
Exemplary Implementation of a Purchase
Requisition Process according to the

Principles of a Service-Oriented
Architecture

Diploma Thesis (Diplomarbeit)

by cand. inform.

Oliver Dalferth

Eberhard-Karls-Universität Tübingen
Wilhelm-Schickard-Institut für Informatik

Arbeitsbereich Technische Informatik

Supervisors:
Universität Tübingen: DaimlerChrysler AG:
Prof. Dr.-Ing. Wilhelm G. Spruth Dipl. Wirt.-Inform. Michael Herrmann

Dipl.-Ing. Hans-Jürgen Groß

Day of Submission: September 1, 2007

I

Acknowledgements

This thesis was created in cooperation with the team ITP/AM Technology and Meth-
ods MCG of the DaimlerChrysler AG within the period between January, 2007 and
July, 2007.

First, I would like to thank Prof. Dr.-Ing. Wilhelm G. Spruth for his advice, motivation
and support. He guided the work to completion.

My special thanks go to my supervisor Michael Herrmann, DaimlerChrysler. I ac-
knowledge his encouraging support, ideas, help and time which were essential for
the project and the creation of this thesis.

Furthermore, I am grateful to Hans-Jürgen Groß, DaimlerChrysler for his trust and
the fast and friendly integration in his team.

I thank Klaus-Dieter Jäger (LogicaCMG) for special and valuable advices and I ap-
preciate the great help of Baghdad Abdesselam, Oliver Burgmaier and Franz Pieger
(DaimlerChrysler).

I would also like to thank Hans-Juergen Brehm, Hermann Pauli, Werner Führich, Pla-
men Kiradjiev, Wolfram Andreas Richter, Andreas Konecny, Andreas Schmitz, Khi-
rallah Birkler, Thomas Nold (IBM Deutschland GmbH), Dr. Dietmar Durek, Stefka
Troyanova (IDS Scheer AG) and Andreas Suchert (SAP AG) for the great cooperation.

In particular, I am very grateful to my parents and my grandmother who always sup-
ported, motivated and helped me during my studies.

I am also grateful to Ingrid Schaumann for her understanding for busy days when I
was working for this thesis.

http://www-ti.informatik.uni-tuebingen.de/~spruth/

II

Executive Summary

In order to illustrate the top-down approach within a Service-Oriented Architecture
(SOA), a prototype was developed in cooperation with IBM Deutschland GmbH, IDS
Scheer AG and SAP AG. A real world purchase requisition process at DaimlerChrysler
AG was chosen for the prototype. Tools and services of different vendors were used
for the project involving efforts of the vendors to improve compatibility among each
other. The implementation of the purchase requisition process was done in several
steps. First, a business process model was created using extended Event-driven Pro-
cess Chains (eEPCs). The model was then converted into BPEL-code (Business Process
Execution Language). Subsequently, the resulting BPEL was used for creating the IT
implementation of the process using WebSphere Integration Developer. Finally, the
process was deployed on the WebSphere Process Server. There was no need for an
Enterprise Service Bus (ESB) for the prototype.

The resulting working project demonstrated that processes can indeed be implemented
with this SOA approach. The prototype proved to be convincing and benefits and
drawbacks of Service-Oriented Architectures could be analyzed based on the project.

Especially, the process was modified in order to demonstrate the flexibility and agility
that can be achieved with a SOA. An ad hoc implementation of a process change was
demonstrated. The process modification was carried out based on the top-down ap-
proach starting with a change of the business process model.

Software of different vendors (IDS Scheer AG, IBM and SAP AG) was used for the pro-
cess implementation. This proved the possibility of combining heterogeneous tools
and services in a SOA. WSDL (Web Services Description Language) interfaces were
developed for external SAP applications in order to enable their successful integra-
tion.

During the project, an insufficient state of maturity of SOA development software
was recognized. Compatibility problems among software of different vendors were
found and caused implementation problems. A solution of these compatibility prob-
lems was developed in close cooperation with the vendors. Because of the immaturity
of the existing BPEL standard, vendors developed proprietary BPEL extensions and
compatibility problems were based on these vendor specific differences.

Contents

1 Introduction 2

2 SOA - Basics 4
2.1 SOA . 4

2.1.1 Definition of SOA . 4
2.1.2 Historical Context . 5
2.1.3 Motivation for SOA, Expected Benefits and Drawbacks 7
2.1.4 Principles of Service-orientation 10

2.2 The Term Service . 12
2.2.1 Functions, Classes, Objects, Components and Modules 12
2.2.2 Service Definition . 12
2.2.3 Granularity . 13
2.2.4 Composition . 14
2.2.5 Orchestration and Choreography 14

2.3 Business Services . 15
2.4 Web Services . 16

2.4.1 Definition . 16
2.4.2 Description . 16
2.4.3 WSDL . 17
2.4.4 SOAP . 17

2.5 Service Call . 19
2.5.1 The “Find, Bind, and Execute Paradigm” 19
2.5.2 Service Calls in a SOA Landscape 20

2.6 SOA Lifecycle . 22
2.7 The Enterprise Service Bus . 23

2.7.1 Definition of an ESB . 23
2.7.2 Connection . 23
2.7.3 Protocol Independence and Pattern Support 24
2.7.4 Transport . 25
2.7.5 Mediation . 25
2.7.6 Security . 25
2.7.7 Implementation of an ESB . 26

2.8 BPEL . 27
2.8.1 Business Process . 27
2.8.2 A BPEL Introduction . 27
2.8.3 BPEL4People . 33

3 Strategy for Top-Down SOA Projects 37
3.1 Overview . 37

Contents 1

3.2 Business View . 39
3.2.1 The Business Process Model . 39
3.2.2 Event-driven Process Chains (EPCs) 39
3.2.3 Identifying Services or Service Candidates 45
3.2.4 Designing the IT Version of the Business Process Model 46

3.3 IT View . 49
3.3.1 BPEL Conversion . 49
3.3.2 Completing the Process . 49

4 Practical Example (SOA Live Session Project) 51
4.1 Motivation . 51
4.2 Overview . 52
4.3 Business View . 55

4.3.1 Assessment . 55
4.3.2 The Business Process Model . 58
4.3.3 Identifying Services or Service Candidates 60
4.3.4 Designing the IT Version of the Business Process Model 61

4.4 IT View . 65
4.4.1 BPEL Conversion . 65
4.4.2 Completing the Process . 71

4.5 Graphical User Interfaces . 80
4.6 Monitoring . 86

5 Change Request 87
5.1 Strategy . 87
5.2 Practical Example . 88

6 Summary and Conclusion 95
6.1 Results of the SOA Live Session Project 95
6.2 Conclusion . 96

List of Figures 97

List of Tables 99

Listings 100

Acronyms 101

Bibliography 103

Appendix A: Process Descriptions 108

Appendix B: ARIS Rules for Event-driven Process Chains 113

Appendix C: CD Content 116

1 Introduction

This thesis is based on the need for an example project built according to the princi-
ples of a Service-Oriented Architecture (SOA). A better understanding of SOA should be
provided and benefits and drawbacks should be explored. A prototype1 was imple-
mented at DaimlerChrysler AG following the top-down approach. The process was
implemented based on a business process model and software solutions of different
vendors (IDS Scheer AG, IBM, SAP AG) were used. Not only local services on the
WebSphere Process Server but also external applications on a SAP Discovery System were
involved.

In order to demonstrate the flexibility and agility that can be reached in a service-
oriented environment, the business process was modified and re-implemented. The
advantage of fast changing processes in a SOA was shown.

In chapter 2, the Service-Oriented Architecture, its properties, components and pre-
decessors are introduced. Several relevant terms are defined and also an introduction
is given into the Business Process Execution Language (BPEL). BPEL and the extension
BPEL4People [III+05] is presented because of its importance for SOA projects.

Chapter 3 describes a general strategy for top-down SOA projects. Different views
(business view/IT view) are distinguished in this chapter depending on the tasks that
have to be performed. Process modeling with Event-driven Process Chains (EPCs) is
explained which belongs to the tasks of business unit members of a company. Their
detailed process knowledge and understanding are required for modeling processes
the right way. A created model cannot be directly used for an IT implementation as it
first has to be converted into a format that can be read. Before a conversion is possible,
the model has to fulfill several rules that are required by the converter. An IT version
of a business process model has to be created that keeps all these rules. The help of
an IT specialist might be necessary depending on the expertise and experience of the
modeler. The chapter also covers the IT view of project development in a SOA. The
process can be implemented based on the model and different possible implementa-
tion solutions are explained.

In chapter 4, the introduced strategy is applied to a practical project (SOA Live Session
project). The top-down implementation of the prototype is illustrated. A created busi-
ness process model is converted into BPEL-code and a running project is created and
deployed on a server. All steps are explained in detail and practical experiences of the

1a prototype for demonstration purposes

3

prototype are described. Also the creation of a Graphical User Interface is described
in this chapter and a short introduction in process monitoring is given.

Chapter 5 explains how to deal with process modifications and also provides a practi-
cal example related to the prototype.

Chapter 6 covers the results of the project. Positive and negative experiences are de-
scribed. As the prototype was presented to the executive management at Daimler-
Chrysler AG, feedback and future developments are discussed.

2 SOA - Basics

2.1 SOA

2.1.1 Definition of SOA

A Service-Oriented Architecture (SOA) represents a software architecture concept that is
not based on a specific technology. The concept is based on the way software is imple-
mented. Finding and publishing services that describe certain business functions and
the interaction with services represent central issues of a SOA. A variety of different
definitions can be found in literature covering different aspects of SOA. Diverse per-
spectives on software architecture that are influenced by business or technologically
driven views are the reason for the big differences. First, three dissimilar definitions
that shall help demonstrating these perspectives are exemplarily mentioned starting
with a business view [BBF+06].

“A set of business, process, organizational, governance, and technical meth-
ods to reduce or eliminate frustrations with IT and to quantifiably measure
the business value of IT while creating an agile business environment for
competitive advantage” [BBF+06].

Also definitions exist that are based on the approach of implementing a Service-Oriented
Architecture using Web services. The following definition refers to that technology:

“Contemporary SOA represents an open, extensible, federated, compos-
able architecture that promotes services-orientation and is comprised of
autonomous, QoS-capable, vendor diverse, interoperable, discoverable, and
potentially reusable services, implemented as Web services” [Erl05].

A technically even more concrete description specially focuses on services in general
and includes already a short service definition. It already refers to concepts that will
be described later in this thesis:

“A Service-Oriented Architecture is a software architecture that is based
on the key concepts of an application frontend, service, service repository,
and service bus. A service consists of a contract, one or more interfaces,
and an implementation” [KBS05].

Another definition of the World Wide Web Consortium (W3C) focuses on the expres-
sion “components” and their interface descriptions:

“[A Service-Oriented Architecture is] a set of components which can be in-
voked, and whose interface descriptions can be published and discovered”
[OWRB06].

2.1 SOA 5

Also Gartner developed an own description:

“SOA is a software architecture that builds a topology of interfaces, inter-
face implementations and interface calls. SOA is a relationship of services
and service consumers, both software modules large enough to represent
a complete business function. So, SOA is about reuse, encapsulation, inter-
faces, and ultimately, agility” [OWRB06].

As the project for this thesis was developed at DaimlerChrysler AG, also the inter-
pretation of the team for technology and methods (ITP/AM Technology and Methods
MCG) shall be presented where services and their properties are focused:

“SOA is a technology neutral architectural concept based on generally
(re-)usable services. This concept of software architecture represents one
or more business functions as a service. The interface of a service is plat-
form independent. The implementations of the services are reusable, en-
capsulated and loosely coupled. The service interactions are realized by a
standardized/uniformed infrastructure” [Dai07].

2.1.2 Historical Context

Before the development and usage of systems based on the Client-Server model [Har04],
host-terminal communication [Ghe97] represented the used IT technique on the market.
In a host-terminal-system, one powerful central computer (mainframe) serves multi-
ple terminals that just connect to this system in order to use it and to get the computed
results. The terminals themselves are just I/O-devices that don’t provide any compu-
ting power or memory. As the computing power demands can’t be spread throughout
the network but have to be served by one instance, a central dependency of one sin-
gle mainframe computer exists in host-terminal systems. The host serves the different
terminals by implementing a time-sharing system [CG00] where the computing time is
divided in time slices that can be allocated to the different programs that have to be
run. This way, many clients can be served at the same time and each client gets the
impression of having the full computing power at one’s disposal. Whereas the neces-
sity of time-sharing is considered obvious today, it was a revolutionary approach in
the late 50ies [Ghe97] [CG00].

The clients in a Client-Server model can be equipped with more intelligence than ter-
minals. Still the clients connect to one or several servers but tasks like error manage-
ment for instance can already be addressed by the clients. It is intended to discharge
the server system by spreading the work. Often applications with graphical user inter-
faces run on the clients which send requests to servers and wait for the response. The
Client-Server approach is wide-spread and many file, mail and application servers are
installed and used privately or by companies [Har04].

In order to reach a better separation of tasks and a higher level of abstraction Three-Tier
[SCD00] approaches developed where the functionalities are separated more strictly.

2.1 SOA 6

It is intended to implement the user interface, the functional (business) logic and the
data storage as different modules. The modules are ideally implemented on different
platforms. Similar to the Client-Server Architecture, the user interface is implemented
on the client whereas the business logic and the data storage systems are located but
separated on the server side. This way, modules can be replaced by other implementa-
tions independently without carrying too much weight to other parts of the Three-Tier
approach. The fact that modules can also be reused in other systems leads to a higher
grade of flexibility. Another advantage of this architecture in comparison to the Two-
Tier Model is an increase of performance and scalability. A better balance concerning
the assignment of tasks exists there [SCD00].

Also architectures with more tiers are possible (n-tier, multi-tier) trying to separate
the individual tasks even better. With the demand for good performance serving a
huge amount of clients, distributed systems like the Distributed Computing Environment
(DCE) [KBS05] and CORBA (Common Object Request Broker Architecture) [KBS05]
arose. The DCE was developed in the early 90ies and used the DCE/RPC (Remote Pro-
cedure Call) . CORBA was influenced by the growing popularity of object orientation.
Objects communicate in CORBA over an Object Request Broker (ORB) [KBS05] and are
able to manage their own state. Stubs on the client side and skeletons on the server
side communicate and serve as proxies for clients and servers [OMG07]. Abstraction
is provided by the ORB as knowledge about the objects’ location is not necessary. Us-
ing a common Interface Definition Language (IDL) [KBS05] makes it possible to let
objects communicate that are implemented in various programming languages. Al-
though CORBA seemed to be a sophisticated solution for creating a distributed envi-
ronment, it turned out to be too complex for enterprises and their need for software
reuse [KBS05].

Enterprise Java Beans (EJB) [KBS05] introduced by Sun Microsystems in 1997 are based
on the concept of clustering a set of objects into a single server. With a controlled num-
ber of servers hosting the objects, EJB proved to be able to manage the limited number
with its supported transaction management, naming services and security [KBS05].

But even more middleware solutions like the X/open-based CORBA Object Transaction
Service, the Microsoft Transaction Server, the Java Transaction Service, CORBA Notifica-
tion, Java Message Service (JMS) and Enterprise Application Integration (EAI) [KBS05] de-
veloped and created a middleware heterogeneity. Middleware that was originally
trying to solve the problem of application heterogeneity created therefore compati-
bility problems at a higher abstraction layer. The Extensible Markup Language (XML)
[KBS05] should help to address the communication problems and was developed in
the mid 1990ies. SOAP (first name: Simple Object Access Protocol, later: Service-
Oriented Architecture Protocol or just SOAP) [KBS05] was created for transporting
the XML-messages over HTTP (Hypertext Transfer Protocol) [KBS05]. Today, cur-
rent implementations of SOAP are independent of the underlying messaging trans-
port mechanism. However, by implementing a protocol based on HTTP, all the work

2.1 SOA 7

that has already been done concerning security standards, load balancing, failover
and application management for HTTP could be reused. The existing infrastructure
for browser-to-server communication could this way be the basis for server-to-server
communication. An interface definition language called WSDL (Web Service Descrip-
tion Language) [KBS05] was later developed by Microsoft for SOAP services [KBS05].
With the new implementations of WSDL and SOAP, a new approach for addressing
the problem of middleware heterogeneity was started.

The development of the information technology always experiences a lot of changes.
New approaches develop for both programming languages and network techniques
and the evolutions often seem to be completely new and confusing for people that
are not yet familiar with them. Looking closer on the new designs, one can experi-
ence that the concepts didn’t actually change but a new abstraction layer was built
on top of existing layers in order to be able to manage more complex scenarios. The
current layer is represented by Web services and the Service-Oriented Architecture.
Implementing a Service-Oriented Architecture with Web services is one proposal for
solving this problem [DJMZ05]. The reduction of IT complexity is intended by devel-
oping in a SOA.

2.1.3 Motivation for SOA, Expected Benefits and Drawbacks

Reacting fast to the changes of market, consumer behaviour and therefore business
requirements is a serious and important aim for enterprises. Flexibility is very attrac-
tive and it is needed for staying competitive on the free market. The implementation
of a SOA within a company is expected to increase the capability of adapting the IT
landscape to changes and reducing complexity. IT systems should be capable to be
integrated more flexible with a SOA. This way, the necessary agility that the market
requires, a better time to market and an optimization of business processes shall be
reached. An improvement of the IT efficiency and a lowering of arising costs by con-
solidating IT systems belong to the expected benefits of SOA. SOA also promises the
support of reuse concerning business processes and value added chains.

A considerable amount of time and money is spent by enterprises in order to achieve
fast and flexible IT systems but the price for developing a SOA in a company is ex-
pected to be rewarded soon by savings concerning the easier integration of future
changes to the IT landscape. Therefore, in the end a lowering of IT costs shall be
aimed. A lower price for IT changes also implies a lower risk for an enterprise.

Vendors emphasize the following drivers for the service-oriented approach [KAH+05]:

1. The speed of changing existing products and processes or recombining them
in new ways is expected to be increased. Also new implementations shall be
finished faster.

2. Costs for implementations and ownerships of IT systems and their integration
shall be reduced.

2.1 SOA 8

3. Outsourcing of business elements in a more fine-grained way than previously
possible shall enable flexible pricing models. The movement from fixed to vari-
able pricing based on transaction volumes shall also enforce this flexibility.

4. Integration work required for mergers and acquisitions shall be simplified.

5. A better return on investment and IT use shall be achieved.

6. Application and platform independence shall be reached for the implementation
of business processes.

Vendors also underline the following advantages for the loosely coupled and flexible
integration of IT systems in a SOA [KAH+05]:

1. As interfaces describing services are implementation-independent, an integra-
tion of heterogeneous systems can be enabled.

2. Interdependencies are minimized to just business relevant issues by the descrip-
tion of service interfaces with the help of terms of a common business process
and data model.

3. Encapsulating services with standard interfaces enables their reuse and flexibili-
ty. Service changes are straightforward as services are supposed to be defined
and implemented in only one specific place.

Also the advantage of having different lifecycle speeds for each service should be men-
tioned (figure 2.1). Various independent technologies can be connected in a service-
oriented approach and an independence of the way services are implemented exists.
Technological skills are allocated at the implementation part of services and hidden
for the service caller. As a number of services belong to a process, the process has to
be identified and analyzed well before it can be determined definitely. This procedure
leads to a better understanding and visibility of processes and therefore to a better
maintainability. As services can be replaced by others and as there is no dependence
on the service location, outsourcing and offshoring can be carried out. The possibility
of fast service replacement supports a gradual migration to newer technologies. Costs
are spread across projects as modules can be developed independently and also main-
tenance costs reduce [Pez06].

2.1 SOA 9

Reuse of Services

• Greater adaptability
• Lower development cost
• Faster time to deployment

Architectural Partitioning

• Diverse lifecycle “speeds“
• Synergy of different technologies
• Optimal tech skills allocation
• Processes visibility
• Greater maintainability
• Easier outsourcing/off shoring

Incremental Deployment

• Gradual migration
• Cost “spreading“ across projects
• Reduced maintenance cost

Figure 2.1: Expected benefits of SOA [Pez06]

But also drawbacks concerning a Service-Oriented Architecture should be mentioned
(figure 2.2). This architecture means a new way of designing, developing and imple-
menting in an IT landscape and therefore a cultural change. Engineers have to get
used to the new way of thinking. It takes more formal methodology and a longer de-
velopment time for services that are meant to be reusable because of the fact that ques-
tions about functionalities and the level of granularity have to be answered [Pez06].

