 HEX-0602 PI C XX VALUE ' '
| 154 02 HEX-0604 PI C XX VALUE ' '
i 155 02 HEX-0606 PI C XX VALUE ' !
|
e
s
1

1

| 156 02 HEX-0608 PI C XX VALUE ' '
| 157 02 HEX- 060A PIC XX VALUE ' .
| 158 02 HEX-060C PIC XX VALUE '
1 159 02 HEX-060E PI C XX VALUE ' '
1 160 02 HEX-0610 PI C XX VALUE ' '
| 161 02 HEX-0612 PI C XX VALUE ' '
1162 02 HEX-0614 PI C XX VALUE ' !
| 163 02 HEX-0802 PI C XX VALUE ' !
| 164 02 HEX-0804 PI C XX VALUE ' "
| 165 02 HEX-0806 PI C XX VALUE ' '
| 166 02 HEX-0A02 PI C XX VALUE ' "
1 167 02 HEX- 0A04 PI C XX VALUE ' '
| 168 02 HEX- 0A06 PI C XX VALUE ' "
1 169 02 HEX-0C02 PI C XX VALUE ' "
1 170 02 HEX-0C04 PIC XX VALUE ' '.
1171 02 HEX-0EO2 PI C XX VALUE ' '
1172 02 HEX-0OEO4 PI C XX VALUE ' '
1173 02 HEX- OEO6 PI C XX VALUE ' '
1174 02 HEX-OEO8 PI C XX VALUE ' '
1175 02 HEX- OEOA PI C XX VALUE ' !
1 176 02 HEX-OEOC PI C XX VALUE ' '
1177 02 HEX- OEOE PI C XX VALUE ' "

© Copyright IBM Corp. 1984, 1991
45-3

CICS Application Programming Primer
Program ACCTO4: error processing

1178 02 HEX-1002 PI C XX VALUE ' !
1179 02 HEX-1004 PI C XX VALUE ' .
| 180 02 HEX-1006 PI C XX VALUE ' '
| 181 02 HEX-1008 PI C XX VALUE ' '
| 182 02 HEX-100A PI C XX VALUE ' "
| 183 02 HEX-100C PI C XX VALUE ' '
| 184 02 HEX-1202 PI C XX VALUE ' '
| 185 02 HEX-1204 PIC XX VALUE ' .
| 186 02 HEX-1206 PIC XX VALUE ' .
1 187 02 HEX-1208 PI C XX VALUE '
| 188 02 HEX-1402 PI C XX VALUE '
1 189 02 HEX-1404 PI C XX VALUE '
1 190 02 HEX-1602 PI C XX VALUE ' !
1191 02 HEX-1604 PI C XX VALUE ' .
1 192 02 HEX-1802 PI C XX VALUE ' .
| 193 02 HEX-1804 PI C XX VALUE ' '
1 194 02 HEX-1806 PI C XX VALUE ' "
1 195 02 HEX-1808 PI C XX VALUE ' "
1 196 02 HEX-180A PI C XX VALUE ' '
1197 02 HEX-180C PI C XX VALUE ' '
1 198 02 HEX-180E PIC XX VALUE ' .
1 199 02 HEX-1810 PI C XX VALUE '
1 200 02 HEX-1812 PI C XX VALUE '
1 201 02 HEX-1A02 PI C XX VALUE ' '
1 202 02 HEX-1A04 PI C XX VALUE ' !
| 203 02 HEX-1C02 PI C XX VALUE ' !
| 204 02 HEX- 1E02 PI C XX VALUE ' .
| 204 02 HEX- 1E04 PI C XX VALUE ' '
| 205 02 HEX- 1E06 PI C XX VALUE ' '
| 207 02 HEX- 1E08 PI C XX VALUE ' "
| 208 02 HEX- 1EOA PI C XX VALUE ' '
|

o o e -
o e — -
1

1

1 209 02 HEX-1EOC PI C XX VALUE ' '
I 210 02 HEX- 1EOE PI C XX VALUE ' !
1211 02 HEX-1E10 PI C XX VALUE ' '
1212 02 HEX-1E12 PI C XX VALUE ' '
| 213 02 HEX-1E14 PI C XX VALUE ' '
| 214 02 HEX-2002 PI C XX VALUE ' "
| 215 02 HEX-2202 PI C XX VALUE ' "
1 216 02 HEX-2204 PI C XX VALUE ' '
1217 02 HEX-2206 PIC XX VALUE ' .
| 218 02 HEX-4802 PIC XX VALUE ' .
1219 02 HEX-4804 PI C XX VALUE '
1 220 02 HEX-4A02 PI C XX VALUE '
1221 02 HEX- 4A04 PI C XX VALUE '
1222 02 HEX-4C02 PI C XX VALUE ' !
| 223 02 HEX-4C04 PI C XX VALUE ' !
| 224 02 HEX-4EO02 PI C XX VALUE ' .
| 225 02 HEX-4EO04 PI C XX VALUE ' '
| 226 02 HEX-5002 PI C XX VALUE ' '
1227 02 HEX-5004 PI C XX VALUE ' "
| 228 02 HEX-5202 PI C XX VALUE ' '
1229 02 HEX-5204 PI C XX VALUE ' '
1 230 02 HEX-5206 PIC XX VALUE ' .
1 231 02 HEX-5402 PI C XX VALUE '
1 232 02 HEX-5404 PI C XX VALUE '
| 233 02 HEX-5602 PI C XX VALUE '
| 234 02 HEX-5604 PI C XX VALUE '
1 235 02 HEX-5606 PI C XX VALUE ' !
| 236 02 HEX-5610 PI C XX VALUE ' .
| 237 02 HEX-5802 PI C XX VALUE ' .

© Copyright IBM Corp. 1984, 1991
45-4

CICS Application Programming Primer
Program ACCTO4: error processing

1 238 02 HEX- 5804 PI C XX VALUE ' .
I 239 02 HEX- 5A02 PIC XX VALUE ' .

1240 02 HEX- 5A04 PI C XX VALUE '

1241 02 HEX-5C02 PI C XX VALUE ' .

242 02 HEX- 5C04 PI C XX VALUE ' .

1243 02 HEX- 5E02 PI C XX VALUE ' .

244 02 HEX- 5E04 PI C XX VALUE ' .

1 245 02 HEX- 5E06 PI C XX VALUE ' .

1246 02 HEX-5E12 PI C XX VALUE ' .

247 02 HEX- 5E14 PI C XX VALUE ' .

1248 02 HEX- 6002 PI C XX VALUE ' .

249 02 HEX- 6004 PI C XX VALUE ' .

1250 02 HEX- 6202 PI C XX VALUE ' .

1 251 02 HEX- 6204 PIC XX VALUE ' .

1 252 02 HEX- 6402 PI C XX VALUE '

I 253 02 HEX- 6602 PI C XX VALUE ' .

! 254 02 HEX- 6604 PI C XX VALUE ' .

I 255 02 HEX- 6612 PI C XX VALUE '

I 256 02 HEX- 6614 PI C XX VALUE ' .

1 257 02 HEX- 6622 PI C XX VALUE ' .

1 258 02 HEX- 6624 Pl C XX VALUE '

269 02 HEX- 6802 PI C XX VALUE ' .

260 02 HEX- 6804 PI C XX VALUE ' .

1261 02 HEX- 6812 PI C XX VALUE ' .

i

e o o o e — -
e o e — e —m—
I

I

1262 02 HEX- 6814 PI C XX VALUE ' .

I 263 02 HEX- 6A02 PI C XX VALUE '

264 02 HEX- 6C02 PI C XX VALUE ' .

I 265 02 HEX-6C12 PI C XX VALUE '

I 266 02 HEX- 6E02 PI C XX VALUE ' .

1 267 02 HEX- 6E04 PI C XX VALUE ' .

I 268 02 HEX- 7002 PI C XX VALUE ' .

1269 02 HEX- 7004 PI C XX VALUE ' .

1270 02 HEX- 7006 PI C XX VALUE '

1271 02 HEX- 7008 PIC XX VALUE ' .

1272 02 HEX-7012 PI C XX VALUE '

1273 02 HEX- 7014 PI C XX VALUE ' .

1274 02 HEX- 7202 PI C XX VALUE '

1 275 02 HEX- 7402 PI C XX VALUE '

1276 02 HEX- 7404 PI C XX VALUE ' .

1277 02 HEX- 7602 PI C XX VALUE ' .

1278 02 HEX- 7802 PI C XX VALUE ' .

1279 02 HEX- 7804 PI C XX VALUE ' .

1 280 02 HEX- 7812 PI C XX VALUE ' .

1281 02 HEX- 7814 PI C XX VALUE ' .

1282 02 HEX- 7822 PI C XX VALUE ' .

1 283 02 HEX- 7824 PI C XX VALUE ' .

I 284 02 HEX- 7A02 PIC XX VALUE ' .

I 285 02 HEX- 7A04 PI C XX VALUE '

I 286 02 HEX- 7TE02 PI C XX VALUE ' .

1 287 02 HEX- 7E04 PI C XX VALUE ' .

1 288 02 HEX-M SC PI C XX VALUE ' .

1 289 01 FILLER REDEFI NES COMMAND- LI ST
1290 02 HEX- COMMAND PIC X(2) OCCURS 174

1291 01 COMVAND- NAMES.

1292 02 NAME- 0202 PI C X(20) VALUE ' ADDRESS' .
1 293 02 NAME- 0204 PI C X(20) VALUE ' HANDLE CONDI TI ON .
1 294 02 NAMNE- 0206 PI C X(20) VALUE ' HANDLE Al D
1 295 02 NAME- 0208 PI C X(20) VALUE ' ASSI GN

I 296 02 NAME- 020A PI C X(20) VALUE ' | GNORE CONDI TI ON' .
1 297 02 NAME-020C PI C X(20) VALUE ' PUSH .

© Copyright IBM Corp. 1984, 1991
45-5

CICS Application Programming Primer
Program ACCTO4: error processing

! 298 02 NAME- 020E PI C X(20) VALUE ' POP'

1 299 02 NAME- 0210 PIC X(20) VALUE ' ADDRESS SET'

' 300 02 NAME- 0402 PI C X(20) VALUE ' RECEI VE' .

' 301 02 NAME- 0404 PI C X(20) VALUE ' SEND' .

302 02 NAME- 0406 PIC X(20) VALUE ' CONVERSE'

! 303 02 NAME- 0408 PIC X(20) VALUE '|SSUE EODS'

' 304 02 NAME- 040A PIC X(20) VALUE 'I|SSUE COPY'

! 305 02 NAME- 040C PIC X(20) VALUE 'WAIT TERM NAL' .

! 306 02 NAME- 040E PIC X(20) VALUE 'I|SSUE LOAD

! 307 02 NAME- 0410 PIC X(20) VALUE 'WAIT SIGNAL'.

! 308 02 NAME- 0412 PIC X(20) VALUE '|SSUE RESET'

! 309 02 NAME- 0414 PIC X(20) VALUE ' SSUE DI SCONNECT' .
! 310 02 NAME- 0416 PIC X(20) VALUE 'I|SSUE ENDOUTPUT' .
1311 02 NAME- 0418 PIC X(20) VALUE '| SSUE ERASEUP'
1312 02 NAME- 041A PI C X(20) VALUE ' | SSUE ENDFI LE'

1 313 02 NAME-041C PIC X(20) VALUE '|SSUE PRI NT'

' 314 02 NAME- 041E PIC X(20) VALUE 'ISSUE SI GNAL'.

:

e m e e e m ==
o e mmm o m =
|

! 315 02 NAME- 0420 PI C X(20) VALUE ' ALLOCATE'

! 316 02 NAME- 0422 PI C X(20) VALUE ' FREE' .

1317 02 NAME- 0424 PI C X(20) VALUE ' PO NT' .

! 318 02 NAME- 0426 PI C X(20) VALUE ' BUI LD ATTACH .
319 02 NAME- 0428 PI C X(20) VALUE ' EXTRACT ATTACH

' 320 02 NAME- 042A PIC X(20) VALUE ' EXTRACT TCT' .
1321 02 NAME- 042C PIC X(20) VALUE 'WAIT CONVID' .
1322 02 NAME- 042E PIC X(20) VALUE ' EXTRACT PROCESS' .
323 02 NAME- 0430 PIC X(20) VALUE '|SSUE ABEND .

1 324 02 NAME- 0432 PIC X(20) VALUE ' CONNECT PROCESS' .
! 325 02 NAME- 0434 PI C X(20) VALUE '|SSUE CONFI RVATI ON .
! 326 02 NAME- 0436 PIC X(20) VALUE '|SSUE ERROR .

! 327 02 NAME- 0438 PI C X(20) VALUE '|SSUE PREPARE'

! 328 02 NAME- 043A PIC X(20) VALUE '|SSUE PASS'

! 329 02 NAME- 043C PIC X(20) VALUE ' EXTRACT LOGONVSG .
! 330 02 NAME- 0602 PI C X(20) VALUE ' READ' .

331 02 NAME- 0604 PIC X(20) VALUE 'WRI TE'

! 332 02 NAME- 0606 PI C X(20) VALUE ' REWRI TE' .

! 333 02 NAME- 0608 PI C X(20) VALUE ' DELETE'

' 334 02 NAME- 060A PI C X(20) VALUE ' UNLOCK'

! 335 02 NAME- 060C PI C X(20) VALUE ' STARTBR' .

! 336 02 NAME- 060E PIC X(20) VALUE ' READNEXT'

! 337 02 NAME- 0610 PI C X(20) VALUE ' READPREV'

! 338 02 NAME- 0612 PI C X(20) VALUE ' ENDBR

! 339 02 NAME- 0614 PI C X(20) VALUE ' RESETBR' .

! 340 02 NAME- 0802 PIC X(20) VALUE ' WRI TEQ TD'

341 02 NAME- 0804 PIC X(20) VALUE ' READQ TD'

1342 02 NAME- 0806 PI C X(20) VALUE ' DELETEQ TD

! 343 02 NAME- 0A02 PIC X(20) VALUE ' WRI TEQ TS'

! 344 02 NAME- 0A04 PIC X(20) VALUE ' READQ TS'

! 345 02 NAME- 0A06 PIC X(20) VALUE ' DELETEQ TS'

! 346 02 NAME- 0C02 PI C X(20) VALUE ' GETMAI N

I 347 02 NAME- 0C04 PIC X(20) VALUE ' FREEMAI N

! 348 02 NAME- 0E02 PIC X(20) VALUE 'LINK' .

! 349 02 NAME- 0E04 PI C X(20) VALUE ' XCTL'.

! 350 02 NAME- OE06 PI C X(20) VALUE ' LOAD' .

! 351 02 NAME- OEO8 PI C X(20) VALUE ' RETURN

! 352 02 NAME- OEOA PI C X(20) VALUE ' RELEASE' .

! 353 02 NAME- OEOC PI C X(20) VALUE ' ABEND

! 354 02 NAME- OEOE PI C X(20) VALUE ' HANDLE ABEND

! 355 02 NAME- 1002 PI C X(20) VALUE ' ASKTI ME'

! 356 02 NAME- 1004 PI C X(20) VALUE ' DELAY'

! 357 02 NAME- 1006 PI C X(20) VALUE ' POST'

© Copyright IBM Corp. 1984, 1991
45-6

CICS Application Programming Primer
Program ACCTO4: error processing

! 358 02 NAME-1008 PI C X(20) VALUE ' START'

! 359 02 NAME- 100A PI C X(20) VALUE ' RETRI EVE'

! 360 02 NAME-100C PI C X(20) VALUE ' CANCEL'

1 361 02 NAME-1202 PIC X(20) VALUE 'WAI T EVENT'

! 362 02 NAME- 1204 PIC X(20) VALUE ' ENQ

! 363 02 NAME- 1206 PI C X(20) VALUE ' DEQ

! 364 02 NAME- 1208 PI C X(20) VALUE ' SUSPEND' .

! 365 02 NAME- 1402 PI C X(20) VALUE ' JOURNAL'

! 366 02 NAME- 1404 PIC X(20) VALUE 'WAI T JOURNAL' .

|

o e m e e e e mm e m =
e o o o e — -
I

|

! 367 02 NAME- 1602 PIC X(20) VALUE ' SYNCPOI NT'

! 368 02 NAME- 1604 PI C X(20) VALUE ' RESYNC

! 369 02 NAME- 1802 PIC X(20) VALUE ' RECEI VE MAP' .

1 370 02 NAME- 1804 PIC X(20) VALUE ' SEND MAP'

1371 02 NAME- 1806 PIC X(20) VALUE ' SEND TEXT'

1372 02 NAME- 1808 PIC X(20) VALUE ' SEND PAGE' .

! 373 02 NAME- 180A PI C X(20) VALUE ' PURGE MESSAGE'

! 374 02 NAME-180C PI C X(20) VALUE ' ROUTE'

! 375 02 NAME- 180E PI C X(20) VALUE ' RECEI VE PARTN

! 376 02 NAME- 1810 PI C X(20) VALUE ' SEND PARTNSET'
1377 02 NAME- 1812 PI C X(20) VALUE ' SEND CONTROL' .

! 378 02 NAME- 1A02 PI C X(20) VALUE ' TRACE ON OFF' .
1379 02 NAME- 1A04 PI C X(20) VALUE ' ENTER TRACEI D'

! 380 02 NAME- 1C02 PI C X(20) VALUE ' DUMP'

1 381 02 NAME- 1E02 PIC X(20) VALUE 'ISSUE ADD .

! 382 02 NAME- 1E04 PIC X(20) VALUE '|SSUE ERASE' .

! 383 02 NAME- 1E06 PI C X(20) VALUE ' | SSUE REPLACE'

! 384 02 NAME- 1E08 PIC X(20) VALUE '|SSUE ABORT' .

! 385 02 NAME- 1EOA PIC X(20) VALUE '|SSUE QUERY' .

! 386 02 NAME- 1EOC PIC X(20) VALUE 'ISSUE END .

! 387 02 NAME- 1EOE PI C X(20) VALUE 'I|SSUE RECEI VE'

! 388 02 NAME- 1E10 PIC X(20) VALUE '|SSUE NOTE

! 389 02 NAME- 1E12 PIC X(20) VALUE '|SSUE WAIT'

' 390 02 NAME- 1E14 PIC X(20) VALUE '|SSUE SEND

1 391 02 NAME- 2002 PIC X(20) VALUE 'BIF DEEDI T'

1 392 02 NAME- 2202 PI C X(20) VALUE ' ENABLE'

! 303 02 NAME- 2204 PI C X(20) VALUE ' DI SABLE'

' 394 02 NAME- 2206 PI C X(20) VALUE ' EXTRACT EXIT'

! 395 02 NAME- 4802 PI C X(20) VALUE ' ENTER TRACENUM .
! 396 02 NAME- 4804 PIC X(20) VALUE ' MONI TOR POl NT'

! 397 02 NAME- 4A02 PI C X(20) VALUE ' ASKTI ME ABSTI ME'
! 308 02 NAME- 4A04 PI C X(20) VALUE ' FORVATTI MVE'

! 399 02 NAME- 4C02 PIC X(20) VALUE 'INQUI RE FILE .

! 400 02 NAME- 4C04 PIC X(20) VALUE ' SET FILE

' 401 02 NAME- 4E02 PIC X(20) VALUE 'INQUI RE PROGRAM .
402 02 NAME- 4E04 PIC X(20) VALUE ' SET PROGRAM .

! 403 02 NAME-5002 PI C X(20) VALUE ' NQUI RE TRANSACTI ON'
' 404 02 NAME-5004 PI C X(20) VALUE ' SET TRANSACTI ON
! 405 02 NAME-5202 PIC X(20) VALUE 'INQUI RE TERM NAL' .
! 406 02 NAME-5204 PIC X(20) VALUE ' SET TERM NAL'.

' 407 02 NAME-5206 PIC X(20) VALUE '|NQUI RE NETNAME'
' 408 02 NAME- 5402 PIC X(20) VALUE ' | NQUI RE SYSTEM

' 409 02 NAME- 5404 PIC X(20) VALUE ' SET SYSTEM

' 410 02 NAME- 5602 PIC X(20) VALUE ' SPOOLOPEN

1411 02 NAME- 5604 PIC X(20) VALUE ' SPOOLREAD

1412 02 NAME- 5606 PIC X(20) VALUE ' SPOOLWRI TE'

! 413 02 NAME-5610 PI C X(20) VALUE ' SPOOLCLOSE'

' 414 02 NAME- 5802 PI C X(20) VALUE '1NQUI RE CONNECTI ON .
! 415 02 NAME- 5804 PI C X(20) VALUE ' SET CONNECTI ON

' 416 02 NAME- 5A02 PIC X(20) VALUE ' I NQUI RE MODENANE'
1417 02 NAME- 5A04 PI C X(20) VALUE ' SET MODENAME'

© Copyright IBM Corp. 1984, 1991
45-7

CICS Application Programming Primer
Program ACCTO4: error processing

| 418 02 NAME-5C02 PI C X(20) VALUE 'l NQUI RE TDQUEUE' .

1 419 02 NAME-5C04 PI C X(20) VALUE ' SET TDQUEUE' .

|
e
o e — e e — -
|

1 420 02 NAME-5E02 PI C X(20) VALUE 'INQUI RE TASK' .

