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Executive Summary

The design of correct, precise and executable business processes is more and more
challenging. This diploma thesis shows a possibility to assist designers and devel-
opers during the creation of business processes. The goal of this thesis is to provide
a set of several algorithms that can be applied in several ways, for example in the
transformation of business processes. These algorithms provide the base of a toolset,
to assist designer and implementer in producing correct business processes.

The main task during this work were the design of a Process Flow Graph (PFG)
model to use for the analysis and the transformation of such graphs based on the
detection of regions. Therefore it was necessary to evaluate several algorithms for
the verification of the structural correctness and the detection of regions. Some
of the found algorithms were suitable but slow, others were not usable to verify
the structural correctness of PFG. So the extension of an already known algorithm
was necessary. The algorithm found for the detection of Single Entry Single Exit
(SESE) regions suits perfectly, even for the PFG model. To classify the new available
regions the extension of the classification scheme from [12] was needed, but only the
consideration of the new parallel regions was necessary.

The PFG model is realized as Eclipse Modeling Framework (EMF) model. The
algorithms for the verification of the structural correctness and the detection and
classification of regions were implemented. Even two algorithms that restructure
the PFG to prepare it for the transformation into other models. All this algorithms
are combined within an Eclipse plug-in to provide a modular architecture that is
easily extendable for other algorithms.

For the future it is possible to implement different algorithms that do the same,
so the user can select which algorithm suits in his situation best, or more algorithms
could be added to do other analysis of the graph. Also the set of restructuring al-
gorithms can be completed to allow the semi-automated transformation to Business
Process Execution Language (BPEL) for example.

iii



Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig verfasst habe
und keine anderen als die angegebene Quellen und Hilfsmittel verwendet habe.

Tübingen, 20. Dezember 2005 Nicolai Mainiero

iv



Contents

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Intention of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3. Overview of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Business Processes 3
2.1. What are business processes? . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2. Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. The Business Process Execution Language . . . . . . . . . . . . . . . 4
2.3. Design Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1. Design vs. Implementation . . . . . . . . . . . . . . . . . . . . 5

3. Process Flow Graphs 7
3.1. Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2. Workflow as a Graph . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3. Formal Definition of Workflow Graphs . . . . . . . . . . . . . 9

3.2. Control Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1. Formal Definition of Control Flow Graphs . . . . . . . . . . . 10
3.2.2. Workflow Graph vs. Control Flow Graph . . . . . . . . . . . . 10

3.3. Process Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1. Formal Definition of Process Flow Graphs . . . . . . . . . . . 11
3.3.2. Extension from CFG to PFG . . . . . . . . . . . . . . . . . . 12

3.4. Analysis of the PFG . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.1. Regions within the PFG . . . . . . . . . . . . . . . . . . . . . 12
3.4.2. Classification Scheme . . . . . . . . . . . . . . . . . . . . . . . 14

4. Algorithms 17
4.1. Structural Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1. What is structural correctness? . . . . . . . . . . . . . . . . . 17
4.1.2. Instance Subgraph . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



Contents

4.1.4. Another possibility to verify structural correctness in cyclic
graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2. SESE-Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1. What are SESE regions? . . . . . . . . . . . . . . . . . . . . . 23
4.2.2. Finding Canonical SESE regions . . . . . . . . . . . . . . . . . 24

4.3. T1-T2 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1. T1-T2 Transformations . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2. Misuse of the T1-T2 Theorem . . . . . . . . . . . . . . . . . . 26

5. Implementation 29
5.1. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2. Eclipse Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . 29
5.3. Explanation of the EMF Model . . . . . . . . . . . . . . . . . . . . . 29
5.4. How the plug-in works . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.1. Verify the structural correctness . . . . . . . . . . . . . . . . . 31
5.4.2. Add and classify the regions in the PFG . . . . . . . . . . . . 31
5.4.3. Restructure the PFG to prepare it for the conversion to BPEL 35
5.4.4. Create a new BPEL graph from the PFG . . . . . . . . . . . . 35

5.5. Extending the plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6. The PFG to BPEL Transformation 37
6.1. Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1. Transformation Library . . . . . . . . . . . . . . . . . . . . . . 38
6.2. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.1. Regions which need restructuring . . . . . . . . . . . . . . . . 41

7. Summary and Outlook 45
7.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A. Appendix 47
A.1. Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1.1. Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.1.2. Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.1.3. Sourcecode Repository . . . . . . . . . . . . . . . . . . . . . . 47

List of Acronyms 49

Bibliography 51

vi



List of Figures

3.1. Workflow Graph Symbols . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2. CFG-Classification Scheme . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3. TT-Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4. SESE-Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5. TT to SESE transformation . . . . . . . . . . . . . . . . . . . . . . . 14
3.6. Classification scheme for Process flow graphs . . . . . . . . . . . . . . 14
3.7. cross-over synchronized region and avalanche structure . . . . . . . . 15

4.1. A graph with lack of synchronization . . . . . . . . . . . . . . . . . . 17
4.2. A graph with a dead lock . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3. Example: Instance Subgraphs . . . . . . . . . . . . . . . . . . . . . . 19
4.4. Examples for the instance subgraph . . . . . . . . . . . . . . . . . . . 20
4.5. Rule 4 and the extended version . . . . . . . . . . . . . . . . . . . . . 23
4.6. Possible SESE regions, canonical SESE regions and the PST . . . . . 25
4.7. T1-T2 transformation rules . . . . . . . . . . . . . . . . . . . . . . . 26
4.8. Comparison of while- and until-loops after application of T1-T2 clas-

sification algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1. UML representation of the EMF model . . . . . . . . . . . . . . . . . 30
5.2. The UML visualization of the abstract class TransformPFG and

the implementing classes . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3. Comparison between an until- and a while-loop . . . . . . . . . . . . 35
5.4. The UML visualization of the popup action classes . . . . . . . . . . 36

6.1. transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2. A if-then -else region as PFG and in BPEL . . . . . . . . . . . . . . . 39
6.3. A case region as PFG and in BPEL . . . . . . . . . . . . . . . . . . . 39
6.4. A classical while loop as PFG and in BPEL . . . . . . . . . . . . . . 40
6.5. An Activity node of the PFG and the possible representation in

BPEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6. A parallel region as PFG and in BPEL . . . . . . . . . . . . . . . . . 41
6.7. A SESE Until Loop and both possible restructured while loops . . . . 41
6.8. A multiple merge region and the corresponding restructured equivalent 42
6.9. A not reducible region . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.10. A SESE not classical while loop . . . . . . . . . . . . . . . . . . . . . 43

vii



List of Figures

A.1. Context menu of the eclipse plug-in . . . . . . . . . . . . . . . . . . . 48
A.2. SVN configuration dialog from Eclipse . . . . . . . . . . . . . . . . . 48

viii



1. Introduction
The following thesis is about the detection, classification and transformation of re-
gions found in PFGs. First it will be investigated how one can split up the PFG
in useful regions and how this regions can be classified, to get simple conversion
functions for each detected region. For the classifying of the regions results from
Aspekte der Abbildung von Geschäftsprozessen, spezifiziert im Business Process Def-
inition Metamodel, in BPEL4WS by Kirsten Stöhr [12] were used and adapted were
necessary. The results of the analysis will form a prototype which implements the
found algorithms as an Eclipse plug-in and provides the possibility to execute this
algorithms on a PFG and do the restructuring necessary for the transformation from
PFG to BPEL which requires some of the restructuring methods introduced in [12].