Higher upfront costs are the result of the difficult establishment of an Enterprise Ser-
vice Bus (ESB) and the individual design addressing the local requirements of an en-
terprise. Justifying the price for creating such an infrastructure will take a lot of ef-
fort. The more distributed infrastructure enforces the extensive use of middleware
and brings up a lot of difficulties in testing, debugging, troubleshooting, metering,
logging, security and transaction management [Pez06].

Also governance problems come up in such a new landscape. Questions about the ser-
vice ownership, the accountability and the cost allocation have to be answered. Con-
ventions about prioritization of service requests have to be established and conflicts
arise if service requests cannot fulfill all defined prerequisites of a service [Pez06].

2.1 SOA 10

Higher Upfront Costs

• Cultural Change
• Infrastructure (SOA backplane)
• More formal methodology
• Longer design time for services
• Testing (unit/end-to-end)

More Distributed Infrastructure

• Extensive use of middleware
• Transaction management
• Debugging/ troubleshooting
• End-to-end management
• More granular security
• Metering/ logging

Tighter Management/ Governance

• Ownership/ accountability
• Cost allocation
• Prioritization/ conflict resolution

Figure 2.2: Expected drawbacks of SOA [Pez06]

2.1.4 Principles of Service-orientation

Encapsulation, flexible coupling and the reuse of software components (services) in
new contexts belong to the main aspects for a SOA. With SOA, an agile runtime envi-
ronment shall be created. The definition of service interfaces are crucial for SOA. The
conceptual ideas behind a SOA are characterized by certain principles with special
demands for services [Erl05] [GYVN03]:

1. Loose coupling
Dependencies between services are minimized. Only an awareness of each other
shall be retained. The aspect of loose coupling differentiates SOA from the mo-
dularity of basic software.

2. Service contract
One or more service descriptions and other related documents collectively de-
fine a communications agreement belonging to a service.

3. Autonomy
The encapsulated logic is controlled by the service itself. The implementation
software of a service has its own architecture. Sufficient service isolation is nec-
essary for avoiding the creation of a monolithic application.

4. Abstraction
Besides descriptions of the service contract, logic is hidden by services from the
outside world following the black box principle.

2.1 SOA 11

5. Reusability
Reuse of services is enabled by dividing and spreading logic across different
services.

6. Composability
Composite services can be formed by coordinated and assembled collections of
services. Integration of services is required in order to bundle and manage all
the independent services. Use, tools and skills define the optimal granularity of
services.

7. Statelessness
The retaining information is minimized expressing only a specific service acti-
vity.

8. Discoverability
Services are designed in a way that enables an outward description so that they
can be found and called with the help of available discovery mechanisms.

But Gartner also notes that “SOA is not always the right architecture [GYVN03]”.
However, “runtime SOA is evident in dynamically reusable business-scope software
components ” [GYVN03].

2.2 The Term Service 12

2.2 The Term Service

This section shall help to differentiate between the definition of services and other
terms like functions, classes, objects, components or modules.

2.2.1 Functions, Classes, Objects, Components and Modules

Functions are subroutines representing program blocks with an own name [SW01].
They can accept values for calculations or other work and they can pass back return
values.

Classes are usually used in the context of object-orientation. “In the software model, a
class is a piece of program text that describes the fundamental properties of the objects
it can create. A class is defined by its name, its inheritance relationship to its super-
classes and a set of object properties. [...] These properties include the interface of
objects and their internal implementation by algorithms and data structures” [Zül04].
A class therefore “defines the creation and behaviour model of its instances” [Zül04].
Functions of classes are also called methods and they define the behaviour of objects.
“An object is always an instance of exactly one class” [Zül04]. It owns an own identity
and an own dataset. It represents a unit of data and functions that operate on the data.
The structure of data and functions of uniform objects are defined in their common
class [SW01].

“A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed inde-
pendently and is subject to composition by third party” [Szy02].

A module is an enclosed functional unit with complex performance and can be ex-
changed without affecting the rest system [Kla06]. To meet the requirements of a com-
ponent, a module has to provide specified interfaces.

2.2.2 Service Definition

A service is represented by any discrete function which can be offered for the usage
by an external consumer. The function must not necessarily be an individual business
function but can also be implemented as a collection of functions building a process
[KAH+05]. The service is accessible by a platform independent interface, its imple-
mentation is hidden behind a Black Box and its state is not externally observable. The
state is encapsulated and can only be communicated by providing a callable function
giving information about the state. The service is a unit that is provided by a third
party and can be called and reused. However it has to be deployed only once [Sie05]
[GSM02]. In literature, services are also called “components” because of their well-
defined interfaces and their deployment independence.

2.2 The Term Service 13

2.2.3 Granularity

The granularity of services is an important aspect for the implementation of a SOA as
the communication overhead and traffic amount of an IT infrastructure depends on it.
Several separate things can be associated with service granularity in a SOA [KAH+05]:

1. Service abstraction level (basic granularity):
The service abstraction level differentiates the different types of services. A ser-
vice can be represented by a very low-level technical function, a sub-process or
activity at a lower level or a high-level business process.

2. Service operation granularity (functional granularity):
The service operation granularity describes the number of operations included
by a service. Factors have to be discussed determining which operations are
covered by a service.

3. Service parameter granularity (interface granularity):
The number and the type of input and output data of service operations has to
be addressed and a small number of large, structured parameters are preferred
to a small number of primitive types.

The performance of the resulting system has to be taken into account when determin-
ing the type of granularity for certain functionalities. Too many interactions between
endpoints are required once too fine-grained services are used. On the other hand,
too coarse-grained services can involve large information exchanges that might not be
necessary. A Poor interface design can be the result of an interface creation for a ser-
vice where little work is done with each message, based on a message content model
that is not suitable for complex, multipart messages. The best way of avoiding such
poor interface designs is to use an information model that dynamically adapts to the
consumer’s needs and a rather coarse-grained interface. Especially for external con-
sumption, a coarse-grained interface granularity is recommended. As an example, a
coarse-grained interface could be used for a complete processing of a service [BBF+06]
[Col04].

Fine-grained interfaces might be used inside an enterprise as more flexibility is granted
for requesting applications. However, interaction patterns may vary between differ-
ent service requesters and the support of a service provider can be made more difficult
using fine-grained interfaces [Col04].

Coarse-grained interfaces guarantee a consistent usage of services. They are not re-
quired but recommended in a SOA as a best practice for external integration. With
the help of service choreography a coarse-grained interface can be created running a
business process that consists of several fine-grained operations [Col04].

2.2 The Term Service 14

2.2.4 Composition

Services should be designed in a way that they can be used in different contexts. A
major property of a SOA is the ability of developing and modifying processes dynam-
ically based on existing services. Service composition corresponds to the creation of
new services from existing ones. This way, reusable services are transformed into a
new single service fulfilling the task of a certain business functionality. If the needed
business requirements change, the service composition can be modified or a new one
can be established using other services [WM06]. Composability therefore corresponds
to another form of service reuse. An appropriate level of granularity is needed for
maximizing composition opportunities and also the design of service operations has
to conform to a common standard for this reason [Erl05].

2.2.5 Orchestration and Choreography

For building service compositions, services have to be combined the right way. Ser-
vice orchestration and choreography is necessary for managing the combination and
interaction of services. In order to differentiate the two terms, both ideas are explained
and figure 2.3 demonstrates the difference:

Orchestration Orchestration

Choreography

Organization Client Organization

Figure 2.3: Orchestration And Choreography [Erl05]

The interpretation of orchestration is not unique in service-oriented environments. Or-
chestration is used in order to express the business process logic via services. Business

2.3 Business Services 15

logic can be represented and expressed in a standardized, services-based way through
the use of orchestration. An organization-specific business workflow is expressed by
an orchestration. The logic is owned and controlled by an organization even if inter-
action with external business partners is involved [Erl05].

An orchestration is defined by the way one Web service invokes other Web services
concerning sequences and conditions. A certain useful function shall be realized with
the help of an orchestration. An orchestration corresponds to the pattern of inter-
actions that a Web services agent (system) has to follow for getting a desired result
[HB04].

A Choreography represents a community interchange pattern that is used by services
from different provider entities for collaborative purposes. It is not necessarily owned
by a single entity. Requirements for organizations to interoperate with the help of ser-
vices are becoming more and more real and complex. The need for collaboration re-
quires multiple services belonging to different organizations to work together [Erl05].
A choreography is therefore defined by the way multiple cooperating independent
agents exchange messages for performing a task [HB04].

2.3 Business Services

A business service is a service that represents one or more business functions. It im-
plements a meaningful business process or task [GG06]. A set of services that are
assembled under a common rubric building a logical grouping of services are repre-
sented by a business service [OAS04].

2.4 Web Services 16

2.4 Web Services

As Web services were developed and used for the thesis project, a short introduction is
given in this thesis. However, Web services and the related protocols are not the focus
of this thesis. For further information please refer to [WCL+05], [Erl05] and [Nüb07].

2.4.1 Definition

There are various definitions and descriptions that often describe Web services as loose
coupled components that communicate platform independently via Web standards.
Other more restrictive definitions refer to distributed applications that were devel-
oped with the help of the specifications of SOAP, WSDL and UDDI (Universal De-
scription, Discovery and Integration) . As SOAP and WSDL play a decisive role for
Web services and as the W3C has managed the evolution of their specifications, the
Web service definition of the W3C shall be cited in this thesis:

“A software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using SOAP mes-
sages, typically conveyed using HTTP with XML serialization in conjunc-
tion with other Web-related standards” [WCL+05].

2.4.2 Description

Although Web services are often mentioned when talking about Service-Oriented Ar-
chitectures, SOA stands for an abstract architectural concept in contrast to Web ser-
vices that only represent one approach of realizing a SOA. SOA is based on loosely
coupled components (not necessarily Web services) that can be composed and discov-
ered and that are described in a uniform way [WCL+05].

However, Web services have again motivated the industry to accept the challenge to
find a uniform way of describing, locating and accessing components or services in a
distributed environment. The aspect of loose coupling represents the essential differ-
ence between Web services and other traditional approaches like CORBA or DCOM
(Distributed Component Object Model) . In contrast to collections of objects or compo-
nents that are well understood at development time but that are tightly integrated, the
Web service approach is characterized by dynamics and adaption to changes. Another
key difference is the fact that Web service technology and specifications are developed
in an open way. Consortia such as the Organization for the Advancement of Structured
Information Standards (OASIS) or the W3C, industry partnerships and standards for
common technology used for the foundation of the internet, support the development
of the Web service approach [WCL+05].

2.4 Web Services 17

2.4.3 WSDL

Metadata that fully describes services and their characteristics are defined by service
descriptions. Loose coupling in a SOA can only be reached if an abstract definition
of necessary information for deploying and interacting with a service is given. The
Web Services Description Language represents a special XML vocabulary in order to
describe Web services. Service authors can provide decisive information about ser-
vices with the help of WSDL in order to enable the use of the service by consumers. A
particular property of WSDL is its extensibility and adaptibility. It enables the descrip-
tion of services using different type systems like XML Schema, Java or RelaxNG. Also
various different protocols like SOAP, RMI/IIOP (Remote Method Invocation over In-
ternet Inter-ORB Protocol) or in-memory calls can be specified for the communication
with a service. A reusable abstract part and a concrete description belong to a WSDL
document. The abstract definitions describe the operational behaviour of a service.
Messages that go in and out from Web services are recounted for getting operational
information. The concrete descriptions in a WSDL tell the caller where and how to
access a service implementation [WCL+05].

2.4.4 SOAP

A relatively lightweight and simple mechanism for the exchange of structured and
typed information between Web services is provided by SOAP. Simple Object Access
Protocol was the first name for SOAP and later it was called the Service-Oriented Ar-
chitecture Protocol. In order to dissociate from both descriptions it is just called SOAP
today. SOAP represents an underpinning for Web services. The development of SOAP
is based on the intention to reduce costs and complexity of application integrations on
heterogeneous platforms. An extensible enveloping mechanism is defined by SOAP
and message exchanges between Web services shall be structured with help of SOAP
[WCL+05]. SOAP messages are XML documents that contain three different types
of elements. An envelope represents the root element which again contains the other
element types header and body. Extensible features can be added with help of the op-
tional header element. A header element contains header blocks and SOAP defines
attributes that can be used to indicate who should deal with which block and whether
it is mandatory or optional to deal with it [WCL+05]. The container for the payload
in a SOAP message is represented by the body element. There is only one payload
allowed which is also used for error reporting. The body element is always the last
child element of an envelope and contains the actual message content. No built-in
header blocks are defined by SOAP. Today, SOAP allows many different alternative
messaging transport mechanisms because of the fact that SOAP is independent from
transports for message exchange. However, as HTTP is one of the first protocols that
were included within the SOAP specification, most Web services of the first generation
communicate using HTTP. But in general, the transport independence allows a very
flexible routing. Even a change of the transport mechanism between routing nodes
is possible. SOAP also provides a message flexibility which allows services to com-
municate based on a variety of message exchange patterns. This way, the diversity of

2.4 Web Services 18

distributed applications can be satisfied [WCL+05].

SOAP also supports different message formats. The Document [FM02] and the RPC
format [FM02] represent the most important ones. The documents-style message for-
mat represents the default format in most development kits as it is considered to be
more flexible than the RPC-style format. All features of the RPC format and even
more are covered by the document counterpart. For the document format, a Web ser-
vice method has only one argument that is sent as a real XML encoded object. Every
possible XML document can be sent [FM02].

The RPC format uses Web services corresponding to remote procedure calls. A Web
service method can own parameters and return parameters and the values have to
be recoded. Type information for each attribute have to be defined in contrast to the
document-style format where type information is rather included in the <types> sec-
tion of WSDL documents [FM02].

When it comes to the encoding of messages, bigger differences between the formats
stand out. Literal encoding is usually used with the document style format and is based
on the fact that body contents have to conform to a specific XML Schema. SOAP encod-
ing uses a set of rules that are based on the XML Schema datatypes for the encoding.
However the message does not conform to a specific schema. SOAP encoding is used
with RPC-style formats [FM02]

2.5 Service Call 19

2.5 Service Call

2.5.1 The “Find, Bind, and Execute Paradigm”

In a SOA, the communication between service consumer and service provider is done
according to the “find, bind, and execute paradigm” which is also called the “SOA-
paradigm”. Here, the service registry is used to enable a connection between the ser-
vice requester and the service provider (figure 2.4): The service consumer sends a
request for a special required service to the service registry. If the service is registered,
the registry answers the consumer by sending the endpoint address for the requested
service and a service contract. Otherwise a response is sent including a message telling
that the service is unknown. If the service was found, it can be called by the consumer
with the received address information and the contract. The service provider allows
the service consumer to execute the service according to the received contract.

Registry

Service ProviderService Consumer

Contract

Find and retrieve
service
descriptions

Register/Publish

Bind and Invoke

Figure 2.4: The Find, Bind, and Execute Paradigm [MTSM03]

Four core entities cooperate in a SOA to realize the Find-Bind-Execute-Paradigm:

Service Consumer

A service consumer can be any software module like an application or a
service. The consumer requires a special service and initiates the service
that is located in the registry. It binds to the service and executes the ser-

2.5 Service Call 20

vice function. The service execution is done by sending a request which is
formatted according to the contract [MTSM03].

Service Provider

A service provider represents the service that accepts and executes re-
quests from consumers. It can be any software system like a mainframe
system or a component that is addressable over a network and that exe-
cutes service requests. It publishes its contract in the service registry for
enabling access by consumers [MTSM03].

Service Registry

A service registry represents a network-based directory containing infor-
mation about available services. Contracts from service providers are ac-
cepted, stored and provided for interested service consumers. [MTSM03]

Service Contract

The way of interaction between provider and consumer is specified in the
service contract. Specifications about the format of the service request and
the response are provided. Preconditions and postconditions might be re-
quired that describe the state of the service when executing a particular
function. Also Quality of Service (QoS) levels might be specified. QoS le-
vels represent specifications for nonfunctional aspects of a service like the
required amount of execution time of a service method [MTSM03].

2.5.2 Service Calls in a SOA Landscape

Figure 2.5 shows the big picture that was developed at DaimlerChrysler AG for demon-
strating a possible SOA landscape. All different applications that were developed by
using different kinds of systems provide services that are described with the help of
WSDLs. Service information can be found in one or different kinds of registries and
repositories. The implementation of the repository connection is still in the fledgling
stages. All the different systems can be accessed over an Enterprise Service Bus which
is explained in section 2.7 starting on page 23. The Business Process Execution Lan-
guage is used to call and combine the different services. A Graphical User Interface
(GUI) can be created with the help of JavaServer Faces (JSF) for a concise graphical
demonstration of processes. On the top level, Value Chain Diagrams (VCD) and ex-
tended Event-driven Process Chains are used to model business processes.

2.5 Service Call 21

DB

SAP
Applikation

Service Bus

J2EE/PAI
Applikation

Service Bus

DB

Host
Applikation

Service Bus

DB

.NET
Applikation

Service Bus

DB

Registry Repository

.NET
S2

.NET
S1

Host
S2

Host
S1

IBM
S2

IBM
S1

.NET
S3

Host
S3

IBM
S3

SAP
S3

SAP
S1

SAP
S2

Level 1-4 (eEPC)

Level 0 (VCD)

Process/

Workflow

Engine

Modeled

Business

Process
nicht per

Hauspost

Auftrag zur

Auslieferung

Komponente

anschließen /

einbauen

Komponenten

abholen

E
n
te
rp
ris

e
 S
e
rv
ic
e
 B
u
s
 (E

S
B
)E

n
te
rp
ri
s
e
 S
e
rv
ic
e
 B
u
s
 (
E
S
B
)

Registry Repository Registry Repository

Infrastructure LayerPlatform specific Business LayerEnterprise Business LayerPresentation Layer

BPEL

WSDL

JSF

Figure 2.5: Big Picture SOA [Dai07]

Services are registered and looked for in the registry. The service registry contains
information about the services like service contracts, policies, interfaces, operations,
parameters and the actual location of services [KAH+05]. Meta information about the
services is stored in the repository which is implemented as a robust framework. It
is designed to be extensible to suit the varying nature of service usage. Relevant in-
formation for a repository could be logging, auditing, QoS information or ontologies
describing the service interface semantically. After finding an adequate service that
fits the needs of a service consumer, the necessary information about the service is
retrieved from the registry and repository and a connection between the service con-
sumer and the service provider can be established [KAH+05].

2.6 SOA Lifecycle 22

2.6 SOA Lifecycle

A SOA does not correspond to a static architecture which is implemented once and
that does not experience any changes. It is a dynamic one and the process of devel-
opment in a SOA is compared to a lifecycle. First of all, a business process has to be
modeled with all its properties. However, the process model has to be translated in
an information system design in order to make it runnable. The process can be de-
ployed on a server after its implementation offering a service that can be called and
used. Based on results of service calls, the process can be refined and missing process
steps can be added to the business model. Monitoring helps finding process steps in
need of improvement and the lifecycle can restart. The whole cycle repeats until a
stable business process implementation is reached. As a business process might lose
its importance after a certain time, it might be undeployed or replaced by a different
one. If the old process implementation is still used, versioning should be taken into
account.

As an example, IBM’s SOA strategy is characterized by the SOA lifecycle that is de-
fined by the terms “Model, Assemble, Deploy and Manage” and tools were developed
for every step of the lifecycle. The life-cycle tools were developed for the realization
of the described top-down approach and IBM provides detailed information for every
step and tool. See [DRS+07] for more information about IBM’s SOA lifecycle.

2.7 The Enterprise Service Bus 23

2.7 The Enterprise Service Bus

This chapter introduces the ESB and explains various important properties and as-
pects. For more information please refer to [KAH+05] and [BBF+06].

2.7.1 Definition of an ESB

“Service interactions are realized by a standardized/uniformed infrastructure ” [Dai07]
called the Enterprise Service Bus (ESB). The essential evolutions of the last years con-
cerning IT architectures like Enterprise Application Integration, Web services and
SOAs are all based on changes of the IT systems perspective. Equal integration con-
cepts are used by the ESB but a focus on data flow exists [DJMZ05].

For the realization of a self-managed, automated SOA, the ESB represents an essential
architectural element [BBF+06]. An ESB represents a core intermediary tying services
together into logical, componentized sets. Minimal heterogeneity concerning the busi-
ness semantics that are exposed by services is ensured by the logical grouping and de-
sign of services. A facade is formed by every service for the hidden implementations
of the business logic [BBF+06].

The central task of an ESB is the exchange of data between IT systems or parts of
them. The data exchange happens in the form of service calls. However, no direct
connection exists between the service consumer and the service provider and routing
and transformation capabilities have to be provided.

2.7.2 Connection

As an intermediate component, an ESB should support transparency concerning the
connection to any service with its proprietary implementation using special data types
and programming languages. Therefore, a big challenge is posed for an ESB. Various
systems that do not directly support service-style interactions shall be linked by an
ESB in order to offer a variety of services in a heterogeneous environment.