1421 02 NAME-5E04 PI C X(20) VALUE ' SET TASK' .

| 422 02 NAME- 5E06 PI C X(20) VALUE ' CHANGE TASK'.

| 423 02 NAME-5E12 PI C X(20) VALUE ' I NQUI RE TCLASS' .

| 424 02 NAME-5E14 PI C X(20) VALUE ' SET TCLASS'.

| 425 02 NAME- 6002 PI C X(20) VALUE ' I NQUI RE JOURNALNUM .
| 426 02 NAME-6004 PI C X(20) VALUE ' SET JOURNALNUM .
1427 02 NAME-6202 PI C X(20) VALUE 'INQUI RE VOLUME' .

| 428 02 NAME- 6204 PI C X(20) VALUE ' SET VOLUME'.

| 429 02 NAME- 6402 PI C X(20) VALUE ' PERFORM SECURI TY'.

| 430 02 NAME-6602 PI C X(20) VALUE 'I NQUI RE DUMPDS' .

| 431 02 NAME-6604 PI C X(20) VALUE ' SET DUMPDS'.

| 432 02 NAME-6612 PI C X(20) VALUE ' I NQUI RE TRANDUMPCODE' .
| 433 02 NAME-6614 PI C X(20) VALUE ' SET TRANDUMPCODE' .

| 434 02 NAME-6622 PI C X(20) VALUE ' I NQUI RE SYSDUMPCODE' .
| 435 02 NAME- 6624 PI C X(20) VALUE ' SET SYSDUMPCODE' .

| 436 02 NAME-6802 PI C X(20) VALUE 'INQUI RE VTAM .

| 437 02 NAME- 6804 PI C X(20) VALUE 'SET VTAM .

| 438 02 NAME-6812 PI C X(20) VALUE ' I NQUI RE AUTO NSTALL'.
| 439 02 NAME-6814 PI C X(20) VALUE ' SET AUTO NSTALL'.

| 440 02 NAME- 6A02 PI C X(20) VALUE ' QUERY SECURI TY'.

| 441 02 NAME- 6C02 PI C X(20) VALUE 'WRI TE OPERATOR' .

| 442 02 NAME-6C12 PI C X(20) VALUE ' Cl CSMESSAGE' .

| 443 02 NAME-6E02 PI C X(20) VALUE ' I NQUI RE | RC .

| 444 02 NAME-6E04 PI C X(20) VALUE ' SET IRC .

| 445 02 NAME-7002 PI C X(20) VALUE ' I NQUI RE STATI STICS' .
| 446 02 NAME-7004 PI C X(20) VALUE ' SET STATI STICS' .

| 447 02 NAME- 7006 PI C X(20) VALUE ' PERFORM STATI STI CS' .
| 448 02 NAME-7008 PI C X(20) VALUE ' COLLECT STATI STICS' .
| 449 02 NAME-7012 PI C X(20) VALUE ' NQUI RE MONI TOR' .

i 450 02 NAME-7014 PI C X(20) VALUE ' SET MONI TOR' .

| 451 02 NAME- 7202 PI C X(20) VALUE ' PERFORM RESETTI ME' .
| 452 02 NAME- 7402 PI C X(20) VALUE ' Sl GNON' .

| 453 02 NAME- 7404 PI C X(20) VALUE ' Sl GNOFF' .

| 454 02 NAME-7602 PI C X(20) VALUE ' PERFORM SHUTDOWN' .

| 455 02 NAME- 7802 PI C X(20) VALUE ' I NQUI RE TRACEDEST' .

| 456 02 NAME-7804 PI C X(20) VALUE ' SET TRACEDEST' .

| 457 02 NAME-7812 PI C X(20) VALUE ' I NQUI RE TRACEFLAG .

| 458 02 NAME-7814 PI C X(20) VALUE ' SET TRACEFLAG .

| 459 02 NAME- 7822 PI C X(20) VALUE 'INQUI RE TRACETYPE' .

| 460 02 NAME-7824 PI C X(20) VALUE ' SET TRACETYPE'.

| 461 02 NAME-7A02 PI C X(20) VALUE ' NQUI RE DSNAME' .

| 462 02 NAME- 7A04 PI C X(20) VALUE ' SET DSNAME' .

| 463 02 NAME- 7E02 PI C X(20) VALUE ' DUVMP TRANSACTI ON' .

| 464 02 NAME- 7E04 PI C X(20) VALUE ' DUMP SYSTEM .

| 465 02 NAME-0001 PI C X(20) VALUE ' UNKNOWN COMVAND' .

| 466 01 FILLER REDEFI NES COMMAND- NAMES.

| 467 02 COMVAND- NAME PI C X(20) OCCURS 174.

1

1

468 01 M SC.

I

I

I

I

' 469 02 | PI C S9(4) COWP.

470 02 IXR PI C S9(4) COMP VALUE +33.
Lo471 02 IXC PI C S9(4) COMP VALUE +174.
1472 02 ERR-LNG PIC S9(4) COMP VALUE +156.

© Copyright IBM Corp. 1984, 1991
45-8

CICS Application Programming Primer
Program ACCTO4: error processing

473 02 DSN- MSG.

474 04 FILLER PIC X(13) VALUE 'THE FILE IS '.
475 04 DSN PIC X(8).

' 476 04 FILLER PIC X VALUE '.".

U477 02 HEX-LIST.

478 04 HEX- 0601 PI C S9(4) COMP VALUE +1537.
479 04 HEX- 0602 PI C S9(4) COMP VALUE +1538.
' 480 04 HEX- 0608 PI C S9(4) COMP VALUE +1544.
o481 04 HEX- 060C PI C S9(4) COMP VALUE +1548.
482 04 HEX- 060D PIC S9(4) COMP VALUE +1549.
! 483 04 HEX- 060F PI C S9(4) COMP VALUE +1551.
I 484 04 HEX- 0680 PI C S9(4) COMP VALUE +1664.
I 485 04 HEX- 0681 PIC S9(4) COMP VALUE +1665.
! 486 04 HEX- 0682 PIC S9(4) COMP VALUE +1666.
I 487 04 HEX- 0683 PIC S9(4) COMP VALUE +1667.
' 488 04 HEX- 06E1L PI C S9(4) COMP VALUE +1761.
489 04 HEX- 0A01 PI C S9(4) COMP VALUE +2561.
490 04 HEX- 0A02 PI C S9(4) COMP VALUE +2562.
1491 04 HEX- 0A04 PI C S9(4) COMP VALUE +2564.
1492 04 HEX- 0A08 PI C S9(4) COMP VALUE +2568.
' 493 04 HEX- 0A20 PI C S9(4) COMP VALUE +2592.
494 04 HEX- 0AEL PI C S9(4) COMP VALUE +2785.
I 495 04 HEX- 0EO1 PI C S9(4) COMP VALUE +3585.
' 496 04 HEX- OEE1 PI C S9(4) COMP VALUE +3809.
497 04 HEX- 1001 PI C S9(4) COMP VALUE +4097.
! 498 04 HEX- 1004 PI C S9(4) COMP VALUE +4100.
499 04 HEX-1011 PIC S9(4) COMP VALUE +4113.
' 500 04 HEX-1012 PIC S9(4) COMP VALUE +4114.
' 501 04 HEX- 1014 PI C S9(4) COMP VALUE +4116.
1 502 04 HEX- 1081 PI C S9(4) COMP VALUE +4225.
' 503 04 HEX- 10E1 PI C S9(4) COMP VALUE +4321.
' 504 04 HEX- 10E9 PI C S9(4) COMP VALUE +4329.
! 505 04 HEX- 10FF PI C S9(4) COMP VALUE +4351.
' 506 04 HEX- 1801 PI C S9(4) COMP VALUE +6145.
' 507 04 HEX- 1804 PI C S9(4) COMP VALUE +6148.
! 508 04 HEX- 1808 PI C S9(4) COMP VALUE +6152.
! 509 04 HEX- 18E1 PIC S9(4) COMP VALUE +6369.
! 510 04 HEX-M SC PI C S9(4) COMP VALUE +0001.
1511 02 HEX- CODE REDEFI NES HEX- LI ST PI C X(2) OCCURS 33.
! 512 02 ERR-LIST.

1 513 04 MSG 0601 PI C X(60) VALUE

1514 * FI LE CONTROL - FI LENOTFOUND

' 515 * A PROGRAM OR FCT TABLE ERROR (I NVALI D FI LE NAME).' .
' 516 04 MSG 0602 PI C X(60) VALUE

1517 * FI LE CONTROL - |ILLOGI C

' 518 * A PROGRAM OR FI LE ERROR (VSAM | LLOGI C). ' .

' 519 04 MSG 0608 PI C X(60) VALUE

I 520 * FI LE CONTROL - | NVREQ

|

e o o o e — -
o o e e o e m e e e e —
|

1521 " A PROGRAM OR FCT TABLE ERROR (I NVALID FI LE REQUEST).'.
1 522 04 MSG 060C PI C X(60) VALUE

1 523 * FI LE CONTROL - NOTOPEN

1 524 “A FILE BEI NG CLOSED THAT MUST BE OPEN.' .

1 525 04 MSG 060D PI C X(60) VALUE

I 526 * FI LE CONTROL - DI SABLED

1 527 *A FILE BEI NG DI SABLED. ' .

! 528 04 MSG 060F PI C X(60) VALUE

! 529 * FI LE CONTROL - ENDFILE

! 530 " A PROGRAM OR FI LE ERROR (UNEXPECTED END- OF- FI LE). "' .
! 531 04 MSG 0680 PI C X(60) VALUE

! 532 * FI LE CONTROL - | OERR

© Copyright IBM Corp. 1984, 1991
45-9

CICS Application Programming Primer
Program ACCTO4: error processing

533 "A FI LE | NPUT/ OUTPUT ERROR.'.

534 04 MSG 0681 PI C X(60) VALUE

535 * FILE CONTROL - NOTFND

536 ' A PROGRAM OR FI LE ERROR (RECORD NOT FOUND). ' .

537 04 MSG 0682 PI C X(60) VALUE

538 * FILE CONTROL - DUPREC

539 * A PROGRAM OR FI LE ERROR (DUPLI CATE RECORD).' .

540 04 MSG 0683 PI C X(60) VALUE

541 * FILE CONTROL - NOSPACE

542 ' | NADEQUATE SPACE IN A FILE.".

543 04 MSG 06EL PI C X(60) VALUE

544 * FILE CONTROL - LENGERR

545 ' A PROGRAM OR FI LE ERROR (LENGTH ERROR, FILE CONTROL).".
546 04 MSG 0AO1 PI C X(60) VALUE

547 * TEMPORARY STORAGE CONTROL - | TEMERR

548 * A PROGRAM OR TEMPORARY STORAGE ERROR (| TEM ERROR). ' .
549 04 MSG 0A02 PI C X(60) VALUE

550 * TEMPORARY STORAGE CONTROL - Q DERR

551 * A PROGRAM OR TEMPORARY STORAGE ERROR (UNKNOWN QUEUE). ' .
552 04 MSG 0A04 PI C X(60) VALUE

553 * TEMPORARY STORAGE CONTROL - | OERR

554 * AN | NPUT/ OUTPUT ERROR | N TEMPORARY STORAGE. ' .

555 04 MSG 0AO8 PI C X(60) VALUE

556 * TEMPORARY STORAGE CONTROL - NOSPACE

557 ' NO SPACE | N TEMPORARY STORAGE.'.

558 04 MSG 0A20 PI C X(60) VALUE

559 * TEMPORARY STORAGE CONTROL - | NVREQ

560 * A PROGRAM OR SYSTEM ERROR (| NVALI D REQUEST IN TS).".
561 04 MSG OAEL PI C X(60) VALUE

562 * TEMPORARY STORAGE CONTROL - LENGERR

563 " A PROGRAM OR TEMPORARY STORAGE ERROR (TS LENGTH ERROR)' .
564 04 MSG OEO1 PI C X(60) VALUE

565 * PROGRAM CONTROL - PGM DERR

566 * A PROGRAM |'S NOT DEFI NED TO CI CS." .

567 04 MSG OEEO PI C X(60) VALUE

568 * PROGRAM CONTROL - | NVREQ

569 * A PROGRAM ERROR (| NVALI D PROGRAM REQUEST). ' .

570 04 MSG 1001 PI C X(60) VALUE

571 * | NTERVAL CONTROL - ENDDATA

572 ' A PROGRAM ERROR (END OF DATA, USING IC).".

573 04 MSG 1004 PI C X(60) VALUE

574 * I NTERVAL CONTROL - | OERR

575 " AN | NPUT/ OUTPUT ERROR | N TEMPORARY STORAGE (USING 1 C). " .
576 04 MSG 1011 PI C X(60) VALUE

577 * | NTERVAL CONTROL - TRANSI DERR

578 " A TRANSACTION |I'S NOT DEFINED TO CICS' .'

579 04 MSG 1012 PI C X(60) VALUE

580 * | NTERVAL CONTROL - TERM DERR

581 ' A PROGRAM OR TCT TABLE ERROR (TERM DERR USING 1C). " .
582 04 MSG 1014 PI C X(60) VALUE

583 * | NTERVAL CONTROL - | NVTSREQ

584 " A PROGRAM OR SYSTEM ERROR (1 NVTSREQ USING 1 C). " .
585 04 MSG 1081 PI C X(60) VALUE

586 * | NTERVAL CONTROL - NOTFND

587 * A PROGRAM OR SYSTEM ERROR (NOT FOUND USING I C)." .
588 04 MSG 10E1 PI C X(60) VALUE

589 * | NTERVAL CONTROL - LENGERR

590 ' A PROGRAM OR TEMP STORAGE ERROR (| C LENGTH ERROR). ' .
591 04 MSG 10E9 PI C X(60) VALUE

592 * | NTERVAL CONTROL - ENVDEFERR

© Copyright IBM Corp. 1984, 1991
45-10

CICS Application Programming Primer

Program ACCTO4: error processing

! 593 * A PROGRAM ERROR (ENVDEFERR USING I C). " . !
! 594 04 MSG 10FF PI C X(60) VALUE

! 595 | NTERVAL CONTROL - | NVREQ !
! 596 * A PROGRAM ERROR (| NVALI D REQUEST USING 1 C). " . !
! 597 04 MSG 1801 PI C X(60) VALUE

! 598 BASI C MAPPI NG SUPPORT - | NVREQ !
! 599 " A PROGRAM ERROR (BMS | NVALI D REQUEST). ' . !
! 600 04 MSG 1804 PI C X(60) VALUE

! 601 BASI C MAPPI NG SUPPORT - MAPFAI L

! 602 " A PROGRAM ERROR (BMS MAPFAIL).'. !
! 603 04 MSG 1808 PI C X(60) VALUE

! 604 BASI C MAPPI NG SUPPORT - | NVMPSZ !
! 605 * A PROGRAM ERROR (| NVALI D MAP SI ZE). ' . !
' 606 04 MSG 18E1 PI C X(60) VALUE

! 607 * BASI C MAPPI NG SUPPORT - LENGERR !
' 608 * A PROGRAM ERROR (BMS LENGTH ERROR). ' . !
' 609 04 MSG M SC PI C X(60) VALUE

1 610 * UNKNOWN ERROR

1611 " AN UNKNOWN TYPE OF ERROR.'. !
1612 02 ERR-MSG REDEFI NES ERR- LI ST PI C X(60) OCCURS 33. !
i i
Ao m o m o eeeeiaaooo- +

Lines 14 through 612: These lines are the WORKI NG STORAGE of the program
We explain individual variables as we use themin the comments that

follow Mst of them of course, are response names, conmmand val ues and
nanes, our HEX-LIST of error codes, and our error messages.

613 LI NKAGE SECTI ON.

i i
i i
! 614 01 DFHCOMMAREA.

! 615 02 ERR- PGRM D PIC X(8).

! 616 02 ERR- CODE.

1617 04 ERR-FN PIC X.

! 618 04 ERR- RCODE PIC X

' 619 02 ERR- COMVAND PI C XX.

' 620 02 ERR- RESP PI C 99.

i i
ot +

Lines 613 through 620: The structure defined here and named DFHCOMVAREA
describes the data passed to this program by neans of COMMAREA.

621 PROCEDURE DI VI SI ON.
622 MOVE LOW VALUES TO ACCTERRO.

Lines 621 through 622: W initialize the synbolic map structure to nulls
(LOW VALUES) as usual, ready for building the output map.

o m m e m e mm e +
I 1
I 1
| 623 MOVE EI BTRNI D TO TRANEO. '
i i
o m o m eeeoiaooo- +
Line 623: Next, we nmove the code that identifies the failed transaction

into the output map. This identifier is in the EIB at EIBTRNID. Unlike
El BFN and ElI BRCODE, which change every tine a command i s executed,
EI BTRNI D remai ns the same throughout the course of the transaction, and so

it will still be intact.

© Copyright IBM Corp. 1984, 1991
45-11

CICS Application Programming Primer
Program ACCTO4: error processing

o
N
N
2
m
py)
L
el
8
<
w)
_|
o]
-
o

Line 624: We nove the name of the programin which the error was detected
to the output map. Like the function and the response codes, this item of
informati on was passed in the COMMAREA from the programthat |inked to
this one.

625 PERFORM REASON- LOOKUP THROUGH REASON- END
VARYING | FROM 1 BY 1 UNTIL I NOT < I XR

o
N
(o))

Lines 625 through 626 and 640 (REASON-LOOKUP): This loop finds the entry
in the table named HEX-LI ST that matches the error that has occurred. An
error is defined by the type of conmand that failed (file commands,
tenporary storage conmands, and so on) in conmbination with a specific
unusual result (such as a length error, or record not found). At the tinme
of the error, CICS stores the type of command in the first byte of ElIBFN

(the second byte indicates the particular conmand of a command type).

The response is saved in EIBRCODE, which is a six-byte field, the first
byte of which indicates the type of unusual response. You may renenber
that these two val ues were saved by the programthat |inked to this one,
and that they were passed along in the COWAREA. Program ACCTO1l, for
exanpl e, defines them at Lines 42-43, saves them at Line 401, and passes
themto this programin Lines 412-413. They are defined at Lines 617-618
of this programin the COMMAREA passed to it.

HEX- LI ST consists of all the conbinations of these two val ues that m ght
occur on the conmands that are used in this application (and included in
the Prinmer). Since both itens are encoded one-byte hexadeci mal val ues,
our table consists of two-byte conmbinations of hexadeci mal values. And
since COBOL does not allow hexadeci mal expressions, we've converted each
conmbination to its deci mal equivalent in order to define the table. (You
can acconplish the same thing with CHARACTER definitions and nultiple
punches, but nultiple punches are very tricky if you are devel opi ng
progranms online.)

The names in the table still reflect the hexadeci mal val ues, however.
HEX- 0601 (Line 478) means a command (function) code of X 06" in

conbi nation with a response code of X 01'; the conversion to deci mal of
X' 0601' is 1537. A function code of 06 happens to be a file conmmand, and
a response code of 01 for that function neans FILENOTFOUND (file nane
error). You'll find all the function codes and response codes listed in
the Cl CS/ ESA Application Progranm ng Reference.

o
N
~
m
m
ps)
Py
(0]
X
.
_‘
(@]
3
P
m
(@]

Li ne 627: Once the proper conbination of command and response has been
found in HEX-LIST, we move the text nessage that describes that situation
to the map that will notify the user of the error. The right nessage is
in the corresponding position of a second table, ERR-LIST, as the matching
entry is in HEX-LIST. These nmessages are also named to reflect the error
condition to which they apply; that is, MSG 0601 (Line 513) corresponds to

© Copyright IBM Corp. 1984, 1991
45-12

CICS Application Programming Primer
Program ACCTO4: error processing

HEX- 0601 (Line 478), and so on.

B +
i i
| 628 IF I XR < 12 MOVE EI BDS TO DSN, '
I 629 MOVE DSN- MSG TO FI LEEO. !
i i
E T +
Lines 628 through 629: If the command that failed was a file command,

there is one additional piece of information that we want to convey to the
user, and that's the nane of the file on which the error occurred. These
two lines do that. The file errors are the first ten in the table, and
the name of the file nost recently used is at EIBDS. (This value is also
unchanged since the error occurred, because no file commands have been
executed since then.)

PERFORM COMMAND- LOOKUP THROUGH COMMAND- END
631 VARYING | FROM 1 BY 1 UNTIL I NOT < | XC.

o]
w
o

Lines 630 through 631 and 643 (COMMAND- LOOKUP): This is a simlar
operation to the one described in lines 625 through 626 above for the
REASON- LOOKUP procedure.

ot +
i i
! 632 MOVE COMMAND- NAME (| XC) TO CMDEO. !
! 633 | F ERR-RESP < 94 MOVE RESPVAL (ERR- RESP) TO RESPEO !
! 634 ELSE MOVE RESPVAL (94) TO RESPEO. !
i i
Ao m o m o eeeeiaaooo- +

Lines 632 through 634: This time, we get a text version of the
appropriate CICS command nanme, as indexed by the ERR-RESP val ue. Again, we
nmove the text message to our user's error map.

EXEC CI CS SEND MAP(' ACCTERR') MAPSET(' ACCTSET') ERASE FREEKB
636 WAI T END- EXEC.

0]
w
(&)]

Lines 635 through 636: Having put all the particulars into the error nmap,
we now send it to the user.

637 EXEC CI CS WRI TEQ TS QUEUE(' ACERLOG) FROM ACCTERRO)
LENGTH(ERR- LNG) END- EXEC.

(o]
w
(o]

Li nes 637 through 638: Here, we also wite the error log entry to the
tenporary storage queue ACERLOG.

o
w
[{e]
m
>
m
o}
Q
0
o
>
vy]
m
Z
S
>
vs]
g
m
m
>
Q
Q
5
S
m
z
9]
m
>
m
(9]

© Copyright IBM Corp. 1984, 1991
45-13

CICS Application Programming Primer
Program ACCTO4: error processing

Line 639: Finally, we termnate the transaction with an ABEND command.
Thi s produces a dunp (identified by the ABCODE of "EACC"), returns control
to CICS, and causes CICS to back out any changes this transaction made to
a protected resource. (See"Pseudoconversational or not?" in topic 2.7 and
"Recovery requirements" in topic 2.4.2 for nore on protected resources.)

In addition, CICS sends a nessage to the input term nal saying that an
abend has occurred. This nmessage is witten at the current cursor
position without erasing the contents of the screen.

We've not set the TCT paranmeter that woul d override the positioning of the
CI CS nessage, although a common choice is to have such nessages appear at
the top of the screen.

Notice that control does not return to the application after an ABEND
command.