1.1. Motivation

These days we have almost in every company so called business processes. These are
simple step-by-step instructions which, put together, represent what the company
produces or manufactures. But unfortunately the precise creation of such processes
is complicated and therefore the concept of modeling such processes as flow was
introduced, which provides a simple but efficient possibility to design business pro-
cesses.

With the introduction of the computer more and more of these business processes
were adapted to run on computers to assist the employees. At this time another
problem raised: the gap between the designer of such a business process and the
guy how has to implement it on a computer.

The new designed business processes became more and more complex, which also
means it became more and more difficult to design a correct business process and
implement it in currently available languages as BPEL for example.

1.2. Intention of this Work

The goal of this work is to provide a tool that assists in the design, analysis, restruc-
turing and transformation process needed to adapt the process design in a specific
language, for example BPEL. To achieve this several algorithms for the analysis of
PFG were examined. The concept of regions was reconsidered and adapted. Fi-
nally the existing classification scheme fro regions from the previous work [12] was

1



1. Introduction

extended were necessary. Actually were the following algorithms implemented: one
for the verification of the structural correctness and one to detect and classify the re-
gions, furthermore two simple restructuring rules for BPEL as target language were
implemented. The design of this implementation is made such that it is extendable
with other analysis methods or restructuring algorithms.

1.3. Overview of this Work

A short overview of the six chapters in this thesis.
In chapter 2 business processes are shown and which models are used to describe

them. The chapter will give an overview of used models and implementations.
Chapter 3 is about the definition of PFGs and which algorithms are useful for the
analysis of such graphs. In chapter 4 the algorithms implemented during this work
are shown and in the following chapter 5 the implementation is explained. Finally
in chapter 6 the concrete transformation from PFG to BPEL is described. The last
chapter 7 provides a short summary of what was done and an outlook of the future
possibilities. In the appendix you will find a short manual how to install and use
the provided plug-in.

2



2. Business Processes

In this chapter a short introduction into business processes is given. Then as a
concrete example the structure of BPEL is explained. At last the difficulties during
the design of precise business processes are mentioned.

2.1. What are business processes?

2.1.1. Definition

A more informal definition of a business process can be found at [15].

Definition 1 A business process is a recipe for achieving a commercial result. Each
business process has inputs, methods and outputs. The inputs are a pre-requisite
that must be in place before the method can be put into practice. When the method
is applied to the inputs then certain outputs will be created.

A business process is a collection of related structural activities that produce a
specific outcome for a particular customer.

A business process can be part of a larger, encompassing process and can include
other business processes that have to be included in its method.

The business process can be thought of as a cookbook for running a business;
“Answer the phone”, “place an order”, “produce and invoice” might all be examples
of a business process.

This shows that business processes are used by nearly every company, but one
must differentiate between human-executed and computer-implemented business
processes.

In the following only the computer-implemented processes are relevant, but even
with this limitation human interaction is possible.

2.1.2. Models

Nowadays these business processes are modeled as flows, as a succession of different
tasks that are executed in parallel or in sequence. Sometimes decisions are needed or
a task has to be executed multiple times limited by a condition. All these different
possibilities end up in a very complex definition of workflow models.

3



2. Business Processes

2.2. The Business Process Execution Language

The Business Process Execution Language 4 Web Services BPEL [2] currently at
version 1.1 is an XML based language to describe executable business processes.
BPEL represents a convergence of the ideas in the XLANG and WSFL specifications.
Both XLANG (XLANG) and Web Services Flow Language (WSFL) are superseded
by the BPEL4WS specification.

Overview

The key elements of BPEL are structured activities. These activities describe the
order in which a collection of activities take place.

The structured activities of BPEL include:
• Ordinary sequential control between activities is provided by sequence, switch,

and while.

• Concurrency and synchronization between activities is provided by flow.

• Nondeterministic choice based on external events is provided by pick.

sequence

A sequence activity contains one or more activities that are performed sequentially,
in the order in which they are listed within the <sequence> element, that is, in
lexical order. The sequence activity completes when the final activity in the sequence
has completed.

switch

The switch structured activity supports conditional behavior in a pattern that occurs
quite often. The activity consists of an ordered list of one or more conditional
branches defined by case elements, followed optionally by an otherwise branch. The
case branches of the switch are considered in the order in which they appear. The
first branch whose condition holds true is taken and provides the activity performed
for the switch. If no branch with a condition is taken, then the otherwise branch is
taken. If the otherwise branch is not explicitly specified, then an otherwise branch
with an empty activity is deemed to be present. The switch activity is complete
when the activity of the selected branch completes.

while

The while activity supports repeated performance of a specified iterative activity.
The iterative activity is performed until the given boolean while condition no longer
holds true.

4



2.3. Design Problems

pick

The pick activity awaits the occurrence of one of a set of events and then performs
the activity associated with the event that occurred. The occurrence of the events
is often mutually exclusive (the process will either receive an acceptance message or
a rejection message, but not both). If more than one of the events occurs, then the
selection of the activity to perform depends on which event occurred first. If the
events occur almost simultaneously, there is a race and the choice of activity to be
performed is dependent on both timing and implementation.

flow

The flow construct provides concurrency and synchronization. The most fundamen-
tal semantic effect of grouping a set of activities in a flow is to enable concurrency.
A flow completes when all of the activities in the flow have completed.

2.3. Design Problems

With the increasing complexity of business processes it becomes more and more
difficult to design them efficient and correct. There are also problems that are
caused by the different limitations and possibilities between the design language
and the implementing language.

2.3.1. Design vs. Implementation

Typically neither the process designer knows something about implementation nor
the one who implements knows much about the task of designing a process. So the
task of designing and implementing a new business process is something, more than
one person is involved and this is where most problems begin. The designer does
not know which limitations the target language has, and the implementer has the
problem to restructure the process design to meet the requirements of the target
language. This restructuring process is very error-prone and difficult and this is the
place where the developed tool assists the implementer.

5
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3. Process Flow Graphs

This chapter is about Workflow, Control Flow and Process Flow. First the two more
known models, workflow and control flow are presented. The the difference between
them is shown, and the extension to the process flow graph is done. Then one main
concept in the analysis of PFGs, the building of regions, is introduced. Combined
with this concept a classification scheme for the regions is presented.

3.1. Workflow

3.1.1. Definition

A nice definition what workflow is can be found at [17]:

Definition 2 (Workflow) Workflow is the operational aspect of a work procedure:
how tasks are structured, who performs them, what their relative order is, how they
are synchronized, how information flows to support the tasks and how tasks are being
tracked. As the dimension of time is considered in Workflow, Workflow considers
“throughput” as a distinct measure.

While the concept of workflow is not specific to information technology, support
for workflow is an integral part of group-ware software.