An ESB in a service-oriented environment avoids any direct connection between ser-
vice consumers and providers. The service consumers establishes a connection to the
ESB and not to the service provider who offers the actual service. A decoupling of
the service consumers from the providers takes place [KAH+05]. Service requestors
and providers can be located anywhere in a distributed environment [BBF+06]. Also
services that are located externally of an enterprise can be reached and integrated.
Business functions in components can be invoked without the need of regarding spe-
cial protocols or application interfaces by using services that are defined by a standard
interface description (WSDL) [BBF+06].

Figure 2.6 demonstrates the ESB and different possible component types connected
to it. Applications, diverse data, orchestrated and other services in a distributed en-

2.7 The Enterprise Service Bus 24

terprise computing infrastructure are connected with the help of an ESB. The ESB
therefore represents an intelligent, distributed, transactional, and messaging layer for
establishing this connection [BBF+06].

Enterprise Service Bus (messaging layer)
Routing and transformation services

Data services Adapters Web services

Presentation
and portals

Service
orchestration

Custom/existing
application

Figure 2.6: Enterprise Service Bus and connected component types[Bal05]

2.7.3 Protocol Independence and Pattern Support

An ESB provides intelligent content-based routing (i.e.: QoS-based), mediation, trans-
port and gateway services which all are essential for a SOA. Also transformation ca-
pabilities ensure a reliable message passing using an ESB. An ESB hides the connec-
tion details of how to connect to a specific provider from a consumer. Without the
ESB, the consumer would have to connect directly to the provider. The consumer
would have to know and use the protocol, transport and interaction pattern that the
service provider uses. The ESB though corresponds to an intermediary that passes
requests from a consumer to a provider and manages the use of all the appropriate
protocols and patterns needed by the provider. Several integration mechanisms have
to be provided by an ESB in order to make specific transformations and data conver-
sions possible. Various patterns like request/response, publish/subscribe and events must
be supported in one infrastructure. SOAs with all their reusable services but also
message-driven and event-driven architectures must be able to communicate via an
ESB. Messages that are sent and received by applications must be supported. Also
events that are generated and consumed independently of other applications have to
be processed [KAH+05].

2.7 The Enterprise Service Bus 25

2.7.4 Transport

For Web services, essential transport protocols are SOAP over HTTP/HTTPS or SOAP
over JMS but an ESB should also be able to connect to applications using other pro-
tocols like RMI over IIOP. With the help of adapters like Java 2 Connector Architecture
(J2C or JCA) even more applications shall be callable like applications using the System
Network Architecture (SNA) protocol or base TCP/IP, for example. [BBF+06]

2.7.5 Mediation

The enabling of an intelligent processing of service requests, responses, messages and
events represents the mediation in an ESB. An implementation of mediations can be
located at service endpoints (either service consumer of provider) or halfway between
both participants implemented through the ESB infrastructure. In the second case they
represent true intermediary components. They operate on logical SOAP message rep-
resentations sent between service consumers and providers. Mediation handlers have
to process the header of SOAP messages but SOAP processing and routing is not the
only purpose mediations can be used for [BBF+06].

A mediation covers transformations like translations from XML to a different type of
XML, aggregations and database lookups. Message validation is possible by the veri-
fication of any data field or a combination of several fields following specific rules. A
selection of services based on QoS or content is also covered by a mediation. As an
example, a customer with high priority should probably be able to call services with a
higher throughput than other customers. Country information in service parameters
could be essential for routing activities.

The mediation is justifiably used for logging and auditing of service interactions. An-
chor points for manageability should be provided by an ESB for metering and moni-
toring in order to control the behaviour of services and the ESB itself. A mediation
should implement an autonomic behaviour and react when special events for self-
configuring, optimizing, healing etc. are detected. Externalized policies based on
XML should address the behaviour of all the mentioned aspects [BBF+06].

2.7.6 Security

Security properties like encryption services, delivery assurance and other aspects that
concern a reliable connection are supposed to be covered by an ESB. This way, ap-
plications are discharged and do not have to address all these problems anymore
[KAH+05]. Flexibility and manageability of enterprises is improved if proprietary
service implementations don’t have to be touched for the management and the inte-
gration of services [KAH+05]. The maintenance of the integrity and confidentiality of
the connected services should be ensured by an ESB. Existing security infrastructures
for addressing authentication, identification, access control, data integrity and con-
fidentiality should be integrated with [KAH+05]. The access control method Single-

2.7 The Enterprise Service Bus 26

Sign-On matters for ESBs where a user should only authenticate once but gain access
to resources of multiple software systems [BM03]. Also incident reporting, disaster re-
covery and contingency planning belong to these aspects. An overall security manage-
ment, monitoring and administration has to be covered. An ESB can either integrate
with existing security solutions or implement them directly [KAH+05]. Please refer to
[Nüb07] for more information about security in a service-oriented environment.

2.7.7 Implementation of an ESB

As an architectural construct, the ESB can be designed in various ways. The ESB can
be a central server following the ideas of the hub and spoke model meaning that the
ESB represents the hub and the different paths to it are considered spokes [Shi03].
The ESB can also be a complete decentralized implementation or a federate system (a
connection of several central systems) [Dai07]. It can be implemented by the usage of
classical messaging, brokering technologies, EAI or by using platform-specific compo-
nents like service integration buses in J2EE systems (i.e.: the WebSphere Application
Server). Also combinations of EAI and application server technologies are possible.
However, the overall architecture should not be affected by the final implementation.
For the choice of possible ESB implementations, an architecture assessment is neces-
sary where existing IT infrastructures, processes and skills are analyzed and evaluated
[BBF+06].

2.8 BPEL 27

2.8 BPEL

2.8.1 Business Process

Often the term business process is associated with operations that have to be done in an
insurance company or a bank. This is why sequences of activities that are performed
by various persons are often called a business process. These activities are typically
repeated and follow the same pattern, the process model. But also assembly-line pro-
ductions of cars or the different phases in software development represent a typical
example for a business process. Also activities with minimal user interaction can be
described as business processes like implemented computer processes that just have
to be started but that might involve a lot of different steps. Therefore, all batch jobs can
be interpreted as business processes as well. The notion of business processes covers a
really wide spectrum and it is the business of the user that determines what a business
process is. [LR00]

2.8.2 A BPEL Introduction

With the help of WSDL, standards and specifications have been developed for the
creation of an infrastructure that enables the creation of services in a network, their
discovery and the interaction with services. But there also exists a necessity for the
definition of logic over a set of service interactions. For this purpose the Business Pro-
cess Execution Language (BPEL) was developed with its first name BPEL4WS (BPEL for
Web services) . Later the name was changed to WS-BPEL (Web Services BPEL) com-
monly known as just BPEL [WCL+05]. BPEL as an imperative programming language
is layered on top of the XML specifications WSDL 1.1, XML Schema 1.0 and XPath 1.0
(XML Path Language) . The used data model is provided by WSDL messages and
XML Schema type definitions [ACG+03]. Choreography data can be accessed and
manipulated by using XPath. With BPEL, a set of services can be composed and also
an interaction protocol of a single service can be defined. The interaction protocol can
be created by the specification of an ordering of the services’ operations. BPEL is an
extensible workflow-based language and it aggregates services by the choreography
of service interactions. The aggregated services might be used again in other chore-
ographies involving a recursive aggregation. As BPEL is decoupled from the choreo-
graphed service instances, a highly dynamic environment is created where services
can be substituted or changed. On top of the Web service specification stack, BPEL
composes services and defines service interactions by using their WSDL interfaces.
BPEL offers a big modularity and allows to add further aspects to the BPEL-code like
the attachment of Quality of Service policies or the copy and exchange of endpoints of
composed services (using WS-Addressing endpoint references) [WCL+05].

WSDL descriptions represent the foundation for the description of business processes
in BPEL. A built BPEL process is again represented and accessible as a regular Web
service. BPEL differs between the specification of abstract business protocols and exe-
cutable processes that both share a common amount of language elements that rep-

2.8 BPEL 28

resent most of BPEL. However, in contrast to abstract business protocols, executable
processes need additional information like endpoint addresses of the Web services
that take part in the communication. Every BPEL document includes the following
elements (listing 2.1) [Dje04]:

Listing 2.1: BPEL process [Dje04]
1 <process name =" ProcessName ">
2 <partnerLinks> . . . </partnerLinks>
3 < v a r i a b l e s > . . . </ v a r i a b l e s >
4 < c o r r e l a t i o n S e t s > . . . </ c o r r e l a t i o n S e t s >
5 <faul tHandlers> . . . </faul tHandlers>
6 <compensationHandler> . . . </compensationHandler>
7 <eventHandlers> . . . </eventHandlers>
8 a c t i v i t y
9 </process>

The <process> element names the process and all its child elements are optional ex-
cept activities that are represented by base activities or structural activities. Base
activities are atomic operations providing elementary effects like the communication
with other services and consist of the elements

receive, reply, invoke, assign, throw, terminate, wait,
empty, scope and compensate

The structural elements

sequence, switch, while, pick and flow

describe orders and conditions of encapsulated elements that again can be base or
structural activities. Structural activities allow the composition of base activities. BPEL
also provides a construct with the name <scope> that allows the definition of nested
activities with all the elements that also belong to the root element <process> except
the <partnerLinks> element. This way, variables can be defined locally or excep-
tion handling can be restricted to certain scopes. Scopes correspond to bracket terms
in imperative programming languages. By using <partnerLinks> communication
types can be created and role names can be assigned. The specification of one role is
sufficient for one-way communications. Two roles are necessary if instances call each
other involving both-way requirements for portTypes. The instances of portTypes
correspond to partnerLinks and their attributes assign actual Web services to de-
clared roles. Concrete endpoints have to be assigned to roles for executable processes
but the assignment can depend on proprietary BPEL implementations. Listing 2.2 il-
lustrates a partnerLinkType with two roles where the actual process is represented
by the role “Buyer” [Dje04].

2.8 BPEL 29

Listing 2.2: Definition of partnerLinkTypes [Dje04]
1 <partnerLinkType name =" BuyerSel lerLink ">
2 < r o l e name =" Buyer ">
3 <portType name =" BuyerPT "/>
4 </ r o l e >
5 < r o l e name =" S e l l e r ">
6 <portType name =" Se l l e rPT "/>
7 </ r o l e >
8 </partnerLinkType>
9

10 <partnerLinks>
11 <partnerLink name =" buying " partnerLinkType =" BuyerSel lerLink "
12 myRole =" Buyer " partnerRole =" S e l l e r "/>
13 </partnerLinks>

All possible partnerLinks can be combined to partners. This way, different roles
are possible at different times for the Web services of a business process. For example,
the role “Seller” could be replaced by the role “Shipper” at a later time for a shop
[Dje04]:

Listing 2.3: The <partners> [Dje04] element
1 <par tners>
2 <partner name =" Shop ">
3 <partnerLink name =" S e l l e r "/>
4 <partnerLink name =" Shipper "/>
5 </partner>
6 </par tners>

Operations that are offered by other Web services can be called with the invoke ele-
ment (listing 2.4). Name information about the operation, partnerLinks and
portTypes are needed for referencing the remote operation that has to be called.
Eventual arguments or return variables are specified by setting message types for
inputVariable and outputVariable. With message types any number of nested
variables can be defined and sent [Dje04].

Listing 2.4: Invoking the operation “buy” with the input variable “itemid” [Dje04]
1 <invoke partnerLink =" buying " portType =" Se l l e rPT " operat ion =" buy "
2 inputVar iab le =" itemid " outputVariable =" response "/>

As the process also represents a regular Web service, also own operations can be of-
fered. With help of the <receive> element (listing 2.5) an operation and informa-
tion about partnerLink, portType and variable can be specified. The attribute
createInstance defines if new instances of the process are created for each incom-
ing Web service call. In this example a process can be started by calling the operation

2.8 BPEL 30

“buy” with portType “SellerPT” and by handing over an “itemid” [Dje04].

Listing 2.5: The <receive> element [Dje04]
1 < r e c e i v e partnerLink =" s e l l i n g " portType =" Se l l e rPT " operat ion =" buy "
2 v a r i a b l e =" itemid " c r e a t e I n s t a n c e =" yes "/>

For synchronous operations, the calling service expects a reply value or an error reply.
Return parameters can be specified with the <reply> element (listing 2.6) for that
purpose. Synchronous operations are completed with this element [Dje04].

Listing 2.6: With the <reply> element a price is returned to the caller [Dje04]
1 <reply partnerLink =" s e l l i n g " portType =" Se l l e rPT " operat ion =" buy "
2 v a r i a b l e =" p r i c e "/>

Sequences in BPEL enable a sequential order of activities. An activity is only executed
in a sequence if all predecessors have been already executed. The sequence in listing
2.7 demonstrates a synchronous Web service call [Dje04].

Listing 2.7: Sequence for a synchronous Web service call [Dje04]
1 <sequence>
2 < !−− a c t i v i t y 1 −−>
3 < !−− a c t i v i t y 2 −−>
4 </sequence>

The flow element enables parallel execution of encapsulated activities. It supports
concurrency but also synchronization as synchronization dependencies can be speci-
fied [ACG+03]. The <link> element declares link names that can be used as pre-
condition or effect for other activities. If an operation A shall be the predecessor of an
operation B, a link can be defined and set as source for operation A and target for
operation B (listing 2.8). An activity with a target element is only executed after the
execution of the activity with the corresponding source element [Dje04].

2.8 BPEL 31

Listing 2.8: Flow example for executing A before B [Dje04]
1 <flow>
2 < l i n k s >
3 < l i n k name =" AtoB ">
4 </ l i n k s >
5

6 < ! −− i n v o k e o p e r a t i o n A −−>
7 <invoke . . >
8 <source linkName =" AtoB "/>
9 </invoke>

10

11 <sequence>
12 < r e c e i v e . . / >
13 < ! −− i n v o k e o p e r a t i o n B −−>
14 <invoke . . >
15 < t a r g e t linkName =" AtoB "/>
16 </invoke>
17 </sequence>
18 </flow >

An activity can also be the target of several sources with the help of a join condition.
With the operation getLinkStatus also more complex synchronization dependen-
cies can be defined [Dje04].

Variables can be defined that can be set to message types, XML schema types or XML
schema elements (listing 2.9).

Listing 2.9: Variable definition to an xsd type int [Dje04]
1 < v a r i a b l e s >
2 < v a r i a b l e name =" itemid " type =" x s d : i n t "/>
3 </ v a r i a b l e s >

But variables cannot only be assigned return values but also fixed values with the help
of an <assign> element (listing 2.10).

Listing 2.10: Assigning a value to a variable [Dje04]
1 <ass ign>
2 <copy>
3 <from>50</from>
4 <to v a r i a b l e =" maxprice "/>
5 </copy>
6 </ass ign>

Business processes communicate via messages with usually invisible content. How-
ever, in some cases this information might be necessary for the further execution of

2.8 BPEL 32

a business process and this is why access to special internal variable contents is en-
abled with <property> elements (listing 2.11). An alias has to be defined in order
to assign a property to an attribute and the alias can be accessed in order to affect the
actual attribute. The property of a variable can be read by executing the operation
getVariableProperty(’variableName’, ’propertyName’) [Dje04].

Listing 2.11: Defining a property for enabling public access to an attribute [Dje04]
1 <property name=" userID " type=" x s d : s t r i n g "/>
2 <propertyAl ias propertyName=" userID " messageType=" o r d e r D e t a i l s "
3 part=" i d e n t i f i c a t i o n " query="/ c r e d e n t i a l s /"/>

With <correlationSets> an amount of properties can be defined that uniquely
identify a Web service in order to ensure that correct sessions receive the intended
messages. A correlationSet with the name “userid” is created in listing 2.12 in
order to identify users [Dje04].

Listing 2.12: Defining a correlationSet for the user identification [Dje04]
1 < c o r r e l a t i o n S e t s >
2 < c o r r e l a t i o n S e t name=" user id " p r o p e r t i e s =" username , userpw "/>
3 </ c o r r e l a t i o n S e t s >

The sets can be used in combination with communication activities like invoke,
receive, reply, onMessage and event handling. By encapsulating the ele-
ment <correlations>, messages are sent to the correct identified receiver. An
initiate attribute defines if the correlationSet properties are set to the values
of the incoming message or if the message values are interpreted to send the message
to the correct local process instance [Dje04].

Several other elements also belong to BPEL but are only introduced shortly. Please
refer to [ACG+03] and [Dje04] for further information. The <switch> element en-
ables case differentiation and the <pick> element offers the use of different exclusive
<onMessage> elements. Depending on the incoming message, special activities can
be started. Also while loops are possible with the element <while> and a special
condition attribute. A blocking <wait> element stops the program flow for a de-
noted time and the instance of an executable business process can be terminated by
<terminate>. An <empty> activity can be defined for syntactical reasons. BPEL also
addresses exception handling with its elements <throw>, <catch>, <catchall>,
<terminate>, its faultHandler and its compensationHandler. Also <event-
Handlers> can be defined for special incoming operation calls or timeouts, for ex-
ample [Dje04].

2.8 BPEL 33

Lately, the new specification WS BPEL Version 2.0 [JE07] released but for the imple-
mentation of the project of this thesis, WS-BPEL 1.1 was used as WS-BPEL 2.0 was not
yet fully supported by used software.

2.8.3 BPEL4People

WS-BPEL primarily focuses on automated business processes that orchestrate activi-
ties of multiple Web services and on their observable behaviour. However, also human
user interactions are required in practice by many business processes as people also
take part in business processes and influence their execution. New aspects like hu-
man interaction patterns have to be addressed. Simple scenarios such as a manual
approval but also complex ones involving the entering of user data must be enabled.
SAP and IBM developed a joint white paper with the name BPEL4People [III+05] in
order to include the missing human interaction support in WS-BPEL. Scenarios for in-
volving users in business processes have been described and extensions to the current
WS-BPEL have been addressed. BPEL4People is based on BPEL in order to make it
possible to compose BPEL core features with the new features of BPEL4People. Dif-
ferent scenarios illustrate the scope of BPEL4People [III+05]:

People Activities

People take part in business processes as a new implementation of an activity in
BPEL. This new version may be called people activity and can be understood
as an assigned task to a user. “A task is an indivisible unit of work performed by a
human being” [III+05]. Particular users may be specified at design time, deployment
time or at runtime. For the specification at runtime, organizational directories like
LDAP (Lightweight Directory Access Protocol) could be used. The act of identifying
responsible people for a generic human role is called people resolution. The user is
required to perform some action. A work item is added to the task list of the user
in order to inform the person about the possibility and necessity to perform specific
actions on the task. A user decides to work on an activity by claiming it and unique
access to the activity is provided to the user. Beside tasks also simple communication
steps named notifications are possible where information is just transmitted to
an interested party. A notification just informs a user in contrast to a task that
holds up a process until its completion [III+05].

People Initiating Processes

In many cases, only certain persons are allowed to be the initiator of a certain process.
A definition must be possible where the people are defined that have the right to start
a process [III+05].

2.8 BPEL 34

People Managing Long-Running Processes

Long-running processes might also require human interaction. In current BPEL, a
timeout of a business process would mean that all the parts of the process had to be
undone. Better solutions might be possible by informing a user about the timeout.
The user might still be able to complete the process successfully. Again, only certain
users should be able to access the process and with people assignments a business
administrator of a process should be set [III+05].

Transition between Human and Automatic Services

Sometimes services can be performed with or without human interaction. An example
could be a translation service. Human tasks should be supported but not necessarily
be required in this case. The transition between the two ways has to be non-disruptive
[III+05].

Advanced Interaction Patterns

But also more complex patterns have to be supported and handled by BPEL4People.
“Separation of duties” after the 4-eyes principle has to be addressed where a decision is
made independently by two or more persons. Also excluding people from performing
a special activity has to be enabled. People may already have performed the activity
or people may not be authorized [III+05].

Escalations happen when tasks are not progressing as expected and modeled time con-
straints are not met. In this case, a notification is sent by e-mail, instant message or
SMS to people that were specified as escalation recipients with a people assignment
definition. Also a chain of escalations can be defined. Different escalation recipients
could be informed depending on the number of escalations, for example. Escalation
information must be kept but the escalation chain has to be terminated immediately
once the task completed [III+05].

Also Nominations are necessary meaning that a supervisor nominates the ownership
of a task to a special colleague in order to pass responsibility [III+05].

Chained Execution means that a sequence of process steps has to be performed by the
same person. Usually, after completing a step, a user has to go back to the task list in
order to see new todos. It would be inconvenient if a user always had to go back to the
list after each step of a long chain. This is why a wizard-style interaction with options
like “complete and claim next task” should be supported [III+05].

