
UNIVERSITY OF LEIPZIG

Department of Computer Science

Generation of a Java front end for a standalone CICS application

accessed through MQSeries

&

Securing CICS with RACF

Submitted by Tobias Busse

Born: 1976/07/14

1st Examiner: Prof. Dr.-Ing. W. G. Spruth

2nd Examiner: Peter Missen

Subject: Computer Science

Matr.Nr.: 7952583

Leipzig, August 2004

Diplomarbeit – Master Thesis

EXECUTIVE SUMMARY

This master thesis deals with the design, programming, implementation and presentation of on-line business ap-

plications for IBM's On-Line Transaction Processing (OLTP) system called Customer Information Control Sys-

tem (CICS). According to the book “Designing and Programming CICS Applications” published by John Hor-

swill [HOR00] we explain two out of many feasible procedures to present the functionality of CICS resp. CICS

business applications.

As the main result, we create for each of both procedures a business application representing a little clip of a

bank customer account program. These applications access a database-like file stored on an Operating

System/390 (OS/390) server to create, read, update, and delete customer accounts. Both use CICS not only as a

transaction processing system but also as an application server that manages business applications 24 hours a day

for 7 days a week. The difference between the two business applications are the data transfer and information dis-

play methods. The first procedure describes how to create a business application that uses the legacy 3270 inter-

face to inquire a customer record stored on the OS/390-server and how to display the information on a 3270 ter-

minal screen (also called as the green screen). In contrast, the second business application uses message queuing

provided by IBM's Message Oriented Middleware (MOM) product MQSeries to transfer the request data to and

the response data from the customer account file between CICS and the Java Virtual Machine (JVM). This JVM

runs on a WINDOWS2000 client, whereas MQSeries has to run on both – the OS/390-server and the WIN-

DOWS2000 client. For this procedure, the so-called MQSeries CICS Bridge – an interface between CICS and

MQSeries on the OS/390-server – is installed and activated. It is also described how to use the Message Queue

Interface (MQI) that connects MQSeries and JAVA on the client computer system.

Hence, the business logic component is used by both sample applications, but they differ in the presentation

logic components. The programs of the business logic component, written in the programming language CO-

BOL, are responsible for the data transfer to and from the customer account file to update or read it, for the busi-

ness calculations, and for the error handling. The presentation logic component of the first business application –

the CICS application NACT – is also written in COBOL and use the Basic Mapping Support (BMS) to set up the

3270 interface. In the second business application called the MQSeries CICS application MQNACT the pro-

grams of the presentation logic component are written in JAVA.

Additionally, this master thesis describes the security management of CICS using IBM's External Security

Manager (ESM) Resource Access Control Facility (RACF). The main part of this procedure is to allow only au-

thorised terminal users an access to an existing CICS address space, including some CICS default user IDs as for

example the CICS Region User ID (CRU), and the Default CICS User ID (DCU). Furthermore, the authorised

user should/may use only those CICS resources for which a permission exists. Securing CICS resources is ex-

plained on the examples of the CICS Transactions Security mechanism and the CICS Command Security mech-

anism.

“There is no human on the world from whom you cannot learn something.”

(Albert Schweitzer)

Acknowledgements

My thanks goes to Prof. Dr. Wilhelm G. Spruth who gave me the best support and who never despaired on

my English writing.

I wish to thank Peter Missen, head of the CICS User Group at IBM Hursley UK, for helping, for redacting

this text, and, of course, for working with the CICS User Group.

My technical thanks goes to Dr. Paul Herrmann who always sustained the functionality of the

JEDI OS/390-server.

Many thanks goes also to:

Nils Michaelsen for his encouragement in my work,

Ulrike Kirsch (IBM Leipzig Germany) for her support on MQSeries,

Sandro Varges (IBM Mainz Germany) for his support on CICS (“Haeh, What is a CSD, Sandro?”),

Thomas Renner (IBM Leipzig Germany) for his support on RACF and JCL,

Ingo Karge who provided for me a desk at the IBM Leipzig location,

the CICS User Group, especially to Paul …, James Taylor, and Kevin ..., and

to everyone at IBM Leipzig.

I would also like to thank my family for their constant support.

For my lovely butterfly Ivonne Lange, the sun should always shine. Thanks for your support, for your

lovely cooking, for your understanding in my work and for your +encouragement. Together we will fight

the future!

TABLE OF CONTENTS
List of Figures ... xi
List of Tables .. xv
List of Listings .. xvii
List of Abbreviations .. xix
Notices .. xxi

1 Introduction to OS/390 23

1.1 Introduction .. 23

1.2 History of OS/390 ... 24

1.3 OS/390 in general .. 27

1.4 OS/390 V2R7 ... 30

2 Introduction to CICS 33

2.1 Introduction .. 33

2.2 History of CICS .. 34

2.3 CICS in general .. 36

3 The Initial Architecture of the CICS Business Applications 39

4 The CICS Business Application NACT 41

4.1 Introduction .. 41

4.2 Uploading the files ... 42

4.3 The NACT COBOL programs and their commands .. 49

4.3.1 Overview .. 49
4.3.2 The presentation logic component ... 49
4.3.3 The business logic component .. 54
4.3.4 Other commands that control the programs .. 56
4.3.5 Excursion: Storing exchange data – When to use the COMMAREA? 57