3.1.2. Workflow as a Graph

It is easy to define a graphical representation of workflow, the so called Workflow
Graph (WFG). Therefore we use seven symbols representing an Activity, a Fork
and the corresponding Synchronizer, a Choice and its Merge, and of course
the Start and End symbols. For the rest of this work the symbols from figure 3.1
are used to represent this nodes.

An Activity node is the most simple modeling node and defines the order of task
execution. It has at most one incoming and one outgoing node.

A Fork (AND-Split) node has exactly two outgoing edges and is used to repre-
sent concurrent paths within a workflow graph.

7



3. Process Flow Graphs

MergeDecision ForkJoin

Activity
Directed Relation

START END

Figure 3.1.: The symbols used in workflow graphs to model parallel and alternative
processes.

A Synchronizer (AND-join) node with exactly two incoming edges is applied to
synchronize such concurrent paths. A task waits until all incoming transitions
(edges) have been triggered.

A Decision (XOR-split) node has exactly two outgoing edges and is used to
model mutually exclusive alternative paths. At run-time, the workflow se-
lects one of the alternative paths for a given instance of the business process
by activating one of the transitions (edges) originating from the Decision
node. The Decision node is exclusive and complete. The exclusive charac-
teristic ensures that only one of the alternative paths is selected. The complete
characteristic ensures that one of its outgoing flows will always be triggered.

A Merge (XOR-join) node is opposite to the Decision node. It has exactly two
incoming edges and joins mutually exclusive alternative paths into one path.

By connecting nodes with edges a directed acyclic graph called workflow graph is
created. This graph has at least on node with no incoming edge, its called Start
node and at least one node with no outgoing edge, called End. There are two kinds
of structural conflicts in such graph models:

• Deadlock - Joining multiple paths opened by an exclusive Decision with a
Synchronizer node results in a deadlock conflict. At least one of the edges
from a Synchronizer is not triggered, so the continuation of the workflow
path is blocked.

8



3.1. Workflow

• Lack of Synchronization - Joining multiple paths opened by a Fork with a
Merge node results in a lack of synchronization. In the consequence it is
possible that the nodes followed the Merge node are unintentionally multiple
activated.

An important concept for the analysis of workflow graphs is the instance subgraph.
An instance subgraph represents a subset of workflow tasks that may be executed
for a particular instance of a workflow. It can be generated by traversing the graph
and following only one outgoing edge of a Decision node and all outgoing edges
of a Fork node from the Start node to the End node. The instance subgraph
provides an easy approach to detect the above mentioned structural conflicts within
WFG, with the following two correctness criteria:

Correctness Criteria 1 - deadlock free instance subgraphs An instance subgraph
is free of deadlock structural conflicts if it does not contain only a proper subset
of the incoming nodes of a Synchronizer node.

Correctness Criteria 2 - lack of synchronization free instance subgraphs An in-
stance subgraph is free of lack of synchronization structural conflicts if it does
not contain more than one incoming nodes of a Merge node.

A workflow graph is only correct if and only if all instance subgraphs of the
workflow graph meet the Correctness Criteria 1 and 2.

3.1.3. Formal Definition of Workflow Graphs

Now a more formal definition of a workflow graph.

Definition 3 (Workflow Graph) The workflow graph G = (N, E) is a simple
directed acyclic graph where

1. N is a finite set of nodes

2. E is a finite set of directed edges representing transitions between two nodes

3. size[G] = size[N ]+ size[E] represents the total number of nodes and edges in
G.

The graph G meets the following syntactical correctness properties:

• It uses only core modeling nodes, namely, Activity, Decision, Merge,
Fork and Synchronizer.

• It does not contain any cycles, i.e. ∀ni, nj ∈ N , a path from ni to nj implies
ni 6= nj (no self-loops) and no path from nj to ni exists (no cycles).

9



3. Process Flow Graphs

• It has exactly a single Start node nstart with exactly one outgoing edge.

• It has exactly a single End node nend with exactly one incoming edge.

Definition 4 For each path p from ni to nj where ni, nj ∈ N , we define: pathNodes[p] =
{ni, · · · , nj} represents a set of nodes contained within p.

As you can see in WFG no cycles are allowed, that means these graphs only allow
step-by-step operations without loops.

3.2. Control Flow Graph

3.2.1. Formal Definition of Control Flow Graphs

The possibility of loops gives us the Control Flow Graph (CFG) but therefore it lacks
him of the parallel activities. But first a formal definition what a CFG consists of:

Definition 5 (Control Flow Graph) The control graph G = (N, E) is a simple
directed graph where

1. N is a finite set of nodes

2. E is a finite set of directed edges representing transitions between two nodes

3. size[G] = size[N ]+ size[E] represents the total number of nodes and edges in
G.

The graph G meets the following syntactical correctness properties:

• It uses only core modeling nodes, namely, Activity, Decision and Merge.

• It has exactly a single Start node nstart

• It has exactly a single End node nend

The CFG is expatiated in the earlier work found at [12]. Figure 3.2 shows the
result of the classification scheme developed in this work. For a complete overview
with detailed explanation of the found regions look at [12].

3.2.2. Workflow Graph vs. Control Flow Graph

There are two differences between workflow graphs and control flow graphs. First
only the WFG allows the realization of parallel executed activities. And second only
the CFG allows the realization of repeated execution of activities. To allow both an
extension of these models is needed, the PFG.

10



3.3. Process Flow Graph

Regions

not reducible Regions reducible Regions

Loop Regions Split
Regions

Sequence
Regions

Basic-Entity
Regions

Single Loop Multiple Loop

While Until

clasical non-clasical

SESE SEME SESE

SESE

SEME

SEME

normal Split abnormal Split

multiple 
Split (case)

simple 
Split

if-then if-then
-else

homogen inhomogen

multiple
merge

multiple
split

abnormal
selection

path

without
abnormal
selection

path

Figure 3.2.: The classification scheme for the CFG (not complete)

3.3. Process Flow Graph

The PFG allows the modeling of more sophisticated graphs, which contains loops
and parallel activities.

3.3.1. Formal Definition of Process Flow Graphs

Definition 6 (Process Flow Graph) The control flow graph G = (N, E) is a
simple directed graph where

1. N is a finite set of nodes

2. E is a finite set of directed edges representing transitions between two nodes

3. size[G] = size[N ]+ size[E] represents the total number of nodes and edges in
G.

The graph G meets the following syntactical correctness properties:

• It uses only core modeling nodes, namely, Activity, Decision , Merge,
Fork and Synchronizer.

• It has exactly a single Start node nstart

• It has exactly a single End node nend

11



3. Process Flow Graphs

3.3.2. Extension from CFG to PFG

The definition 6 is very similar to the definition of the CFGwhich leads to the
assumption that the properties of CFGs and PFGs are also very similar. For this
work it would be nice to reuse the classification scheme from [12] and extend it for
the PFG were necessary. This leads to theorem 1.

Theorem 1 The control flow graph is a real subclass of the process flow graph.