Features

For the link between people activities and organizational directories special
people links are necessary. People links represent “the group of people that

2.8 BPEL 35

are associated with a people activity” [III+05]. Corresponding to the 4-eyes principle,
the owner of an approval activity is passed as a parameter to the people link of the
next approval activity in order to exclude this owner. People queries are used
to determine the actual set of people that are involved in the process. LDAP filters,
SQL (Structured Query Language) queries, Java methods or an XQuery (XML Query
Language) might be used for that purpose. Also priorities that may depend on some
data of the process can be specified for people activites . Activities with higher
priority might concern tasks for “gold costumers”, for example [III+05].

Also tasks may have priorities but priorities of tasks used by a people activity
with a differing priority are ignored. Priorities of People activities override pri-
orities of tasks. Client applications like a task inbox (with a user interface) have to
present the tasks to users. User interfaces are associated with tasks. Relevant data
should be presented before a task is executed. Different operations have to be exe-
cutable like querying a task, claiming it, revoking the claim and completing the task.
It also has to be possible to fail a task in order to indicate failures. Consequential, the
lifecycle of a task can be described by different states: A task can be ready, claimed,
completed and failed. Inline tasks and standalone task are differentiated. Inline tasks
are a part of a people activity and are shown in constellation 1 of figure 2.7. Here, the
use of the task is limited to the people activity that encompasses it. But a task can also
be defined as a top-level construct of a BPEL process for enabling the use of the task
in multiple people activities (constellation 2). In constellation 3, the task defi-
nition is done independently of any process and constellation 4 offers a Web service
interface using WSDL for the task. The most generic case (constellation 5) shows a
BPEL process invoking a Web service that is represented by a human task [III+05].

Figure 2.7: Models of Interaction between Tasks and Processes [III+05]

2.8 BPEL 36

Also process context information is needed to execute arbitrary activities (including
people activities). Sometimes a special context like geographical information is
important for people queries in order to get fitting data [III+05].

BPEL4People does not define how data is rendered for user interfaces. However, it
provides a default method for showing top level data of a message by using HTML
forms or XForms, for example [III+05].

3 Strategy for Top-Down SOA Projects

3.1 Overview

For top-down SOA projects, business process models are created on a high level of
abstraction. People in different positions in a company can discuss the model on this
high level while technical details are still missing. A shared understanding of a busi-
ness process and its purpose is needed. The process has to be understood and a de-
tailed process analysis is essential. All existing information about the process must
be collected and understood. Misunderstandings can result in an incorrect implemen-
tation of process steps and expensive changes might be necessary. Therefore, discus-
sions of IT developers and the business unit of a company should take place in order
to discuss all process steps.

Based on existing process descriptions (step 1 in figure 3.1), a business process model
has to be developed (step 2) with a modeling tool. For the purpose of this thesis, ex-
tended Event-driven Process Chains were used for modeling business processes and
are explained in subsection 3.2.2 (page 39). The process has to be modeled in a read-
able way for IT systems and help of IT personnel might be needed. The final result
of the model can be subsequently translated into BPEL-code (step 3) with integrated
conversion tools.

As the current supported BPEL 1.1 standard does not yet include all necessary func-
tionalities (i.e.: no human interaction support), additional BPEL extensions might be
needed for a correct further processing (step 4). Extensions have to be readable by
tools of the next lower layer where the extended BPEL-code is imported. Companies
developed own ways of adding the missing information in BPEL within their product
stack. When different products of different companies are used, additional scripts
might be necessary that offer a solution for improving the compatibility. More clarity
and compatibility is aimed with the enforcement of the next BPEL standard (BPEL 2.0).

The extended BPEL-code (step 5) has to be imported in process development software
(step 6) where an executable process can be built (step 7). Necessary Web services
have to be available and Web service calls have to be checked for correctness. The exe-
cutable process has to be deployed on a server (step 8) and it can be accessed over its
Web service interface. After the implementation of a fully working project, a special
graphical user interface can be developed (step 9) for a user friendly control over the
process.

3.1 Overview 38

1. Process Descriptions

2. Business Process Model (eEPC)

4. BPEL extension

5. Extended BPEL

9. Graphical User Interface

Proprietary
scripts

3. BPEL 1.1 creation (EPC2BPEL)

8. Process deploy on a server

7. Executable process

6. Process development software

Figure 3.1: Generic proceeding (top-down)

An overview picture related to the experimental sample in this thesis is shown in
chapter 4 on page 51. The actual proceeding is detailed and used software is listed.

3.2 Business View 39

3.2 Business View

The following pages explain the steps and methods and rules for creating a convertible
business process model.

3.2.1 The Business Process Model

When creating a process model in a Service-Oriented Architecture, several aspects
should be considered. The model should be concise and it should correctly represent
the process flow. It should be easy to read and easily understood. As an additional
requirement, the model has to be convertible into a format that can be interpreted on
the next lower layer of the architecture. Therefore, the process model must be created
in a language that is capable for transformation. Special model design rules repre-
sent another restriction for the model as the model has to be designed in a convertible
way. For a concise modeling, Event-driven Process Chains turned out to be very con-
venient. Another essential advantage of EPCs is the fact that it can be converted into
BPEL (EPC2BPEL).

3.2.2 Event-driven Process Chains (EPCs)

Original EPCs consist of events, functions and logical connectors and are used for the
description of logical sequences of business processes. Events trigger functions which
produce new events and therefore an alternating sequence of events and functions
develops [Sch00] [Sei02]. As also other information beside the control flow can be
relevant for business process models, the EPC modeling language was extended by
the usage of elements for resources, data, time and probabilities building the extended
Event-driven Process Chain (eEPC) [vHOS05] [LA98]. This way, also roles carrying out
functions can be modeled as the people and organizational units that are responsible
for special tasks can be included in the model. Data flow including input objects and
output products can be described as well [LA98].

Extended EPCs represent the main modeling language for process modeling in ARIS
(Architecture of Integrated Information Systems) by IDS Scheer AG and the language
is also intensively used in the enterprise system SAP R/3. Static objects like organiza-
tion units, data objects, application systems etc. are combined in an eEPC building a
dynamic model where sequences of process steps are represented [DB07].

3.2 Business View 40

Processes modeled by usage of eEPCs have advantages referring to textual based pro-
cess descriptions. In a company, processes can be understood, managed and changed
easier when clearly arranged process models are available. When working with eEPCs,
symbols for functions and events are used to describe process steps:

Event

Figure 3.2: EPC: Event symbol [DB07]

An event (figure 3.2) symbolizes the arrival of a special condition, a defined state in-
voking a series of activities. System states that don’t have an immediate effect on
the system do not belong to the event-related states. Within the scope of information
modeling, an event represents an arrived state of one or a group of information ob-
jects. Therefore, it is a passive component of the information system without decision-
making authority [KNS92].

Fundamental characteristics of events within the scope of information modeling [KNS92]:

• Events can invoke functions

• Events are invoked by functions

• Events represent an arrived business state

• Events serve the specification of business conditions

• Events can refer to information objects of the data model

Function

Figure 3.3: EPC: Function symbol [DB07]

Functions (figure 3.3) can be understood as tasks in an eEPC. They represent physical
or intellectual activities that shall be accomplished. When designing process models,
the focus is on the goals that have to be achieved rather than the way they are ac-
complished. On the business layer, a function represents a business activity and an
active component within the information system. A function refers to what is to do
rather than how to do it. It transforms input data to output data by reading, changing,
deleting or creating objects. A decision-making authority concerning the succeeding

3.2 Business View 41

functions is carried by a function. Functions can be split up until a state is reached
where further divisions would not make sense anymore for the business view. Func-
tions are different if they differ semantically or in the number of input and output
parameters [KNS92].

Process models support a more dynamic view within information models than the
more static data and function models. Functions are initiated by events and the func-
tion flow related context is presented. An event that initiates a function corresponds to
the fact that values of attributes are specified. By abstraction of concrete values event
types and function types can be defined. An event type represents a unique defined
collection of events that belong to one class because of the existence of the same at-
tributes with specified values. The attributes carry the needed information [KNS92].
Accordingly, a function type corresponds to a unique defined collection of functions
that represent tasks.

The tables 3.1 and 3.2 demonstrate the difference between abstraction and specifica-
tion layer.

Event type → Function type → Event type
Abstraction
layer

Service requirement
available

Create purchase re-
quisition

Purchase requisition
created

Table 3.1: Abstraction layer [KNS92]

Event → Function → Event
Specification
layer

Consulting for SOA
security required

Create purchase re-
quisition for secu-
rity consulting

Purchase requisition
for security consul-
ting created

Table 3.2: Specification layer [KNS92]

A relation exists between event types and information objects as an event type can
be assigned to one or more information objects. An information object can be in rela-
tionship with one or more event types [KNS92]. For finding event types from scratch,
significant practical events have to be identified. If already a data model exists with
complete attribute information, potential event types can be found easier. Event types
can be identified by analyzing possible values of the defined attributes [KNS92].

3.2 Business View 42

Organisation
Unit

Figure 3.4: EPC: Organisation unit symbol [DB07]

The symbol for organisation units (figure 3.4) represents staff members and can be
used in eEPCs to demonstrate human interaction in a process model.

Data model

Figure 3.5: EPC: Data model symbol [DB07]

Any kind of information carrier like a document can be described by the data model
symbol (figure 3.5). Data models are used as in- and output for functions.

Webservice

Figure 3.6: EPC: Web service symbol [DB07]

There is also a special symbol that is used to describe Web services (figure 3.6). Web
services can be connected to functions in order to demonstrate that the function is exe-
cuted by a Web service. Still there are other symbols that can be used when creating
eEPCs. But initially, the shown symbols were tested for getting a process model that
can be converted to BPEL.

3.2 Business View 43

Various variants of connections between event types and function types are possible
by specifying logical operators. Figure 3.7 shows the logical operators for creating a dis-
junctive connection (xor), a conjunctive connection (and) and an adjunctive connection
(or). Their function is explained in figure 3.8.

Figure 3.7: EPC: XOR, AND, OR [DB07]

Operator Following a Function
(single input, multiple outputs)

Preceding a Function
(multiple inputs, single output)

OR OR – Decision

One or many possible paths

will be followed as a result of

the decision.

OR – Trigger

Any one event, or combination

of events, will trigger the Func-

tion.

XOR Exclusive OR – Decision

One, but only one, of the possi-

ble paths will be followed.

Exclusive OR – Trigger

One, but only one, of the possi-

ble events will be the trigger.

AND AND – Parallel Path

Process flow splits into two or

more parallel paths.

AND – Trigger

All events must occur in order

to trigger the following Func-

tion. 1

events must occur in order for the AND trigger to be valid.

Note 1: It may be necessary to consider a time period during which all the

Figure 3.8: Logical Operators [DB07]

An Event-driven Process Chain shows which events initiate which functions. It also
demonstrates which functions create which events. An example can be seen in figure
3.9. As an event type that was created by a function type also represents an activator
of a following function type, a continuous chain develops. An event type connection
represents a connection of several event types with one function type whereas a func-
tion type connection specifies a connection of several function types with one event type
[KNS92].

3.2 Business View 44

Event type 1

Function
type1

Function type
2

Event type 2 Event type 3

Function type
3

Event type 4

Event type 5

Function type
4

Event type 6

Function type
5

Event type 7

Figure 3.9: An example eEPC [KNS92]

3.2 Business View 45

An eEPC is suited very well for the first step of process/function modeling as well as
for giving an overall view over all function and event types that belong to a special
scope. It describes the chronological and logical flow of functions and it demonstrates
the relations of elements of the data and function model. Therefore, it plays a central
role within the scope of information modeling [KNS92].

Not only the control flow can be interesting but also the analysis of incoming and out-
going information objects of a special function type. This can be done by examining
the input and output objects (attributes). For organization models with responsibil-
ity assignment and assignment of tasks, organization units can be used in an eEPC
[KNS92].

3.2.3 Identifying Services or Service Candidates

A recommendable advice for process modeling is to look for existing models, ideas
and functional similarities based on former projects. Existing equal sub processes
should be searched and reused. The business process model should be designed in
a way that reusable sub processes can develop. Sub processes might be implemented
as own services. Web services executing a needed function might even exist already.
Therefore, a look into the repository for reusable services is recommendable. Once a
service is found, it can be integrated and referenced by the corresponding function
in the model. A function is therefore represented and executed by a Web service as
shown in figure 3.10.

Event type 1

SYS

Function type1example-
Service

Event type 2

Figure 3.10: Web service call example

If the service does not exist yet, the designer can write a service description with in-
formation about the properties of the needed service. The service itself should be
implemented by a developer with help of this description.

3.2 Business View 46

3.2.4 Designing the IT Version of the Business Process Model

It is important to create a concise business model that reflects the real process steps.
However, still some modifications might be necessary to make it convertible. It has
to be modified in a way that no errors happen when executing EPC2BPEL conversion
and the help of an IT specialist might be needed. Rules have to be followed when
designing models for later conversion into BPEL. Table 3.3 shows general rules for
modeling with EPCs.

General EPC Rules
Every model must have at least one start event and one end event.
Functions and events always alternate.
Functions and events only have a single incoming and outgoing connection.
Process paths always split and combine using rules.
Multiple events triggering a function combine using a rule.
Rules cannot follow a single event.
Decisions are taken by functions.
Functions that take decisions are always followed by rules.
Rules show the valid combination of paths that follow a decision.
Events following rules indicate the actual outcomes of decisions.
Rules cannot have multiple input and multiple outputs.

Table 3.3: General EPC rules [DB07]

ARIS SOA Architect offers the possibility of validating a model before converting it.
The model is checked for correctness corresponding to these rules and a validation
result is shown after the check. A result page demonstrates the followed and the vio-
lated rules and gives a short description of the problem. Based on this result page,
structure rules and rules for service-oriented EPCs are shown in tables 3.4 and 3.5.
The result page itself can be found in appendix B.

3.2 Business View 47

Structure rules Description
All functions/events have
only one incoming/outgoing
connection

This rule checks whether all functions and events
have a maximum of one incoming or outgoing
connection.

Each path must begin and
end with an event

This rule checks whether all paths begin and end
with an event.

No OR/XOR possible after
event

This rule checks whether splitting OR or XOR
rules (distributors) do not exist within a process
after events.

No objects without connec-
tions may exist

This rule checks whether a model contains object
occurrences without connections to other occur-
rences. Each object in a model must have one or
more predecessors and/or successors.

Number of outgoing or in-
coming connections at the
rule

This rule checks whether there are either exactly
one incoming and a minimum of two outgoing
connections at each simple rule, or a minimum of
two incoming and exactly one outgoing connec-
tion.

Table 3.4: Structure rules for EPCs [AG06]

But still this information is not enough in order to be able to transform every model
in a convertible way. This is why experience is needed and the designer of the IT
version of the model has to be trained. After gaining lots of experience by creating
many process models, the design of the first model should come closer and closer to
the final IT-version of the business model in the long run.

3.2 Business View 48

Structure rules Description
A business function should
be carried out by one single
organizational unit.

Only a business function that is connected with
one single object of the organizational unit type
via a relationship of the ’carries out’ type is inter-
preted via the transformation to the BPEL process.

A system function is sup-
ported by one single object
of the ’Application system
type’ type.

A system function may be supported by only one
single object of the ’Application system type’ type
and is thus interpreted via the transformation to
the BPEL process.

All input and output objects
must be mapped to objects of
the ’Class’ type or be them-
selves objects of the ’Class’
type.

All objects that are connected with functions via
relationships of the ’has input’ or ’has output’
type should be of the ’Class’ type or be directly
or indirectly mapped to one or more objects of
the ’Class’ type to be interpreted correctly via the
transformation to the BPEL process.

An ’Application system type’
object supporting a system
function may be connected
with only one object of the
’Component’ type.

According to the modeling conventions for the
representation of a service in ARIS, only one sin-
gle object of the ’Component’ type may be con-
nected with an ’Application system type’ object
via a relationship of the ’encompasses’ type.

Only one single object of the
’Operation’ type is connected
with a system function.

Only one single object of the ’Operation’ type can
be connected with a system function and inter-
preted via the transformation to the BPEL process.

Only specific types of func-
tion symbols are used.

Only the business function, the system function
and the system function target are allowed for
transformation to the BPEL process.

Process contains public mes-
saging activities.

Public messaging activities serve to specify the in-
put and output information of the process. This
information is used by other components when
communicating with the process. According to
the modeling conventions for service-oriented
EPCs, public messaging activities can represent
process steps that follow both start events and
preceding end events and specify the associated
input and output data objects. Alternatively, the
input and output data of the process can be spec-
ified as a data object of the start or end event.

Process parallel flows, inclu-
sive decision paths and ex-
clusive decision paths are
well-formed.

Process parallel flows should be specified by split-
ting and joining AND/XOR rules, or they should
contain either one splitting AND/XOR rule only
for which there is no other connection between
their paths, or one joining AND/XOR rule only
that is met by all connections.

Table 3.5: Rules for service-oriented EPCs [AG06]

3.3 IT View 49

3.3 IT View

In this section, the next steps are explained that have to be done for getting a runnable
project. IT developers have to implement the process based on the finished busi-
ness process model. The steps are explained in detail related to the practical example
project in chapter 4 starting on page 51.

3.3.1 BPEL Conversion

After the final IT-version of a business process model is finished, an IT specialist gets
the responsibility for the implementation of the designed process. First, the model
has to be converted into BPEL. Tools usually offer BPEL 1.1 conversion where several
functionalities are still missing and not all information is kept. Human interactions
are not yet supported by the current BPEL-standard and the generated generic BPEL-
code has to be extended by proprietary code for not losing this important information.
Specific extensions are necessary that have to be compatible with solutions of the tools
on the next lower level where the BPEL-code is imported. Specific scripts have to be
written to be able to deal with this existing incompatibility. Hopefully, a standard
solution for human interactions can be defined in the future but specific solutions are
necessary until that support is guaranteed.

3.3.2 Completing the Process

BPEL-code is imported in process development software where still adoptions have
to be made in order to get a deployable version of a process. The extent of required
adoptions depends on the maturity and compatibility of used software. Hopefully, the
necessary amount of work will be reduced once better support is guaranteed based on
common standards.

An IT developer has to create a runnable version of the project. The lower the level
of development the more information is needed as more details become important
for the implementation. Not all details can (and should not) be modeled in a process
model as a model becomes confusing once it is designed too fine-grained. For still
existing obscurities and questions, a detailed communication is possible that is based
on a process model that all participating parties can understand.

Services that are invoked by the main process have to be available for the implemen-
tation. They can be included if usable versions of the services exist but otherwise they
still have to be implemented. Services can be implemented with process development
software or existing applications can be integrated. For existing applications that do
not have a usable interface yet, this interface has to be created first. A Web service
interface can be created by wrapping an existing application and making it look like a
Web service. This way, legacy applications can be embedded and reused in the infra-
structure. It might also be necessary to include special adapters in the infrastructure
for accessing existing applications. Once a service and its interface are implemented,

3.3 IT View 50

it can be accessed by including its WSDL-file with information about the input and
output parameters, port and location of the service.

Figure 3.11 shows a general overview of usable services. The general process model
is designed on the top layer. The second layer refers to the fact that atomic services
or composite services can be called. Composite services again consist of atomic or
composite services. Different service implementations are possible like orchestrated
services with or without human tasks or applications that are wrapped using a service
interface.

Business Process Function/Activity/
Work Step

NProcess model

Application
with Service-

Interface

Orchestrated
Service without

Human Task

Orchestrated
Service with
Human Task

Application
Human
Task

Service
Impl.

Composite
Service

Atomic
Service

N NO
Service

N

Logical
intermediate step

Figure 3.11: Service overview [Dai07]

4 Practical Example (SOA Live Session
Project)

4.1 Motivation

Figure 4.1 shall demonstrate the complexity and heterogeneity of application archi-
tectures. A lot of time and money is spent for staying on top of things. Application
integrations and exchanges are expensive and always cover a risk in such a complex
environment. Service-Oriented Architectures shall help to reduce this IT complexity.

Figure 4.1: Application architecture for a Consumer Electronics Company [Spr07]

A prototype of a real process of DaimlerChrysler AG should be created with SOA
design rules. This way, the current state of SOA concerning the existing tools for de-
veloping SOA projects should be analyzed.

A real existing process of the company should be implemented. However, it should be
simple as the individual process steps were not the focal point. The new architecture
and the top-down approach should be examined. The purchase requisition process

4.2 Overview 52

of non-productive material was chosen for the prototype because of its simplicity and
publicity. It is an approval process that many coworkers come in contact with. There-
fore, process steps of the prototype are known and can be easily understood.