640 REASON- L OOKUP.
641 I F HEX-CODE (1) = ERR-CODE MOVE | TO I XR.
642 REASON- END. EXIT.

Li nes 640 through 642 (CODE- LOOKUP): The REASON-LOOKUP procedure is
expl ai ned at Lines 625-626.

643 COMMAND- L OOKUP.
644 I F HEX- COMMAND (1) = ERR-COMMAND MOVE | TO I XC.
645 COMVAND- END. EXIT.

Li nes 643 through 645 (COMMAND- LOOKUP): The COMMAND- LOOKUP procedure is
expl ai ned at Lines 630-631.

647 GOBACK.

o
S
o
Q
%
m
Z
o

Li nes 646 through 647 (DUMWY-END): This GOBACK provides the |ogical end
of programrequired by the conpiler, as do the GOBACK conmmands term nating
the other prograns.

© Copyright IBM Corp. 1984, 1991
45-14

CICS Application Programming Primer
Testing and diagnosis

5.0 Testing and di agnosi s

+--- This part of the Primer describes: ------cmmmmmmmmm oo
i Types of problem

i The CICS Execution Diagnostic Facility (EDF)

i The tenporary storage browse transaction

i CICS abend codes.

Subt opi cs
5.1 Testing
5.2 Finding the problem

© Copyright IBM Corp. 1984, 1991
50-1

CICS Application Programming Primer
Testing

5.1 Testing
This topic discusses the process of testing application code and finding
the causes of problens. When you bring up an application under CICS,
probl ens can occur at any of three levels. They may be confined to the
application, and affect only that one application. On the other hand,
they may affect the whole of CICS. 1In the worst case, they affect the
entire operating system

We'l'l discuss how to go about finding problens in application code,
describe some of the tools that CICS provides to help in this process, and
show an exanple of a common error using our exanple application. Even
using the subset of CICS facilities described in this Prinmer, however, we
can't confine the discussion to a conveni ent subset of m stakes -- there's
no such thing. Debugging is a conplex subject and very sensitive to the
particul ar application, so that it isn't possible to discuss exhaustively
even the level of errors that mi ght affect only one application.

Probl ens that affect the whole CICS system are generally even nore
difficult, as are operating-system problens, so we'll be |eaving these
entirely to other sources of information.

Subt opi cs

5.1.1 Preparing to test
5.1.2 Types of problem
5.1.3 Tool s for debuggi ng

© Copyright IBM Corp. 1984, 1991
51-1

CICS Application Programming Primer
Preparing to test

5.1.1 Preparing to test

You have to do two main tasks before you can attenpt to test and debug an
application:

O You need to prepare the application and the systemtable entries
O You need to prepare the system for debuggi ng
Subt opi cs

5.1.1.1 Preparing the application and systemtable entries
5.1.1.2 Preparing the systemfor debugging

© Copyright IBM Corp. 1984, 1991
51.1-1

CICS Application Programming Primer
Preparing the application and system table entries

5.1.1.1 Preparing the application and systemtable entries

10.

11.

Transl ate, conpile and link-edit each program Make sure that there
are no error messages on any of these three steps for any program
before you begin testing.

Use the DEBUG option on your Translator step, so that you can use
Transl ator statenment numbers with Execution Diagnostic Facility (EDF)
di spl ays.

Use the COBOL conpiler options CLIST and DVAP so that you can rel ate
storage |l ocations in dunps and Execution Diagnostic Facility (EDF)

di splays to the original COBOL source statenments, and find your

vari abl es in Working-Storage.

Use the resource definition online (RDO, (5) DEFI NE TRANSACTI ON
command for each transaction in the application.

Use t he RDO DEFI NE PROGRAM command for each program used in the
application.

Use the RDO DEFI NE MAPSET command for each napset in the application.
If you are using RDO, be sure to INSTALL the new definitions.

Put an entry in the CSD or the FCT for each file used.

Build at least a test version of each of the files required.

Put job control DLBL, EXTENT and ASSGN cards (or the equival ent OS DD
cards) in the startup job stream for each file used in the

application.

Prepare sonme test data.

(5) RDO enables you to add CICS systemdefinition file (CSD)

entries for a new application programto a running CICS
system

© Copyright IBM Corp. 1984, 1991
51.11-1

CICS Application Programming Primer
Preparing the system for debugging

5.1.1.2 Preparing the systemfor debuggi ng

1. Make sure that EDF is included in your system Include RDO group
DFHEDF in the list you specify in the GRPLI ST paraneter of the SIT.

2. Turn the trace on and allow a generous trace table (at |east 200
entries, better 500). Specify in the SIT:

I

1

|

' TRP=(YES, ON) or TRP=(xx, ON)
' and TRT=nnn where nnn>200

|
I
|
I

3. Request that dumps be provided, for both the transaction and the
system for all abnormal termnations. Specify in the SIT:

I
1
i
' DCP=YES or DCP=xx and FDP=(xx, FORMAT) or FDP=(xx, FULL)
|
|
|
|

4. Be prepared to print the dunps. Have a DFHDUP job stream or procedure
ready, and have the CICS dunp data set(s) defined in your startup
procedure. (For further guidance on using DFHDUP, see the &opgc..)

5. Enable CICS to detect |oops, by setting the |ICVR parameter in the SIT
to a nunber greater than zero. Something between 5 and 10 seconds
(1 CVR=5000 to | CVR=10000) is usually a workable val ue.

6. Turn off storage recovery (SIT parameter SVD=NO), so that CICS won't
try to recover after one of its storage areas is over-written. Then
you will know as soon as CICS does that you've made this pernicious
error. For production, storage recovery should be on. For testing,
unl ess a great many people are testing at once, it is better left off.

7. Generate shutdown statistics.

© Copyright IBM Corp. 1984, 1991
5112-1

CICS Application Programming Primer
Types of problem

5.1.2 Types of problem

Once you start to test, the first few problenms you neet will probably be
what we call startup problems. Most of these will be in that category we
described in "Handling errors and exceptional conditions" in topic 2.9.2
as category 4 "systemapplication m smatches." They will produce abends
that can be investigated |ike any others. However, there nay al so be
systeminitialization problens, term nal problens, and so on. Wile we
won't try to address these directly here, "Reference materials" in

topic 5.2.3 lists sources of information for help in these areas.

When you reach the point where you can begin executing your code, you will
find the problems you neet can be grouped by synmptominto four general
types. This classification is useful, because you need to take a slightly
di fferent approach to each type. Also, it is the same

probl em cl assification scheme used by |BM programm ng support
representatives (PSRs). So if you require assistance, it will help you in
identifying your problemto IBM The four types are:

O Abend

| Loop

O Vi t

| I ncorrect output

We'l'l discuss the identifying synmptons first, and later (in "Finding the

problem' in topic 5.2) suggest approaches for solution.

Subt opi cs

5.1.2.1 Abends

5.1.2.2 Loops

5.1.2.3 Wiits

5.1.2.4 Incorrect output

© Copyright IBM Corp. 1984, 1991
51.2-1

CICS Application Programming Primer
Abends

5.1.2.1 Abends

Abends are readily identified by the presence of that same unwel come word
in a message from CICS. \Wen a transaction term nates abnormally, CICS
sends this nmessage both to the term nal associated with the transaction
and to the transient data message destination CSMI. (At nmost CICS
installations, this nessage destination is directed to a printer used by
the master term nal operator, to provide a second inmmedi ate notification
of the unhappy event.)

© Copyright IBM Corp. 1984, 1991
51.21-1

CICS Application Programming Primer
Loops

5.1.2.2 Loops

Loops cone in two varieties. |If you have a |oop containing no ClCS
commands, CICS generally detects this condition and term nates your
transaction with an Al CA abend. It will fail to do so only if you have

di sabled this facility (by setting ICVR =0 in the SIT or by setting it to
such a large value that the effect is the same).

If the | oop contains a CICS command, however, CICS nmay not detect it. The
probl em synptomis that the transaction never ends. |t usually produces
Il ess than all of the expected output and | eaves the keyboard | ocked, too.

© Copyright IBM Corp. 1984, 1991
51.22-1

CICS Application Programming Primer
Waits

5.1.2.3 Waits

The synptons of a transaction in the wait state are the same as those
described for a loop containing a CICS command: the transaction never
ends and may not produce all of its outputs. |f your transaction behaves
like this, you can tell whether you have a | oop or a wait by using the
CEMT transaction. Display the task:

CEMT | NQUI RE TASK FACI LI TY(tttt)

("tttt" is the nane of the term nal from which the transaction was
entered.) |If the task still exists and is active, wait a mnute and
repeat the inquiry. |If the same task is still there, the programis
probably in a | oop that contains a CICS conmmand.

If the task is not active but suspended, repeat the display once or twice.
If the task remins suspended, it's probably waiting for sone event that's
never going to happen. There is a third possibility when you display your
task, of course. It may not be there at all! This disappearing

transaction syndrone is really a formof "incorrect output” (as described
bel ow), but it's usually tracked down using the techni ques used for |oops.

When you have a transaction that seems to be stuck in a loop or a wait,
cancel it with the CEMI conmand:

CEMI SET TASK FACI LI TY(tttt) FORCEPURGE

This will produce an AMIx abend, and a dunp that you can use to help
determ ne where the loop or wait is.

A word of caution about canceling tasks, however. Some perfectly normal
tasks spend a lot of time in a suspended state. A transaction that wites
mul ti ple messages to a printer, for exanple, is suspended nost of its
lifetime, waiting for the printer to print the |ast nessage it sent. And,
wi th FORCEPURGE, CICS cannot assure systemintegrity, so use it with care.
It's OK whil e debugging, but avoid it in a production system

© Copyright IBM Corp. 1984, 1991
51.23-1

CICS Application Programming Primer
Incorrect output

5.1.2.4 Incorrect output

The | ast category of problem covers those situations in which the
transacti on appears to run successfully but produces the wrong results.
It includes sinple wong answers, mssing or extra records in files,
screens filled with what appear to be random characters, and no output at
all, where a transaction just shuffles off quietly wi thout any indication
that it ever existed.

© Copyright IBM Corp. 1984, 1991
51.24-1

CICS Application Programming Primer
Tools for debugging

5.1.3 Tool s for debugging

Before trying to describe approaches to solving these four classes of
probl ens (which we tackle in the next topic), we need to describe three

i mportant tools that CICS provides for debugging applications. These are:
O The Execution Diagnostic Facility (EDF

O The tenporary storage browse (CEBR) facilit

O The transaction dunp

Subt opi cs

5.1.3.1 Execution diagnostic facility (EDF)
5.1.3.2 Tenporary storage browse facility (CEBR)

© Copyright IBM Corp. 1984, 1991
513-1

CICS Application Programming Primer
Execution diagnostic facility (EDF)

5.1.3.1 Execution diagnostic facility (EDF)

You'll find a conplete EDF session reproduced in "A session with EDF" in
topic 5.1.3.1.7; refer to it whenever you need to. (Please note that it
shows the exanpl e application m sbehaving due to the presence of a

del i berate bug...)

EDF al |l ows you to observe the execution of your transaction under the
control of another transaction, CEDF. When you execute your transaction
in this debuggi ng node, EDF intercepts your programs) at the follow ng
poi nts:

1. Transaction initiation (just before the first program gets control)

2. Just before the execution of each CICS conmand

3. Just after the execution of each CICS command (except ABEND, XCTL and
RETURN)

4. At the termination of each program

5. At normal task termnation

6. \When an abend occurs

7. At abnormal task termnation.

At these points, EDF interrupts execution of the program and sends a
di splay back to the termnal. This display indicates which of these

interception points has been reached and shows information appropriate to
the situation.

Subt opi cs

5.1.3.1.1 OGher information displayed
5.1.3.1.2 Useful techniques with EDF
5.1.3.1.3 I nvoki ng EDF

5.1.3.1.4 EDF displays

5.1.3.1.5 EDF options

5.1.3.1.6 Mdifying execution with EDF
5.1.3.1.7 A session with EDF

© Copyright IBM Corp. 1984, 1991
5131-1

CICS Application Programming Primer
Other information displayed

5.1.3.1.1 OGher information displayed
At any one of these points, you can also display a variety of other
informati on by sel ecting one of the function-key options listed on the

screen. The choices include:

1. The EIB. The values are displayed in synbolic form as listed in the
conplete list in the ClICS/ ESA Application Progranm ng Reference.

2. Working-Storage for the program being executed. The display shows the
information in both hexadeci mal and character form

3. The option of showing up to ten previous EDF displays, including all
the argument val ues, responses, and so on.

4. The contents of any tenporary storage queue.

5. The contents (in hexadecimal) of any address location within the CICS
regi on.

© Copyright IBM Corp. 1984, 1991
51311-1

CICS Application Programming Primer
Useful techniques with EDF

5.1.3.1.2 Useful techniques with EDF

Once you have an idea about what is wong with a program you can test
your theory by intervening in its execution:

1. Before a conmmand is executed, you can nodify any argument val ue (but
not the command options) or you can suppress execution of the command
al t oget her.

2. After a command is executed, you can nmodify the response code (and
some of the argunent values). This allows you to test branches of the
programthat are hard to reach using ordinary test data (what happens
on an input/output error, for instance). It also allows you to bypass
the effects of an error to see if doing so elimnates a problem

3. At any time except just before execution of a command, you can turn
off the debug node and let the transaction proceed without any further
intervention from EDF.

4. Alternatively, at any time you can suppress the displays associ ated
with EDF until some specific condition is reached. Wien it is, the
di spl ays resume again. This is particularly useful when you are
debugging a fairly long or repetitive transaction, because you m ght
have to go through a |ot of displays before you get to the point where
the trouble is, making the process very slow. |f you know that the
transaction runs properly up to a certain point, you can specify that
point as the condition for resum ng displays, and suppress them up
until then. Once the stop condition is reached, you still have access
to the previous ten displays, even though they were not actually sent
to the screen when originally created

You can express this stop condition in several different ways:

O When a specific type of conmmand is encountered, such as READQ TS

O When a specific exceptional condition arises, such as NOTFND

O \hen any exceptional condition at all (that CCS classifies as an
error) arises

O When the command at a specific offset is encountered

O When the command at a specific translator |ine nunber is
encountered (if the DEBUG option of the Translator has been used)

O When any abend occurs
O When the task term nates.
5. At any point at all, you can change the contents of working storage

for your program and you can change nost of the fields in the EIB as
wel | .

© Copyright IBM Corp. 1984, 1991
51312-1

CICS Application Programming Primer
Invoking EDF

5.1.3.1.3 I nvoking EDF
You can run EDF using either one term nal or two.
For two term nals: You use the first termnal for the EDF displays and

for sending input to EDF; and you use the second terminal for sending
input to, and receiving output from the transaction under test.

You start by entering, at the first term nal, the transaction:

L R T +
| 1
| 1
| 1
I 1
! CEDF tttt i
| 1
I 1
| 1
| 1
e +
where "tttt" is the name of the other terminal to be used in the EDF
session. This second term nal rmust be in transceive (ATI/TTI) status.
This is the nmost common status for display term nals, but you can check
its status with CEMI:

L R T +
| 1
I 1
i i
' CEMT | NQUI RE TERM NAL(tttt) '
i i
| 1
| 1
e +
and change it if it isn't already ATI/TTI:

E T +
I 1
1 1
| 1
| 1
' CEMI SET TERM NAL(tttt) ATI TTI '
i i
| 1
I 1
B +
Then enter the transaction to be tested on this second termnal.

If you want to use EDF to nonitor a transaction that's already running,
you can do so from another termnal. |If, for exanple, you believe a
transaction at a certain termnal to be | ooping, you can go to another
term nal and enter a CEDF transaction namng the first termnal. EDF

pi cks up control at the next ClICS conmand executed, and you can then
observe the sequence of commands that are causing the | oop.

For one ternminal: \When you use EDF with just one term nal, the EDF inputs

and outputs are interleaved with those fromthe transaction. This sounds

conplicated, but works quite easily in practice. The only noticeable
peculiarity is that when a SEND command is foll owed by a RECEI VE conmand,

the display sent by the SEND conmmand appears twi ce: once when the SEND is

executed, and again when the RECEIVE is executed. It isn't necessary to
respond to the first display, but if you do, EDF preserves anything that
was entered fromthe first display to the second.

To start a one-term nal session with EDF, just enter the transaction
identifier "CEDF." Then enter the input that invokes the transaction you
want to test.

Note: EDF makes a special provision for testing pseudoconversational
transactions froma single termnal. |If the terminal came out of debug

© Copyright IBM Corp. 1984, 1991
51.3.13-1

CICS Application Programming Primer
Invoking EDF
node between the several tasks that make up a pseudoconversati onal
transaction, it would be very hard to do any debugging after the first
task. So, when a task term nates, EDF asks the operator whether debug
node is to continue to the next task. |f you are debugging a
pseudoconversational task, reply "yes".

© Copyright IBM Corp. 1984, 1991
51.3.13-2

CICS Application Programming Primer
EDF displays

5.1.3.1.4 EDF displ ays

EDF di spl ays consist of a header and the screen "body." The header shows:

OO0Oo0Ooag

The identifier of the transaction being execute

The name of the program being execute

The internal task nunmber assigned by CICS to the transactio
A di splay nunbe

Under "STATUS," the reason for the interception by EDF

The body of the screen contains information which varies with the type of

interception point, as follows:

At transaction initiation, it shows the EIB.

When a commend is about to be executed, it shows the command in source
| anguage form including the keywords, options and argunent val ues.
The command is identified by giving the nane of the transaction, the
name of the program being executed, and the hexadeci mal offset of the
command in the program |f the Transl ator DEBUG opti on has been used,
the line nunmber in the translator source listing will also be

di spl ayed.

After the command has been executed, the same display as for item2
appears, along with the results (response code), in source |anguage.

Whenever an abend occurs, and at termnation time for a transaction
endi ng abnormally, the display includes:

O The EI B
O The abend code

O For an ASRA abend, the program status word (PSW value at the time
of the interrupt

O The offset within the program of this PSW provided it is within
the program bei ng execut ed.

© Copyright IBM Corp. 1984, 1991
51314-1

CICS Application Programming Primer
EDF options

5.1.3.1.5 EDF options

The | ast section of an EDF display contains a nenu of things you can do at
that point. The choices are listed below Not all choices are available
at each interception point; the menu shows which ones are available for
the current display. To select an option, press the indicated PF key. |If
your term nal doesn't have PF keys, place the cursor under the option you
want and press the ENTER key instead.

abend user task
Sel ecting this option causes the transaction being monitored to be
abended, just as if an ABEND conmmand had been issued in the program
When you make this choice, EDF asks you to enter an abend code (the
ABCODE paraneter of the command) to request the abend again, and then
to press ENTER again, as confirmation that you really want to do this

browse tenporary storage
This option produces a display of the tenporary storage queue
CEBRxxxx, where xxxXx is the name of the termi nal from which the
moni tored transaction is being run. You can then use CEBR commands
di scussed in "Tenporary storage browse facility (CEBR)" in
topic 5.1.3.2, to display or nmodify other tenporary storage queues

continue
If you've made changes to the screen, EDF redisplays the screen with
the changes incorporated. (See "Mdifying execution with EDF" in
topic 5.1.3.1.6.) Oherwise, it allows the transaction to continue
running until the next interrupt point.

current display
If you've nodified a screen, this option causes EDF to redisplay the
screen with the changes incorporated. Otherwi se, it causes EDF to
di splay the screen it showed at the last interrupt point, before you
requested other displays

ElI B di spl ay
This option displays the EIB contents in synbolic form |If there is a
COMVAREA at this time, its contents are also displayed

end EDF session
This choice term nates EDF control of the transaction. The
transaction resunes execution fromthat point, but no longer runs in
debug node.

previ ous display
Sel ecting this option causes the previous display (fromthe previous
command, unless you've requested that other displays be renenbered) to
be sent to the screen. The nunber of the display fromthe current
interrupt point is always 00. As you call up previous displays, the
di spl ay number is decreased by 1 to -01 for the first previous
di splay, -02 for the one before that, and so on down to the ol dest
di spl ay, -10.

next display
This option is the reverse of previous display. Wen you' ve gone back
to a previous display, this option causes the next one forward to be
shown. The display number is increased by 1

regi sters at abend
This option is provided only when an ASRA abend occurs. |t produces a
di splay of the PSWand the registers at the time of the abend

scroll forward, scroll back
These options apply to an EIB or command display that will not all fit
on one screen. \hen this happens, a plus sign (+) appears before the

© Copyright IBM Corp. 1984, 1991
51.3.15-1

CICS Application Programming Primer
EDF options
first option or field in the display, to show that there are nore
screens. Choosing scroll forward brings up the next screen in the
di splay. \When the screen on view isn't the first one of the display
there is a mnus sign (-) before the first option or field, and you
can view previous screens in the display by selecting scroll back.

scroll forward full, scroll back ful
These two options have the sane function for displays of
Wor ki ng- Storage as the scroll forward and scroll back options for EIB
di splays. Scroll forward full gives a Working-Storage display one
full screen forward, show ng addresses higher in storage than those on
the previous screen. Scroll back full shows the addresses |lower in
storage than those on the previous screen

scroll forward half, scroll back half
Scroll forward half is simlar to scroll forward full, except that the
di spl ay of working storage is advanced by only half a screen. This
means that the addresses on the bottom half of the previous screen
still appear on the top half of the new screen, followed by the next
hal f-screen of higher addresses. Scroll back half is the backward
counterpart of scroll forward half.

suppress displ ays
This option causes EDF to suppress its displays until one of the stop
conditions (see next item) is net.

stop conditions
Sel ecting this option causes EDF to present a menu, in which you can
specify conditions under which you want a display. You use this
feature when you are about to suppress the displays, to indicate when
they should be resunmed again. However, you can also use it to get
di splays at points in the code between the normal EDF interception
points. This is particularly helpful in locating | oops and finding
the cause of incorrect output

switch hex/char
If EDF is displaying information in character form this option causes
it to switch to hexadecimal for subsequent displays, and back again.
It applies only to the basic interrupt display and does not affect
Wor ki ng- St orage di spl ays, stop condition displays, or renmenbered
di spl ays.

user display
This option causes EDF to display what would be on the screen if the
transacti on were not running under EDF. To get back to EDF fromthe

user display, sinply press the ENTER key.

wor ki ng storage
This option allows you to see the contents of the Working-Storage area
in your program or of any other address in the CICS region. The
address of Working-Storage is displayed at the top of the screen. You
can browse through the entire area using the scroll commands, or you
can sinmply enter a new address at the top of the screen. This address

can be anywhere within the CICS region

renmenber displ ay
This option allows you to record displays that EDF does not ordinarily
save. EDF can save up to ten displays, and it keeps the last ten
command di spl ays unless you use this option to save sonething el se
Not e, however, that if you save a working storage display, only the
screen on view is saved; otherwi se all the pages that make up the
di spl ay are saved and can be recalled

© Copyright IBM Corp. 1984, 1991
51.3.15-2

CICS Application Programming Primer
Modifying execution with EDF

5.1.3.1.6 Mdifying execution with EDF
You can nodify the execution of a transaction in four different ways:

Changi ng the contents of Working-Storage and the E
Changi ng the argunment val ues before a command is execute
Changi ng the response code afterwar

Suppressi ng commands al t oget her

o Iy |

You neke these changes by typing over the information shown on the screen
with the information you want used instead. You can change any area of
the screen where the cursor stops when you use the tab keys, except for
the nenu area at the bottom

When you change the screen, you nust observe the foll ow ng conventions:

O If you want to suppress the execution of a conmand entirely, type NO
over the first three characters of the command.