Proof (by reduction) It is easy to see, that the definitions of the CFG (Defini-
tion: 5) and PFG (Definition: 6) only differ in the used core modeling nodes. So the
control flow graph is a process flow graph without the Fork and Synchronizer
nodes.

3.4. Analysis of the PFG

The analysis of PFGs is based on the concept of regions. Every graph is divisible into
a finite number of regions, and each of this region can be analyzed independently.

3.4.1. Regions within the PFG

Definition 7 (Region) The term region is used here to describe a subgraph G′ =
(N ′, E ′), with N’ ⊂ N and E’ ⊂ E.

These regions are used to structure the graph, but unfortunately not all such
regions are adequate to do this. For the later analysis and transformation steps
regions that are independently from each other are needed. So the idea is to use
so called Two-Terminal regions known from the program analysis, which have one
entry node a∈ N’ and one exit node b ∈ N’ so that,

• dN(a, k) with k ∈ N ′

• pdN(b, k) with k ∈ N ′

Definition 8 (Domination) A node x is said to dominate node y in a directed
graph if every path from start to y includes x . A node z is said to postdominate a
node y if every path from y to end includes z. We write dN(x, k) with k ∈ N ′ for
dominating and pdN(z, k) with k ∈ N ′ for postdominating.

The figure 3.3 shows how such a region can look like.
A special kind of Two-Terminal Region (TTRegion) is the SESE which adds a

constraint to the definition of the TTRegion given above.
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Figure 3.3.: Two-Terminal Region

Definition 9 (SESE) A SESE region is a subgraph beginning with a dominating
node and ending with a postdominating node and between this two nodes there
are no edges to any successor of the postdominating node or any predecessor of the
dominating node and there is only one edge entering the region and only one edge
leaving the region.

Figure 3.4 shows how such regions could look like.

Figure 3.4.: Shows a Single Entry Single Exit Region

The two region types are equivalent as the transformation shown in figure 3.5
proofs. By inserting dummy-nodes after the dominating node of the TTRegion and
before the postdominating node, we get a SESE region.

13
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Two Terminal Region Single Entry Single Exit Region

Figure 3.5.: The equivalent transformation from TT-Region into SESE-Region

3.4.2. Classification Scheme

The classification scheme found in [12] is complete for the CFG but not for the
PFG. So the classification scheme needs to be extended to fit also for PFGs. The
extended classification scheme can be divided into three main branches: only regions
that are possible in CFGs, only such that are possible in WFGs, and such that are
not realizable in the one or the other. This leads to the following classification
scheme:

CFG Regions

not reducible Regions reducible Regions

Loop Regions Split
Regions

Sequence
Regions

Basic-Entity
Regions

Single Loop Multiple Loop

While Until

clasical non-clasical

SESE SEME SESE

SESE

SEME

SEME

normal Split abnormal Split

multiple 
Split (case)

simple 
Split

if-then if-then
-else

homogen inhomogen

multiple
merge

multiple
split

abnormal
selection

path

without
abnormal
selection

path

parallel Regions mixed Regions

Regions

avalanche Regionswith synchronization edges without synchronization edges

Figure 3.6.: Classification scheme for process flow graphs. The red marked region is
new in comparison to the CFG

The regions can be split up into three big parts, the CFG regions, already ex-
plained in [12], the parallel regions and mixed regions. Within the parallel regions
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only Fork and Join nodes are allowed, which reduces the possibilities of regions.
But there are synchronizing edges allowed, which leads to regions like the cross over
synchronized, explained later. The mixed regions allow the use of Fork and Join
nodes as well as the use of Decision and Merge nodes. This rises the possibility of
more unusual but structural correct regions, like the avalanche region, also explained
and show here.

cross over synchronized In this region, there are several synchronization edges, so
that all activities are executed in sequence and no parallel activity is left, it
would be possible to restructure such regions during the transformation steps.
Figure 3.7 shows an example for such regions.

avalanche structure This regions is not so familiar. It is more a theoretical con-
struct than something naturally emerged during process design. But this con-
struction is a very good test case for other algorithms that implements the
verification of structural correctness. Figure 3.7 shows an example of such a
region.

cross-over Syncronization avalanche structure

Figure 3.7.: The region on the left is a cross over synchronized structure, and on the
right side is is an avalanche structure
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In this chapter all for this work relevant algorithms are presented. This algorithms
are mainly used for the analysis of the PFG and partly also for the transformation.

4.1. Structural Correctness

4.1.1. What is structural correctness?

A consistent workflow graph is structurally correct, if from exactly one start transi-
tion exactly one end transition is reachable under the workflow rules. If a workflow
graph contains decisions as well as synchronizations, two different structural prob-
lems may arise as mentioned in [13] and [10]: Deadlock and lack of synchronization.

Lack of Synchronisation

Figure 4.1.: A structural problem: A graph with lack of synchronization.

Deadlock A deadlock as shown in Figure 4.2 arises, if after a decision alternative
activities are merged by a synchronization. In this case the synchronization
activity can not be executed.

Lack of Synchronization A lack of synchronization as shown in Figure 4.1 arises,
if asynchrony activities are merged by a contact. In this case the following
activities would be executed more than once.
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Deadlock

Figure 4.2.: A structural problem: A graph with a dead lock.

4.1.2. Instance Subgraph

A consistent workflow graph describes all possible workflows. In an acyclic workflow
graph every single possible workflow can be described by an instance subgraph as a
subgraph of the workflow graph. The structural correctness of the workflow graph
implies the structural correctness of all instance subgraphs and vice versa.

Definition 10 (Instance Subgraph) A workflow graph W can be unambiguously
divided into Wi instance subgraphs. Every instance subgraph describes one possible
workflow without decisions. According to this, every transition of an instance sub-
graph except for the end transition has exactly one successor. No instance subgraph
is a subgraph of another instance subgraph.

Structural Correctness

A acyclic workflow is structurally correct, if every instance subgraph is structurally
correct. An instance subgraph is structurally correct, if all the following conditions
are fulfilled:

• Every transition in the instance subgraph, except for the start transition, has
exactly one predecessor.

• Every activity in the instance subgraph has the same predecessors as in the
workflow graph.

• Every instance subgraph has exactly one end transition.

In figure 4.4 a workflow graph and its instance subgraphs are shown. If the first
condition is not fulfilled a lack of synchronization exists and if the second condition
is not fulfilled a deadlock exists in the workflow graph. If the third condition is
broken, the workflow graph does not have a unique end.
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Processflow Graph

1st Instance Subgraph

2nd Instance Subgraph

Figure 4.3.: An example graph with its instance subgraphs.
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Processflow Graph

1st Instance Subgraph

2nd Instance Subgraph

Deadlock Lack of Synchronisation

Figure 4.4.: An example for instance subgraphs of a workflow that is not structurally
correct.
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4.1.3. Algorithm

There are several algorithms to verify the structural correctness of such graphs, for
example in [8] an extension of the already known algorithm from [11] to identify
structural correctness is given. Both are based on various reduction rules that
reduce the graph to an empty one if it is structural correct. Unfortunately both
of this algorithms works only with acyclic graphs.