Up to now, the process is implemented with the client-server application Lotus Notes
of IBM and its Lotus Domino server. The control logic is implemented using Lotus
script and the SAP system NACOS (New Accounting and Controlling System) is ac-
cessed for the creation of purchase requisitions. Programming is necessary for changes
of the process. A service-oriented approach might replace this process one time be-
cause of its flexibility.

With the prototype, a better understanding of SOA with all its benefits and disadvan-
tages should be gained. The prototype should demonstrate the flexibility and agility
of SOAs and this is why a process step should be changed. The change should be pro-
cessed with all consequences until the new process result could be shown. Based on
the experiences of the project, further investment on time, effort and money for SOA
projects should be discussed.

4.2 Overview

Before implementing the process, existing process description documents had to be
studied (step 1 in figure 4.2). Based on this information, the process could be modeled
in ARIS SOA Architect (step 2). ARIS SOA Architect is a graphical editor that belongs
to the ARIS Implementation Platform and that has a facility to produce BPEL-code.
However, for a correct BPEL conversion, a model has to be created in a particular way.
Several rules have to be followed that were described in chapter 3.2.4 starting on page
46. This is why the model had to be modified and an IT version of the process had
to be created (step 3). The finished model was converted into BPEL-code (BPEL 1.1 +
WSDL) with the conversion tool EPC2BPEL of ARIS SOA Architect (step 4). Human
task information was lost during the BPEL conversion as it does not belong to the
supported BPEL standard. Therefore, the missing information had to be added to the
code. Two proprietary scripts were necessary (step 5): The first script extended the
BPEL code by the lost human task information. The second one modified the code
and prepared it for an import in IBM’s WebSphere Integration Developer (WID) . The
modifications were necessary because of compatibility problems between exported
ARIS BPEL and IBM BPEL.

4.2 Overview 53

1. Documents

2. ARIS SOA Architect

5. BPEL extension

6. Extended BPEL

10. Graphical
User Interface

Scripts 1 + 2

4. BPEL 1.1 (+ WSDL)

E3

BANF korrekt
gespeichert

BANF
freigegeben,

versendet x<=
150.000€

BANF
freigegeben,
versende t x>

150.000€

BANF
zurückgewiesen

BANF prüfen und
fre igeben - E2

BANF
freigegeben,
versende t x>

500.000€

BANF
freigegeben,
ver sendet x<=

500.000€

E1

BANF
freigegeben,
versende t x>
5.000 .000€

BANF
freigegeben,

versendet x<=
5.000.000€

BANF als
PDF

BANF_Freig
abe

NACOS10

BANF als
PDF

BANF_Freig
abe

NACOS10

BANF als
PDF

BANF_Freig
abe

NACOS10

E2

BANF prüfen und
fre igeben - E1

BANF prüfen und
fre igeben - E3

BANF korrekt
gespeichertBANF

BANF
freigegeben

und
versendet

BANF fre igegeben, versendet x<= 150.000€

BANF
freigegeben

und
versende t

BANF fre igeben, versendet > 150.000 €

BANF
zurueckgewie

sen

BANF
freigegeben

und
versende t

BANF freigegeben, ver sendet x<= 500.000€

BANF
zurueckgewie

sen

BANF
pruefen und
freigeben E1

BANF
fr eigegeben

und
ver sendet

BANF freigeben, versendet <= 5.000.000 €

BANF
zurueckgewie

sen

BANF
wei tergeleitet

BANF

BANF

BANF

BANF

BANF

BANF

BANF

BANF
pruefen und
freigeben E2

BANF
pruefen und
freigeben E3

E3Role

E2Role

E1Role

BANF
freigegeben

und
versende t

BANF fre igeben, versendet > 500.000 €

SY S

BANF
aktual isieren

BANF
aktualisiert

BANF

BANF
D ienstleistun

gsbedarf
vorhanden

SY S

BANF anlegen

BANF

Bestelle rRole

BANF_Daten

BANF_Upd
a teBANF_I

F

Crea teBAN
F_IF3. ARIS SOA Architect

BANF-
aktualisiert

BANF-
freigege...

BANF-
zurueck...

BANF-
freigege...

BANF-
zurueck. ..

BANF-
freigege...

BANF-
zurueck...

BANF-
zurueck. ..

BANF-
freigege...

BANF-
pruefen...

BANF-
pruefen...

BANF-
freigege...

BANF-
freigege...

BANF-
fachlic.. .

BANF-
zurueck. ..

BANF-
aktualisi.. .

BANF-
pruefen...

BANF-
anlegen

BANF-
zurueck. ..

Dienstleist
ungsbed...

BANF-
fachlic. ..

BANF-
pruefen...

BANF-
freigege...

BANF-
zurueck...

BANF-
zurueck. ..

BANF-
freigege...

BANF-
pruefen...
BANF-
pruefen...

BANF-
zurueck. ..

BANF-
freigege...

9. WebSphere
Process Server

EAR file

8. Executable code

Business Process
Model

Business Process Model

(IT Version)

Import

EAR file It works!

EPC2BPEL

7. WebSphere
Integration Developer

WebSphere Process
Server

Figure 4.2: Proceeding (top-down)

4.2 Overview 54

After the import of the extended BPEL (step 6), the process was completed with all
Web service calls in WebSphere Integration Developer (step 7). A SAP application and
a SAP Web service were used that run on a SAP Discovery System. They are explained
in subsection 4.4.2 starting on page 71.

With WebSphere Integration Developer, an executable project could be implemented
(step 8). An EAR file (Enterprise Application Archive) was created that included the
project according to the J2EE (Java 2 Enterprise Edition) standard. The EAR file was
deployed on the (integrated) Process Server (step 9) and a working project was imple-
mented. The WebSphere Process Server is mounted on top of the WebSphere Appli-
cation Server. It offers a process container for deploying processes and it extends the
WebSphere Enterprise Service Bus.

Also a graphical user interface with the corporate design of DaimlerChrysler AG was
created for the process (step 10). WID allows the generation of a GUI that is based
on JavaServer Faces (embedded in JavaServer Pages (JSP)). The GUI was changed after-
wards to represent the corporate design and to fulfill the needed functionality. Again,
an EAR file was created for the GUI and deployed on the Process Server.

The GUI was created for the purpose of demonstrating the process in a Daimler-
Chrysler executive management presentation. During the presentation, a change of
the process model was shown. The model was modified live in ARIS SOA Architect.
Again, BPEL-code was generated and imported into WebSphere Integration Devel-
oper where the necessary adjustments were made. The project was deployed again
on the Process Server and the result demonstrated the possibility of fast changing
processes in a Service-Oriented Architecture. The implemented change request is ex-
plained in chapter 5 starting on page 87.

4.3 Business View 55

4.3 Business View

Corresponding to the top-down approach, a process has to be modeled before it can
be implemented. The following pages address the tasks of a business unit member.

4.3.1 Assessment

When creating a process model, the process itself has to be understood first. Infor-
mation about the process has to be collected. Existing sheets, documents, tables or
other files might be available providing information about the process. In this spe-
cific example, an animated PowerPoint slide helped to get an insight in the process
(figure 4.3). Also a PDF and an e-mail description were available and can be found
in appendix A. However, too much implicit technical information was needed for a
complete understanding of the process description and still further information was
necessary. Meetings with the business unit of DaimlerChrysler AG helped to get a
better understanding.

MESM B D
IDS

Abschlüsse

Lieferant

Lager/
Dokumentation

BedarfBedarf
WAS ?WAS ?

WIEVIEL ?WIEVIEL ?

NACOS
Stammdaten/
Abrufe

MAB

Buchungen

Ware

Bestellung

WES

WESLieferschein/
Einlagerbeleg

NACOS

BNS
Kontierungsprüfung

Bestellung

FAX-Abruf
+

Reklamation

Bestellvorschlag

ZB

MAB/
WBS

Ware

MABB

Figure 4.3: Acquisition process

Figure 4.3 shows the existing process implementation. The cuboids represent IT sys-
tems and detailed acronym descriptions for all systems can be found in appendix A.
A material requisition note (MAB) is created in MBD/IDS and information about the
necessary master data for the chosen material is looked up in NACOS. After an ac-

4.3 Business View 56

count assignment check, a book entry is entered in NACOS and a purchase requisition
approval process is started where qualified managers approve or decline a purchase
requisition. The purchase requisition approval process is not shown in picture 4.3 but
an additional document provided information about it (figure 4.4). The process is im-
plemented using the Lotus Notes System of IBM which communicates with NACOS. E-
mails are sent to the managers who check the requisitions. If a requisition is approved,
an order proposal is sent from MBD/IDS to MES (“Material-Einkauf-System”) (which
was lately replaced by GLOBUS (Global Buying System)) .

Depending on MES and general financial agreements (“Abschlüsse”), the actual or-
der can be created and sent to the deliverer (“Lieferant”). WES (“Wareneingangs und
-abgleichsystem”) is informed about the order and communicates again with NACOS
for goods adjustment. After the ordered products arrived in stock, MBD/IDS are in-
formed.

In this specific example, the description of the whole process was very coarse-grained
but the process became clearer after further discussions with the business unit of
DaimlerChrysler AG. The purchase requisition approval part was chosen to be imple-
mented for the prototype because of its simplicity and understandability. It is shown
in figure 4.4. Depending on the amount of a purchase requisition (i.e.: 150.000 EURO),
different managers have to approve the requests. The process steps are explained in
detail in subsection 4.3.2 on page 58. The human interactions that take place during
the process steps enable a way of interfering and the course of the process can be
shown very demonstratively.

4.3 Business View 57

W
e
r
k
 5

0

�
�

	

��

�
�

��
�
�

�
��

��
<

�
��

�
�

�
�

�
�

�
�

�
�-

�
�

�)
,

�
��

-
�

�
��

��
�

��
�

�
	�

1
�

�
�

��
�

�
�

�
�

	�
�

�
�

�
��

�
��

��
�

�
	�

�2
�

��
�
��

�
��

�
�

�
,

�
�

�
	1

�
�

��
��

E
rf

a
s
s
u

n
g

s
-

s
te

ll
e
 i
n

 N
A

C
O

S

M
E

S
M

E
S

B
e
s
te

ll
u

n
g

N
A

C
O

S

L
o

tu
s

 N
o

te
s

S
ta

rt
F

re
ig

a
b

e
-

u
n

d
G

e
n

e
h

m
i-

g
u

n
g

s
-

p
ro

z
e

s
s

B
W

/C
W

:

B
u

d
g

e
tp

rü
fu

n
g

 u
.

K
o

n
ti
e

ru
n

g
s
v
o

rs
c
h

la
g

B
W

/B
B

A
:

K
o
n
ti
e
ru

n
g

H
ie

ra
rc

h
is

c
h

e
r

G
e

n
e

h
m

ig
u

n
g

s
d

u
rc

h
la

u
f

ü
b

e
r

L
o

tu
s

 N
o

te
s

-W
o

rk
fl

o
w

S
y
s
te

m
s
e
it

ig
e
 F

re
ig

a
b

e

� ���

G
e
n
e
h
m

i-
g
u
n
g
s
-

s
te

lle
(E

4
)

G
e
n
e
h
m

i-
g
u
n
g
s
-

s
te

lle
(E

3
)

G
e

n
e

h
m

ig
u

n
g

s
-

s
te

lle

(E
2

)

$
�"

��
&

�.
;
8

=

$
�"

��
&

�
�.

;
8

=

$
�"

�&
�

�
�.

;
8

=

G
e
n
e
h
m

ig
u
n
g
s
-

s
te

lle

(E
1
)

�
+

B
�
�

&
�

�
�.

;
8

=

w
e
n

n
 B

A
N

F
>

 E
b

e
n

e
 4

w
e
n

n
 B

A
N

F
�

E
b

e
n

e
 4

�
,

�
	1

�
��

�
�

�3
�

�
�

�
,

�
	1

�
��

�
�

�3
�

�
�

�
�

�
�

�

�
�

�
�

�
��

4
�	

�
5	

/
-

�
��

��
��

�
�

�
�

4
�	

�
5	

/
-

�
��

��
��

�
�

�
� ��

L
o

tu
s

 N
o

te
s

-
A

n
la

g
e

n
d

a
te

n
b

a
n

k
 -

<
<

 A
n

la
g

e
n

>
>

<
<

T
e

s
ta

t>
>

>
 5

0
0
 T

E
U

R

E
n
d
fr

e
ig

a
b
e

n
a
c
h
T

e
s
ta

t

Figure 4.4: Purchase requisition process description

4.3 Business View 58

4.3.2 The Business Process Model

After collecting information about a process and after understanding the steps, the
creation of the business model can be started. There are several modeling tools of dif-
ferent companies that can be used for modeling business processes. However, for this
specific example, Event-driven Process Chains have been used for laying out the pro-
cess workflow and a BPEL conversion should be possible. As ARIS modeling tools of
the company IDS Scheer AG were already known and used for designing workflows
within the company, the special version ARIS SOA Architect (Version 7.0.2.173990,
Patches: 7.0.2.167238 and 7.0.2.173990) which supports eEPCs and EPC2BPEL conver-
sion was chosen for creating the model of the process. Modeling with help of the
business unit of DaimlerChrysler ended in the model shown in figure 4.5.

As this specific example is used in order to describe further steps of process modeling
and implementation, a short model description is given:

After the correct creation and storage of a purchase requisition, a senior manager (2nd
line manager, DaimlerChrysler AG uses the term: E2 (level 2)) is informed about the
creation. The senior manager gets a PDF file with the description of the requisition.
The purchase requisition that was generated in NACOS10 has to be checked and ap-
proved or declined depending on the decision of the senior manager. For requisition
prices higher than 150.000 Euro, the senior manager alone cannot decide on the ap-
proval. This is why the requisition has to be checked again by the director (3rd line
manager, DaimlerChrysler AG: E2) who is authorized to approve or decline purchase
requisitions smaller than or equal to 500.000 Euro. The procedure repeats also for the
vice president (4th line manager, DaimlerChrysler AG: E1) who is responsible for pur-
chase requisitions that exceed 500.000 Euro and reach up to 5.000.000 Euro.

EEPCs are characterized by good readability and can be understood pretty well de-
pending on the effort of the modeler. Documents, tables and other files frequently
differ very much and often don’t follow strict design rules. Uniform models can be
created based on a modeling language like eEPCs.

In the purchase requisition example, the eEPC turned out to be much more readable
and understandable than PowerPoint or other document descriptions. For a complete
understanding of eEPCs, still implicit technical know-how is needed, but to a much
smaller degree than in lots of other ways of modeling. This first version was modeled
with help of the business unit and common conventions for modeling at Daimler-
Chrysler were followed for this model:

• An eEPC should never start with a function but with an entry event.

• Roles that are responsible for a special task represented by the function symbol
should be positioned on the right side of functions and data objects should be
arranged in a readable way: Incoming data objects should be positioned on top
of outgoing ones on the left side of functions.

4.3 Business View 59

E3

BANF korrekt
gespeichert

BANF
freigegeben,

versendet x<=
150.000€

BANF
freigegeben,
versendet x>

150.000€

BANF
zurückgewiesen

BANF prüfen und
freigeben - E2

BANF
freigegeben,
versendet x>

500.000€

BANF
freigegeben,

versendet x<=
500.000€

E1

BANF
freigegeben,
versendet x>
5.000.000€

BANF
freigegeben,

versendet x<=
5.000.000€

BANF als
PDF

BANF_Freig
abe

NACOS10

BANF als
PDF

BANF_Freig
abe

NACOS10

BANF als
PDF

BANF_Freig
abe

NACOS10

E2

BANF prüfen und
freigeben - E1

BANF prüfen und
freigeben - E3

Figure 4.5: Draft eEPC

4.3 Business View 60

FunctionEvent Data model
Organisation

Unit
Webservice

Figure 4.6: Legend for figure 4.5

• Participating application systems are positioned leftmost in the model.

This way, functions and events alternate in the middle of the model and a reader can
fast follow and understand the clearly arranged process steps.

• Conditions for cases are usually mentioned in the names of events.

• An XOR-element separates the different possible cases.

The green triangular symbol next to the data objects relates to a hidden model behind
the symbol that describes the symbol more detailed on an underlying layer. Varying
symbols are available on the underlying layer and the objects are mapped to classes
there.

4.3.3 Identifying Services or Service Candidates

Business process models have to be changed and extended very often until a repre-
sentative model is created for the process. Services can be added or dropped and
further process steps might be included in the model. For the example project, addi-
tional requirements for the project were defined and the business model grew. Two
services should be added to the business model. One service should be responsi-
ble for the creation of a real purchase requisition object on a SAP Discovery System.
The other service should perform an update on that created purchase requisition. No
service repository was available but as the two services did not exist yet anyway in
a usable way, they had to be developed. The services were implemented with help
of WebSphere Integration Developer (WID 6.02, interimfix 003, build id: 6.0.2ifix003-
20070123_1524) and are explained in chapter 4.4.2 starting on page 71.

4.3 Business View 61

4.3.4 Designing the IT Version of the Business Process Model

Depending on the experience, models created in cooperation with the business unit
are usually not yet ready for an IT implementation. Also in the example process, first
attempts of converting the designed eEPC to BPEL-code and importing it into Web-
Sphere Integration Developer aroused many problems based on design failures and
incompatibility. This is why the conversion rules of ARIS SOA Architect had to be
understood and followed that were explained in chapter 3.2.4 starting on page 46. Se-
veral meetings with employees of both companies, IDS Scheer AG and IBM Deutsch-
land GmbH were necessary to find a model that both passes the evaluation check and
can be imported in WebSphere Integration Developer the best way possible. The re-
sult of the adjusted process contains the two services for creating and updating a real
purchase requisition and can be seen in figure 4.7.

4.3 Business View 62

BANF korrekt
gespeichert

BANF

BANF
freigegeben

und
versendet

BANF freigegeben, versendet x<= 150.000€

BANF
freigegeben

und
versendet

BANF freigeben, versendet > 150.000 €

BANF
zurueckgewie

sen

BANF
freigegeben

und
versendet

BANF freigegeben, versendet x<= 500.000€

BANF
zurueckgewie

sen

BANF
pruefen und
freigeben E1

BANF
freigegeben

und
versendet

BANF freigeben, versendet <= 5.000.000 €

BANF
zurueckgewie

sen

BANF
weitergeleitet

BANF

BANF

BANF

BANF

BANF

BANF

BANF

BANF
pruefen und
freigeben E2

BANF
pruefen und
freigeben E3

E3Role

E2Role

E1Role

BANF
freigegeben

und
versendet

BANF freigeben, versendet > 500.000 €

SYS

BANF
aktualisieren

BANF
aktualisiert

BANF

BANF
Dienstleistun

gsbedarf
vorhanden

SYS

BANF anlegen

BANF

BestellerRole

BANF_Daten

BANF_Upd
ateBANF_I

F

CreateBAN
F_IF

Figure 4.7: The final eEPC of the business process

4.3 Business View 63

FunctionEvent Data model WebserviceGroup

Figure 4.8: Legend for figure 4.7

The enhanced process model for the example process starts with a service require-
ment of an orderer. The orderer must belong to the group “BestellerRole” and is able
to create a new purchase requisition. For the prototype, a manager (1st line manager,
DaimlerChrysler AG: E4) creates it. A real purchase requisition is generated by call-
ing a Web service on a SAP Discovery System. All the used Web services in the model
were implemented in WebSphere Integration Developer beforehand and the WSDL-
files were imported in ARIS SOA Architect. This way, the Web services were selectable
and callable within the process. After the creation of the purchase requisition, the ap-
proval process steps start:

A senior manager (2nd line manager, DaimlerChrysler AG: E3) gets informed about
the requisition and can decide if it is approved or declined. In case of approval and
for requisition amounts of greater than 150.000 Euro, a director (3rd line manager,
DaimlerChrysler AG: E2) gets informed. The Vice president (4th line manager, Daim-
lerChrysler AG: E1) is responsible for purchase requisitions that exceed 500.000 Euro
and are smaller than 5.000.000 Euro. Even higher requisitions are declined automati-
cally in this process model.

After the approval steps, another Web service is started on the SAP Discovery System
where the created purchase requisition is updated. The update service actualizes the
purchase requisition with information about amount, approvers and the final result.
Figure 4.9 demonstrates the whole business process.

4.3 Business View 64

create

update

purchase requisition

(material)

purchase requisition

(approvers)

PO Number

Discovery System

myERP 2005 + Tool Suite

“NetWeaver”
WebSphere

2

1 3

4

Figure 4.9: Business process

Data obects have an Unified Modeling Language (UML) representation with all attributes
in ARIS SOA Architect. The UML representation of the XML Schema Definition (XSD)
of the used data object “BANF” is shown in figure 4.10.