O You can change argunent values in commands, but not keywords

O When you change an argunent in the command di splay (as opposed t
Wor ki ng- St orage), you can change only the part shown on the display.
If it is such a long argunent that only part of it appears on the
screen, you should change the area in Working-Storage to which the
argunent points.

O You can change the response code froma conmand to any response cod
that applies to that conmand, including the all-purpose ERROR. In
this way you can test your progran s error recovery routines

O Conversely, if the response code from a conmand was sonme exceptiona
condi tion, and you want to see what would happen if you'd had a normal
response to the command, type NORMAL over the response code

O When you overtype a field representing a data area in your program
the change is made directly in program storage and is pernmanent.
However, if you change a field that represents a constant (a program
literal), program storage isn't changed, because this mght affect any
other parts of the programthat use the sanme constant. The conmmand is
executed with the changed data, but when the conmand is displayed
after execution, the original argunent values re-appear. |f you
execute the same command nore than once, you nust enter this type of
change afresh each tine.

O When argunents are displayed in character form any character tha
cannot be displayed on the screen is shown as a period (.). So you're
not allowed to change any character to a period in a character
display. If you nmust do this, use the switch hex/char option to
change to a hexadeci mal display and then use "4B" for period

O EDF only accepts uppercase characters. If your term nal ha
| ower case, and uppercase translation is not specified for it (this
wi Il have been specified by your system programmer), be careful to use

uppercase at all tines.

© Copyright IBM Corp. 1984, 1991
513.16-1

CICS Application Programming Primer
A session with EDF
5.1.3.1.7 A session with EDF

What follows is an "as it happened" reproduction of an EDF session after
we'd found that the exanple application had a nasty little bug in it.

Note: |If you want to follow this sanple EDF session at your own term nal,
you need to get the follow ng things done first:

O Make a copy of ACCTO02, and add the bug, as shown i "Lines 466 through
470 (UPDT-DELETE)" in topic 4.3 .

O Ask your system progranmer to make a copy of the EDF group EDF an
change resource security checking to RESSEC=NO.

It all began innocently enough, sinply by trying to delete account record
nunber 11111 from our account file....

The first thing we did, of course, was type in the transaction id:

Figure 55. Invoking the account file transaction

o e m e
|

| ACCOUNT FILE: MENU

' TO SEARCH BY NAME, ENTER: ONLY SURNAVME

g REQUI RED. EI THER

' SURNAME: FI RST NAME: MAY BE PARTI AL.

' FOR | NDI VI DUAL RECORDS, ENTER:

' PRI NTER REQUI RED

' REQUEST TYPE: ACCOUNT: PRI NTER: ONLY FOR PRI NT

! REQUESTS.

' REQUEST TYPES: D = DI SPLAY A = ADD X = DELETE

' P = PRINT M = MODI FY

' THEN PRESS " ENTER" - OR- PRESS "CLEAR' TO EXIT

|

o e m .=

Figure 56. The account file nmenu

This gave us the menu, as shown above. Next, we had to say which record
we wanted to delete.

So we typed in x (for delete) and 11111 (the record nunber) and pressed
the ENTER key.

ACCOUNT FI LE: MENU

TO SEARCH BY NAME, ENTER: ONLY SURNAME
REQUI RED. EI THER
SURNAME: FI RST NAME: MAY BE PARTI AL.

FOR | NDI VI DUAL RECORDS, ENTER:
PRI NTER REQUI RED
REQUEST TYPE: x ACCOUNT: 11111 PRI NTER: ONLY FOR PRI NT

© Copyright IBM Corp. 1984, 1991
513.17-1

CICS Application Programming Primer
A session with EDF
REQUESTS.
REQUEST TYPES: D = DI SPLAY A = ADD X = DELETE
P PRI NT M = MODI FY
THEN PRESS " ENTER" - OR- PRESS "CLEAR' TO EXIT

Figure 57. Let's delete account number 11111

o e —m =
i

! ACCOUNT FILE: DELETI ON

! ACCOUNT NO 11111 SURNAME: LOCKS

! FI RST: GOLDI E M: X TITLE: LADY

! TELEPHONE: 2345212341 ADDRESS: THE COTTAGE

! WOODL ANDS

! HANTS

! OTHERS WHO MAY CHARGE

! THE 3 BEARS

! NO. CARDS | SSUED: 4 DATE | SSUED: 05 04 89 REASON: N

! CARD CODE: 2 APPROVED BY: HRH SPECI AL CODES

! ACCOUNT STATUS: N CHARGE LIM T: 1000. 00

! HISTORY: BALANCE BI LLED AMOUNT PAI D AMOUNT

! 0.00 00/ 00/ 00 0.00 00/ 00/ 00 0.00

! 0.00 00/ 00/ 00 0.00 00/ 00/ 00 0.00

! 0.00 00/ 00/ 00 0.00 00/ 00/ 00 0.00

! ENTER "Y" TO CONFI RM OR "CLEAR' TO CANCEL

i

e m e e — e — =

Figure 58. Now confirmthe deletion...

As you see, this fetched Gol die Locks' record, and asked us to confirmthe
del eti on.

e mmmmmm— - =
i

' ACCOUNT FI LE: DELETI ON

' ACCOUNT NO 11111 SURNANME: LOCKS

' FI RST: GOLDI E M: X TITLE: LADY

' TELEPHONE: 2345212341 ADDRESS: THE COTTAGE

' WOODL ANDS

! HANTS

' OTHERS WHO MAY CHARGE:

! THE 3 BEARS

! NO. CARDS | SSUED: 4 DATE | SSUED: 05 04 89 REASON: N

! CARD CODE: 2 APPROVED BY: HRH SPECI AL CODES:

! ACCOUNT STATUS: N CHARGE LIMT: 1000. 00

' HI STORY: BALANCE Bl LLED AMOUNT PAI D AMOUNT

' 0. 00 00/ 00/ 00 0. 00 00/ 00/ 00 0. 00

' 0. 00 00/ 00/ 00 0. 00 00/ 00/ 00 0. 00

' 0. 00 00/ 00/ 00 0. 00 00/ 00/ 00 0. 00

' ENTER "Y" TO CONFI RM OR "CLEAR" TO CANCEL y

i

o e m e m e m =
Figure 59. ... by typing "Y"

e mmmmmm— - =

© Copyright IBM Corp. 1984, 1991
51.3.17-2

CICS Application Programming Primer
A session with EDF

ACCOUNT FI LE: ERROR REPORT

TRANSACTI ON AC02 HAS FAI LED I N PROGRAM ACCT02 BECAUSE OF

A PROGRAM OR FCT TABLE ERROR (| NVALI D FI LE REQUEST).

COMVAND DELETE RESP | NVREQ

THE FILE I'S: ACCTFIL .

PLEASE ASK YOUR SUPERVI SOR TO CONVEY THI S | NFORMATI ON TO THE
OPERATI ONS STAFF.

THEN PRESS "CLEAR". THI'S TERM NAL | S NO LONGER UNDER CONTROL OF

THE " ACCT" APPLI CATI ON.

DFH2206 12:31: 13 Cl DCI CSC TRANSACTI ON AC02 HAS FAI LED W TH ABEND EACC.
RESOURCE BACKOUT WAS SUCCESSFUL.

e mmmmmm— - =
Figure 60. Hold it! W've got a problem-- and we've been backed out
Well! That didn't work, so what do we do next? First, we'd better delete

the scratchpad entry for this record, so we can try again, this time with
EDF on. (You see, we've just reserved account number 11111 in ACCTO1l
before we displayed the Account Detail screen. So, unless we now renove
the reservation, we won't be able to try the deletion again for ten

m nutes. We'll use CECI, a useful CICS transaction -- the conmand
interpreter.)

First, we CLEAR the screen, then we can type:

ceci deleteq ts queue(ac011111)

Figure 61. Deleting the scratchpad record. We have to do this so that we
can retry the deletion.

DELETEQ TS QUEUE (AC011111)

STATUS: ABOUT TO EXECUTE COMMAND NAME=
EXEC CICS DELETEQ TS
Queue(' AC011111')
< Sysid() >

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 62. Going, going,

We just press ENTER to delete the queue entry.

DELETEQ TS QUEUE (AC011111)
STATUS: COMMVAND EXECUTI ON COMPLETE NAME=
EXEC CI CS DELETEQ TS

Queue('ACO11111')

< Sysid() >

© Copyright IBM Corp. 1984, 1991
51.3.17-3

CICS Application Programming Primer
A session with EDF

RESPONSE: NORMAL El BRESP=+0000000000
PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 63. Gone!

First, we hit PF3 to end the CECI transaction, and CLEAR to get a clear
screen. Now we can use EDF to try and find out what's going wong. To
invoke the facility, we sinply type CEDF:

(¢}
D
o
—

THI'S TERM NAL: EDF MODE ON

Figure 65. OK

Now we can CLEAR the screen and re-enter the ACCT transaction:

Q
o
O
—

Figure 66. Now re-enter the account file transaction

TRANSACTI ON: ACCT PROGRAM ACCTO0 TASK NUMBER: 0000089 DI SPLAY: 00
STATUS: PROGRAM | NI TI ATI ON

I

I

I

i

! ElI BTI ME = 123343

! El BDATE = 89170

! El BTRNI D = ' ACCT'

! El BTASKN = 89

! El BTRM D = ' 037L'

! El BCPOSN =4

! El BCALEN =0

! El BAI D = X 7D AT X' 00543F1F'
! El BFN = X' 0000 AT X 00543F1F
! El BRCODE = X' 000000000000 AT X 00543F21'
! El BDS = :

! + EIBREQ D = :

! RESPONSE:

! REPLY:

! ENTER. CONTI NUE

! PF1 : UNDEFI NED PF2 : SW TCH HEX/ CHAR PF3 : END EDF SESSI ON

© Copyright IBM Corp. 1984, 1991
513.17-4

CICS Application Programming Primer
A session with EDF

| PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY i
i PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TIONS |
I PF10: PREVI QUS DI SPLAY PF11: UNDEFI NED PF12: UNDEFI NED H
| I
| I

Figure 67. And into EDF

Here's our first EDF screen. Fromnow on, we'll use the PF4 key to
suppress displays. EDF goes on building (and renmenbering) its displays --
we sinply don't want to be overwhel med by seeing themall. (At any point,

you can use the PF10 key to step back through a maxi mum of ten previous
displays. We'Ill see how later on.)

Any abnormal response, or any program output, or the end of the task, wll
all end the display suppression and show us the appropriate screen. Press

the PF4 key, then, and away we go!

And the next screen we see is this one:

g +
| |
! TRANSACTI ON: ACCT PROGRAM TASK NUMBER: 0000089 DI SPLAY: 00!
I STATUS: TASK TERM NATI ON !
! RESPONSE: !
! TO CONTI NUE EDF SESSI ON REPLY YES REPLY: NO|
! ENTER: CONTI NUE !
' PF1 : UNDEFI NED PF2 : SW TCH HEX/ CHAR PF3 : END EDF SESSI ON}
! PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY !
! PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TI ONS!
! PF10: PREVI OUS DI SPLAY PF11: UNDEFI NED PF12: UNDEFI NED !
i i
g +

Figure 68. OK so far

We overtype the "REPLY: NO' with our "yes" and (as usual) press ENTER

This ensures that EDF will continue nonitoring the next transaction (AC01)
in our pseudoconversational sequence.

o +
i i
! TRANSACTI ON: ACCT PROGRAM TASK NUMBER: 0000089 DI SPLAY: 00!
I STATUS: TASK TERM NATI ON !
! RESPONSE: !
! TO CONTI NUE EDF SESSI ON REPLY YES REPLY: yes !
! ENTER. CONTI NUE !
' PF1 : UNDEFI NED PF2 : SWTCH HEX/CHAR PF3 : END EDF SESSION |
! PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY !
! PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TIONS !
! PF10: PREVI OUS DI SPLAY PF11: UNDEFI NED PF12: UNDEFI NED !
i i
o +

Figure 69. Again "yes" to continue with the next transaction

© Copyright IBM Corp. 1984, 1991
513.17-5

CICS Application Programming Primer
A session with EDF

ACCOUNT FI LE: MENU

TO SEARCH BY NAME, ENTER: ONLY SURNAME
REQUI RED. EI THER
SURNAME: FI RST NAME: MAY BE PARTI AL.

FOR | NDI VI DUAL RECORDS, ENTER:
PRI NTER REQUI RED

REQUEST TYPE: ACCOUNT: PRI NTER: ONLY FOR PRI NT
REQUESTS.
REQUEST TYPES: D = DI SPLAY A = ADD X = DELETE
P = PRINT M = MODI FY
THEN PRESS " ENTER" - OR- PRESS "CLEAR'" TO EXIT

Figure 70. Back to the nenu

Suppressi on of EDF di splays ends for the tine being with our user screen,
the menu. Now we type in that troubl esonme record, 11111.

o e o -
|

! ACCOUNT FILE: MENU

! TO SEARCH BY NAME, ENTER: ONLY SURNAME

! REQUI RED. EI THER

! SURNAME: FI RST NAME: MAY BE PARTI AL

! FOR | NDI VI DUAL RECORDS, ENTER

! PRI NTER REQUI RED

! REQUEST TYPE: x ACCOUNT: 11111 PRI NTER: ONLY FOR PRI NT

! REQUESTS

! REQUEST TYPES: D = DI SPLAY A = ADD X = DELETE

! P = PRINT M = MODI FY

! THEN PRESS "ENTER" -OR- PRESS "CLEAR' TO EXIT

|

o e —m =

Figure 71. Now we can enter record 11111

We press ENTER, cross our fingers, and see what happens...

TRANSACTI ON: AC01 PROGRAM ACCTO1 TASK NUMBER: 0000096 DI SPLAY: 00
STATUS: PROGRAM | NI TI ATI ON

|

I

|

I

i

! El BTI ME = 123616

! El BDATE = 89170

! EI BTRNI D = ' ACO1

! El BTASKN = 96

! El BTRM D = ' 037L

! EI BCPOSN = 691

! El BCALEN =0

! El BAI D = X' 7D AT X 00543F1E
! El BFN = X' 0000' AT X' 00543F1F
! El BRCODE = X' 000000000000 AT X' 00543F21
! El BDS = '

! 4+ EIBREQD =

! RESPONSE:

! REPLY
! ENTER. CONTI NUE

' PF1 : UNDEFI NED PF2 : SW TCH HEX/ CHAR PF3 : END EDF SESSI ON
! PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY

! PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI Tl ONS

© Copyright IBM Corp. 1984, 1991
513.17-6

CICS Application Programming Primer
A session with EDF

PF10: PREVI QUS DI SPLAY PF11: UNDEFI NED PF12: UNDEFI NED

Figure 72. Ready to begin the request analysis. Here's the next EDF
di spl ay.

Again, we'll use PF4 to suppress displays until sonething unusual happens.

TRANSACTI ON: ACO1 PROGRAM ACCTO1 TASK NUMBER: 0000096 DI SPLAY: 00
STATUS: COMMAND EXECUTI ON COVPLETE
EXEC CI CS READQ TS

QUEUE (' AC011111")

i i
i i
i i
i i
i i
! INTO (" .oo...) !
! LENGTH (12) !
! I TEM (1) !
! NOHANDL E !
! OFFSET: X' 000F6C LI NE: 00281 El BFN=X' 0A04' !
! RESPONSE: QI DERR El BRESP=44 !
! REPLY: !
! ENTER CONTI NUE !
! PF1 : UNDEFI NED PF2 : SWTCH HEX/CHAR PF3 : END EDF SESSION |
! PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY !
' PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TIONS !
! PF10: PREVI OUS DI SPLAY PF11: UNDEFI NED PF12: ABEND USER TASK !
i i
o +

Figure 73. Response: Q DERR. This tells us no-one else owns our record.

And here we are with a Q DERR condition. However, it's what we expect
when reading the scratchpad entry, so we can proceed. Using PF4 again to
suppress displays, let's carry on....

e o= +
i i
! TRANSACTI ON: ACO1 PROGRAM TASK NUMBER: 0000096 DI SPLAY: 00!
! STATUS: TASK TERM NATI ON !
! RESPONSE: !
! TO CONTI NUE EDF SESSI ON REPLY YES REPLY: NO|
! ENTER. CONTI NUE !
! PF1 : UNDEFI NED PF2 : SW TCH HEX/ CHAR PF3 : END EDF SESSION !
! PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY !
! PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TIONS !
! PF10: PREVI OUS DI SPLAY PF11: UNDEFI NED PF12: UNDEFI NED !
i i
e e e e e e e e e e e e e e e e e o= +

Figure 74. OK, carry on

o +
i i
' TRANSACTI ON: AC01 PROGRAM TASK NUMBER: 0000096 DI SPLAY: 00 |
! STATUS: TASK TERM NATI ON !
! RESPONSE: !
! TO CONTI NUE EDF SESSI ON REPLY YES REPLY: yes |

© Copyright IBM Corp. 1984, 1991
51.3.17-7

CICS Application Programming Primer
A session with EDF

ENTER: CONTI NUE

|

I

I PF1 : UNDEFI NED PF2 : SW TCH HEX/ CHAR PF3 : END EDF SESSI ON

I PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY

I PF7 SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TI ONS
I PF10: PREVI OUS DI SPLAY PF11: UNDEFI NED PF12: UNDEFI NED

i

o e e e e e e e e e e e
Figure 75. "yes" to carry on into ACO2

ACCOUNT FI LE: DELETI ON

ENTER "Y" TO CONFI RM OR " CLEAR" TO CANCEL

I

!

! ACCOUNT NO: 11111 SURNAME: LOCKS

! FI RST: GOLDI E M: X TITLE: LADY

! TELEPHONE: 2345212341 ADDRESS: THE COTTAGE

! WOODLANDS

! HANTS

! OTHERS WHO MAY CHARGE:

! THE 3 BEARS

! NO. CARDS | SSUED: 4 DATE | SSUED: 05 04 89 REASON: N

! CARD CODE: 2 APPROVED BY: HRH SPECI AL CODES:

! ACCOUNT STATUS: N CHARGE LIM T: 1000. 00

' HISTORY: BALANCE Bl LLED AMOUNT PAI D AMOUNT
! 0.00 00/ 00/ 00 0.00 00/ 00/ 00 0.00
! 0.00 00/ 00/ 00 0.00 00/ 00/ 00 0.00
! 0.00 00/ 00/ 00 0.00 00/ 00/ 00 0.00
I

I

I

I

Figure 76. OK -- the big nonent is (nearly) here

Let's type "y" and see what happens. Now we should at least find out a
bit nmore about the problem...

ACCOUNT FI LE: DELETI ON

I

!

! ACCOUNT NO 11111 SURNAME: LOCKS

! FI RST: GOLDI E M: X TITLE LADY

! TELEPHONE: 2345212341 ADDRESS: THE COTTAGE

! VOODL ANDS

! HANTS

! OTHERS WHO MAY CHARGE:

! THE 3 BEARS

! NO. CARDS | SSUED: 4 DATE | SSUED: 05 04 89 REASON: N

! CARD CODE: 2 APPROVED BY: HRH SPECI AL CODES:

! ACCOUNT STATUS: N CHARGE LIM T: 1000. 00

! HISTORY: BALANCE BI LLED AMOUNT PAI D AMOUNT
! 0. 00 00/ 00/ 00 0. 00 00/ 00/ 00 0.00
! 0. 00 00/ 00/ 00 0. 00 00/ 00/ 00 0.00
! 0. 00 00/ 00/ 00 0. 00 00/ 00/ 00 0.00
! ENTER "Y" TO CONFI RM OR "CLEAR' TO CANCEL y

I

I

Figure 77. Here we go

© Copyright IBM Corp. 1984, 1991
51.3.17-8

CICS Application Programming Primer
A session with EDF

o o o e ae =
i

! TRANSACTI ON: ACO2 PROGRAM ACCT02 TASK NUMBER: 0000113 DI SPLAY: 00
! STATUS: PROGRAM | NI TI ATI ON

! COMMAREA = ' X11111"

! El BTI ME = 123914

! El BDATE = 89170

! ElI BTRNI D = ' ACO2

! El BTASKN = 113

! El BTRM D = ' 037L

! El BCPOSN = 1743

! El BCALEN =6

! El BAI D = X 7D AT X' 00543F1E
! El BFN = X' 0000' AT X' 00543F1F
! El BRCODE = X' 000000000000 AT X 00543F21
! El BDS =t '

' + EIBREQD .