Another approach to verify the structural correctness is presented in [13]. The
approach is not rule based as the two others but uses a transformation based ap-
proach. Therefore the graph will be transformed in a WF-net, some kind of Petri
net, that allows to verify the structural correctness. Furthermore other analyses are
possible with the corresponding analysis tool called Woflan which is also presented
in that work.

For this work another algorithm was considered, which is based on instance sub-
graphs and extends this approach to cyclic graphs.

Extension on non-acyclic graphs

So in [7] the known algorithms are discussed and the extension to non-acyclic graphs
is done. I will short describe how the modification works: Two properties are needed
to guarantee that the graph is structural correct:

1. The reduced workflow graph is structural correct

2. Every cyclic workflow component is structural correct

By replacing the strongly connected components through dummy nodes a reduced
workflow graph is created , which can now processed as a simple acyclic graph, and
tested for its structural correctness.

Cyclic workflow component: A cyclic workflow component is a cyclic subgraph
with alternative input transitions and alternative output transitions. Input
activities for cyclic workflow components are not allowed, because at least one
predecessor is unreachable. Output activities are not allowed, because the
following activities could be executed more than once.

Cut of a workflow component: A transition within a component with one or
more predecessors from outside of this workflow component is called an input
transition. A transition within the component with one or more successors
from outside of this workflow component is called an output transition. Each
input transition has to be cut and is replaced by one transition with all succes-
sors and one transition with all predecessors of the original input transition.
Each output transition has to be cut and is replaced by one transition with
all successors and one transition with all predecessors of the original output
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transition. Transitions without predecessors are start transitions. Transitions
without successors are end transitions.

When all input and output transitions are replaced, the workflow component is
a new workflow graph. If this workflow graph is acyclic, it can be subdivided into
instance subgraphs. If the workflow graph is not acyclic, it can be decomposed into
strongly connected components and mapped to a reduced component graph. This
component graph has to be checked for structural correctness as shown above. These
steps will be repeated until no more strongly connected components are left.

Compute the Instance subgraphs An instance subgraph of a workflow graph can
be created by following three simple rules:

1. Start at one start node and traverse the graph

2. For each Fork, the traversal is done for each successor

3. For each Decision, the traversal needs only for one successor to be done

After the traversal of the workflow graph the instance subgraph contains all passed
Fork and Decision. For each start node and for each decision node exists one
instance subgraph. In order to get all instance subgraphs, efficient algorithms based
on depth-first search (DFS) and breadth-first search (BFS) can be used.

4.1.4. Another possibility to verify structural correctness in
cyclic graphs

Another possibility is to extend the rule 4 (closed reduction rule) presented in [8] to
allow cycles in such constructs.

The figure 4.5 illustrates the new rule, it allows to reduce cycles that occur between
Decision and Merge nodes. I think, that this new rule does not break the proof
given in [8], so all graphs that were reducible with this new rule are still structural
correct. Of course further investigations and a formal proof is needed to make sure
that there are no side-effects on the other rules.

If this rule does not break the others the verification of of any graph can be done
in O((size[G])2) ·O((size[N ])2).
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original rule modified rule

Figure 4.5.: Rule 4 and the extended version notice the modified red edge which
allows also the application of Rule 4 in cyclic graphs under certain con-
ditions

4.2. SESE-Regions

The second important algorithm that will be used is presented in [5]. It is a fast
method to find the SESE regions of a graph. This one will be needed to find the
different regions, for the classification process, that will follow.

4.2.1. What are SESE regions?

SESE-Regions are defined as follows:

Definition 11 (SESE-Regions) Two distinct nodes a and b in a CFG G enclose
a single entry single exit region if

• a dominates b

• b post-dominates a

• a and b are cycle equivalent in G.

With this definition it is possible that almost every node constitutes itself as a SESE
region. But this is not the desired effect and so these trivial regions are excluded
from the consideration by requiring, that a and b are distinct nodes.

The first two conditions ensure that control reaches b whenever it reaches a and
vice versa. The third condition ensures that whenever control reaches a, it reaches
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b before reaching a again and vice versa. The ordered pair (a,b) is used to denote
a SESE region where a is the entry node and b the exit node.

4.2.2. Finding Canonical SESE regions

During the search for SESE regions it could be possible to come across with the
following problem, the determination of non-trivial SESE regions of graphs.

As example if (a,b) is a SESE region and (b,c) is a SESE region, then (a,c) is a
SESE region as well. Expressed differently, SESE regions have a certain transitivity
property. So a graph with N nodes can have O(N2) SESE regions - each of the
N2 node pairs in a chain of N nodes encloses a SESE region. Normally a complete
enumeration of all SESE regions is not useful. Instead, for each node x in the graph,
it is necessary to find the smallest SESE regions, if they exist, for which x is an entry
or an exit node. These regions will be called the canonical SESE regions associated
with x. More formally:

1. Given a node x, find a node b, if it exists, such that,

• (x,b) is a SESE region, and

• if (x,b’) is also a SESE region, then b dominates b’.

2. Given a node x, find a node a, if it exists, such that

• (a,x) is a SESE region, and

• if (a’,x) is also a SESE region, then a post-dominates a’.

The following theorem, proofed in [5], is the key to solving tis problem for all nodes
in the graph:

Theorem 2 Let S be the strongly connected component constructed by adding an
edge END → START to a CFG G. Nodes a and b in G enclose a SESE region iff
they are cycle equivalent in S.

Now it is possible to find those canonical SESE regions, by using the algorithm to
compute cycle equivalent nodes. Such an algorithm is presented in [5], explaining it
here would go to far. This problem leads to the following definition:

Definition 12 A node n in a graph G is contained within a SESE region (a,b) if a
dominates n and b post-dominates n.

The node n is “between” a and b in the graph. This definition can be extended to
the containment of SESE regions. The following theorem describes how canonical
SESE regions are related:
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Theorem 3 If R1 and R2 are two canonical SESE regions of a graph, one of the
following statements applies:

1. R1 and R2 are node disjoint.

2. R1 is contained within R2 or vice versa.

3. The exit node ofR1 is the entry node R2 or vice versa.

Another problem that arise is the determination of the nesting of canonical SESE
regions. In other words, canonical SESE regions cannot have partial overlap - if two
regions have any nodes in common, they are either nested or in tandem. The proof
of this theorem is found in [5].

Start

End

a

b

f

g

h

d

e

c

a

bc de

f gh

i j

Figure 4.6.: Possible SESE regions, canonical SESE regions and the PST

As result of the permission of the nesting of such SESE regions another data
structure emerges, the program structure tree (PST). It is a tree representation of
the nesting of such SESE regions, and gives the possibility to traverse it and so
classify every SESE region in the graph.
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Algorithm

The algorithm is presented in [6] and not further explained here. It can find the
canonical SESE regions and compute the PST in O(E).

4.3. T1-T2 Theorem

Another important analysis algorithm is the T1-T2 theorem presented in [4]. It is
a simple algorithm to verify wether a given workflow graph or region is reducible.
This algorithm will be necessary for the classification of regions, because the big two
parts of the classification scheme are reducible and non-reducible regions, which will
be handled differently in the transformation process.