Figure 4.10: UML representation of the data object “BANF”

4.4 IT View 65

4.4 IT View

The following pages address the tasks of an IT developer after getting the business
process model. Again, the tasks are related to the practical purchase requisition exam-
ple.

4.4.1 BPEL Conversion

With the IT version of a process model, the IT developer can generate the necessary
BPEL-code that is needed for the process implementation. Although the shown model
of the example process (figure 4.7 on page 62) passes the validation check, the BPEL
code still does not meet all requirements for a correct import into IBM’s WebSphere
Integration Developer.

Before the conversion, still the needed logic for the different possible paths that can be
taken has to be defined in a readable way. Condition expressions have to be defined
for the branches in the eEPC. This information can be included as attribute informa-
tion for each branch and looks like the following:

Listing 4.1: Condition expression for branches
1 bpws:getVariableData ("BANF" , "/ f r e i g a b e ") = true () and
2 bpws:getVariableData ("BANF" , "/Wert ") <= 150000 .

As ARIS SOA Architect supports BPEL 1.1 where human interactions are not speci-
fied, human task information is lost during the conversion. As the process contains
several human tasks, there was a need for finding a general solution for exports with
human tasks. The human task information had to be added to the BPEL-code and
IDS Scheer AG wrote proprietary scripts for keeping this information. The red ar-
rows in figure 4.11 show the way that has to be taken to create compatibility between
ARIS SOA Architect and WebSphere Integration Developer. With ARIS BPEL ven-
dor extensions, human task information is kept. WebSphere Integration Developer
already implements functionality that is included in WS-BPEL 2.0 [Kra06] and human
tasks are implemented according to BPEL4People that was introduced in chapter 2.8.3
(page 33).

4.4 IT View 66

3

4

W
e
b
S

p
h
e

re
In

te
g
ra

ti
o
n

D
e
v
e
lo

p
e
r

(W
ID

)

B
P

E
L

 P
ro

c
e
s
s

W
e
b
S

p
h
e

re
P

ro
c
e
s
s

S
e

rv
e

r
(W

P
S

)

…

A
R

IS
 T

o
o
ls

e
t

E
v
e

n
t-

d
ri
v
e

n

P
ro

c
e
s
s
 C

h
a

in

G
e
n
e

ri
c

B
P

E
L

P

ro
c
e
s
s

A
R

IS
 B

P
E

L

V
e
n

d
o
r

E
x
te

n
s
io

n
s

1

2

Figure 4.11: Development procedure

4.4 IT View 67

The first proprietary script of IDS Scheer AG accomplishes the following tasks for
keeping human task information:

The start event (“BANF-fachlich-freigeben”) of the eEPC is determined. A partner link
named “null” and a wsdlPortType (“HumanTaskPT”) is created and connected to it in
the subjacent BPEL allocation diagram (figure 4.12). The script also takes care of filling
attributes of the start event with required namespace information.

Figure 4.12: Human task extension in the BPEL allocation diagram

For every BPEL-extension (human tasks), the name of the corresponding organization
unit in the eEPC is taken and inserted as name attribute. All the subjacent BPEL alloca-
tion diagrams are edited by adding partner links with the name “null” and operations
(“carryBANF-pruefen-und-freigeben...”) as can be seen in figure 4.13.

4.4 IT View 68

BANF BANF

carryBAN
F-pruefe...

BANF-
pruefen...

null

Figure 4.13: A completed BPEL allocation diagram

The name of operations is combined with the names of corresponding organization
units (i.e.: “carryBANF-pruefen-und-freigeben-E2”), input and output variables are
built and the port type is specified (figure 4.14).

«interface»

«wsdlPortType»

http://ids-scheer.com::HumanTaskPT

«wsdlOperation» carryBANF-pruefen-und-freigeben-E2(in input: BANFMT, out output: BANFMT)

«wsdlOperation» carryBANF-pruefen-und-freigeben-E1(in input: BANFMT, out output: BANFMT)

«wsdlOperation» carryBANF-pruefen-und-freigeben-E3(in input: BANFMT, out output: BANFMT)

Figure 4.14: Generated port type with operations

4.4 IT View 69

The graphical representation of the BPEL-code on the top layer can be seen in figure
4.15. The invoke symbol that before just represented Web service calls (create/update
a purchase requisition) was also chosen to represent human interactions (also imple-
mented in script 1).

BANF-
aktualisiert

BANF-
freigege...

BANF-
zurueck...

BANF-
freigege...

BANF-
zurueck...

BANF-
freigege...

BANF-
zurueck...

BANF-
zurueck...

BANF-
freigege...

BANF-
pruefen...

BANF-
pruefen...

BANF-
freigege...

BANF-
freigege...

BANF-
fachlic...

BANF-
zurueck...

BANF-
aktualisi...

BANF-
pruefen...

BANF-
anlegen

BANF-
zurueck...

Dienstleist
ungsbed...

BANF-
fachlic...

BANF-
pruefen...

BANF-
freigege...

BANF-
zurueck...

BANF-
zurueck...

BANF-
freigege...

BANF-
pruefen...
BANF-
pruefen...

BANF-
zurueck...

BANF-
freigege...

Figure 4.15: Graphical demonstration of the generated BPEL-code in ARIS SOA Ar-
chitect

As the BPEL-export did not contain authorization information, also authorization
rules had to be addressed for the different human tasks. After discussions with IBM
Deutschland GmbH and IDS Scheer AG, also this information could be kept by editing
the first script. Even special symbols that represent groups, users or other organiza-
tional units could be determined (figure 4.16).

4.4 IT View 70

BANF korrekt
gespeichertBANF

BANF

BANF

BANF
pruefen und
freigeben E3

E3Role

BANF Dienstleistun
gsbedarf

vorhanden

SYS

BANF anlegen

BestellerRole

BANF_Daten

CreateBAN
F_IF New defined Group symbols

Figure 4.16: Group symbols

The script extends the BPEL-code by information similar to the following:

Listing 4.2: Human task extension in BPEL-code
1 < w p c : s t a f f >
2 <wpc:potentialOwner>
3 < s s s : v e r b >
4 <sss:name>Group Members</sss:name>
5 < s s s : i d >Users</ s s s : i d >
6 <sss :parameter id="GroupName">< ! [CDATA[E3Role]] ></sss :parameter>
7 <sss :parameter id=" IncludeSubgroups "> f a l s e </sss :parameter>
8 </ s s s : v e r b >
9 </wpc:potentialOwner>

10 </ w p c : s t a f f >

Managers have the right to approve and decline special purchase requisitions and this
way, authorization information is written in a syntax that can be understood success-
fully by WebSphere Integration Developer.

After exporting the code, a second script gets necessary human task information from
a generated WSDL-file (“nullLT.wsdl”), combines this information with the generated
BPEL-file (“BANF-fachlich-freigeben.bpel”) and makes further smaller adjustments to
enable a successful import into WebSphere Integration Developer on the next lower
level.

4.4 IT View 71

4.4.2 Completing the Process

The BPEL-code reflects the designed business process model. An IT developer still
has to work with the project after importing the code in a tool on the next lower level.
Ideally, only small changes will have to be made. However, depending on the matu-
rity level of the tools and the quality of the business model, still several adjustments
might be necessary.

Also in the example process still some work had to be done in order to make the pro-
cess deployable on the integrated Process Server after importing the exported BPEL-
code from ARIS SOA Architect. Figure 4.17 demonstrates the three kinds of services
that had to be worked on.

Business Process Function/Activity/
Work Step

NProcess model

Application
with Service-

Interface

Orchestrated
Service without

Human Task

Orchestrated
Service with
Human Task

Application
Human
Task

Service
Impl.

Composite
Service

Atomic
Service

N NO
Service

N

Logical
intermediate step

Figure 4.17: Service implementation overview [Dai07]

After the import, the orchestrated service with human tasks (red circle) was already
built but still a lot of adjustments had to be made in order to make it runnable:

• As the BPEL-import did not work properly concerning information about in-
voked Web services, a manual WSDL-file import was necessary. A library con-
taining all Web services was built with the import of the service descriptions and
it was linked to the imported project by setting dependencies.

• Instead of using message type variables, data type variables were chosen for all
input and output variables. Beforehand, message type variables were selected
automatically after the import.

IBM executes SOAP-calls by using the “doc/lit wrapped” style where parame-
ters are wrapped adding another XML element with the name of the operation.

4.4 IT View 72

This way, message type variables with wrapped content are generated. How-
ever, using message type variables requires assignments for setting and get-
ting the content of variables. Instead of creating additional assignments, nested
data type variables should be directly used. The implemented feature message
(un)bundling adds a wrapper element automatically for service calls and removes
it for the returned results. This mechanism enables working directly with data
type variables, saves many assigns and variable definitions and was used for the
process. Therefore, the right data type variables with their corresponding refer-
ence partners and operations had to be selected for the receive, the reply, for all
Web service invocations and human tasks.

• An extra assignment had to be inserted after the invocation of the Web service
which creates a purchase requisition (see figure 4.19). The assignment was nec-
essary for assigning the purchase requisition number to the number field of the
used business object “BANF” (figure 4.18). The number had to be assigned in
order to be available for the update service in the end of the process where the
correct purchase requisition has to be updated.

Figure 4.18: Used business object

• Only human interactions that were connected to process symbols in the ARIS
model could be exported and imported correctly. However the support for hu-
man tasks connected to events was not yet covered and was therefore not over-
taken in WebSphere Integration Developer. A human task had to be created
manually for the starter of the whole process. Also an administrator for the
whole process had to be set. If no administrator is specified, the initiator of the
process gets administrative rights for all process steps by default.

4.4 IT View 73

After all last adjustments, the process was deployable on the integrated Process Server
and could be tested with IBM’s BPCExplorer (Business Process Choreographer Ex-
plorer). Figure 4.19 and 4.20 show parts of the final BPEL model. The whole model
can be found in appendix A.

Figure 4.19: BPEL process in WID (1)

Figure 4.20: BPEL process in WID (2)

Also the Web services that were used in the business process model had to be avail-
able. Figure 4.21 shows the implemented business process that runs on the integrated
Process Server. Also the Graphical User Interface is offered locally on the Process

4.4 IT View 74

Server. It communicates with the business process and is explained in section 4.5
starting on page 80. An external SAP application and an external SAP Web service
that both run on a SAP Discovery System are invoked by the business process.

Implemented Business Process

SAP Application:

Create Purchase Requisition

SAP Web Service:

Update Purchase Requisition

GUI

(Integrated) WebSphere Process Server (IBM)

Figure 4.21: Service calls

WebSphere Integration Developer was used to make necessary adjustments to access
the remote located components. As the interfaces were complex, extra Web services
were created in order to call the components. The Web services were deployed locally
on the Process Server and are shown in figure 4.22. They implement interface map-
pings and could be integrated easily in the business process. One Web service uses the
adapter SAP Java Connector (SAP JCo) for the application invocation. A Business Appli-
cation Programming Interface (BAPI) of SAP AG could be accessed by using the adapter.
The second one calls an application using a Web service interface. The Web service in-
terface was created by wrapping the existing interface. SAP created this interface and
offered a WSDL for accessing the Web service.

Implemented Business Process

SAP Application:

Create Purchase Requisition

Web Service Interface

SAP Application:

Update Purchase Requisition

GUI

(Integrated) WebSphere Process Server (IBM)

Web Service: Create
Purchase Requisition

Web Service: Update
Purchase Requisition
(update, commit)

Adapter

Figure 4.22: Service calls with extra services

4.4 IT View 75

The Service for the Purchase Requisition Creation

The service for the creation of the purchase requisition was implemented by wrapping
an existing application and creating a service interface. This way of implementing ser-
vices is represented by the blue circle in figure 4.17 on page 71. As the application for
the purchase requisition creation was running on a SAP discovery system and had to
be called from an IBM tool, an adapter was necessary. SAP Java Connector was cho-
sen to enable this communication. The JCo packet supports both, Java to SAP system
as well as SAP system to Java calls. The service should be able to create a purchase
requisition and all the needed parameters had to be handed over to the application on
the SAP system.

As the interface for the creation of the purchase requisition was very complex, an
interface map was needed for mapping the output parameters of the process to the
input parameters of the SAP system application. A Web service binding (“Create-
BANF_IFExport1”) was created for the interface map (“BANF2SAPBANFIntfMap”)
and the map was also connected to the EIS binding of the SAP system (“SAP_Einkaufs-
System”) as shown in the assembly diagram (figure 4.23). Assembly diagrams in
WebSphere Integration Developer demonstrate which components communicate with
each other.

Figure 4.23: Interface map in the assembly diagram

Interface maps are necessary very often and are of high importance for enabling com-
munication among different services with different interfaces. When focusing on the
interface map of the example project, the operation “BANFRequest” was mapped to
the operation “createSapBANFWrapper”. Parameters had to be mapped as well (fig-
ure 4.24).

4.4 IT View 76

Figure 4.24: Operation and parameter mapping

Because of the complex interface structure of the SAP system, several submaps were
necessary to map the concrete parameters to each other in a concise way as shown in
figure 4.25.

Figure 4.25: Parameter mapping with submaps

4.4 IT View 77

Figure 4.26 shows a part of the business object submap that maps the object “BANF”
(purchase requisition) to the object “SAPRequisitionItems”. Here, the material num-
ber of the purchase requisition is mapped to the material field and the name of the
orderer is moved to the “CreatedBy”-field of the interface on the SAP system.

Figure 4.26: Business object mapping

4.4 IT View 78

The Update Service

The remote located update service on the SAP system was implemented by generating
a Web service interface for an existing application. The resulting Web service without
human task (green circle in figure 4.17 on page 71) could be embedded easier in the
infrastructure than the application for creating the purchase requisition as no adapter
was necessary. However, the service interface was still complex and several mappings
were necessary. Figure 4.27 shows the assembly diagram where “Z_BAPI_PR_CHA-
NGE_1Import” represents the external service. “UpdateBANFService” represents a
small process where the service is called. An interface map was necessary to map the
handed over object to the input object of the small process. The export represents a
created Web service binding for the interaction in the assembly diagram. This way, a
new Web service was created.

Figure 4.27: Assembly Diagram for the update service

Figure 4.28 shows the business object mapping where id and header text of the pur-
chase requisition are set on the SAP system.

Figure 4.28: Business object mapping

4.4 IT View 79

Figure 4.29 demonstrates the small BPEL-process “UpdateBANFService” starting with
a Receive and ending with a Reply element. All developed processes represent again
services with input and output parameters. This way, composite services can be cre-
ated fast. After the assignment of several parameters, the update service is invoked.
The Java Snippet is responsible for printing out logging information. Another invo-
cation follows where a “commit” for the update service is executed. Also the output
parameters for the reply have to be assigned correctly after the invocation.

Figure 4.29: Process that invokes the update Web service

4.5 Graphical User Interfaces 80

4.5 Graphical User Interfaces

Not necessarily a special Graphical User Interface (GUI) has to be developed for a pro-
cess. There is only a need for a graphical surface if process steps include human tasks.
Tools for SOA-based integration solutions offer already special GUIs that can be used
(i.e. IBM’s BPCExplorer) but usually individual changes concerning functionalities
and design are necessary.

A GUI might be recommended for staff members that are not familiar with all the un-
derlying IT-systems. The interface should be clearly arranged and easy to understand.
WebSphere Integration Developer offers a possibility of generating a user interface for
a developed process. This user interface depends on input and output parameters and
JavaServer Pages with JavaServer Faces are generated for the human tasks that take
part in the process. The GUI is based on the name of the process and the participating
human tasks. This is why it only has to be replaced if the process name or human task
settings change. For other modifications of the process, the GUI can be kept and does
not have to be regenerated or reimplemented. The GUI can be changed and extended
manually by editing the generated JavaServer Pages.

Up to now, Lotus presentation logic is offered for the purchase requisition process at
DaimlerChrylser AG. However, a GUI should be developed for the prototype. The
BPCExplorer turned out to be very good for testing but still there was a need for an
own graphical user interface with the corporate design of DaimlerChrysler. Special
functions were necessary and some of the fields for the input and output variables
should be hidden or filled automatically. The opportunity of generating a graphical
user interface for the BPEL process was taken. However, the generated JavaServer
Pages with JavaServer Faces components had to be changed afterwards manually to
implement all needed functionalities. The changes mainly concerned design, naviga-
tion and values of parameters.

4.5 Graphical User Interfaces 81

Figure 4.30: Login screen

In the GUI for the prototype, a user first logs on his personal website using the login
screen shown in figure 4.30. Usernames and passwords are sent encrypted by us-
ing HTTPS (HyperText Transfer Protocol Secure based on SSL (Secure Socket layer)).
User names and passwords for authorization could have been retrieved per LDAP
(Lightweight Directory Access Protocol) but for the prototype, users of the operating
system (Microsoft Windows XP) were mapped to the users that take part in the de-
ployed process.

After logging in, the user reaches an individual page with the user’s picture and his
personal to-dos (figure 4.31). The user can also start new processes. Only those pro-
cesses are shown that the user is authorized to start. By entering the identifier “ISP-
SENIOR” (which represents purchase requisitions for consulting) and a requested
amount (figure 4.31), the purchase requisition can be created by calling the Web ser-
vice on the SAP system.

4.5 Graphical User Interfaces 82

Figure 4.31: Individual page

Once a senior manager (2nd line Manager, DaimlerChrysler AG: E3) logs on his indi-
vidual website, he will see a created task in his to-do list. He gets information about
the started process like the date or the name of the creator (figure 4.32).

Figure 4.32: The created task

4.5 Graphical User Interfaces 83

After opening the shown task, the senior manager gets more information. The input
data, the identifying number, the amount and the orderer of the created purchase re-
quisition are shown (figure 4.33).

Figure 4.33: Opened task

A PDF can be opened for a detailed description of the requisition. However, a short
example PDF should be sufficient for the prototype (figure 4.34).

Figure 4.34: Opening the linked PDF

The task can be claimed and a transaction is started. This way, no other user has ac-
cess to this process until the user is done. There is also support for unclaiming tasks
in generated GUIs.

4.5 Graphical User Interfaces 84

The senior manager can decide if the requisition is approved or declined. After a de-
cline, the process finishes and the purchase requisition on the SAP system is updated
with decline information. In case of approval, different cases are possible. The process
comes to an end and the purchase requisition is updated if the amount does not ex-
ceed 150.000 Euro. In the other case, the next instance gets informed by a new entry in
the to-do list. A director (3rd line Manager, DaimlerChrysler AG: E2) has the right to
approve if requisition amounts are smaller than or equal to 500.000 Euro by following
the same steps. The last instance is represented by a vice president (4th line Man-
ager, DaimlerChrysler AG: E1) who can approve requisitions with higher amounts.
Amounts with higher values than 5.000.000 Euro are declined automatically. Figure
4.35 shows the information that the last instance gets about the process.

Figure 4.35: Task of a vice president

As output values have to be filled manually by default, there was a need for setting
several variables. Listing 5.2 demonstrates the way input data can be accessed and
how the output data is set automatically. Also the current username is saved to the
output data in order to keep track of all approvers.

Listing 4.3: Setting output data
1 FacesContext contex t = FacesContext . ge tCurrent Ins tance () ;
2 S t r i n g user = contex t . ge tExternalContext () . getRemoteUser () ;
3 HashMap data = toDoMessageHandler . getToDoInstance () . getInputValues () ;
4

5 i f (data . get ("/E3 ") == n u l l)
6 data . put ("/E3 " , user) ;
7 e l s e i f (data . get ("/E2 ") == n u l l)
8 data . put ("/E2 " , user) ;
9 e l s e i f (data . get ("/E1 ") == n u l l)

10 data . put ("/E1 " , user) ;
11

12 toDoMessageHandler . getToDoInstance () . setOutputValues (data) ;
13 System . out . p r i n t l n (" OutputValues: ") ;
14 System . out . p r i n t l n (toDoMessageHandler . getToDoInstance () . getOutputValues ()) ;

4.5 Graphical User Interfaces 85

The Boolean value for the approval decision was represented by a generated check-
box. This checkbox was replaced by buttons (“Erteilen”, “Ablehnen”) and for each
button a different function should be called. For the function for approving purchase
requisitions, the Boolean “true” had to be set for the output data as shown in listing
4.4.

Listing 4.4: Setting the Boolean in the approval function
1 HashMap data = toDoInstance . getOutputValues () ;
2 data . put ("/ f r e i g a b e " , " t rue ") ;
3 toDoInstance . setOutputValues (data) ;

The modification of the generated JavaServer Pages was necessary to create a concise
design with a comprehensible navigation and functionality. The modified GUI rep-
resented the purchase requisition process in an understandable way and it helped to
demonstrate the prototype.