! RESPONSE:

! REPLY

! ENTER. CONTI NUE

! PF1 : UNDEFI NED PF2 : SWTCH HEX/ CHAR PF3 : END EDF SESSI ON
! PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY

! PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TI ONS
! PF10: PREVI OUS DI SPLAY PF11: UNDEFI NED PF12: UNDEFI NED

i

o o o e ae =

Figure 78. Ready?

Again we use PF4 to suppress displays, as usual.

o e mm o — . m -
i

! TRANSACTI ON: ACO2 PROGRAM ACCT02 TASK NUMBER 0000113 DI SPLAY: 00
! STATUS: COMMAND EXECUTI ON COMPLETE

! EXEC CI CS DELETE

! FILE (' ACCTFIL ')

! RIDFLD ('11111')

! OFFSET: X' 0018CE' LI NE: 00472 El BEN=X' 0608

! RESPONSE: | NVREQ El BRESP=16

! REPLY:

! ENTER. CONTI NUE

! PF1 : UNDEFI NED PF2 : SWTCH HEX/ CHAR PF3 : END EDF SESSI ON

! PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY

! PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TI ONS

! PF10: PREVI OUS DI SPLAY PF11: UNDEFI NED PF12: ABEND USER TASK

|

o o o e ae =

Figure 79. The INVREQ (invalid request) condition

And here's an I NVREQ (invalid request) condition. This is not what we
expect. |If the RIDFLD field | ooked odd (it doesn't here) we might want to
use PF5 to start |ooking at Working-Storage, or PF6 to exam ne the user

di spl ay. However, using PF4 again, let's carry on....

The followi ng screen flashes up briefly and di sappears again:

© Copyright IBM Corp. 1984, 1991
51.3.17-9

CICS Application Programming Primer
A session with EDF

TRANSACTI ON AC02 HAS FAILED I N PROGRAM ACCT02 BECAUSE OF
A PROGRAM OR FCT TABLE ERROR (| NVALI D FI LE REQUEST).
COMVAND DELETE RESP | NVREQ
THE FILE I'S: ACCTFIL .
PLEASE ASK YOUR SUPERVI SOR TO CONVEY THI S | NFORMATI ON TO THE
OPERATI ONS STAFF.
THEN PRESS "CLEAR'. TH'S TERM NAL | S NO LONGER UNDER CONTROL OF
THE " ACCT" APPLI CATI ON.

Figure 80. The error report

TRANSACTI ON: ACO2 PROGRAM ACCT04 TASK NUMBER: 0000113 DI SPLAY: 00
STATUS: AN ABEND HAS OCCURRED

Figure 81. Here's our abend, EACC

And the next EDF display we stop at is this ABEND status warning.

Now we' || use the PF10 key to step back through the renenbered displays
(that we've been suppressing), in the hope that the cause of the problem
will beconme clearer. Watch the "DI SPLAY:" number in the top right hand
corner of each screen.

TRANSACTI ON: AC02 PROGRAM ACCT04 TASK NUMBER: 0000113 DI SPLAY: - 01
STATUS: ABOUT TO EXECUTE COMMAND

EXEC CI CS ABEND

ABCODE (' EACC')

NODUMP
OFFSET: X' 00035E' LI NE: 00646 El BFN=X' OEOC
RESPONSE:
REPLY:
ENTER: CURRENT DI SPLAY
PF1 : UNDEFI NED PF2 : UNDEFI NED PF3 : UNDEFI NED

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7- 10

I

I

I

I

i

! COMMAREA = "ACCT0216

! El BTI ME = 123914

! El BDATE = 89170

! El BTRNI D = ' ACO2

! El BTASKN = 113

! El BTRM D = ' 037L

! El BCPOSN = 1743

! El BCALEN = 14

! El BAI D = X' 7D AT X' 00543F1E
! El BFN = X' 0EOC ABEND AT X' 00543F1F
! El BRCODE = X' 000000000000 AT X' 00543F21
! El BDS = ' ACCTFI L

! + EIBREQD =

! ABEND : EACC

! REPLY

! ENTER. CONTI NUE

! PF1 : UNDEFI NED PF2 : SWTCH HEX/ CHAR PF3 : END EDF SESSI ON

! PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY

! PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI Tl ONS

! PF10: PREVI OUS DI SPLAY PF11: UNDEFI NED PF12: UNDEFI NED

I

|

CICS Application Programming Primer
A session with EDF

i PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY

i PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TI ONS
| PF10: PREVI QUS DI SPLAY PF11: NEXT DI SPLAY PF12: UNDEFI NED
|
|

Figure 82. Just prior to the ABEND conmand

o e mmmmemmmmmmmmmmmmmm e e e e e e mm -
|

i TRANSACTI ON: ACO2 PROGRAM ACCTO04 TASK NUMBER: 0000113 DI SPLAY: -02

| STATUS: COMVAND EXECUTI ON COMPLETE

i EXEC CICS WRITEQ TS

I QUEUE (' ACERLOG ')

I FROM ('....... AC02...ACCT02 ...A PROGRAM OR FCT TABLE ERROR (')

I LENGTH (156)

i AUXI LI ARY

' OFFSET: X' 000320’ LI NE: 00644 El BFN=X' 0A02'

' RESPONSE: NORMAL El BRESP=0

' REPLY:

i ENTER: CURRENT DI SPLAY

i PF1 : UNDEFI NED PF2 : UNDEFI NED PF3 : UNDEFI NED

! PF4 : SUPPRESS DI SPLAYS PF5 @ WORKI NG STORAGE PF6 : USER DI SPLAY

! PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TI ON;
I PF10: PREVI QUS DI SPLAY PF11: NEXT DI SPLAY PF12: UNDEFI NED

|

e e e e e e e e ee e cmemememmmmmmemememmmmmmmmsmemsmsmsmeccccc-c-e--m-m-m-m-m-m-mm-m-mmmmmm=========
Figure 83. Sent the error map

o e m e m e m =

TRANSACTI ON: ACO2 PROGRAM ACCT04 TASK NUMBER: 0000089 DI SPLAY: -04
STATUS: COMMAND EXECUTI ON COMPLETE

EXEC Cl CS SEND MAP

MAP (' ACCTERR')

FROM (' ACO2...ACCT02 ...A PROGRAM OR FCT TABLE ERROR (I'...)
LENGTH (156)

MAPSET (' ACCTSET')

TERM NAL
VWAI T
FREEKB
ERASE
OFFSET: X' 0002CE' LI NE: 00639 El BFN=X' 1804'
RESPONSE: NORMAL El BRESP=0
REPLY:
ENTER: CURRENT DI SPLAY
PF1 : UNDEFI NED PF2 : UNDEFI NED PF3 : UNDEFI NED
PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TI ON
PF10: PREVI OQUS DI SPLAY PF11: NEXT DI SPLAY PF12: UNDEFI NED

TRANSACTI ON: AC02 PROGRAM ACCT04 TASK NUMBER: 0000089 DI SPLAY: -05

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7-11

CICS Application Programming Primer

STATUS:
EXEC Cl CS SEND MAP
MAP (' ACCTERR')

ABOUT TO EXECUTE COMVAND

A session with EDF

i i
i i
i i
I FROM ('....... AC02...ACCT02 ...A PROGRAM OR FCT TABLE ERROR (I'...) !
I LENGTH (156) !
I MAPSET (' ACCTSET') !
I TERM NAL !
I WAILT !
| FREEKB !
I ERASE !
' OFFSET: X' 0002CE' LI NE: 00639 El BFN=X' 1804' i
' RESPONSE: '
! REPLY: !
I ENTER: CURRENT DI SPLAY |
I PF1 : UNDEFI NED PF2 UNDEFI NED PF3 UNDEFI NED !
I PF4 : SUPPRESS DI SPLAYS PF5 WORKI NG STORAGE PF6 USER DI SPLAY !
I PF7 : SCROLL BACK PF8 SCROLL FORWARD PF9 STOP CONDI TI ONS |
I PF10: PREVI QUS DI SPLAY PF11: NEXT DI SPLAY PF12: UNDEFI NED !
i i
S
Figure 85. About to wite to tenporary storage queue
e mmmmmm ==
i i
I TRANSACTI ON: ACO2 PROGRAM ACCT04 TASK NUMBER: 0000113 DI SPLAY: -03 |
I STATUS: ABOUT TO EXECUTE COMVAND !
I EXEC CICS WRITEQ TS !
I QUEUE (' ACERLOG ') !
I FROM ('....... AC02...ACCT02 ...A PROGRAM OR FCT TABLE ERROR (I'...) !
i LENGTH (156) !
I AUXI LI ARY !
' OFFSET: X' 000320° LI NE: 00644 El BFN=X' 0A02' |
' RESPONSE: '
' REPLY: 1
! ENTER: CURRENT DI SPLAY !
I PF1 : UNDEFI NED PF2 UNDEFI NED PF3 UNDEFI NED !
i PF4 : SUPPRESS DI SPLAYS PF5 WORKI NG STORAGE PF6 USER DI SPLAY H
I PF7 : SCROLL BACK PF8 SCROLL FORWARD PF9 STOP CONDI TI ONS !
I PF10: PREVI QUS DI SPLAY PF11: NEXT DI SPLAY PF12: UNDEFI NED !
i i
S
Figure 86. About to send the error map
e mmmmmm ==
TRANSACTI ON: AC02 PROGRAM ACCT04 TASK NUMBER: 0000113 DI SPLAY: -06

STATUS: PROGRAM I NI TI ATI ON
COMVAREA = ' ACCT02
ElI BTI ME = 123914
ElI BDATE = 89170
El BTRNI D = " AC02'
El BTASKN = 113
EI BTRM D = '037L'
ElI BCPOSN = 1743
ElI BCALEN = 14
El BAI D = X 7D
El BFN = X' 0EO2' LINK
El BRCODE = X' 00000000000
El BDS = "ACCTFIL '

.16’

o'

© Copyright IBM Corp. 1984, 1991

5.1.38.1.7-12

AT X' 00543FL1E]
AT X' 00543F1F]
AT X' 00543F21]

+ El BREQI D ="

|

|

i RESPONSE:

|

| ENTER: CURRENT DI SPLAY
| PF1 : UNDEFI NED

| PF4 : SUPPRESS DI SPLAYS
I PF7 SCROLL BACK

| PF10: PREVI QUS DI SPLAY
i

+

Fi gure 87.

| I
| I
' TRANSACTI ON: AC02 PROGRAM ACCT02 TASK NUMBER: 0000113 DI SPLAY: -07 |
' STATUS: ABOUT TO EXECUTE COMVAND H
! EXEC CICS LINK !
! PROGRAM (' ACCT04 ') !
! COVMMAREA (' ACCTO02 .16") !
! LENGTH (14) !
' OFFSET: X' 000B1A' LI NE: 00180 El BFN=X' OE02' i
! RESPONSE: !
! REPLY: !
! ENTER: CURRENT DI SPLAY |
' PF1 : UNDEFI NED PF2 UNDEFI NED PF3 UNDEFI NED !
' PF4 : SUPPRESS DI SPLAYS PF5 WORKI NG STORAGE PF6 USER DI SPLAY !
' PF7 : SCROLL BACK PF8 SCROLL FORWARD PF9 STOP CONDI Tl ONS |
' PF10: PREVI OUS DI SPLAY PF11: NEXT DI SPLAY PF12: UNDEFI NED H
i i
e e e e e ee e eeeeeeeeeeeeeeeeeemmmmmmmmmmmmmmm--c----ccccc@@@«“%«“%«c«c«c#«c#«cc=======
Figure 88. Linking to the error program ACCT04

Fi gure 89.

TRANSACTI ON: AC02

PROGRAM ACCTO02

CICS Application Programming Primer
A session with EDF

1

1

i

REPLY: !

:

PF2 : UNDEFI NED PF3 : UNDEFI NED !
PF5 : WORKING STORAGE PF6 : USER DI SPLAY !
PF8 : SCROLL FORWARD PF9 : STOP CONDI TI ONS !
PF11: NEXT DI SPLAY PF12: UNDEFI NED !
1

I

Starting the error-handling program ACCT04

TASK NUMBER: 000011

COVMAND EXECUTI ON COVPLETE

STATUS:

EXEC CI CS HANDLE CONDI Tl ON
ERROR

OFFSET: X' 000ACO’ LI NE:

RESPONSE: NORMAL

ENTER: CURRENT DI SPLAY
PF1 : UNDEFI NED

PF4 : SUPPRESS DI SPLAYS
PF7 SCROLL BACK

PF10: PREVI OQUS DI SPLAY

TRANSACTI ON: AC02

STATUS:

EXEC CI CS HANDLE CONDI TI ON
ERROR

00179 El BFN=X' 0204’
El BRESP=0

PF2 UNDEFI NED PF3

PF5 WORKI NG STORAGE PF6

PF8 SCROLL FORWARD PF9

PF11: NEXT DI SPLAY PF12

The HANDLE CONDI TI ON ERROR command

PROGRAM ACCT02 TASK NUMBER: 0000113 DI SPLAY:
ABOUT TO EXECUTE COMVAND

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 13

3 DI SPLAY: -08

REPLY:

UNDEFI NED

USER DI SPLAY
STOP CONDI TI ONS|
UNDEFI NED H

-09

CICS Application Programming Primer
A session with EDF

' OFFSET: X' 000ACO’ LI NE: 00179 El BFN=X' 0204’

' RESPONSE:

' REPLY:

I ENTER: CURRENT DI SPLAY

i PF1 : UNDEFI NED PF2 UNDEFI NED PF3 : UNDEFI NED

i PF4 : SUPPRESS DI SPLAYS PF5 WORKI NG STORAGE PF6 : USER DI SPLAY

I PF7 SCROLL BACK PF8 SCROLL FORWARD PF9 STOP CONDI Tl ONS
i PF10: PREVI QUS DI SPLAY PF11: NEXT DI SPLAY PF12: UNDEFI NED

i

e m e m e a -
Figure 90. Do the HANDLE CONDI TI ON ERROR conmand

|

|

I TRANSACTI ON: ACO2 PROGRAM ACCT02 TASK NUMBER: 0000113 DI SPLAY: -10
| STATUS: COMMAND EXECUTI ON COMPLETE

| EXEC CI CS DELETE

I FILE (' ACCTFIL ")

i RIDFLD ('11111")

' OFFSET: X' 0018CE' LI NE: 00472 El BFN=X' 0608’

' RESPONSE: | NVREQ El BRESP=16

! REPLY

! ENTER: CURRENT DI SPLAY

I PF1 : UNDEFI NED PF2 UNDEFI NED PF3 : UNDEFI NED

| PF4 : SUPPRESS DI SPLAYS PF5 WORKI NG STORAGE PF6 : USER DI SPLAY

I PF7 SCROLL BACK PF8 SCROLL FORWARD PF9 STOP CONDI Tl ONS
I PF10: PREVI QUS DI SPLAY PF11: NEXT DI SPLAY PF12: UNDEFI NED

i
S
Figure 91. Here's our failing instruction again

The delete command is returning with | NVREQ

As we said in "The COBOL code of our exanple application" in topic 4.0,

when di scussing Lines 333 to 336 of ACCTO2,
trying to delete a record that's been read for
quote a value for the RIDFLD at this point.

the problemis that we're
update. Our m stake is to

We shall now press ENTER. ...

TRANSACTI ON: AC02 PROGRAM ACCT04 TASK NUMBER: 0000113 DI SPLAY: 00

I

i

! STATUS: AN ABEND HAS OCCURRED

! COMMAREA = ' ACCTO02 .16

! ElI BTI ME = 123914

! El BDATE = 89170

! El BTRNI D = ' ACO2'

! El BTASKN = 113

! El BTRM D = ' 037L

! El BCPOSN = 1743

! El BCALEN = 14

! El BAI D = X 7D AT X' 00543F1F'
! El BFN = X 0EOC ABEND AT X' 00543F1F'
! El BRCODE = X' 000000000000 AT X' 00543F21'
! El BDS = " ACCTFIL '

' + EIBREQD = :

! ABEND : EACC

I

|

REPLY:

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7- 14

CICS Application Programming Primer
A session with EDF

ENTER: CONTI NUE

PF1 : UNDEFI NED PF2 : SW TCH HEX/ CHAR PF3 : END EDF SESSI ON
PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TI ONS
PF10: PREVI OQUS DI SPLAY PF11: UNDEFI NED PF12: UNDEFI NED

Figure 92. Back with our abend, EACC, again

And ENTER again. ..

TRANSACTI ON: AC02 PROGRAM TASK NUMBER: 0000113 DI SPLAY: 00
STATUS: ABNORMAL TASK TERM NATI ON
ElI BTI ME = 123914
ElI BDATE = 89170
El BTRNI D = " AC02'
ElI BTASKN = 113
EI BTRM D = '037L'
ElI BCPOSN = 1743
ElI BCALEN =6
El BAI D = X 7D AT X' 00543F1FE
El BFN = X' 0A02'" WRITEQ AT X' 00543F1F
El BRCODE = X 000000000000' AT X 00543F21'
ElI BDS = "ACCTFIL '
+ El BREQI D = '
ABEND : EACC
TO CONTI NUE EDF SESSI ON REPLY YES REPLY: NO
ENTER: CONTI NUE
PF1 : UNDEFI NED PF2 : SW TCH HEX/ CHAR PF3 : END EDF SESSI ON
PF4 : SUPPRESS DI SPLAYS PF5 : WORKI NG STORAGE PF6 : USER DI SPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDI TI ONS
PF10: PREVI QUS DI SPLAY PF11: UNDEFI NED PF12: UNDEFI NED

Figure 93. The abnormal task term nation

Pressi ng ENTER one final tine brings us to this:

ACCOUNT FI LE: ERROR REPORT

TRANSACTI ON AC02 HAS FAILED I N PROGRAM ACCT02 BECAUSE OF

A PROGRAM OR FCT TABLE ERROR (| NVALI D FI LE REQUEST).

COMMAND DELETE RESP | NVREQ

THE FILE I'S: ACCTFIL .

PLEASE ASK YOUR SUPERVI SOR TO CONVEY THI S | NFORMATI ON TO THE

OPERATI ONS STAFF.

THEN PRESS "CLEAR'. THI'S TERM NAL | S NO LONGER UNDER CONTROL OF

THE " ACCT" APPLI CATI ON.

DFH2206 12:47:47 Cl DCI CSC TRANSACTI ON AC02 HAS FAI LED W TH ABEND EACC.
RESOURCE BACKOUT WAS SUCCESSFUL.

Figure 94. This is the CICS nessage. Message DFH2206 tells us that all

recoverabl e resources associated with the failed transaction

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7- 15

CICS Application Programming Primer
A session with EDF

have been successfully backed out follow ng the abend.

If we'd chosen not to suppress displays, you would have faced about
anot her 45 screens to reach this point.

Of course, although you know the EXEC ClI CS DELETE conmand is failing, you
have to go off and read the CICS/ESA Application Programm ng Reference
carefully to pinpoint the exact reason. Studying a transaction dunp |eads
you to the sane conclusion by a different route.

The beauty of EDF as a testing tool is the way you can home in on a
problem and the way you can force your code to behave as though a problem
had arisen. We hope you find EDF a useful weapon in your bug-killing

ar nory

© Copyright IBM Corp. 1984, 1991
5.1.3.1.7 - 16

CICS Application Programming Primer
Temporary storage browse facility (CEBR)

5.1.3.2 Tenporary storage browse facility (CEBR)

We' Il describe another diagnostic tool here. This is the CEBR transaction
that allows you to look at tenporary storage queues. |f you need to do
this while debuggi ng, enter the transaction identifier CEBR to produce the
di splay shown in Figure 95.

PF7 : SCROLL BACK HALF PF8 : SCROLL FORWARD HALF PF9 : UNDEFI NED
PF10: SCROLL BACK FULL PF11: SCROLL FORWARD FULL PF12: UNDEFI NED

e e s eeeeeeceeeeeeeseseemesmemasRemamRemaseeemeseeesmeeeemeeesmem-.n..--n- +
| |
! CEBR TS QUEUE CEBRxxxx RECORD 1 OF 0 co. 1 OF 0!
! ENTER COMVAND ===> i
: R SR IR I I I 2 I I I I S I TO:) G: QJEUE **************************:
: EIE R R S BOTTOV'G: QJEUE ************************:
! TEMPORARY STORAGE QUEUE CEBRxxxx CONTAI NS NO DATA !
! PF1 : HELP PF2 : SW TCH HEX/ CHAR PF3 : TERM NATE BROWSE !
! PF4 : VIEW TOP PF5 : VI EW BOTTOM PF6 : REPEAT LAST FIND !
| |
| 1
| 1
| I
| I

Figure 95. The tenporary storage browse (CEBR) display

This shows the browse display for the tenporary storage queue named
"CEBRtttt" ("tttt" is the termnal identifier of the term nal from which
you made the entry). Unless you happen to be interested in this
particul ar queue (and this is unlikely), the first thing you do is to
enter "QUEUE xxxxxxxx" in the conmmand area, where "xxxxxxxx" is the nane
of the queue you do want to see. The command area is the space right
after "ENTER COMMAND' at the top of the screen.

If a queue by this name exists, you'll see a display of it. The items in
the queue are displayed one per line, in the area between the command |ine
and the PF key menu. Only as nuch of each itemas will fit on one |line of

the screen is shown.

Initially the display starts with the first character in the item
However, if you need to see characters beyond those displayed, you can
shift the starting character by entering "COLUMN(N)" in the comand area.
This causes the display of each itemto begin with the nth character in
the item can be up to four digits.

n

You can tell which character the display starts at, and how |l ong the

|l ongest itemin the queue is, fromthe "Col X of Y" information at the top
of the screen. "X" is the position of the record displayed in the first
colum of the screen, and "Y" is the length of the |longest item The "Line
N of M' nessage just before that tells you that the "Nth" itemin the
queue is in the first one on the screen, and there are "M itenms in the
queue.