4.3.1. T1-T2 Transformations

The theorem as presented in [4] introduces two simple transformation rules as you
can see in figure 4.7.

T2T1

Figure 4.7.: The T1-T2 transformation rules.

This two simple rules allow to reduce if possible a workflow graph or region, and
so allow to differentiate between reducible and non-reducible regions.

4.3.2. Misuse of the T1-T2 Theorem

The idea was to use the T1-T2 reduction rules to classify the current region, that
is analyzed. Without loss of generality the T1 rule is used until it is no longer
applicable, then the T2 rule is used until T1 can be used again. This is repeated
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until the graph is reduced or it is detected that it is not reducible. During the
application of the rules T1 and T2 the sequence of T1 and T2 is compared to a
library, with all possible sequences for all known classified regions. So it would
be easy to classify all regions during the test of reducibility. Unfournately some
different regions generate the same sequences. For example in figure 4.8, while-
and until-loops are compared and as you can see, they result in the same sequence,
(T2)* until its a self-loop and the one T1. So you can not decide if it was a while-
or until-loop that was detected. It might be possible to extend the algorithm with
another rule T3 that detects when the outgoing edge of a region is moved, and with
this knowledge differentiate between while and until loops for example.

M

D

A

T2

M

D

T2

M M

T1

M

D

A

M

D

T2 T2

M M

T1

until-loop while-loop
reduction sequence: T2-T2-T1 reduction sequence: T2-T2-T1

Figure 4.8.: Comparison of while- and until-loops after application of T1-T2 classi-
fication algorithm
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5. Implementation

5.1. Architecture

The goal is to implement a modular architecture that allows to add different algo-
rithms that work with such PFGs and to provide the possibility to transform from
different models e.g. UML2 into PFG. These requisites led me to implement this as
an Eclipse plug-in. The base of this plug-in will be an EMF model, that represents
the PFG. It is introduced in the following subsection. The advantage of using EMF
is that we can also use the Model Transformation Framework (MTF).

5.2. Eclipse Modeling Framework

The EMF is a modeling framework and code generation facility for building tools
and other applications based on a structured data model. This framework will build
the base of the implementation. Different techniques can be used to build such a
structured data model. In this context I will use Unified Modeling Language (UML)
to design the model because some graphical tools provide support designing such a
models.

5.3. Explanation of the EMF Model

As you can see the most important class is the Node which is the core modeling
element of graphs. The class Node is extended by several subclasses like Start or
Decision. This gives us the possibility to add fields or methods to specific nodes
that are not a feature of the general Node class. The chart shows you also the top
class, that contains all other, the ProcessFlowGraph. It contains the Node as well
as the Region. And the last modeling class is the Edge which is contained by the
Node. There are two more classes, which represent enumerations. The first class
MarkerColor is used in several algorithms like DFS or BFS to mark already visited
nodes. The second class is regionType which contains an entry for each known
region type.

This model is very basic, but its intention is not to use it for modeling processes.
More it is used as interface on different underlying modeling concepts, that all rely
on the concept of nodes and edges. So it is necessary to model all common concepts
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Figure 5.1.: This is the UML representation of the EMF model used for the imple-
mentation
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from these underlying models to map them into this model. This contains such
things as the guard attribute of the Edge or the extension of the Decision to have
the condition attribute.

5.4. How the plug-in works

The plug-in provides several actions:

1. Create a PFG by hand

2. Verify the structural correctness of the PFG

3. Add and classify regions in the PFG

4. Restructure the PFG to prepare it for the conversion to BPEL

5. Create a new BPEL graph from the PFG

This four actions are separated into several classes as shown in figure 5.2. The
following sections will show which task were implemented during this work.

5.4.1. Verify the structural correctness

To verify the structural correctness of a given PFG the rule based algorithm pre-
sented in [8] that reduces the graph was implemented. If the graph is reduced to
the empty graph the graph is structural correct, if not it is not. This algorithm was
extended as described in section 4.1.4 to do also the verification on cyclic graphs.
The implementation is complete and full functional.

5.4.2. Add and classify the regions in the PFG

The detection and classification of the SESE regions in the PFG is the most complex
task in this tool set. For this the algorithm presented in [5] was implemented.
The classification is done by detecting incoming and outgoing node of such SESE
regions, then all other nodes are investigated to classify the regions unambiguously.
A rough overview of the different possible regions that can be detected only by
consideration of the incoming and outgoing node are listed in the following table.
This implementation is also complete and the classification is done completely.

The table below presents you a classification scheme based on the entry and exit
node of a SESE-Region. As you can see some combinations like Decision entry
and Fork exit are not possible, and therefore they need no further investigation.
The remaining can be split up into two big parts, concurrent and non-concurrent
regions.
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Figure 5.2.: The UML visualization of the abstract class TransformPFG and the
implementing classes

Entry Exit Allowed Region Classification Example

Decision Decision yes A traditional Decision
followed by a loop, which
also ends in a Decision

D DM

M

Decision Merge yes The typical XOR-
Region, a Decision
followed by a Merge

D M
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Entry Exit Allowed Region Classification Example
Decision Fork no Each fork has at least

two outgoing edges, so at
least one stays in the re-
gion. This path ends up
in a join node, which is
never activated because
the fork is also never ac-
tivated

Decision Join yes A not so familiar re-
gion where the Forks
are used to activate both
Merges to force that a
Join is needed

D

MF
J

F M

Merge Decision yes The typical loop-Region

M D

Merge Merge yes An overlapping XOR-
and loop-Region

M D D M

Merge Fork no same reason as Decision
and Fork

Merge Join no no back-edge from the
concurrent region to the
merge node allowed

Fork Decision no no back-edge into the
concurrent region from
the decision node allowed
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Entry Exit Allowed Region Classification Example

Fork Merge yes A similar region to that
one beginning with a De-
cision and ending with
a Join. The region is
structural correct never-
theless it is possible that
a Deadlock occurs during
execution, so I reject it
during my verification of
structural correctness

F
D

D

J

J
M

Fork Fork no same reason as Decision
and Fork

Fork Join yes typical concurrent region

F J

Join Decision no never possible, the join
will be never activated
because, the region is
never entered

Join Merge no same as above
Join Fork no same as above
Join Join no same as above

Table 5.1.: Table of all possible combinations of ingoing and outgoing nodes for
SESE region

The table 5.1 gives you an overview of possible regions, there may be different
regions embedded, where in the table are only edges shown. So for example the loop
region can be either a while-loop or until-loop, it depends where another region is
embedded. In figure 5.3 an until- and a while-loop are compared. The until-loop
has the decision at the end of the loop body, other the while-loop, which has first
the decision and then the loop body. The loop body is of course any SESE region.
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M DSESE

until-loop

M D

SESE

while-loop

Figure 5.3.: Comparison between an until- and a while-loop

5.4.3. Restructure the PFG to prepare it for the conversion
to BPEL

This task is done by traversing all regions and restructuring them, if they are not
directly representable in BPEL. I used the restructuring proposals made in [12].
More details are in chapter 6. The implementation of this task is not complete, only
until-loops and not classical while loops can be restructured.