4.6 Monitoring 86

4.6 Monitoring

The Websphere Process Server offers already a tool for gathering information and
monitoring process states, activities and results in the Business Process Container.
This tool is called the BPCObserver. It was activated in the development phase of
the project. Also big monitoring software is developed like the WebSphere Business
Monitor. However, small monitoring tests were sufficient for this project. The figures
4.36 and 4.37 demonstrate the results of process tests. The color blue represents active
processes, red stands for completed processes and green demonstrates the number of
failed processes.

Figure 4.36: Diagram of the BPCObserver for test results of the purchase requisition
project

Figure 4.37: Circle diagram of the BPCObserver for test results of the purchase requi-
sition project

5 Change Request

5.1 Strategy

Because of changes of requirements, recommended process improvements or new cir-
cumstances, a change request for a process might be necessary. Process steps can
change very often and Service-Oriented Architectures shall help for a faster imple-
mentation of modifications. Much money and effort could be saved for companies if
flexibility and agility concerning process changes were achieved.

Many modifications of the business model are possible like additional process steps,
changes of the order of process steps or new called services. The changes should be
verified in detail before a change request is submitted. In general, all the steps that
were necessary for the implementation of the existing model have do be done again
for the modified one. However, based on the existing verified business model, the
implementation can be achieved much faster.

For the realization of a process change, the business process model has to be modified
involving a change of the BPEL-code that is regenerated. This way, the model is also
kept up to date. The change should be documented and the reason for the change
should be described, too. The documentation can help the responsible IT specialists
for a better understanding of the process change that has to be implemented.

Every modeled process can also be interpreted as a new service for other processes.
Services should be registered and all meta information about the services should be
found in a repository. For process changes, a possible versioning would make sense
where different versions of processes are kept and are callable. When editing the exis-
ting business model, equal sub processes should be searched and also already existing
projects with similar goals should be checked for relevance. Eventually, services al-
ready exist that can be reused.

Modifications of a business model can involve small but also big changes of the whole
process implementation. The modeled process modification has to be discussed based
on the eEPC in order to ensure that the responsible IT specialists understand the pro-
cess change. Because of the high level of abstraction that can be reached with eEPCs,
the model should be understandable for both, the business unit and the IT developer.
The business model should be adequate for a common basis for discussion.

5.2 Practical Example 88

Ideally, a merge of the old implementation with the modification should be possible in
order to get faster implementation results. As WebSphere Integration Developer does
not yet support merging old versions with modified BPEL, the implementation steps
have to be done again.

5.2 Practical Example

Incoming change requests for processes usually cost a lot of effort and are money- and
time- consuming for a company. The example process should be modified in order to
demonstrate the agility and flexibility of a Service-Oriented Architecture and possible
cost savings. Incoming change requests address changes concerning process steps of a
business model. They can include demands for new Web services or the use of already
existing ones. In the beginning of a SOA infrastructure development, mostly new ser-
vices will be needed until a repository of reusable services is built. New required
services have to be implemented or old applications with the needed functionality are
wrapped with a usable interface.

For the example process, a reasonable change should be carried out. In the existing
model, the orderer and the managers are not informed about approved or declined
requisitions. The planned process modification should address this problem. In case
of denial, ideally every predecessor should get an e-mail of the next higher instance
with information about the declined requisition. This way, all participants get in-
formed.

For demonstration purposes, the process change should not be that time-consuming
and this is why only one change should be carried out. An e-mail should be sent from
the senior manager to the orderer once the senior manager declines a purchase requisi-
tion. As all the other changes would be modeled the same way, only this single change
of the process model should be shown. The new e-mail service was implemented
locally and was running on the integrated Process Server (figure 5.1).

5.2 Practical Example 89

Implemented Business Process

SAP Application:

Create Purchase Requisition

Web Service Interface

SAP Application:

Update Purchase Requisition

GUI

(Integrated) WebSphere Process Server (IBM)

Web Service: Create
Purchase Requisition

Web Service: Update
Purchase Requisition
(update, commit)

Adapter

E-mail Web Service

Figure 5.1: The new e-mail service

Figure 5.2 shows the resulting eEPC after the modification of the example process
model. A new Web service is called after the decline of a purchase requisition by a
senior manager. The business object “BANF” with all its values represents the input
for a process with the name “Vorgaenger informieren” that calls the Web service. The
Web service is responsible for sending an e-mail to the orderer that initiated the pro-
cess. The function is followed by an event for getting a correct and convertible eEPC.

5.2 Practical Example 90

BANF korrekt
gespeichert

BANF

BANF
freigegeben

und
versendet

BANF freigegeben, versendet x<= 150.000€

BANF
freigegeben

und
versendet

BANF freigeben, versendet > 150.000 €

BANF
zurueckgewie

sen

BANF
freigegeben

und
versendet

BANF freigegeben, versendet x<= 500.000€

BANF
zurueckgewie

sen

BANF
pruefen und
freigeben E1

BANF
freigegeben

und
versendet

BANF freigeben, versendet <= 5.000.000 €

BANF
zurueckgewie

sen

BANF
weitergeleitet

BANF

BANF

BANF

BANF

BANF

BANF

BANF

BANF
pruefen und
freigeben E2

BANF
pruefen und
freigeben E3

E3Role

E2Role

E1Role

BANF
freigegeben

und
versendet

BANF freigeben, versendet > 500.000 €

SYS

BANF
aktualisieren

BANF
aktualisiert

BANF

BANF Dienstleistun
gsbedarf

vorhanden

SYS

BANF anlegen

BANF

BestellerRole

BANF_Daten

BANF_Upd
ateBANF_I

F

CreateBAN
F_IF

SYS

Vorgaenger
informieren

Vorgaenger
informiert

BANF

BANFReject
EmailIF

Figure 5.2: EEPC of the business model with process modification

5.2 Practical Example 91

Again, BPEL-code was generated with EPC2BPEL and the two proprietary scripts pre-
pared the BPEL-code for the import in WebSphere Integration Developer. For the ex-
ample project, a new orchestrated Web service without human tasks was requested.
The Web service should take care of sending e-mails and was implemented directly
in WebSphere Integration Developer. The change of the BPEL-code turned out to be
small. A partner link was added and the special changed case was specified. An invo-
cation for the Web service that references the new partner link was also added. Both
changes of the BPEL-code are shown in listing 5.1.

Listing 5.1: Changes in the BPEL-code
1 <partnerLink xmlns:imp1=" h t t p : //EmailService/BANFRejectEmailIF/Binding2 "
2 name=" BANFRejectEmailIFPL "
3 partnerLinkType=" imp1:BANFRejectEmailWS_BANFRejectEmailIFHttpServicePLT "
4 partnerRole=" r e q u e s t e r " />
5

6 <case
7 condi t ion=" bpws:getVariableData (" ;BANF" ; ,& quot ;/ f r e i g a b e" ;)
8 = f a l s e () ">
9 <invoke xmlns:imp1=" h t t p : //EmailService/BANFRejectEmailIF "

10 inputVar iab le="BANF"
11 name=" Vorgaenger−informieren "
12 operat ion=" i n f o "
13 partnerLink=" BANFRejectEmailIFPL "
14 portType=" imp1:BANFRejectEmailIF "
15 />
16 </case>

After the import of the modified BPEL-code, a new invocation symbol appeared in
the Business Process Editor. The symbol is located directly after the case check for the
decline of the senior manager and is shown in figure 5.3.

5.2 Practical Example 92

Figure 5.3: Modified BPEL in the Business Process Editor

Adjustments had to be made again in order to make the process deployable on the
integrated Process Server. The WSDL file for the new Web service had to be saved
in the library because of problems with the remote import. All adoptions had to be
redone for the whole process including the new service call as no merge was possible.
Dependencies had to be reset, data type variables had to be used and correct reference
partners had to be selected. Also missing human task information had to be added
again. For the new Web service, only small changes were necessary like also choosing
the correct reference partner with the right operation and data type variables.

The E-mail Sevice

The service itself was implemented by creating an own new project in WebSphere
Integration Developer. Figure 5.4 shows the Assembly Diagram of the e-mail Web
service where the generated Web service binding “BANFRejectEmailWS” represents
the interface.

Figure 5.4: E-mail service in the Assembly Diagram

5.2 Practical Example 93

An interface mapping was necessary to map the incoming business object “BANF” to
the object “EmailMessage” (figure 5.5).

Figure 5.5: Interface mapping for the e-mail service

The business object mapping is shown in figure 5.6 where information about number,
amount, orderer, approvers and result of the purchase requisition is combined to build
the body of the e-mail. Subject, sender and receiver were hard-coded by assignments
for the prototype.

Figure 5.6: Business object mapping for the e-mail service

A part of the implementation of the e-mail service is shown in listing 5.2. There, the
necessary variables are set with the information that is provided by the business object
mapping.

5.2 Practical Example 94

Listing 5.2: Implementation of the e-mail service
1 publ ic void send (DataObject input1) {
2 S t r i n g to = input1 . g e t S t r i n g (" to ") ;
3 S t r i n g from = input1 . g e t S t r i n g (" from ") ;
4 S t r i n g s u b j e c t = input1 . g e t S t r i n g (" s u b j e c t ") ;
5 S t r i n g body = input1 . g e t S t r i n g (" body ") ;
6 System . out . p r i n t l n ("E−mail body: ") ;
7 System . out . p r i n t l n (body) ;
8 Send send = new Send () ;
9 send . send (to , from , s u b j e c t , body) ;

10 }

Like all the other used Web services, the new e-mail Web service had to be deployed
on the (integrated) Process Server for being available for the main process. This way,
an e-mail notification about declined purchase requisitions could be sent to the creator
of the purchase requisition.

6 Summary and Conclusion

6.1 Results of the SOA Live Session Project

With the SOA Live Session project, much experience has been gained concerning the
ideas of SOA, its benefits and its drawbacks. The prototype helped to provide an
insight into SOA and the current state of maturity of existing tools. The resulting
working project demonstrated that processes can indeed be implemented with this
SOA approach. The explained top-down strategy was realized and experiences could
be gained.

In addition, the process was modified to demonstrate the flexibility and agility that can
be achieved with a SOA. An ad hoc implementation of a process change was demon-
strated. The process modification was carried out based on the top-down approach
starting with a change of the business process model.

Software of different vendors (IDS Scheer AG, IBM and SAP) was used for the process
implementation. This proved the possibility of combining heterogeneous tools and
services in a SOA. WSDL (Web Services Description Language) interfaces were deve-
loped for external SAP applications in order to enable their successful integration.

During the project, an insufficient state of maturity of SOA development software
was recognized. Compatibility problems among software of different vendors were
found and caused implementation problems. A solution of these compatibility prob-
lems was developed in close cooperation with the vendors. Because of the immaturity
of the existing BPEL standard, vendors developed proprietary BPEL extensions and
compatibility problems were based on these vendor specific differences.

The prototype was presented to the executive management at DaimlerChrysler AG
and valuable feedback comments could be gained. Questions were raised about time
and effort that was needed to implement the process following the top-down ap-
proach. Although the process was small and IBM Deutschland GmbH, IDS Scheer
AG and SAP AG supported the project, three months were necessary to create the
prototype. Certainly, this project was the first SOA project and experience had to be
collected first. However, a significant amount of effort was required based on restric-
tions related to the maturity level of the tools used and the compatibility among each
other. The top-down approach was demanding for the tools of different companies
on different layers. Because of the restricted maturity of tools, business critical pro-
cesses should not yet be implemented based on a Service-Oriented Architecture. On

6.2 Conclusion 96

the other hand, as a joint effort with companies like IBM Deutschland GmbH, IDS
Scheer AG and SAP AG, the planned project could be successfully implemented and
the fast modification of the process could be demonstrated. The companies already
started to improve their products based on the problems that arised and based on the
feedback they received. The reliability of the tools will certainly be improved invol-
ving a faster development.

One conclusion is the fact that SOA projects need a lot of time and investment before
profiting from efforts. First projects will be both time- and money-consuming until a
considerable amount of services is reached (later Return on Investment).

Another discussed topic concerned the way business process models are created. Event-
driven Process Chains represent a very good base for common discussions between
the business unit and IT developers. They are relatively easy to read and understand.
However, still several rules have to be considered for creating a convertible business
model. Responsible persons would have to be trained in creating convertible models.
Various rules are already explained in this thesis but still more experience is needed
for defining rules for any kind of business process for a company.

As a result of the work performed in this thesis, DaimlerChrysler decided to start
further SOA projects and to continue researching into SOA and its relevance and in-
fluence on the company.

6.2 Conclusion

Although the term SOA is mentioned very often in the media and many companies
develop and do research for SOA solutions, much additional tool development has to
occur before Service-Oriented Architectures become a main stream approach for he-
terogeneous environments. However, many people and companies expect a lot from
this new architecture and hope that this way, a better control over heterogeneous IT
landscapes can be achieved. With the project of this thesis, a first step for creating
compatibility between SOA software of different companies could be made, the cur-
rent state of developing SOAs could be analyzed and several still existing problems
could be exposed. The development of further standards will hopefully make cooper-
ation easier between companies.

The prototype did not require an Enterprise Service Bus and also repositories were
not accessed. Future work should also include these components in the architecture.
With an ESB, also mediation implementations should be analyzed. Certainly, several
repositories of different vendors will be used in the future and the cooperation of
different repositories will be necessary. Many compatibility issues will have to be
addressed and also security aspects still represent a big challenge. SOA governance
will also play a decisive role for the success of SOA projects in companies.

List of Figures

2.1 Expected benefits of SOA [Pez06] . 9
2.2 Expected drawbacks of SOA [Pez06] . 10
2.3 Orchestration And Choreography [Erl05] 14
2.4 The Find, Bind, and Execute Paradigm [MTSM03] 19
2.5 Big Picture SOA [Dai07] . 21
2.6 Enterprise Service Bus and connected component types[Bal05] 24
2.7 Models of Interaction between Tasks and Processes [III+05] 35

3.1 Generic proceeding (top-down) . 38
3.2 EPC: Event symbol [DB07] . 40
3.3 EPC: Function symbol [DB07] . 40
3.4 EPC: Organisation unit symbol [DB07] . 42
3.5 EPC: Data model symbol [DB07] . 42
3.6 EPC: Web service symbol [DB07] . 42
3.7 EPC: XOR, AND, OR [DB07] . 43
3.8 Logical Operators [DB07] . 43
3.9 An example eEPC [KNS92] . 44
3.10 Web service call example . 45
3.11 Service overview [Dai07] . 50

4.1 Application architecture for a Consumer Electronics Company [Spr07] . 51
4.2 Proceeding (top-down) . 53
4.3 Acquisition process . 55
4.4 Purchase requisition process description 57
4.5 Draft eEPC . 59
4.6 Legend for figure 4.5 . 60
4.7 The final eEPC of the business process . 62
4.8 Legend for figure 4.7 . 63
4.9 Business process . 64
4.10 UML representation of the data object “BANF” 64
4.11 Development procedure . 66
4.12 Human task extension in the BPEL allocation diagram 67
4.13 A completed BPEL allocation diagram . 68
4.14 Generated port type with operations . 68
4.15 Graphical demonstration of the generated BPEL-code in ARIS SOA Ar-

chitect . 69
4.16 Group symbols . 70
4.17 Service implementation overview [Dai07] 71
4.18 Used business object . 72

List of Figures 98

4.19 BPEL process in WID (1) . 73
4.20 BPEL process in WID (2) . 73
4.21 Service calls . 74
4.22 Service calls with extra services . 74
4.23 Interface map in the assembly diagram 75
4.24 Operation and parameter mapping . 76
4.25 Parameter mapping with submaps . 76
4.26 Business object mapping . 77
4.27 Assembly Diagram for the update service 78
4.28 Business object mapping . 78
4.29 Process that invokes the update Web service 79
4.30 Login screen . 81
4.31 Individual page . 82
4.32 The created task . 82
4.33 Opened task . 83
4.34 Opening the linked PDF . 83
4.35 Task of a vice president . 84
4.36 Diagram of the BPCObserver for test results of the purchase requisition

project . 86
4.37 Circle diagram of the BPCObserver for test results of the purchase req-

uisition project . 86

5.1 The new e-mail service . 89
5.2 EEPC of the business model with process modification 90
5.3 Modified BPEL in the Business Process Editor 92
5.4 E-mail service in the Assembly Diagram 92
5.5 Interface mapping for the e-mail service 93
5.6 Business object mapping for the e-mail service 93

A.1 E-mail with information about the purchase requisition process 109
A.2 Purchase Requisition Information . 110
A.3 BPEL process in WID (1) . 111
A.4 BPEL process in WID (2) . 111
A.5 BPEL process in WID (3) . 112
A.6 Aris EPC rules (structure rules) [AG06] 113
A.7 Aris EPC rules (Rules for service-oriented EPC 1) [AG06] 114
A.8 Aris EPC rules (Rules for service-oriented EPC 2) [AG06] 115
A.9 CD Content . 116

List of Tables

3.1 Abstraction layer [KNS92] . 41
3.2 Specification layer [KNS92] . 41
3.3 General EPC rules [DB07] . 46
3.4 Structure rules for EPCs [AG06] . 47
3.5 Rules for service-oriented EPCs [AG06] 48

A.1 Acronym descriptions for the acquisition process on page 55 108

Listings

2.1 BPEL process [Dje04] . 28
2.2 Definition of partnerLinkTypes [Dje04] 29
2.3 The <partners> [Dje04] element . 29
2.4 Invoking the operation “buy” with the input variable “itemid” [Dje04] . 29
2.5 The <receive> element [Dje04] . 30
2.6 With the <reply> element a price is returned to the caller [Dje04] 30
2.7 Sequence for a synchronous Web service call [Dje04] 30
2.8 Flow example for executing A before B [Dje04] 31
2.9 Variable definition to an xsd type int [Dje04] 31
2.10 Assigning a value to a variable [Dje04] . 31
2.11 Defining a property for enabling public access to an attribute [Dje04] . . 32
2.12 Defining a correlationSet for the user identification [Dje04] 32
4.1 Condition expression for branches . 65
4.2 Human task extension in BPEL-code . 70
4.3 Setting output data . 84
4.4 Setting the Boolean in the approval function 85
5.1 Changes in the BPEL-code . 91
5.2 Implementation of the e-mail service . 94

Acronyms

Notation Description
ARIS Architecture of Integrated Information Systems

BAPI Business Application Programming Interface
BPCExplorer Business Process Choreographer Explorer
BPCObserver Business Process Choreographer Observer
BPEL4WS Business Process Execution Language for Web Ser-

vices

CORBA Common Object Request Broker Architecture

DCE Distributed Computing Environment
DCOM Distributed Component Object Model (Microsoft)

EAI Enterprise Application Integration
EAR Enterprise Application Archive
EJB Enterprise Java Beans
ESB Enterprise Service Bus

GLOBUS Global Buying System
GUI Graphical User Interface

HTTP Hypertext Transfer Protocol
HTTPS HyperText Transfer Protocol Secure

IDL Interface Definition Language
IIOP Internet Inter-ORB Protocol

J2EE Java 2 Enterprise Edition
JCo Java Connector
JMS Java Message Service
JSF JavaServer Faces
JSP JavaServer Pages

LDAP Lightweight Directory Access Protocol

Acronyms 102

Notation Description
NACOS New Accounting and Controlling System

OASIS Organization for the Advancement of Structured In-
formation Standards

PDF Portable Document Format

QoS Quality of Service

RMI Remote Method Invocation
RPC Remote Procedure Call

SOA Service-Oriented Architecture
SOAP First name: Simple Object Access Protocol, later also

known as the Service-Oriented Architecture Proto-
col. In order to dissociate from these descriptions, it
is just called SOAP today.

SQL Structured Query Language
SSL Secure Socket layer

UDDI Universal Description, Discovery and Integration.
UDDI defines a set of services that support the de-
scription and discovery of organizations, businesses
and other Web service providers, their published
Web services and the technical interfaces for access-
ing the Web services

UML Unified Modeling Language

VCD Value Chain Diagrams

W3C World Wide Web Consortium
WID WebSphere Integration Developer
WS-BPEL Web Services Business Process Execution Language
WSDL Web Service Description Language

XML Extensible Markup Language
XPath XML Path Language
XQuery XML Query Language
XSD XML Schema Definition

Bibliography

[ACG+03] T. Andrews, F. Curbera, H. Dholakiaand Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weer-
awarana. Business Process Execution Language for Web Services, Ver-
sion 1.1. ftp://www6.software.ibm.com/software/developer/
library/ws-bpel.pdf, 2003.

[AG06] IDS Scheer AG. ARIS SOA Architekt, 1997-2006.