You can | ook through the items in the queue by using the scroll keys shown
in the figure (PF7, PF8, PF10, and PF11), or you can specify that the

di splay should start with a particular itemin the queue. The scroll keys
work just as they do for EDF. To display a particular item enter "LINE
(n)" in the conmand |ine. CEBR responds by starting the display one item
before the nunmber you specify; this number, too, can be up to four digits
| ong.

You can redisplay the beginning of the queue either by entering "TOP" in
the command area or by pressing PF4. Similarly, you can display the |ast
screen's worth of itens by entering "BOTTOM' or pressing PF5.

You can al so search the items in the queue for the occurrence of a

© Copyright IBM Corp. 1984, 1991
5132-1

CICS Application Programming Primer
Temporary storage browse facility (CEBR)

particular character string. |f you were |ooking for the characters
"MOUNCE", for exanple, you would put:

FI ND / MOUNCE

in the conmand area. CEBR would scroll the display forward until it
di spl ayed the first itemthat contained "MOUNCE".

The slash (/) in the command above is a delimter. It can be any
non-space character that isn't in the search string. That is,

FI ND X05/07/ 89 and FI ND S05/07/ 89

1
1
i
FIND /05/07/ 89 :
I
1
1
1

will not work, however, because there is a slash in the search string. |If
there are any spaces in the search string, you nust repeat the delinmter
at the end of the string. For exanple:

FI ND / JOHN JONES/

Once you've entered a find command, you can repeat it (that is, find the
next occurrence of the string) by pressing PF6.

You can use PF2 to switch the display fromcharacter to hexadeci nal
format, and back again, just |ike the corresponding swtch hex/char
command i n EDF.

I ndeed, you can use the CEBR transaction while under control of EDF, by
using the PF key assigned for BROWSE TEMPORARY STORAGE. Your EDF
transaction is suspended; CEBR starts and continues until you end it with
the PF3 key. |If you are in EDF, PF3 returns you to the point at which you
requested CEBR. If you were not in EDF but cane in by entering CEBR, PF3
term nates the transaction in the normal way, and frees the term nal for
the next transaction.

The CEBR transaction also allows you to delete a tenporary storage queue,
by entering PURGE in the command area. And finally, there is a HELP
facility, explaining how to use CEBR, which you can access by pressing

© Copyright IBM Corp. 1984, 1991
5.132-2

CICS Application Programming Primer
Temporary storage browse facility (CEBR)

PF1.

© Copyright IBM Corp. 1984, 1991
5.1.32-3

CICS Application Programming Primer
Finding the problem

5.2 Finding the problem

Subt opi cs

Gooa e o aa
N DDNDNDNDNDDNDDN

2.

1

© 00 ~NOoO O~ WN

Prelim nary checkli st
Document ati on

Ref erence materials

More testing considerations
Abends

Loops

Wai ts

I ncorrect output

CI CS system probl ens

© Copyright IBM Corp. 1984, 1991
52-1

CICS Application Programming Primer
Preliminary checklist

5.2.1 Prelimnary checkli st

Before |l ooking in detail at how to cope with the various cl asses of
errors, there are some "sinple" things for you to check first which may
turn up a nunmber of nm stakes. For exanple:

1. Go back and nake sure that your translator, conpiler and |inkage
editor outputs were all error-free.

2. Check that the required PROGRAM definitions are present and correct i
the CSD, and that the you have the correct entries for files in the
CSD or the FCT.

3. If you are using RDO and you DEFINE or ALTER a transaction, program or

mapset, then be sure to use the INSTALL option to get the changes
i nvoked.

4. |If you changed any maps, be sure that you created both a new | oad
nmodul e (TYPE=MAP) and a new DSECT (TYPE=DSECT), and that you then
reconpil ed every program using that new DSECT.

5. |If you changed any program or mapset since CICS was |ast started, make

sure that you are executing the nost recent version, by using the
transaction:

CEMI SET PROGRAM pgr ni d) NEWCOPY

© Copyright IBM Corp. 1984, 1991
52.1-1

n

CICS Application Programming Primer
Documentation

5.2.2 Docunmentation

Next, collect all the docunentation of the problem There are nmany
sources of information, including:

1. Output fromthe translator, conpiler and link editor.

2. Messages to the term nal associated with the failing transaction, and
messages to the master term nal.

3. Observations fromthe term nal operator and the nmmster term nal
operator. In the case of the master term nal, you should note any
unusual messages associated with the startup of CICS and any that
occurred for sone tinme before the actual problem

4. Dunps. (You may not want to bother to print the dunps until you have
tried other techniques. You should be prepared to do so however,
because sonetinmes they are absolutely necessary.)

5. Shutdown statistics. These aren't usually necessary, and you should
not automatically shut down your system after a transaction abend to
get them However, there are occasions on which they may give you
insight into problens. Anpbng other things, they show

\Whi ch transacti ons were used

\Whi ch programs were executed

Whi ch termnals were used

A summary of tenporary storage activity

s oy |

A summary of file activity.

6. CEMI output. You can use CEMI to find out status information about
files, programs, transactions, and executing tasks.

© Copyright IBM Corp. 1984, 1991
522-1

CICS Application Programming Primer
Reference materials

5.2.3 Reference materials

You should also collect certain reference materials for debugging. These
i ncl ude:

O

Cl CS/ ESA Application Programr ng Reference . This book contains
definitive information on the error conditions possible on the various
commands, and on the EIB.

Cl CS/ ESA Messages and Codes. This book describes all the "DFHxxxx"
messages that CICS issues and all the ClICS-generated transaction abend

codes.

CI CS/ ESA Problem Determ nation Guide . This manual includes guidance
on:

1. Techniques and tools for problemdeterm nation in ClICS
2. Causes of waits and |oops in applications, and how to solve them
3. Extended and abbreviated trace format details

4. CICS system and transaction dunp format and content.

© Copyright IBM Corp. 1984, 1991
523-1

CICS Application Programming Primer
More testing considerations

5.2.4 More testing considerations

Subt opi cs

5.2.4.1 Regression testing
5.2.4.2 Single-thread testing
5.2.4.3 Multi-thread testing

© Copyright IBM Corp. 1984, 1991
524-1

CICS Application Programming Primer
Regression testing

5.2.4.1 Regression testing

A regression test is used to make sure that all the transactions in a
system continue to do their processing in the same way both before and
after changes are applied to the system This is to ensure that fixes
that have been applied to solve one problemdon't go on to cause further
problens. |It's often a good idea to build a set of mniature files to
perform your tests on, because it's much easier to exanmine a small data
file for changes.

A good regression test will exercise all the code in every program -- that
is, it will explore all tests and possible conditions. As your system
devel ops to include nore transactions, nore possible conditions, and so
on, add these to your test systemto keep it in step. The results of each
test should match those fromthe previous round of testing. Any

di screpanci es are grounds for suspicion. You can conpare term nal output,
file changes, and log entries for validity.

© Copyright IBM Corp. 1984, 1991
5241-1

CICS Application Programming Primer
Single-thread testing

5.2.4.2 Single-thread testing

A single-thread test takes one application transaction at a tine, in an
ot herwi se "enpty" CICS system and sees how it behaves. This enables you
to test the programlogic, and al so shows whether or not the basic CICS
information (such as CSD or FCT entries) is correct. |It's quite feasible
to test this single application in one CICS region while your normal,
online production CICS systemis active in another.

© Copyright IBM Corp. 1984, 1991
5242-1

CICS Application Programming Primer
Multi-thread testing

5.2.4.3 Miulti-thread testing

A multi-thread test involves several, concurrently-active transactions.
Naturally, all the transactions will be in the same CICS region, so you
can readily test the ability of a new transaction to co-exist with its
future partners.

You may find that a transaction that sails through its single-thread
testing still fails mserably in the nulti-thread test. Or it may cause
ot her transactions to fail, or even term nate CICS!

Now we can take a systemmtic | ook at abends, |oops, waits, and incorrect
output. We'll start with abends.

© Copyright IBM Corp. 1984, 1991
5243-1

CICS Application Programming Primer
Abends
5.2.5 Abends

The message with which CICS tells you that a transacti on abended:

DFH2005 TRANSACTI ON xxxx PROGRAM yyyyyyyy ABEND zzzz

contains several vital pieces of information. It identifies the
transaction (xxxx) that failed. It tells which program (yyyyyyyy) was
bei ng executed at the tinme of the failure. And, npbst inportant, it

i ndi cates which of the many things that could go wong did. This is the
abend code, zzzz.

There are two kinds of abend codes: yours and CICS's. All the codes that
CICS uses begin with the letter A, yours are the ones that appear in the

ABCODE paraneter on an ABEND conmand. For ease of recognition, therefore,
don't start your ABCODEs with the letter A

The first step in tracking down the cause of an abend is to ook up this
code. If it is one of yours, you'll know what condition it represents.
From there you can | ook at other information (values in working storage
and the sequence of calls leading up to the crash) to find out how the
situation came about. For CICS abends, the place to |l ook is the Cl CS/ESA
Messages and Codes , which describes all of the CICS abend codes and, for
many of them has suggestions for analysis.

When you are using the subset of commands described in this Primer, you
are likely to produce only a relatively small nunmber of CICS ABENDs. Wth
some inventiveness you could produce others, but the ones you are npost
likely to encounter are described under the follow ng headi ngs.

Subt opi cs

2.5. ASRA

ASRB

Al CA

APCT

AFCA

AEl x and AEYx
ATNI

oo oaoaoaoaon

NN RNNNN
oo oaoaoaoa

~No b WN PR

© Copyright IBM Corp. 1984, 1991
525-1

CICS Application Programming Primer
ASRA

5.2.5.1 ASRA

To stop a sinple error in one transaction fromcrashing the whole CICS
system CICS i ssues an operating system SVC to intercept abends.

So, for exanple, if you try to do packed arithmetic with EBCDI C vari abl es
in your COBOL code (producing what the operating systemrecogni zes as a
program check) you don't get the abend that you would in a batch program
I nstead, when the operating system detects the program check, it returns
control to CICS, which term nates the offending transaction with an abend
of its own: ASRA. All ASRA neans, therefore, is that a program has
committed a violation of the programcheck type. |In COBOL, the source of
this trouble is almpst always an attenpt to do arithnmetic with variabl es
that are of m xed PICTURE types or that have not been initialized

properly.

The first step in diagnosing an ASRA is to find out where it occurred.
This nmeans finding out the program status word (PSW at the time of the
program check. You can find this information either in a dunp or by using
EDF. Next, you need to know in what programit occurred, so that you can
find out where in that programthe offending instruction was. Usually the
programis the application programthat was executing at the tinme.

© Copyright IBM Corp. 1984, 1991
5251-1

CICS Application Programming Primer
ASRB

5.2.5.2 ASRB

An ASRB abend occurs in alnmost the same way as an ASRA, but it is the
result of an operating system abend other than the common program check.
If CICS can contain the damage, it term nates that transaction with ASRB.
The procedure for finding the source of the trouble is the same as for
ASRA. An operating system abend isn't likely to happen except as a
program check in a CICS conmand-| evel program however, and so ASRB is
much | ess conmon than ASRA.

© Copyright IBM Corp. 1984, 1991
5252-1

CICS Application Programming Primer
AICA

5.2.5.3 AICA

As expl ained earlier, an Al CA abend occurs when CICS detects that an
application programis |ooping. Whether CICS considers a programto be

| oopi ng depends on the length of tine that el apses between successive CICS
commands. If the tinme is |longer than the runaway task tinme interval

(ICVR) paraneter in the SIT, CICS assunes that the programis |ooping and
termnates it with code Al CA

When you have a | oop, you need to know where it is in the code. Wth an
Al CA, you know by definition that the |oop started after the last CICS
command was i ssued and ended before any other command was issued. You can
tell either fromthe trace table in a dunp, or by using EDF, what the |ast
CI CS command was and where it was in the code, and the programlisting
will tell you where the next one was expected. |f this doesn't pinpoint
the problem |ook at the values of your Working-Storage variables. Often
these values, in conmbination with your know edge of the program | ogic,

will tell you al nost exactly how far you got in the code.

If you still need further information, however, you can use either EDF or
transaction dunps to work out how far through a section of code you are
getting, and what the values of the variables in Wrking-Storage are at
each step. To do this with EDF, choose a CICS statenent that you aren't
sure gets executed. Using its statement nunber (fromthe translator if
you used DEBUG) or its hex location otherwi se, enter it as a stop
condition. Then let the programrun.

If the loop is far into the code, suppress the displays. |If the program
reaches the stop condition, then you know that the CICS statement got
executed. Pick another statement beyond this one and repeat the process.
If the statement does not get executed before the AlCA occurs, pick
another CICS statenment between it and the beginning of the |loop. Repeat
this process until you've |ocated the | oop.

The technique with transaction dunps is very similar, except that you
shoul d pick out all the questionable statenments at once, and put a DUWP
conmmand after each one, each with a different DMPCODE identifier. Then
run the program and analyze the dunps. You can tell fromthe sequence of
DMPCODEs how far you got through the code, and your Working-Storage at
each point will also be available in the dunps, to help you work out what
went wrong.

We'll add two notes of caution here about Al CA abends.

1. Since in all but the npbst recent versions CICS uses real tine rather
than processor tine to detect |oops, it's possible for a transaction
to get termnated, with AICA, without being in a |oop. This can
result fromsetting the runaway task time interval (ICVR) value in the
SIT too low, or fromtoo much interference with the CICS region from

ot her regions, or a conbination of both. |[If you've any doubt that an
AICA is valid, raise the | CVR val ue sonewhat and repeat the
transaction several tines. |If it is a "true" AICA the last CICS
command executed will always be the same one.

2. Certain CICS commands don't pass through task control and don't,
therefore, reset the runaway task time interval.

© Copyright IBM Corp. 1984, 1991
5253-1

CICS Application Programming Primer
APCT

5.2.5.4 APCT

Thi s abend occurs when you attenpt to execute a programthat is either (1)
di sabl ed, or (2) not defined at all in an active RDO group, or (3) the nmap
or other |oad nodule referenced by the application cannot be found. For
pure command-| evel prograns, APCT can occur only when the first program
for a transaction is invoked (before the command-|evel interface gets
established). After that, the same type of failure (during a LINK or XCTL
command, for instance) produces an AElIO abend instead.

So, if you get an APCT, the cause is one of the follow ng:

1. The program named in the DEFI NE TRANSACTI ON command hasn't been
defined in a DEFI NE PROGRAM command.

2. The programis disabl ed.

Progranms can be di sabled by an operator or even by CICS for sufficiently
unsui tabl e behavior. By far the nost commopn cause, however, is that CICS
could not find the programin the load library at startup tinme, and

di sabl ed the program for that reason. |If this occurs, therefore, make
sure that:

O The name of the programin the load library matches the name in th
CSD, and the program has been successfully linked into the library.

O The program nane in the DEFI NE TRANSACTI ON conmand is the same as th
nane in the correspondi ng DEFI NE PROGRAM conmand.

O The programis enabled. To find out the status of the programat th
time of the APCT failure, use the transaction:

CEMT | NQUI RE PROGRAM pgr ni d)

© Copyright IBM Corp. 1984, 1991
5254-1

CICS Application Programming Primer
AFCA

5.2.5.5 AFCA

Thi s abend occurs when you try to use a file that has been disabled. This

shoul d happen only rarely. |If the file is closed for sone reason (which
is more likely) and if you've not handled this condition, you'll get an
AEl S abend instead. |f AFCA does occur, use the CEMI transaction to find

out which of the files in question is disabled:

CEMT | NQUI RE DATASET(fi | ei d)

The probl em shoul d di sappear as soon as the file is properly avail able.

© Copyright IBM Corp. 1984, 1991
5255-1

CICS Application Programming Primer
AEIx and AEYx

5.2.5.6 AElx and AEYx

Al'l of the abend codes that start with the letters "AEI" or "AEY" result
from exceptional conditions detected in command-|evel prograns, for which
no HANDLE CONDI TI ON conmand is active.

Figure 96 lists all of the AEIx and AEYx abends that may occur using the
commands described in this Primer. After each code the figure shows the
exceptional condition, and also the command type (such as file or BMS),
and the associated ElIBFN and ElI BRCODE val ues.

L R T +
| 1
I 1
| i
i Code Condi tion Service El BFN El BRCODE '
' AEI A ERROR M sc N/ A N/ A '
' AEI K TERM DERR Ti me 10 12 '
' AEI L FI LENOTFOUND Fil e 06 01 '
' AEI M NOTFND File 06 81 '
' or Time 10 81 '
' AEI N DUPREC File 06 82 '
' AEI P I NVREQ File 06 08 '
' or Tenp Stge 0A 20 '
' or Program OE EO '
! AEI Q | OERR File 06 80 '
! AEI R NOSPACE File 06 83 '
! or Tenp Stge 0A 08 !
' AEI S NOTOPEN File 06 oC '
' AEI T ENDFI LE File 06 OF '
' AEI U I LLOGI C File 06 02 '
' AEI V LENGERR File 06 El '
' or Tenp Stge 0A El '
' or Time 10 El '
' AEl Z | TEMERR Tenp Stge 0A 01 '
' AEI 0 PGM DERR Program OE 01 '
' AEI 1 TRANSI DERR Ti me 10 11 '
' AEI 3 I NVTSREQ Ti me 10 14 '
! AEI 8 | OERR Tenmp Stge 0A 04 !
! or Tinme 10 04 !
' AEI 9 MAPFAI L BMS 18 04 1
' AEYB I NVMPSZ BMS 18 08 '
' AEYH Q DERR Tenmp Stge 0A 02 '
| i
| 1
| 1
E T +

Figure 96. AEIx and AEly abend conditions

For the nost part, the reasons for these abends are exactly what is stated
in the CICS/ESA Application Programm ng Reference for the corresponding
condition. Some of the errors may have nultiple causes, such as ILLOG C
and | NVREQ. For exanple, on an |LLOGI C abend, byte 1 of EIBRCODE is the
VSAM return code and byte 2 is the VSAM error code.

If you determne that the condition was the result of a logic error in the
program then you can correct that error and retry. |[If, however, it turns
out that the condition could arise naturally, then you should add a HANDLE
CONDI TI ON conmand to the programto deal with it.

© Copyright IBM Corp. 1984, 1991
5256-1

CICS Application Programming Primer

ATNI
5.2.5.7 ATNI
A terminal error will lead to an ATNI transaction abend, and a CICS
transaction dunp. |In other words, the application will not get control
back, and contact with the screen will be |ost.

© Copyright IBM Corp. 1984, 1991
5257-1

CICS Application Programming Primer
Loops

5.2.6 Loops

We' ve al ready described a technique for finding | oops that do not contain
any CICS commands. (It was in the discussion of AlCA abends, and invol ved
using either EDF or transaction dunps.) For |oops that do include CICS
commands, the sanme tools apply.

Usi ng EDF, the easiest method is to invoke the transaction and let it run
until you're satisfied that it is looping. Then go to another term na

and i nvoke EDF for the termi nal running the suspect transaction. EDF will
interrupt the execution of the transaction at every CICS conmand, and send
a display to this second terminal. As each command is executed, note it
in the associated programlisting. Let the program continue executing
commands until a clear pattern of repetition emerges

Having | ocated the |l oop, the next step is to find the cause. There wll
usual ly be one or nore points in the | oop at which the program should
exit, provided certain conditions are net. The problemis that the
conditions are never net. \When, under EDF, you reach the command that is
causing the problem you may need to exam ne the values in Wrking-Storage
to find out why this is occurring. The next time the loop is executed
you may want to pause at the preceding command and | ook at the sane

vari ables at that tinme. |f there's too nuch code between these two
commands to see exactly what's going wong, you can then use the

techni ques for the other kind of |oops (AlICA abends) to | ocate the error
within the CICS statenents between the CICS commands

The process is very simlar using a transaction dunp. Let the transaction
run until it's clearly |ooping, and then cancel it. Use the trace table
in the resulting abend dunp to find the repeated sequence of CICS
commands. At this point the contents of Working-Storage may or nay not
gi ve you enough information to work out the problem |If they do not, put
further dunp requests near the expected exit point(s) fromthe |oop, and
use the technique described above to close in on the problem

© Copyright IBM Corp. 1984, 1991
526-1

CICS Application Programming Primer
Waits

5.2.7 Waits

Renmenber we're assum ng you have a batch programm ng background.

Wth that in mnd, you can avoid WAITs by avoiding two progranm ng
practices you may be bringing with you fromthat background. You see, the
most common cause of a WAIT in a COBOL programis an ACCEPT FROM CONSOLE
or STOP statement to which the operator failed to reply. Check for these
before going any further with your debugging of a wait.

Now, what about approaching WAITs froma CICS point of view?

The key to recognizing a wait is the operator's observation. |In other
words, he or she has typed in some data, pressed the ENTER key, and

not hi ng nmuch seens to be happening.

When you first suspect a wait, use the CEMI transaction to make sure there
is still a task associated with the termnal. |If there isn't, you've got

an "incorrect output". A waiting task will show as suspended or active.

If we | eave aside the question of database access (as beyond the scope of
the Primer), there are then just five reasons for a task to get suspended:

O Term nal control wai

O Unsuccessful enqueue -- when a task needs, but has failed to gai
access to, a resource owned by sone other task

O Interval control wai

O Not enough main storag

O Not enough auxiliary storage

There are a further four reasons for a task to be active but waiting:

O Di spat chabl

O Di spat chabl e, but on the point of an ABEND comman

O Non- di spat chabl e, because of too many other tasks in the system o
some other CICS workl oad control

O Waiting for some external or internal event to conplete (for exanple
file input/output or no VSAM string avail able, respectively).

What ever the case, purge the task and print the dunp. Wrk through the
dunp to find the Iast CALL nade by the program |If the troublesome task
was suspended, | ook for the KCP SUSPEND trace table entry. Just before
this should be a clue to the reason for the suspend, bearing in mnd the
above five reasons.