5.4.4. Create a new BPEL graph from the PFG

In this task a new BPEL graph is created from the PFG. Details on this can be
found in chapter 6.

5.5. Extending the plug-in

To extend the plug-in it just extend the abstract class TransformPFG, which
works on the PFG model. In figure 5.2 you can see four classes that implement it.
The StructuralCorrectness, Restructureer4BPEL,Regions and Converter4BPEL.
All these classes overwrite the transformPFG method, and do their work in this
method. They are instantiated and their methods are called from the correspond-
ing class in the package processflowgraph.convert.popup.actions. They are
shown in figure 5.4. So the class AddRegions instantiates the class Regions and
calls the method transformPFG(). For the other actions it is similar.

So if you want to add a new algorithm that works on the PFG you have to do the
following three steps:

1. Extend the TransformPFG class and overwrite the transformPFG method, any
errors that occur during the execution of the transformPFG method should be
written into the StringBuffer error. This new class should be placed in the
processflowgraph.convert.util package.
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2. Add a new class that implements IObjectActionDelegate and is placed
in the processflowgraph.convert.popup.actions package. Implement the
method run(IAction action) and call transformPFG.

3. Add this new class to the plugin.xml as new extension.

Figure 5.4.: The UML visualization of the popup action classes
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Transformation

This chapter describes how the transformation is actually done. During the trans-
formation it can occur that there are regions, that are not ”compatible“ with BPEL.
The complete enumeration, how each region is mapped into a BPEL equivalent is
shown in section 6.1.1. But before the graph is converted into BPEL the restructur-
ing is done. This is a PFG to PFG mapping that restructures all regions, that are
not directly mappable in BPEL or if this is not possible the region will be marked
and an error occurs.

6.1. Transformation

The transformation from PFG to BPEL is easy if all regions found in the PFG are
directly mappable in the BPEL graph. During the transformation all the earlier
introduced algorithms are executed. The figure 6.1 gives an impression of the ex-
ecution of the single tasks. If everything is ok only only four steps are needed to
convert any PFG into BPEL.

1. Verify the structural correctness of the PFG.

2. Detect all SESE regions

3. Transform every SESE into its BPEL compatible PFG equivalent

4. Convert every prepared SESE region into BPEL

Each of this steps is implemented as a own class, which provides the modular
architecture that is required. The benefits of this approach are, if a new algorithm
for one of the steps will be presented, it is easy to adapt the transformation queue to
invoke the new knowledge acquired. Another use case could be if the BPEL standard
changes it would be easy to adapt the new standard within the transformation
library.
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Figure 6.1.: Workflow of the invocation of the presented algorithms.

6.1.1. Transformation Library

Earlier in section 2.2 the elements BPEL consists of were introduced. This library
contains for each pattern detected in the PFG a corresponding implementation in
BPEL , it is based on the work of [12]. The following table gives you an overview.
Some of the presented pattern require a modification as long as they are still PFGs.

PFG BPEL
if-then region switch-activity with one case

if-the-else region switch-activity with one case and one otherwise
case region switch-activity with multiple cases

classical while loop while-activity
activity invoke-activity
parallel flow-activity

sequence sequence-activity

Table 6.1.: The mapping from PFG to BPEL

The following sections will show you the PFG region and the corresponding mod-
eling elements in BPEL. They are here not shown as XML-snippets but as images
as they are shown in the Websphere Integration Developer.
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if-then-else regions

If-then and If-then-else regions are directly representable in BPEL using the switch-
activity. If it is a simple if-then statement only the case-statement will be needed,
if it is an if-then-else statement an otherwise-statement is added. The conditions
are copied if possible.

Business process "test" . Date: 24.11.2005

- 5 -

D MSESE region

SESE region

Figure 6.2.: A if-then-else region as PFG and in BPEL

case

Case regions are similar to the if-then-else regions transformed. A switch-activity
is added to the BPEL graph and for each case in the region a case-statement for
the BPEL graph is generated. The conditions are copied if possible.

Business process "test" . Date: 24.11.2005

- 5 -

D MSESE region

SESE region

SESE region

Figure 6.3.: A case region as PFG and in BPEL
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classical SESE while loop

While regions are easy to transform. For each detected while loop in the PFG we
generate a while-activity in the BPEL graph. The condition of the while is copied
from the condition of the Decsision node. Then all embedded regions are processed
and added into the while-activity.

Business process "test" . Date: 24.11.2005

- 5 -

M D

SESE

Figure 6.4.: A classical while loop as PFG and in BPEL

activity

The transformation of an activity is straight forward. For each activity in the PFG
an invoke-activity in the BPEL graph is generated. Then, if necessary edges are
added to connect the BPEL activities.

Business process "test" . Date: 06.12.2005

- 5 -

A

Figure 6.5.: An Activity node of the PFG and the possible representation in BPEL

parallel

Parallel regions with and without synchronize edges can be transformed very directly.
We just generate a sequence-activity and then add each embedded region to this
sequence, while keeping all parallel paths separated and we add the synchronize
edges were necessary.
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F J
A A

A A

Figure 6.6.: A parallel region as PFG and in BPEL

6.2. Problems

The following region types are more problematic to transform them to BPEL. For
the SESE until loop and the multiple merge- and -split regions a restructuring was
implemented. This was also done for the SESE not classical while loop.

6.2.1. Regions which need restructuring

SESE Until Loop

One of these is the SESE until loop, which can not directly converted into BPEL
because BPEL only allows while-loops, but no until-loops. Because of the equiv-
alence of until- and while-loops we can transform such SESE until loops either by
node-duplication or by the introduction of a new variable, which is only relevant for
the transformation to BPEL, into SESE classical while loops.

M D
c2

c1
SESE

M SESESESE D c1

c2
DM SESE D MA

A

b=false

b=true
c1

c2

b=true

b=false

Figure 6.7.: A SESE Until Loop and both possible restructured while loops

The necessary steps are shown in figure 6.7. Now follows a short instruction
how the transformation is done. I’ve implemented the variant which does the node
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duplication, because the condition of the loop is untouched.

1. move Decision from the end to behind the Merge and update the origin of
the “back-edge” to the last node of the last region contained in the loop.

a) either modify the condition of the Decision and add another Activity
to force that at least one time the loop body is executed.

b) or copy the whole loop body before the merge node, and let the condition
of the Decision untouched

Multiple Merge- and -Split Regions

Figure 6.8 shows you how a multiple merge region could look like.
This kind of region is directly representable in BPEL. But we would have to

use a flow-activity which becomes very complex with increasing number of edges.
This is the reason why I have implemented a restructuring method to restructure
the multiple merge- and -split regions into if-then-else regions. The algorithm is
very easy to understand, as long as a Decision has more than 2 outgoing edges I
generate a new Decision 1 node, and move two outgoing edges from the originating
Decision node to the new one. Then a new edge between the originating and new
node is inserted and the condition of the new outgoing path is set to (Cond1 ||
Cond2) where Cond1 and Cond2 were the conditions of the outgoing edges of the
originating node. The figure 6.8 gives you an impression how it looks like. Multiple
Merge- and -Split regions are restructured in my implementation.