[Bal05] Naveen Balani. Model and build ESB SOA frameworks. http://
www-128.ibm.com/developerworks/web/library/wa-soaesb/,
2005.

[BBF+06] Norbert Bieberstein, Sanjay Bose, Marc Fiammante, Keith Jones, and
Rawn Shah. Service-Oriented Architecture (SOA) Compass. Pearson Edu-
cation, Inc., Rights and Contracts Department. One Lake Street. Upper
Saddle River, NJ 07458, 2006.

[BM03] Colin Boyd and Wenbo Mao, editors. Information Security: 6th International
Conference, Isc 2003, Bristol, Uk, October 2003 Proceedings. Springer, 2003.

[CG00] Robert Cailliau and James Gillies. How the Web Was Born: The Story of the
World Wide Web. Oxford University Press, 2000.

[Col04] Mark Colan. Service-Oriented Architecture expands the vision
of Web services, Part 1, Characteristics of Service-Oriented Archi-
tecture. http://www-128.ibm.com/developerworks/library/
ws-soaintro.html, 2004.

[Dai07] DaimlerChrylser. ITP/AM Technology and Methods MCG, 2007.

[DB07] Rob Davis and Eric Brabänder. ARIS Design Platform. Getting Started with
BPM. Springer Verlag, London, 2007.

[Dje04] Riad Djemili. BPEL4WS. Business Process Execution Language for Web
Services, 2004.

[DJMZ05] Wolfgang Dostal, Mario Jeckle, Ingo Melzer, and Barbara Zengler. Service-
orientierte Architekturen mit Web Services. Konzepte - Standards - Praxis. Else-
vier GmbH, München, 2005.

[DRS+07] Chris Dudley, Laurent Rieu, Martin Smithson, Tapan Verma, and Byron
Braswell. WebSphere Service Registry and Repository Handbook. IBM Docu-
ment No. SG24-7386-00, 2007.

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
http://www-128.ibm.com/developerworks/web/library/wa-soaesb/
http://www-128.ibm.com/developerworks/web/library/wa-soaesb/
http://www-128.ibm.com/developerworks/library/ws-soaintro.html
http://www-128.ibm.com/developerworks/library/ws-soaintro.html

Bibliography 104

[Erl05] Thomas Erl. Service-Oriented Architecture, Concepts, Technology, and Design
(The Prentice Hall Service-Oriented Computing Series from Thomas Erl). Pear-
son Education, Inc., Rights and Contracts Department. One Lake Street.
Upper Saddle River, NJ 07458, 2005.

[FM02] Alex Ferrara and Matthew MacDonald, editors. Programming .NET Web
Services. O’Reilly, 2002.

[GG06] Javier Garcia and German Goldszmidt. Building SOA composite business
services, Part 1: Develop SOA composite applications to enable business
services. http://www.ibm.com/developerworks/webservices/
library/ws-soa-composite/, 2006.

[Ghe97] Iosif G. Ghetie. Networks and Systems Management: Platforms Analysis and
Evaluation. Springer, 1997.

[GSM02] Dominik Gruntz, Clemens Szyperski, and Stehpan Murer. Component Soft-
ware Beyond Object-Oriented Programming. ACM Press, New York, 2002.

[GYVN03] Roy W. Schulte Gartner: Yefim V. Natis. Introduction to Service-Oriented
Architecture, 2003.

[Har04] Elliotte Rusty Harold. Java Network Programming. O’Reilly, 2004.

[HB04] Hugo Haas and Allen Brown. W3C Working Group Note, Web Services
Glossary. http://www.w3.org/TR/ws-gloss/, 2004.

[III+05] Matthias Kloppmann (IBM), Dieter Koenig (IBM), Frank Leymann (IBM),
Gerhard Pfau (IBM), Alan Rickayzen (SAP), Claus von Riegen (SAP),
Patrick Schmidt (SAP), and Ivana Trickovic (SAP). WS-BPEL Extension
for People – BPEL4People. A Joint White Paper by IBM and SAP, 2005.

[JE07] Diane Jordan and John Evdemon. OASIS Web Services Business
Process Execution Language Version 2.0, Committee Specification.
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.
0-CS01.pdf, 2007.

[KAH+05] Martin Keen, Oscar Adinolfi, Sarah Hemmings, Andrew Humphreys,
Hanumanth Kanthi, and Alasdair Nottingham. Patterns: SOA with an En-
terprise Service Bus in WebSphere Application Server V6. IBM Document No.
SG24-6494-00, 2005.

[KBS05] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA. Service-Oriented
Architecture Best Practices. Prentice Hall Professional Technical Reference,
New Jersey, 2005.

[Kla06] Prof. Dr. Herbert Klaeren. Skriptum Softwaretechnik, 2006.

[KNS92] Gerhard Keller, Markus Nüttgens, and August-Wilhelm Scheer. Se-
mantische Prozeßmodellierung auf der Grundlage Ereignisgesteuerter

http://www.ibm.com/developerworks/webservices/library/ws-soa-composite/
http://www.ibm.com/developerworks/webservices/library/ws-soa-composite/
http://www.w3.org/TR/ws-gloss/
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf

Bibliography 105

Prozeßketten (EPK). In August-Wilhelm Scheer (Hrsg.): Veröffentlichun-
gen des Instituts für Wirtschaftsinformatik, Heft 89. http://www.iwi.
uni-sb.de/Download/iwihefte/heft89.pdf, Saarbrücken, 1992.

[Kra06] Volker Kramberg. Pattern-based Evaluation of IBM WebSphere BPEL,
2006.

[LA98] Peter Loos and Thomas Allweyer. Process Orientation and Object-
Orientation - An Approach for Integrating UML and Event-Driven Pro-
cess Chains (EPC), Paper 144. Institut für Wirtschaftsinformatik, Univer-
sity of Saarland, Saarbrücken, 1998.

[LR00] Frank Leymann and Dieter Roller. Production Workflow (Concepts and Tech-
niques). Prentice Hall PTR, Upper Saddle River, New Jersey 07458, 2000.

[MTSM03] James McGovern, Sameer Tyagi, Michael E. Stevens, and Sunil Mathew.
Java Web Services Architecture. Morgan Kaufmann, San Francisco, 2003.

[Nüb07] Marc Nübling. Entwurf einer Security-Infrastruktur für SOA auf Basis
von Web Services und IBM WebSphere Developer, 2007.

[OAS04] OASIS. UDDI Version 3.0.1. http://uddi.org/pubs/uddi-v3.0.
1-20031014.pdf, 2004.

[OMG07] Inc. Object Management Group. CORBA BASICS. http://www.omg.
org/gettingstarted/corbafaq.htm, 2007.

[OWRB06] Kai J. Oey, Holger Wagner, Simon Rehbach, and Andrea Bachmann. Mehr
als alter Wein in neuen Schläuchen. Eine einführende Darstellung des
Konzepts der serviceorientierten Architekturen. In Unternehmensarchitek-
turen und Systemintegration, page 197 ff. Gito, Berlin, 2006.

[Pez06] Massimo Pezzini. An SOA Maturity Model: Where Do You Stand and
Where Are You Going?, 2006.

[SCD00] Darleen Sadoski and Santiago Comella-Dorda. Three Tier Software Archi-
tectures. Software Technology Roadmap. http://www.sei.cmu.edu/
str/descriptions/threetier_body.html, 2000.

[Sch00] August-Wilhelm Scheer. ARIS - Business Process Modeling. Springer Verlag,
Berlin, third edition, 2000.

[Sei02] Heinrich Seidlmeier. Prozessmodellierung mit ARIS. Eine beispielorientierte
Einführung für Studium und Praxis. Friedr. Vieweg & Sohn Verlagsge-
sellschaft mbH, Braunschweig/Wiesbaden, 2002.

[Shi03] Robert J. Shimonski. Building DMZs For Enterprise Networks. Syngress
Publishing, 2003.

[Sie05] Johannes Siedersleben. Moderne Softwarearchitektur. dpunkt.verlag, Hei-
delberg, 2005.

http://www.iwi.uni-sb.de/Download/iwihefte/heft89.pdf
http://www.iwi.uni-sb.de/Download/iwihefte/heft89.pdf
http://uddi.org/pubs/uddi-v3.0.1-20031014.pdf
http://uddi.org/pubs/uddi-v3.0.1-20031014.pdf
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.sei.cmu.edu/str/descriptions/threetier_body.html
http://www.sei.cmu.edu/str/descriptions/threetier_body.html

Bibliography 106

[Spr07] Prof. Dr.-Ing. Wilhelm G. Spruth. Personal communication, 2007.

[SW01] Uwe Schneider and Dieter Werner. Taschenbuch der Informatik. Fach-
buchverlag Leipzig im Carl Hanser Verlag München Wien, 2001.

[Szy02] Clemens Szyperski. Component Software - Beyond Object-Oriented Program-
ming. Addison-Wesley, 2002.

[vHOS05] Kees van Hee, Olivia Oanea, and Natalia Sidorova. Colored Petri Nets to
Verify Extended Event-Driven Process Chains. Department of Mathemat-
ics and Computer Science, Eindhoven University of Technology, 2005.

[WCL+05] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey,
and Donal F. Ferguson. Web Services Platform Architecture. SOAP, WSDL,
WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More.
Pearson Education, Inc., Rights and Contracts Department. One Lake
Street. Upper Saddle River, NJ 07458, 2005.

[WM06] Dan Woods and Thomas Mattern. Enterprise SOA - Designing IT for Busi-
ness Innovation. O’Reilly Media, 2006.

[Zül04] Heinz Züllighoven. Object-Oriented Construction Handbook: Developing
Application-oriented Software with the Tools and Materials Approach. Morgan
Kaufmann Publishers Inc, US, 2004.

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst habe und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Oliver Dalferth Tübingen, September 1, 2007

Appendix A: Process Descriptions

Appendix A provides acronym descriptions for the acquisition process shown on page
55. Information is given that was necessary to understand the process steps of the im-
plemented purchase requisition process. An e-mail and a PDF with process informa-
tion is shown. Also the whole graphical interpretation of the completed BPEL process
in WebSphere Integration Developer is attached.

Acronym German English
MAB Materialanforderungsbeleg Material requisition note
BNS Benachrichtigungsschein Notification certificate
MBD Material-Bestandsführung und

Disposition
Material Inventory Mainte-
nance and Disposition

IDS Instandhaltungs- und Ersatz-
teile- Dokumentationssystem

Maintenance and Spares Docu-
mentation System

NACOS Neues Accounting- und Con-
trolling-System

New Accounting and Control-
ling System

MES Material-Einkauf-System Material Buying System
MABB Material-Anforderungsbeleg-

Buchung
Material requisition receipt
book entry

ZB Zentrale Buchung Central entry
WBS Warenbegleitschein Stock dispatch note
WES Wareneingangs und -abgleich-

system
Stock Receipt and Reconcili-
ation system

Table A.1: Acronym descriptions for the acquisition process on page 55

109

Figure A.1: E-mail with information about the purchase requisition process

110

����� <��	
�������� �����������������

Werk 50

��	
�������� ����� <

���������� ���-���),���-�����������	�1����������	�������������� 	��2�����������

�,���	1������

Erfassungs-
stelle in NACOS

MESMES
Bestellung

NACOS

Lotus NotesStart
Freigabe-

und
Genehmi-

gungs-
prozess

BW/CW:

Budgetprüfung u.

Kontierungsvorschlag

BW/BBA:
Kontierung

Hierarchischer Genehmigungsdurchlauf über Lotus Notes-Workflow

Systemseitige Freigabe

����

Genehmi-
gungs-
stelle
(E4)

Genehmi-
gungs-
stelle
(E3)

Genehmigungs-

stelle

(E2)

$�"��&�.;8=

$�"��&��.;8=

$�"�&���.;8=

Genehmigungs-
stelle

(E1)

�+B��&���.;8=

wenn BANF
> Ebene 4

wenn BANF
� Ebene 4

�,�	1������3����,�	1������3������������� �� 4�	�5	/-�����������4�	�5	/-�������������

Lotus Notes

- Anlagendatenbank -

<< Anlagen>>
<<Testat>>

> 500 TEUR

Endfreigabe
nachTestat

���5���-�����������	�1��������������	����6

CD �������0��'�$�""� ������

� ��� !"�#��
��������$%

� !����������������������&�'�������������(���)���'%

� *�����������������*����������'����)�������������
�����������������������������

���+��������������+����������**�$%

C;��"7� ������ �� ����#,������$��� ��",���� ���=�� ,�� ��� ��#$��&������4�7���

0��%����7���

C1���� ��%�������(��0�� ���0���� "��� (����� ��� ���,��(���������	
�
�� ���� ����%����

Figure A.2: Purchase Requisition Information

111

Figure A.3: BPEL process in WID (1)

Figure A.4: BPEL process in WID (2)

112

Figure A.5: BPEL process in WID (3)

Appendix B: ARIS Rules for Event-driven
Process Chains

ARIS SOA Architect offers a facility to check modeled Event-driven Process Chains
for correctness. A page with validation results is generated. Appendix B shows the
validation pages of a correct EPC.

ARIS Semantic Check

Validation of a service-oriented EPC

Validates whether a service-oriented EPC is modeled correctly.

Structure rules

Rule:All functions/events have only one incoming/outgoing connection

Description:This rule checks whether all functions and events have a maximum of one incoming or outgoing
connection.

The following functions and events have more than one incoming or outgoing connection:

Checked model Object name Object type

Check produced no errors.

Rule:Each path must begin and end with an event

Description:This rule checks whether all paths begin and end with an event.

The following start or target objects are no events:

Checked model Object name Object type

Check produced no errors.

Rule:No OR/XOR possible after event

Description:This rule checks whether splitting OR or XOR rules (distributors) do not exist within a process
after events.

The following events have an OR or an XOR rule as successor:

Checked model Event Succeeding rule

Check produced no errors.

Rule:No objects without connections may exist

Description:This rule checks whether a model contains object occurrences without connections to other
occurrences. Each object in a model must have one or more predecessors and/or successors.

The following objects have no connections to other objects:

Checked model Object name Object type

Check produced no errors.

Rule:Number of outgoing or incoming connections at the rule

Description:This rule checks whether at each simple rule there are either exactly one incoming and a
minimum of two outgoing connections, or a minimum of two incoming and exactly one outgoing connection.

The number of incoming and outgoing connections is not correct for the following rules:

Checked model Object name Object type

Check produced no errors.

Seite 1 von 1ARIS Report

05.07.2007file://C:\Dalferth\SOA live session\ARIS_addOns\ARIS Report.htm

Figure A.6: Aris EPC rules (structure rules) [AG06]

114

Rules for service-oriented EPC

Model : BANF fachlich freigeben

Rule: A business function should be carried out by one single organizational unit.

Description: Only a business function that is connected with one single object of the organizational unit type
via a relationship of the 'carries out' type is interpreted via the transformation to the BPEL process.

Semantic check was successful.

Model : BANF fachlich freigeben

Rule: A system function is supported by one single object of the 'Application system type' type.

Description: A system function may be supported by only one single object of the 'Application system type'
type and is thus interpreted via the transformation to the BPEL process.

Semantic check was successful.

Model : BANF fachlich freigeben

Rule: All input and output objects must be mapped to objects of the 'Class' type or be themselves
objects of the 'Class' type.

Description: All objects that are connected with functions via relationships of the 'has input' or 'has output'
type should be of the 'Class' type or be directly or indirectly mapped to one or more objects of the 'Class'
type to be interpreted correctly via the transformation to the BPEL process.

Semantic check was successful.

Model : BANF fachlich freigeben

Rule: An 'Application system type' object supporting a system function may be connected with only
one object of the 'Component' type.

Description: According to the modeling conventions for the representation of a service in ARIS, only one
single object of the 'Component' type may be connected with an 'Application system type' object via a
relationship of the 'encompasses' type.

Semantic check was successful.

Model : BANF fachlich freigeben

Rule: Only one single object of the 'Operation' type is connected with a system function.

Description: Only one single object of the 'Operation' type can be connected with a system function and
interpreted via the transformation to the BPEL process.

Semantic check was successful.

Model : BANF fachlich freigeben

Rule: Only specific types of function symbols are used.

Description: Only the business function, the system function and the system function target are allowed for
transformation to the BPEL process.

Semantic check was successful.

Seite 1 von 1ARIS Report

05.07.2007file://C:\Dalferth\SOA live session\ARIS_addOns\ARIS Report.htm

Figure A.7: Aris EPC rules (Rules for service-oriented EPC 1) [AG06]

115

Model : BANF fachlich freigeben

Rule: Process contains public messaging activities.

Description: Public messaging activities serve to specify the input and output information of the process. This
information is used by other components when communicating with the process. According to the modeling
conventions for service-oriented EPCs, public messaging activities can represent process steps that follow
both start events and preceding end events and specify the associated input and output data objects of the
process. Alternatively, the input and output data of the process can be specified as a data object of the start
or end event.

Semantic check was successful.

Model : BANF fachlich freigeben

Rule: Process parallel flows, inclusive decision paths and exclusive decision paths are well-formed.

Description: Process parallel flows should be specified by splitting and joining AND/XOR rules, or they
should contain either one splitting AND/XOR rule only for which there is no other connection between their
paths, or one joining AND/XOR rule only that is met by all connections.

Semantic check was successful.

Seite 1 von 1ARIS Report

05.07.2007file://C:\Dalferth\SOA live session\ARIS_addOns\ARIS Report.htm

Figure A.8: Aris EPC rules (Rules for service-oriented EPC 2) [AG06]

Appendix C: CD Content

Appendix C describes the content of the attached CD.

CD:
├───mirror
├───pictures
├───thesis
├───tutorials
└───videos

Figure A.9: CD Content

• Used Internet references were downloaded and saved in folder mirror on the CD.

• All figures of this thesis were saved in folder pictures.

• This work was saved in folder thesis on the CD.

• The following written tutorials explain proceedings that were relevant for the
implementation of the prototype and can also be found on the CD in folder tuto-
rials.

1. Testing a Web service on the SAP Discovery System:
In this tutorial, the user logs on the SAP Discovery System, browses to a
concrete Web service, runs a test with concrete parameters and gets a re-
sponse. It is also explained where to check the effects of the concrete Web
service.

2. Obtain WSDLs from the SAP Discovery System:
The user learns how to find and obtain WSDLs on the SAP Discovery Sys-
tem.

3. Invoking Web services on the SAP Discovery System with WebSphere
Integration Developer:
In this tutorial, a process is created with Websphere Integration Developer
where a concrete Web service on the SAP Discovery System is invoked.
Also a description for testing the Web service call is given.

4. Invoking an Application on the SAP Discovery System via Java Connec-
tor (JCo) with WebSphere Integration Developer:
This tutorial describes how an application on the SAP Discovery System
can be invoked from WebSphere Integration Developer.

117

• Also two videos (“SOALiveSession_Part1” and “SOALiveSession_Part2”) can be
found on the CD in folder videos. They demonstrate the steps that were shown
in the SOA Live Session.

	Introduction
	SOA - Basics
	SOA
	Definition of SOA
	Historical Context
	Motivation for SOA, Expected Benefits and Drawbacks
	Principles of Service-orientation

	The Term Service
	Functions, Classes, Objects, Components and Modules
	Service Definition
	Granularity
	Composition
	Orchestration and Choreography

	Business Services
	Web Services
	Definition
	Description
	WSDL
	SOAP

	Service Call
	The ``Find, Bind, and Execute Paradigm''
	Service Calls in a SOA Landscape

	SOA Lifecycle
	The Enterprise Service Bus
	Definition of an ESB
	Connection
	Protocol Independence and Pattern Support
	Transport
	Mediation
	Security
	Implementation of an ESB

	BPEL
	Business Process
	A BPEL Introduction
	BPEL4People

	Strategy for Top-Down SOA Projects
	Overview
	Business View
	The Business Process Model
	Event-driven Process Chains (EPCs)
	Identifying Services or Service Candidates
	Designing the IT Version of the Business Process Model

	IT View
	BPEL Conversion
	Completing the Process

	Practical Example (SOA Live Session Project)
	Motivation
	Overview
	Business View
	Assessment
	The Business Process Model
	Identifying Services or Service Candidates
	Designing the IT Version of the Business Process Model

	IT View
	BPEL Conversion
	Completing the Process

	Graphical User Interfaces
	Monitoring

	Change Request
	Strategy
	Practical Example

	Summary and Conclusion
	Results of the SOA Live Session Project
	Conclusion

	List of Figures
	List of Tables
	Listings
	Acronyms
	Bibliography
	Appendix A: Process Descriptions
	Appendix B: ARIS Rules for Event-driven Process Chains
	Appendix C: CD Content