If, on the other hand, the task was active, | ook for the KCP WAIT trace
table entry. Just before this should be a clue to the reason for the
wait.

Bet ween them the source code of the |ast CALL and the request causing
either the wait or the suspend should cast some light on the problem

Of course, the problem may be entirely outside your task. There are two
reasons for the CICS region itself to be in a wait state:

1. No CICS tasks are currently ready to be dispatched, so task control
has issued an operating systemwait for the length of time specified
by the ICV (a SIT operand that basically says how long CICS is to give

© Copyright IBM Corp. 1984, 1991
527-1

CICS Application Programming Primer
Waits

up control).

2. A wait has been issued from somewhere else in CICS, or an SVC
(supervisor call) has been issued.

In the first case, you nust check each task to find out what it's waiting
for. There may al so be sone reason why new tasks aren't comi ng al ong.
The system coul d be short on storage; or the maxi mnum nunber of concurrent
tasks allowed could have been reached; or terminal input could be failing
to get through.

In the second case, you nust find out what's going on in the operating
system and al so, perhaps, confirmthat a badly-behaved task hasn't issued
an SVC. During normal running, CICS issues only the task control
operating systemwait we nmentioned above.

© Copyright IBM Corp. 1984, 1991
527-2

CICS Application Programming Primer
Incorrect output

5.2.8 Incorrect output

As we've said, the synptons of incorrect output are garbage on the screen
(or printer), a termnal that sinmply locks up, bad data in files, or wong
screen sequences. In fact, incorrect output problens can present all

ki nds of bothersome synptoms and be very interesting to pin down.

Here are sone suggestions for you to think about when you have a program
that's conpiled correctly but that seenms to m sbehave:

O I's the input data correct
O Are you correctly validating entered data

O Assumi ng you are getting some output at the termnal or printed out,
check it over:

- Is the sequence what you expect?

- Are the items correct?

- Are any totals correct?

- Are some itens being repeated when they shouldn't be?
- Are any items m ssing?

O Print any output files, data files, and so on to see if they contai
what you expect.

O Are you initializing or clearing program variables properly

Be sure to | ook up any nessages or codes that conme up. Wik through
program dunp listings to see what command | ast executed. (Note, however,
that an operation that uncovers incorrect output nmay be conpletely

i nnocent of having caused it.)

Try to find out what resource is failing. |It's usually data on a disk (on
a clear disk, you can seek forever!) or data in a term nal data stream
Of course, data on the term nal may be bad because of a bad file.

Wor k back, if possible, fromthe place where the synptons first occur, and
forward froma point where the data is OK. \Where you neet should be
i nteresting.

Look at map or file data structures from appropriate listings. Conpare
each field, as defined in the output fromthe map assenbly, with the map
as displayed in working storage. You can use EDF to do this, or a
transaction dunp. Note the contents of each field carefully, and | ook at
each field suspiciously.

Paranoi d patience is sonetinmes the best approach. Good | uck!

© Copyright IBM Corp. 1984, 1991
528-1

CICS Application Programming Primer
CICS system problems

5.2.9 CICS system probl ens

Probl ens that affect CICS as a systemfall into the same four categories
as those which affect transactions: abends, |oops, waits, and incorrect
output. As noted before, such problens are generally beyond the scope of
this Prinmer.

© Copyright IBM Corp. 1984, 1991
529-1

CICS Application Programming Primer
Appendixes

6.0 Appendi xes
+--- The appendi xes desCribe: -------mm o

i Where to find out how to install the exanple application

|

|

|

!

iV The remaining facilities of CICS

i

' i The application progranm ng books.
|
|

© Copyright IBM Corp. 1984, 1991
6.0-1

CICS Application Programming Primer
Appendix A. Getting the application into your CICS system

A.0 Appendix A, Getting the application into your CICS system

Subt opi cs
A. 1 Introduction
A. 2 What has to be done?

© Copyright IBM Corp. 1984, 1991
AO-1

CICS Application Programming Primer

Introduction
A. 1 Introduction
Your systens progranmer will probably have to help you get the application
into your CICS system You'll need a copy of the CICS/ESA Installation

Guide to refer to for guidance on doing so. You may also need to refer to
the ClI CS/ESA System Definition Guide if you want to have nore background
gui dance information about installing COBOL application prograns.

© Copyright IBM Corp. 1984, 1991
Al-1

CICS Application Programming Primer
What has to be done?

A.2 VWhat has to be done?
The COBOL source code for the application programs is supplied on the ClICS

distribution tape. You'll find the application source code in the
foll owing menbers of the ClICS330. SAMPLIB |ibrary:

| Table 1. Source code nenbers

i

E T '
| Nane as 1 Primer 1 H
| supplied | name i Description '
Feommmm e eme s Femmmm e ee e R T . '
i DFHXSET i ACCTSET i Map definitions for 3270 displays and '
i i i print i
B RS, B T o m m o e memeao- !
i DFHXS00 1 ACCTO00 i Display menu '
L T T e '
| DFHXS01 i ACCTO01 i Initial request processing '
Fommm e e L R I B S '
i DFHXS02 i ACCT02 | Update processing '
Fem e e e e L I B T '
| DFHXS03 i ACCTO03 | Requests for printing d
roemmemeaeaas rmmmee e D T !
i DFHXS04 i ACCTO04 i Error processing '
B S, T o m m e o e o e e e e e e e e e e e e e e e e e meamea-- !
| DFHXSREC ! ACCTREC I Layout of account record '
B RS, B T o m m o e memeao- !
| DFHXSI XR i ACl XREC \ Layout of index record '
B SRS, B TS o m m e meao- '
| DFHXSI NX 1 ACCTI NDX i Index file recovery (batch program '
E S I T N o, +
Not e

For an illustration of the data structure created when assenbling

mapset ACCTSET, see "The result of the SYSPARM=DSECT assenbly" in

topic A 2.1.

The exanpl e application uses VSAM files and 3270 di splay and printer
term nal s.

Before you can run the application, you have to prepare the mapset and
progranms for execution, define all the required resources to CICS, and
define the VSAM files. If you are using ClCS/ ESA, you'll find general
gui dance about installing mapsets and programs, in the ClICS/ESA System
Definition Guide. For guidance on defining VSAM files and an exanpl e of
JCL needed to do so, see the ClICS/ESA Installation Cuide.

Not e that ACCTINDX is not required for normal online execution of the
application. See "Recovery requirements" in topic 2.4.2.

Subt opi cs
A. 2.1 The result of the SYSPARM=DSECT assenbly

© Copyright IBM Corp. 1984, 1991
A2-1

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly

A.2.1 The result of the SYSPARMEDSECT assenbly

The foll owi ng exanple shows the data structure created when assenbling
mapset ACCTSET.

01 ACCTMNUI .
02 FILLER PIC X(12).
02 SNAMEML COWP PIC S9(4).
02 SNAMEMF PI CTURE X.
02 FILLER REDEFI NES SNAMEMF.
03 SNAMEMA PI CTURE X.
02 SNAMEM PIC X(12).
02 FNAMEML COWP PIC S9(4).
02 FNAMEMF PI CTURE X.
02 FILLER REDEFI NES FNAMEMNF.
03 FNAMEMA PI CTURE X.
02 FNAMEM PIC X(7).
02 REQM COMP PIC S9(4).
02 REQWF PI CTURE X.
02 FILLER REDEFI NES REQVF.
03 REQVA PI CTURE X.
02 REQM PIC X(1).
02 ACCTML COMP PIC S9(4).
02 ACCTMF PI CTURE X.
02 FI LLER REDEFI NES ACCTMF.
03 ACCTMA Pl CTURE X.
02 ACCTM PIC X(5).
02 PRTRML COMP PIC S9(4).
02 PRTRMF PI CTURE X.
02 FILLER REDEFI NES PRTRMF.
03 PRTRMA Pl CTURE X.
02 PRTRM PIC X(4).
02 SUMITLM. COMP PIC S9(4).
02 SUMITLMF PI CTURE X.
02 FILLER REDEFI NES SUMTTLMF.
03 SUMTTLMA PI CTURE X.
02 SUMITLM PIC X(79).
02 SUMLNMD OCCURS 6 TI MES.
03 SUMLNML COMP PIC S9(4).
03 SUMLNMF PI CTURE X.
03 SUMLNM PIC X(79).
02 MSGM COMP PIC S9(4).
02 MSGMF PI CTURE X.
02 FILLER REDEFI NES MSGVF.
03 MSGMA PI CTURE X.
02 MSGM PIC X(60).
01 ACCTMNUO REDEFI NES ACCTMNUI .
02 FILLER PIC X(12).
02 FILLER PI CTURE X(3).
02 SNAMEMO PIC X(12).
02 FILLER PI CTURE X(3).
02 FNAMEMO PIC X(7).
02 FILLER PI CTURE X(3).
02 REQMO PIC X(1).
02 FILLER PI CTURE X(3).
02 ACCTMO PIC X(5).
02 FILLER PI CTURE X(3).
02 PRTRMO PIC X(4).
02 FILLER PI CTURE X(3).
02 SUMITLMO PIC X(79).
02 DFHMS1 OCCURS 6 TI MES.
03 FILLER PI CTURE X(2).

© Copyright IBM Corp. 1984, 1991
A21-1

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly
03 SUMLNMA PI CTURE X.
03 SUMLNMO PIC X(79).
02 FILLER PI CTURE X(3).
02 MSGMO PIC X(60).
ACCTDTLI .
02 FILLER PIC X(12).
02 TITLEDL COWP PIC S9(4).
02 TI TLEDF Pl CTURE X.
02 FILLER REDEFI NES TI TLEDF.
03 TI TLEDA PI CTURE X.
02 TITLEDI PIC X(14).
02 ACCTDL COMP PIC S9(4).
02 ACCTDF PI CTURE X.
02 FI LLER REDEFI NES ACCTDF.
03 ACCTDA PI CTURE X.
02 ACCTDI PIC X(5).
02 SNAMEDL COWP PIC S9(4).
02 SNAMEDF Pl CTURE X.
02 FILLER REDEFI NES SNAMEDF.
03 SNAMEDA PI CTURE X.
02 SNAMEDI PIC X(18).
02 FNAMEDL COW PIC S9(4).
02 FNAMEDF Pl CTURE X.
02 FILLER REDEFI NES FNAMEDF.
03 FNAMEDA PI CTURE X.
02 FNAMEDI PIC X(12).
02 M DL COMP PIC S9(4).
02 M DF PI CTURE X.
02 FILLER REDEFI NES M DF.
03 M DA Pl CTURE X.
02 MD PICX(1).
02 TTLDL COW PIC S9(4).
02 TTLDF Pl CTURE X.
02 FILLER REDEFI NES TTLDF.
03 TTLDA PI CTURE X.
02 TTLDI PIC X(4).
02 TELDL COW PIC S9(4).
02 TELDF PI CTURE X.
02 FILLER REDEFI NES TELDF.
03 TELDA Pl CTURE X.
02 TELDI PIC X(10).
02 ADDR1DL COWP PIC S9(4).
02 ADDR1DF Pl CTURE X.
02 FILLER REDEFI NES ADDR1DF.
03 ADDR1DA PI CTURE X.
02 ADDR1DI PIC X(24).
02 ADDR2DL COWP PIC S9(4).
02 ADDR2DF Pl CTURE X.
02 FILLER REDEFI NES ADDR2DF.
03 ADDR2DA PI CTURE X.
02 ADDR2DI Pl C X(24).
02 ADDR3DL COW PIC S9(4).
02 ADDR3DF Pl CTURE X.
02 FILLER REDEFI NES ADDR3DF.
03 ADDR3DA PI CTURE X.
02 ADDR3DI PIC X(24).
02 AUTH1DL COWP PIC S9(4).
02 AUTH1DF Pl CTURE X.
02 FILLER REDEFI NES AUTH1DF.
03 AUTH1DA PI CTURE X.
02 AUTH1DI PIC X(32).
02 AUTH2DL COW PIC S9(4).
02 AUTH2DF PI CTURE X.
02 FILLER REDEFI NES AUTH2DF.
03 AUTH2DA PI CTURE X.

© Copyright IBM Corp. 1984, 1991
A21-2

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly
02 AUTH2DI PIC X(32).
02 AUTH3DL COW PIC S9(4).
02 AUTH3DF Pl CTURE X.
02 FILLER REDEFI NES AUTH3DF.
03 AUTH3DA PI CTURE X.
02 AUTH3DI PIC X(32).
02 AUTH4DL COWP PIC S9(4).
02 AUTH4DF Pl CTURE X.
02 FILLER REDEFI NES AUTH4DF.
03 AUTH4DA PI CTURE X.
02 AUTH4DI PIC X(32).
02 CARDSDL COW PIC S9(4).
02 CARDSDF PI CTURE X.
02 FILLER REDEFI NES CARDSDF.
03 CARDSDA PI CTURE X.
02 CARDSDI PIC X(1).
02 | MODL COW PIC S9(4).
02 | MODF Pl CTURE X.
02 FI LLER REDEFI NES | MODF.
03 | MODA PI CTURE X.
02 I MODI PIC X(2).
02 | DAYDL COMP PIC S9(4).
02 | DAYDF PI CTURE X.
02 FI LLER REDEFI NES | DAYDF.
03 | DAYDA PI CTURE X.
02 IDAYDI PIC X(2).
02 | YRDL COMP PIC S9(4).
02 | YRDF Pl CTURE X.
02 FILLER REDEFI NES | YRDF.
03 | YRDA PI CTURE X.
02 I1YRD PIC X(2).
02 RSNDL COW PIC S9(4).
02 RSNDF Pl CTURE X.
02 FI LLER REDEFI NES RSNDF.
03 RSNDA PI CTURE X.
02 RSNDI PIC X(1).
02 CCODEDL COW PIC S9(4).
02 CCODEDF PI CTURE X.
02 FILLER REDEFI NES CCODEDF.
03 CCODEDA PI CTURE X.
02 CCODEDI PIC X(1).
02 APPRDL COMP PIC S9(4).
02 APPRDF PI CTURE X.
02 FI LLER REDEFI NES APPRDF.
03 APPRDA PI CTURE X.
02 APPRDI PIC X(3).
02 SCODE1DL COW PIC S9(4).
02 SCODE1DF PI CTURE X.
02 FI LLER REDEFI NES SCODE1DF.
03 SCODE1DA PI CTURE X.
02 SCODEIDI PIC X(1).
02 SCODE2DL COWP PIC S9(4).
02 SCODE2DF PI CTURE X.
02 FI LLER REDEFI NES SCODE2DF.
03 SCODE2DA Pl CTURE X.
02 SCODE2DI PIC X(1).
02 SCODE3DL COW PIC S9(4).
02 SCODE3DF PI CTURE X.
02 FI LLER REDEFI NES SCODE3DF.
03 SCODE3DA Pl CTURE X.
02 SCODE3DI PIC X(1).
02 STATTLDL COW PIC S9(4).
02 STATTLDF PI CTURE X.
02 FILLER REDEFI NES STATTLDF.
03 STATTLDA PI CTURE X.

© Copyright IBM Corp. 1984, 1991
A21-3

01

02
02
02
02

02
02
02
02

02
02
02
02

02
02
02
02

02
02
02
02

02
02
02
02

02
02
02
02

02
02
02
02

02
02
02
02

02

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly
STATTLDI Pl C X(15).
STATDL COMP PIC S9(4).
STATDF PI CTURE X.
FI LLER REDEFI NES STATDF.

03 STATDA PI CTURE X.

STATDI PIC X(2).

LI MTTLDL COMP PIC S9(4).
LI MTTLDF PI CTURE X.

FI LLER REDEFI NES LI MTTLDF.

03 LI MITLDA PI CTURE X.

LIMITLDl Pl C X(18).

LI M TDL COWP PIC S9(4).
LI M TDF PI CTURE X.

FI LLER REDEFI NES LI M TDF.

03 LIMTDA PI CTURE X.

LIMTD PIC X(8).

HI STTLDL COMP PIC S9(4).
HI STTLDF PI CTURE X.

FI LLER REDEFI NES HI STTLDF.

03 HI STTLDA PI CTURE X.

HI STTLDI PIC X(71).

HI ST1DL COWP PIC S9(4).
HI ST1DF PI CTURE X.

FI LLER REDEFI NES HI ST1DF.

03 HI ST1DA PI CTURE X.

HI ST1DI PIC X(61).

HI ST2DL COW PIC 8S9(4).
HI ST2DF PI CTURE X.

FI LLER REDEFI NES HI ST2DF.

03 HI ST2DA PI CTURE X.

HI ST2DI PI C X(61).

HI ST3DL COW PIC S9(4).
HI ST3DF PI CTURE X.

FI LLER REDEFI NES HI ST3DF.

03 HI ST3DA PI CTURE X.

HI ST3DI PIC X(61).

MSGDL COMP PIC S9(4).
MSGDF PI CTURE X.

FI LLER REDEFI NES MSGDF.

03 MSGDA PI CTURE X.

MSGDI Pl C X(60).

VFYDL COMP PIC S9(4).
VFYDF PI CTURE X.

FI LLER REDEFI NES VFYDF.

03 VFYDA Pl CTURE X.

VEYDl PIC X(1).

ACCTDTLO REDEFI NES ACCTDTLI .

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

FILLER PI C X(12).

FI LLER PI CTURE X(3).
TITLEDO PIC X(14).
FI LLER Pl CTURE X(3).
ACCTDO PIC X(5).

FI LLER Pl CTURE X(3).
SNAMEDO PI C X(18).
FI LLER PI CTURE X(3).
FNAMEDO PIC X(12).
FI LLER PI CTURE X(3).
MDO PIC X(1).

FI LLER PI CTURE X(3).
TTLDO PIC X(4).

FI LLER PI CTURE X(3).
TELDO PIC X(10).

FI LLER Pl CTURE X(3).
ADDRLDO PI C X(24).
FI LLER PI CTURE X(3).

© Copyright IBM Corp. 1984, 1991
A21-4

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly
02 ADDR2DO PIC X(24).
02 FILLER PI CTURE X(3).
02 ADDR3DO PIC X(24).
02 FILLER PI CTURE X(3).
02 AUTHIDO PIC X(32).
02 FILLER PI CTURE X(3).
02 AUTH2DO PIC X(32).
02 FILLER PI CTURE X(3).
02 AUTH3DO PIC X(32).
02 FILLER PI CTURE X(3).
02 AUTH4DO PIC X(32).
02 FILLER PI CTURE X(3).
02 CARDSDO PIC X(1).
02 FILLER PI CTURE X(3).
02 1MODO PIC X(2).
02 FILLER PI CTURE X(3).
02 | DAYDO PIC X(2).
02 FILLER PI CTURE X(3).
02 |1YRDO PIC X(2).
02 FILLER PI CTURE X(3).
02 RSNDO PIC X(1).
02 FILLER PICTURE X(3).
02 CCODEDO PIC X(1).
02 FILLER PI CTURE X(3).
02 APPRDO PIC X(3).
02 FILLER PI CTURE X(3).
02 SCODE1DO PIC X(1).
02 FILLER PI CTURE X(3).
02 SCODE2DO PIC X(1).
02 FILLER PI CTURE X(3).
02 SCODE3DO PIC X(1).
02 FILLER PI CTURE X(3).
02 STATTLDO PIC X(15).
02 FILLER PI CTURE X(3).
02 STATDO PIC X(2).
02 FILLER PI CTURE X(3).
02 LIMITLDO PIC X(18).
02 FILLER PI CTURE X(3).
02 LIMTDO PIC X(8).
02 FILLER PI CTURE X(3).
02 HI STTLDO PIC X(71).
02 FILLER PI CTURE X(3).
02 HISTIDO PIC X(61).
02 FILLER PI CTURE X(3).
02 HIST2DO PIC X(61).
02 FILLER PI CTURE X(3).
02 HIST3DO PIC X(61).
02 FILLER PICTURE X(3).
02 MSGDO PIC X(60).
02 FILLER PI CTURE X(3).
02 VFYDO PIC X(1).
ACCTERRI .
02 FILLER PIC X(12).
02 TRANEL COMP PIC S9(4).
02 TRANEF PI CTURE X.
02 FI LLER REDEFI NES TRANEF.
03 TRANEA Pl CTURE X.
02 TRANEI PIC X(4).
02 PGMEL COW PIC S9(4).
02 PGMEF Pl CTURE X.
02 FI LLER REDEFI NES PGVEF.
03 PGMVEA PI CTURE X.
02 PGMEI PIC X(8).
02 RSNEL COMP PIC S9(4).
02 RSNEF Pl CTURE X.

© Copyright IBM Corp. 1984, 1991
A21-5

CICS Application Programming Primer
The result of the SYSPARM=DSECT assembly
02 FILLER REDEFI NES RSNEF.
03 RSNEA Pl CTURE X.
02 RSNEI PIC X(60).
02 CMDEL COW PIC S9(4).
02 CMDEF Pl CTURE X.
02 FILLER REDEFI NES CMDEF.
03 CMDEA PI CTURE X.
02 CMDEI PIC X(20).
02 RESPEL COMP PIC S9(4).
02 RESPEF PI CTURE X.
02 FI LLER REDEFI NES RESPEF.
03 RESPEA PI CTURE X.
02 RESPEI PIC X(12).
02 FI LEEL COMP PIC S9(4).
02 FI LEEF Pl CTURE X.
02 FILLER REDEFI NES FI LEEF.
03 FI LEEA Pl CTURE X.
02 FILEEI PIC X(22).
01 ACCTERRO REDEFI NES ACCTERRI .
02 FILLER PIC X(12).
02 FILLER PI CTURE X(3).
02 TRANEO PIC X(4).
02 FILLER PICTURE X(3).
02 PGMEO PIC X(8).
02 FILLER PI CTURE X(3).
02 RSNEO PIC X(60).
02 FILLER PI CTURE X(3).
02 CMDEO PIC X(20).
02 FILLER PI CTURE X(3).
02 RESPEO PIC X(12).
02 FILLER PI CTURE X(3).
02 FILEEO PIC X(22).
01 ACCTMsSGI .
02 FILLER PIC X(12).
02 MsSGL COW PIC S9(4).
02 MSGF PI CTURE X
02 FI LLER REDEFI NES MSGF.
03 MSGA PI CTURE X.
02 MG PIC X(79).
01 ACCTMSGO REDEFI NES ACCTMSGI .
02 FILLER PIC X(12).
02 FILLER PI CTURE X(3).
02 MSGO PIC X(79).