MD

SESE
M

SESE

SESE

SESE

MD

SESE
M

SESE

SESE

SESED

Figure 6.8.: A multiple merge region and the corresponding restructured equivalent

After each restructuring step it is necessary to re-run the algorithm for the detec-
tion and classification of the regions, because all this restructuring methods invali-
date the current regions and their classification.
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Not Reducible Regions

This kind of region becomes marked as impossible to transform and a message is
generated to tell the user that he has to restructure this region to make it possible,
that it can be transformed into BPEL. In a previous work [12] other methods from
[18, 3, 1] are mentioned, but none of them was implemented in this work.

MD

SESE

SESE

M

M D

D

Figure 6.9.: A not reducible region

SESE not classical While Loop

The restructuring of this region is done in two steps. First the region is transformed
into an until loop, and then it is transformed like a classical until loop. The second
step, the restructuring from an until loop to a while loop can also be done in two
different ways, as stated above in section 6.2.1

DM SESE region SESE region
c

DM SESE region SESE region M

c

D
c

!c

Figure 6.10.: A SESE not classical while loop

Other regions

The following regions are also not directly mappable into BPEL and no restructuring
is implemented for them.
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• SEME classical While Loop

• SEME Until Loop

• SEME not classical While Loop

• regions without abnormal selection path

• regions with abnormal selection path

• multiple loop regions without overlapping

• multiple loop region with partial overlapping

• multiple loop regions with complete overlapping
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7.1. Summary

This diploma thesis is about the detection and classification of regions in workflow
graphs. To solve this task a abstract model for the PFG was defined and an existing
classification scheme for regions was extended. Several algorithms for the detection,
analysis and classification of regions were examined and finally implemented.

For the implementation the abstract model was realized as an EMF model, and
all algorithms implemented, work with this model. The resulting plug-in contains a
small tool set, that allows to verify the structural correctness of such PFGs, to add
and classify the regions and to restructure two regions for BPEL.

7.1.1. Limitations

Unfortunately not all implementations are complete, so the restructuring for example
furthermore, the algorithm which is implemented to verify the structural correctness
may be not correct. A prove of this is needed in any succeeding work.

Another problem is that a BPEL process in not only defined by its graph which
can be generated easily from the PFG generated by any modeling software. There
are other components, such as Partners and Variables, that are not contained in a
PFG but needed to execute a BPEL process.

And last the model design for the PFG is not adequate. It contains much knowl-
edge that is only needed for the execution of some algorithms but not an essential
component of the graph.

7.2. Outlook

For the future it could be possible that an import or mapping from UML2 activity
diagrams to PFG is possible. Therefore it would be wise to rework the EMF model
and approximate the model of the activity diagrams.

Another task could be to implement a full set of restructuring methods and the
generating of BPEL , perhaps even al full functional BPEL process.

It could also be possible for the application that the execution of the presented
algorithms could be changed. First do the detection of regions and then do every
analysis, such as structural correctness or reducibility, in the second step. Finally
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more analysis algorithms could be implemented and provided, a candidate for this
could be another verification algorithm found at [9].
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A. Appendix

A.1. Manual

A.1.1. Installation

The plug-in is provided as sourcecode only. Please follow the instructions in section
A.1.3. To compile the plugin you need the following prerequisites:

• EMF 2.1.0

A.1.2. Use

Select in the resource view the file you want to convert and select one of the possi-
bilities form the context menu as seen in figure A.1. You have the choose of

Verify Structural correctness Verifies the structural correctness. This task does
not require a previous run of Add and Classify Regions

Add and Classify Regions Adds regions to the graph and classifies them. This
task is needed for almost any analysis task.

Restructure the PFG Restructures the PFG to map it to BPEL.

Convert the PFG to BPEL Runs all the above tasks and finally creates a BPEL
file (not implemented yet)

A.1.3. Sourcecode Repository

The sourcecode of this plug-in is available from a Subversion repository. The URL
is https://opensvn.csie.org/Diplomarbeit. You can simply add the repository
location within your eclipse using the subversion plug-in. The login is: ibm, the
password is: mssllap.
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Figure A.1.: The context menu with the provided eclipse plug-in.

Figure A.2.: SVN configuration dialog from Eclipse
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List of Acronyms

breadth-first search (BFS)

A search algorithm that considers neighbors of a vertex, that is, outgoing
edges of the vertex’s predecessor in the search, before any outgoing edges of
the vertex. Extremes are searched last. 20, 26

Business Process Execution Language (BPEL)

Is an XML grammar defining and standardizing structures necessary for web
services orchestration. BPEL’s focus on modern business processes, plus the
histories of WSFL and XLANG, led BPEL to adopt web services as its external
communication mechanism.[14] ii, 1–4, 28, 32, 34–40, 42, 44

Control Flow Graph (CFG)

A directed graph consisting following node types: Start, Stop, Activity,
Decision and Merge 9, 11, 13, 21, 22

depth-first search (DFS)

Any search algorithm that considers outgoing edges of a vertex before any
neighbors of the vertex, that is, outgoing edges of the vertex’s predecessor in
the search. Extremes are searched first. 20, 26

Eclipse Modeling Framework (EMF)

Eclipse Modelling Framework is a modeling framework and code generation
facility for building tools and other applications based on a structured data
model. ii, 26, 42

Model Transformation Framework (MTF)

The Model Transformation Framework is a set of tools that helps developers
make comparisons, check consistency, and implement transformations between
Eclipse Modeling Framework models. The framework also supports persistence
of a record of what was mapped to what by the transformation; this record
can be used to support round-tripping, reconciliation of changes, or display of
the results to a user. 26
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Process Flow Graph (PFG)

An extension to the Workflow Graph allowing cycles ii, 1, 2, 6, 9–11, 13, 15,
26, 28, 32, 34–37, 42, 44

program structure tree (PST)

The PST is a hierarchical representation of the control structure of a program
based on single entry single exit regions. 23, 24

Single Entry Single Exit (SESE)

A part of a graph starting with a domination node and ending with an post-
dominating. See also 8 ii, 11, 12, 21–24, 28, 31, 34, 37, 38

Two-Terminal Region (TTRegion)

A Two-Terminal Region is a subgraph that is entered through only one node
and left through only one node. 11, 12

Unified Modeling Language (UML)

The Unified Modeling Language is a non-proprietary, third generation mod-
eling and specification language.UML is not restricted to modeling software.
As a graphical notation, UML can be used for modeling hardware (engineer-
ing systems) and is commonly used for business process modeling, systems
engineering modeling, and representing organizational structure. [16] 26

Web Services Flow Language (WSFL)

The Web Services Flow Language (WSFL) is an XML language for the de-
scription of Web Services compositions. 4

Workflow Graph (WFG)

A directed (acyclic) graph consisting of the followning node types: Start,
Stop, Activity, Fork, Join, Decision and Merge 6, 8, 9, 13

XLANG (XLANG)

XLANG is an extension of the Web Service Definition Language. It provides
both the model of an orchestration of services as well as collaboration contracts
between orchestrations. 4
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