Figure 97. Result of the SYSPARM=DSECT assenbly

© Copyright IBM Corp. 1984, 1991
A21-6

CICS Application Programming Primer
Appendix B. Other CICS facilities
B.0 Appendix B. Oher CICS facilities
The aimof this appendix is to nention the CICS facilities we haven't
covered in the Primer, and to introduce you to the other application
programm ng books in the CICS library.

Subt opi cs

B.1 Other CICS facilities

B.2 The Application Progranm ng Gui de

B.3 The Application Programmer's Reference

© Copyright IBM Corp. 1984, 1991
B.O-1

CICS Application Programming Primer
Other CICS facilities

B.1 Ocher CICS facilities

In no particular order, these include:

O

Getting access to control blocks and control information using ADDRES
and ASSI GN commands.

The ADDRESS conmand gi ves you access to the comopn storage area (CSA),
the comon work area (CWA), the transaction work area (TWA), and so
on.

The ASSIGN command al |l ows you to get values from outside the |ocal
envi ronment of your application program For exanple, |engths of
storage areas, val ues needed during BMS operations, information about

term nal characteristics, and so on.

The use of the command interpreter transaction, CECl (which we ver
briefly met in "Optional exercise" in topic 3.2.5).

CEClI is very useful for deleting, repairing, inspecting, and creating
all sorts of items. We use it in the EDF session to delete our
tenporary storage scratchpad record (to save waiting 10 m nutes).

The DL/I interface

DL/l is a general -purpose database control system CICS application
prograns can access DL/| databases using EXEC DLI... conmands.

The DATABASE 2 interface (MS)

DATABASE 2 is a relational database control system CICS application
prograns can access DB2 dat abases using EXEC SQ.... conmmands. You
can find nmore guidance about it in the CICS/ESA Rel ease Guide.

Term nal operations that don't use BMS

This nmeans using native term nal control commands.

Bat ch Data | nterchange

The CICS batch data interchange program allows your application to
talk to programmbl e subsystens such as the |BM 8100.

The task control commands, SUSPEND, ENQ and DEQ

The SUSPEND command al l ows you to give up control and allow other,
hi gher priority, tasks to run. The task from which you issue the

SUSPEND gets control back as soon as all higher priority tasks that
can run have "had their turn".

ENQ (enqueue) tells CICS that a given task wants a particul ar resource
(of the one-user-at-a-time type). CICS returns control to the task

when the resource becones avail abl e.

Simlarly, DEQ (dequeue) tells CICS that a given task has finished
with such a resource.

The storage control commands, GETMAIN, FREEMAI N

The GETMAIN command gets a specified amunt of nmain storage. If you
want, it can also initialize the contents of that storage to a
particular bit configuration.

The FREEMAI N command, as you'd expect, rel eases such storage.

© Copyright IBM Corp. 1984, 1991
B1-1

CICS Application Programming Primer
Other CICS facilities

User journal operations

The CICS journal control facilities allow you to direct any

informati on you want to special -purpose sequential data sets (called
journals). These journals are to help you reconstruct events or data
changes for both audit purposes and in case of system failures.

Syncpoi nt command

The SYNCPOI NT conmand al l ows you to divide a task--usually a
| ong-running one--into smaller units known as |ogical units of work.
This nmakes it easier to recover froma task abend or a systemfailure.

The DUWP command (which we nentioned on 3.8.3).

This allows you to dunp specified main storage areas wi thout

term nating your program as you do with an ABEND command. You can
dunp the same areas as appear in a transaction abend dunp, and/or
ot her areas too.

Trace conmands

CICS trace control uses a trace table (which is included for guidance
in the CICS/ESA Probl em Determ nation Guide). You can put your own
entries into this table for use as "flags" to help you spot what your
application programis doing.

The monitor programand its exits

You can define user event monitoring points (EMPs). At each user EM
you can accunul ate all sorts of information of an accounting and
performance nature. You'll find nore details of this part of the
programm ng interface in the CICS/ ESA Custom zation Guide. For
definitive application programm ng interface information on EXEC Cl CS
MONI TOR commands, see the ClICS/ ESA Application Progranmm ng Reference.

I ntersystem communi cation (1SC) and nulti-region operation (MRO
facilities.

These al |l ow i ndependent CICS systens to talk to each other. The
systens may be in the sane processor or in different processors.

Gui dance on using ISC and MRO is in the Cl CS/ESA | nterconmunication
Gui de.

Exits within the managenment nodul es

You may, despite the many options that CICS offers, still have special
requi rements that a standard CICS system cannot neet. In this case,
you can add your own user exit code to certain CICS modules. This
code will then be invoked whenever one of these nodules is used.

See the ClI CS/ESA Custom zation Guide for product-sensitive progranm ng
interface information on user exits.

Transaction restart facilities

The CI CS/ ESA Recovery and Restart Gui de gives you gui dance on
designing applications with recovery in mnd.

Program error prograns (PEPs), node error progranms (NEPs), an
term nal error progranms (TEPSs).

| BM supplies programs to handle certain comon error situations.
There's one to handl e programerrors (PEP), one for VTAM term nal
errors (NEP), and one for non-VTAMtermnal errors (TEP). |If you

© Copyright IBM Corp. 1984, 1991
B.1-2

CICS Application Programming Primer
Other CICS facilities
prefer, you can supply your own versions of these programs, and tailor
the processing of certain types of error for your particul ar needs.
There are special macros to help you build your own versions of these
prograns. Either way, please see the CICS/ESA Custonization Guide for
product-sensitive progranm ng interface information.

The external security interface

CICS offers you an interface to an external security nmanager. You can
write this yourself or, if you use MWVS, you can use the Resource
Access Control Facility (RACF) (*) program product.

See the ClI CS/ESA Custom zation Guide for guidance on doing so.

Dynam ¢ OPEN and CLOSE

This facility allows you to open and close data sets dynamically while
CICS is running. Again, see the ClICS/ ESA Custom zation Guide for
progranm ng interface information.

The phonetic key routine

ClI CS provides a subroutine to convert words to a condensed "phonetic"
form The major use of phonetic codes is for keys to data sets
(usual Iy names), so that you can access records in the file without
knowi ng the exact spelling of a nane or a word in the file key. W

m ght have chosen to use this subroutine in building the nane index to
our account file. See the CICS/ESA Custonization Guide for
product-sensitive progranm ng interface information.

The master term nal operator (CEMI) transaction application interface
The master termnal (CEMI) transaction functions are also available to
an application program See the CICS/ ESA Cl CS- Supplied Transactions

manual for product-sensitive programmi ng interface informtion.

(*) I1BM Trademark. For a conplete list of trademarks, see
"Notices" in topic FRONT_1.

© Copyright IBM Corp. 1984, 1991
B.1-3

CICS Application Programming Primer
The Application Programming Guide

B.2 The Application Progranm ng Guide
This is the next book you should read.

It contains progranm ng design guidance, particularly in the vital area of
performance, debugging, and testing CICS applications.

It al so describes the variety of sanple material that is avail able as part
of your CICS system This material contains some useful coding hints,
tips, and techniques.

© Copyright IBM Corp. 1984, 1991
B2-1

CICS Application Programming Primer
The Application Programmer's Reference

B.3 The Application Programer's Reference

This is your authoritative source of information about the command-| evel
application progranm ng interface.

You'll find within it all that you need to know about every CICS
command- | evel instruction.

© Copyright IBM Corp. 1984, 1991
B3-1

CICS Application Programming Primer
Glossary

GLOSSARY d ossary
This gl ossary defines special CICS terns used in the library and words
used with other than their everyday meaning. It includes ternms and
definitions fromthe |BM Vocabul ary for Data Processing,
Tel ecommuni cations, and Office Systens, GC20-1699. |In sonme cases the
definition given isn't the only one applicable to the term but gives the
particul ar sense in which we've used it.

American National Standards Institute (ANSI) definitions are preceded by
an asteri sk.

oo+
1 1
1 AI
+-- -+

abend. Abnornmal end of task.

access nmethod. A technique for nmoving data between nmain storage and
i nput/ out put devices.

application. This refers to a set of one or nore application units of
wor k designed to fulfill a particular need (or needs) of the user
organi zati on.

application program (1) A programwitten for or by a user that applies
to the user's work. (2) In data conmunication, a program used to connect
and communicate with stations in a network, enabling users to perform
application-oriented activities.

auxiliary storage. Data storage other than main storage; for exanple,

storage on magnetic tape or direct access devices.

oo+
1 1
1 BI
oo -+

backout. A general termmeaning to restore a previous state of all or
part of a system See dynam c transaction backout.

Basi ¢ Mappi ng Support (BMS). A facility that noves data streanms to and
froma terminal. It provides device independence and fornmat independence
for application prograns.

batch. An accumul ati on of data to be processed.

bl anks. See space.

BMS. See Basic Mappi ng Support.

byte. In Systenm/ 370, a sequence of eight adjacent binary digits that are

operated on as a unit.

+-- -+

i C

oo+
CEMI. The master term nal transaction.
C. See control interval.

CICS. Custoner Information Control System

© Copyright IBM Corp. 1984, 1991
GLOSSARY -1

CICS Application Programming Primer
Glossary

CICS systemdefinition file (CSD). CSDIn CICS, the CSDis a file that
contains a resource definition record for every resource defined to CICS
usi ng RDO.

COBOL. Common business-oriented | anguage. An English-1ike programm ng
| anguage desi gned for business data processing applications.

command. In CICS, an instruction simlar in format to a high-Ievel
progranm ng | anguage statenent. (Contrast with macro.) CICS commands
invariably include the verb EXECUTE (or EXEC). They may be issued by an
application programto make use of CICS facilities.

command- | anguage statenent. In CICS, synonym for conmnmand.

common systemarea (CSA). In CICS, a basic systemcontrol block to which
all transactions have access.

* concurrent. Pertaining to the occurrence of two or nmore activities
within a given interval of tinme.

control block. In CICS, a storage area used to hold dynami ¢ data during
the execution of control programs and application prograns. Synonym for
control area. Contrast with control table.

control interval (Cl). A fixed-length area of direct access storage in
whi ch VSAM stores records. The unit of information that VSAMtransmts to
or fromdirect access storage.

control table. In CICS, a set of information used to define or describe
the configuration or operation of the systemin a relatively pernmanent
way. Contrast with control bl ock.
conversational. Pertaining to a programor a systemthat carries on a
di al ogue with a term nal user, alternately accepting input and then
responding to the input quickly enough for the user to maintain his or her
train of thought.
CSA. Commmon system area.
CSD. CICS systemdefinition file.
CWA. Conmon work area, an extension of the commopn system area (CSA).

+-- -+

i D

+--- 4+
DAM Direct access nethod.
DASD. Direct access storage device.
dat abase. An organi zed collection of interrelated or independent data
items stored together wi thout unnecessary redundancy, to serve one or nore
applications.
data set. The mmjor unit of data storage and retrieval, consisting of a
collection of data in one of several prescribed arrangenents and descri bed

by control information to which the system has access. See file.

DB2. DATABASE 2, IBM s relational database managenent system program
product for the MVS environnment.

DB/ DC. Dat a- base and dat a- conmuni cati on.

© Copyright IBM Corp. 1984, 1991
GLOSSARY -2

CICS Application Programming Primer
Glossary

deadl ock. (1) Unresolved contention for the use of a resource. (2) An
error condition in which processing cannot continue because each of two
el ements of the process is waiting for an action by, or a response from
t he ot her.

devi ce i ndependence. An application programwitten in such a way that it
does not depend on the physical characteristics of devices. BMS provides
a measure of device independence.

direct access storage. (1) * A storage device in which the access tine is
in effect independent of the location of the data. (2) A storage device
that provides direct access to data.

DL/1. Data Language/l, the high-level interface between a user
application and an | MS/ VS dat abase.

DTB. See dynamic transaction backout.

dynami ¢ transaction backout. The process of canceling changes made to
stored data by a transaction following the failure of that transaction for
what ever reason.

oo+
1 1
1 EI
oo+

EDF. Execution (command-|evel) diagnostic facility for testing
command- | evel prograns interactively at a term nal.

energency restart. The CICS facility for use following a system failure.
It restores the data files of all interrupted transactions to the
condition they were in after the |ast conplete transaction (that affected
them) before the failure.

end user. In CICS, a person using a termnal to cause execution of a CICS
transaction. Typically, a non-data-processing professional, for exanple,
a reservation clerk.

exception. An abnormal condition such as an I/O error encountered in
processing a data set or a file.

o+
1 1
1 FI
ot

* file. A set of related records treated as a unit, for exanple, in stock
control, a file could consist of a set of invoices. See data set.

file control table. A CICS table containing the characteristics of the
files accessed by file control.

* format. The arrangenent or |ayout of data on a data medium In CICS,
the data mediumis usually a display screen.

format independence. The ability to send data to a device without having
to be concerned with the format in which the data will be displayed. The
sanme data nmy appear in different formats on different devices.

oo+
1 1
1 HI
oo+

© Copyright IBM Corp. 1984, 1991
GLOSSARY -3

CICS Application Programming Primer
Glossary

hi gh-val ues. Hexadeci mal FF.

* 1/Q I nput/CQutput.
| MS/ ESA. I nformation Managenent System Extended System Architecture.

inquiry. A request for information from storage; for exanple, a request
for the number of available airline seats.

installation. (1) A particular conputing system in terms of the work it
does and the people who nanage it, operate it, apply it to problens,
service it and use the work it produces. (2) The task of nmking a program
ready to do useful work. This task includes generating a program
initializing it, and applying PTFs to it.

installed program definition. An application programthat has been
defined to the CICS system by the CEDA transaction, and that is valid for
processing under CICS. These definitions also keep track of whether an
application programis in main storage or not. Prior to CICS/ESA 3.3,
this was an entry in the processing programtable (PPT).

installed transaction definition. A transaction that has been defined to
the CICS system by the CEDA transaction, and that may be processed by the
system Prior to CICS/ESA 3.3, this was an entry in the program control
tabl e (PCT).

interactive. Pertaining to an application in which each entry calls forth
a response froma systemor program as in an inquiry systemor an airline
reservation system An interactive system my al so be conversational,

i mplying a continuous di al ogue between the user and the system

| SAM I ndexed Sequential Access Method.

+-- -+
1 1
1 J 1
+-- -+

journal. A chronol ogical record of the changes made to a set of data; the
record may be used to reconstruct a previous version of the set.

journaling. Recording transactions against a data set in such a way that
the data set can be reconstructed by applying transactions in the journal
agai nst a previous version of the data set.

+-- -+
1 1
1 KI
+-- -+

keyword. (1) A symbol that identifies a parameter. (2) A part of a
command operand that consists of a specific character string.

+-- -+
Pl
+-- -+

| abel. See paragraph nane.

© Copyright IBM Corp. 1984, 1991
GLOSSARY -4

CICS Application Programming Primer
Glossary

linkage editor. A conputer programused to create one |oad nodule from
one or nore independently-translated object nmodul es or |oad nodul es by
resolving cross references anong the nodul es.

| ogging. The recording (by CICS) of recovery information onto journal 01
(the systeml og).

| ow- val ues. Hexadeci mal 00.

oo+
1 1
1 MI
oo+

mai n storage. Program addressable storage from which instructions and
data can be | oaded directly into registers for subsequent execution or
processi ng. See also real storage, storage.

map. In CICS, a format established for a page or a portion of a page.
master termnal. In CICS, the terminal at which a designated operator is
si gned- on.

master term nal operator. Any CICS operator authorized to use the master
term nal functions.

mul titasking. * Pertaining to the concurrent execution of two or nore
tasks by a conputer.

mul tithreading. Pertaining to the concurrent operation of nore than one
path of execution within a conmputer. |In CICS, the use, by several
transactions, of a single copy of an application program

oo+
1 1
1 NI
oo -+

null. A character encodi ng of hexadeci mal 00--LOW VALUE in COBOL.

+-- -+
1 1
1 OI
+-- -+

online. (1) * Pertaining to a user's ability to interact with a conputer.
(2) * Pertaining to a user's access to a conputer via a termnal. The
term"online" is also used to describe a user's access to a conputer via a
termnal .

operating system Software that controls the execution of programs; an
operating system may provide services such as resource allocation,
schedul i ng, input/output control, and data nanagenent.

5. Operating System
+--- 4+
P
+--- 4
par agraph name. COBOL term for destination of a branch or GOTO

instruction.

© Copyright IBM Corp. 1984, 1991
GLOSSARY -5

CICS Application Programming Primer
Glossary

* parameter. A variable that is given a constant value for a specified
application and that may denote the application.

processi ng program table (obsolete). See installed program definition.
programcontrol. The CICS el ement that nmanages CICS application prograns.
program control table (obsolete). See installed transaction definition.

program function (PF) key. A key that passes a signhal to a program

pseudoconversational . A series of CICS transactions designed to appear to
the operator as a continuous conversation occurring as part of a single
transacti on.

+-- -+
P Q

+-- -+

quasi-reentrant. Applied to a CICS application programthat is serially
reusabl e between CICS calls because it does not nmodify itself or store
data within itself between calls on CICS facilities.

oo+
1 1
1 RI
+-- -+

real storage. The main storage in a virtual storage system Physically,
real storage and main storage are identical. Conceptually, however, real
storage represents only part of the range of addresses available to the
user of a virtual storage system

recoverabl e resources. Itenms whose integrity CICS will maintain in the
event of a systemfailure. They include individual CICS files, and
auxiliary tenporary storage queues.

reentrant. The attribute of a programor routine that allows the sane

copy of the programor routine to be used concurrently by two or nore
t asks.

* response tine. The elapsed tine between the end of an inquiry or demand
on a data processing system and the begi nning of the response. For

exanpl e, the length of tinme between an indication of the end of an inquiry
and the display of the first character of the response at a user termnal.

oo+
1 1
1 SI
oo -+

SAM Sequential Access Method.

screen page. The ampunt of data displayed, or capable of being displayed,
at any one tine on the screen of a termnal.

SIT. Systeminitialization table. A CICS table.
space. A character encodi ng of hexadeci mal 40.

storage. A functional unit into which data can be placed and from which
it can be retrieved. See main storage, real storage.

storage control. The CICS el ement that manages working storage areas.

© Copyright IBM Corp. 1984, 1991
GLOSSARY -6

CICS Application Programming Primer
Glossary

systeminitialization table. A table containing user-specified data that
will control a systeminitialization process.

system |l og. The (only) journal data set (identification="01") that is
used by CICS to | og changes nmade to resources for the purpose of backout
on energency restart.

oo+
1 1
1 TI
oo+

task. (1) A basic unit of work to be acconplished by a conputer. (2)
Under CICS, the execution of a transaction for a particular user.
Contrast with transaction.

task control. The CICS elenment that controls all CICS tasks.
task control area (TCA). A basic CICS control block provided for each
task.

TCA. See task control area.

TCT. Terminal control table. A CICS table.

termnal. (1) * Apoint in a systemor conmmunication network at which
data can either enter or leave. (2) In CICS, a device, often equipped
with a keyboard and sone kind of display, capable of sending and receiving
informati on over a conmuni cation channel .

termnal control. The CICS elenent that controls all CICS term nal
activity.

term nal control table. A table describing a configuration of termnals,
| ogical units, or other CICS systens in a CICS network with which the CICS
system may conmuni cate.

term nal operator. The user of a term nal.

term nal paging. A set of CICS conmands for retrieving "pages" of an
oversi ze output nessage in any order.

threading. The process whereby various transactions undergo concurrent
execution.

TIOA. Term nal input/output area.

transaction. A transaction may be regarded as a unit of processing
(consisting of one or nore application prograns) started by a single
request, often froma termnal. A transaction nay require the starting of

one or nore tasks for its execution. Contrast with task.

transacti on backout. The cancellation, as a result of a transaction
failure, of all updates performed by a partially-conpleted task.

transaction identification code. Synonymfor transaction identifier. A
group of up to four characters used to identify (name) a particular
transaction type in the list of installed transaction definitions.

transaction identifier. Synonynous with transaction identification code.

transaction restart. The restart of a task after a transaction backout.

© Copyright IBM Corp. 1984, 1991
GLOSSARY -7

CICS Application Programming Primer

Glossary
+-- -+
pU
+-- -+

update. To modify a file with current information.

© Copyright IBM Corp. 1984, 1991
GLOSSARY -8

CICS Application Programming Primer
Readers' Comments
COMMENTS Readers' Comments
Cl Cs
Application Programm ng Priner

Publ i cation No. SC33-0674-01

Use this formto tell us what you think about this manual. [If you have
found errors in it, or if you want to express your opinion about it (such
as organization, subject matter, appearance) or make suggestions for

i mprovenent, this is the formto use.

To request additional publications, or to ask questions or make coments
about the functions of |BM products or systens, you should talk to your

| BM representative or to your |BM authorized remarketer. This formis
provi ded for conments about the information in this nmanual and the way it
is presented.

When you send coments to IBM you grant |BM a nonexclusive right to use
or distribute your conments in any way it believes appropriate w thout
incurring any obligation to you.

Be sure to print your nanme and address below if you would like a reply.

I nternational Business Machi nes Corporation
Attn: Dept ACV-H

1001 WIr HARRI S BLVD

CHARLOTTE NC 28257-0001

Name e
Conpany or Organization
Addr ess

Phone No.

© Copyright IBM Corp. 1984, 1991
COMMENTS - 1