4.3.5.1 Overview .. 57
4.3.5.2 Temporary Storage – queuing and scratchpad facility 59
4.3.5.3 Transient Data – queuing facility .. 60
4.3.5.4 COMMAREA – a scratchpad facility .. 60
4.3.5.5 Common Work Area, Transaction Work Area, and Terminal User Area – other

viii
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

scratchpad facilities .. 67

4.4 Storing the data – account file, locking file, and name file ... 68

4.4.1 File description ... 68
4.4.2 Installing the storing data ... 70

4.5 The CICS resource definitions ... 74

4.5.1 Overview .. 74
4.5.2 Setting up the CICS resources ... 74

5 The MQSeries CICS Business Application MQNACT 81

5.1 Introduction .. 81

5.2 Messaging and Queuing .. 83

5.2.1 Overview .. 83
5.2.2 Excursion: MQSeries is the UK Post Office ... 84
5.2.3 Messages ... 85
5.2.4 Queue manager ... 87
5.2.5 Queue manager objects ... 88

5.2.5.1 Local and remote queues .. 88
5.2.5.2 Message Channels .. 89
5.2.5.3 MQI Channels .. 90

5.2.6 Message Queuing Interface ... 91

5.3 The architecture of the MQSeries CICS application .. 92

5.4 Setting up MQSeries on the OS/390-server .. 96

5.4.1 The OS/390-server queue manager MQA1 ... 96
5.4.2 The MQSeries CICS Bridge ... 100

5.4.2.1 Overview .. 100
5.4.2.2 Configuring CICS to use the MQSeries CICS Bridge .. 101
5.4.2.3 Configuring MQSeries to use the MQSeries CICS Bridge 105
5.4.2.4 Running the MQSeries CICS Bridge .. 106
5.4.2.5 An automatic start job for the MQSeries CICS Bridge 109

5.4.3 The required queue manager objects .. 112
5.4.3.1 The transmission queue TBUSSE.NACT .. 112
5.4.3.2 The remote queue definition TBUSSE.NACT.REPLYQ 116
5.4.3.3 The dead-letter queue MQA1.DEAD.QUEUE ... 117
5.4.3.4 The channel sender TBUSSE.NACT.OS.WIN .. 118
5.4.3.5 The channel receiver TBUSSE.NACT.WIN.OS ... 120

5.5 Setting up MQSeries on the Windows2000 client ... 122

5.5.1 The WINDOWS2000-client queue manager TBUSSE.NACT 122
5.5.2 The required queue manager objects .. 125

5.5.2.1 A definition script for the queue manager objects .. 125
5.5.2.2 The transmission queue TBUSSE.NACT.XMITQ .. 126
5.5.2.3 The reply-to queue TBUSSE.NACT.REPLYQ ... 127
5.5.2.4 The remote queue definition TBUSSE.NACT.REMOTEQ 128
5.5.2.5 The dead letter queue TBUSSE.NACT.DEAD.LETTER.QUEUE 128
5.5.2.6 The server connection TBUSSE.NACT.CLIENT ... 128

Table of Contents ix

5.5.2.7 The channel sender TBUSSE.NACT.WIN.OS .. 129
5.5.2.8 The channel receiver TBUSSE.NACT.OS.WIN ... 129

5.6 Building the JAVA application .. 132

5.6.1 Coding the MQSeries communication logic .. 132
5.6.1.1 Creating a connection to the WINDOWS2000-client queue manager 132
5.6.1.2 Opening the MQSeries queues for message transport 133
5.6.1.3 Creating the request message and send it .. 134
5.6.1.4 Receiving the response message .. 136
5.6.1.5 Finalising the connection to the WINDOWS2000-client queue manager 136

5.6.2 Coding the presentation logic ... 137

5.7 Connecting both queue managers ... 142

5.7.1 Checking the status of the queue managers and activate services 142
5.7.2 Connecting the WINDOWS2000-client queue manager with the
OS/390-server queue manager ... 144
5.7.3 Connecting the OS/390-server queue manager with the WINDOWS2000-...............client
queue manager .. 146

5.8 Starting the JAVA application .. 149

5.9 Terminating the connection between the MQSeries servers ... 151

5.10 Common MQSeries problems indicated due to this thesis .. 155

5.10.1 Ghost channel connections on the OS/390-server queue manager 155
5.10.2 Resetting channel in-doubt status – The message sequence error 156

6 Securing CICS with RACF 159

6.1 Introduction .. 159

6.2 RACF Topics .. 161

6.2.1 RACF mechanisms .. 161
6.2.2 RACF commands ... 163
6.2.3 Data set and general resource profiles .. 164

6.3 Implementing RACF protection for the CICS region A06C001 169

6.3.1 The CICS region's SIT ... 169
6.3.2 User management of the CICS region ... 171
6.3.3 The CRU .. 171

6.3.3.1 What is it? .. 171
6.3.3.2 Defining the CRU to RACF .. 172
6.3.3.3 Authorising the CRU to invoke CICS as a Started Job 173
6.3.3.4 Authorities required for the CRU .. 174

6.3.4 The DCU .. 175
6.3.4.1 What is it? .. 175
6.3.4.2 Defining the DCU to RACF .. 176

6.3.5 The PLTPIU ... 177
6.3.6 The CICS region data set protection .. 178

6.3.6.1 Protecting the CICS region data sets ... 178
6.3.6.2 Authorising access to the CICS data sets ... 180

x
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

6.3.7 Informing CICS terminal users about the forthcoming security change 182
6.3.8 Other parameters necessary for CICS security ... 184

6.4 Securing the resources for the CICS region A06C001 .. 185

6.4.1 Decision about useful and necessary security mechanism 185
6.4.2 The CICS Terminal User Security .. 187
6.4.3 The Surrogate User Security .. 187
6.4.4 The CICS Transaction Security .. 189

6.4.4.1 The CICS Transaction Security Mechanism .. 189
6.4.4.2 Using security profiles to protect CICS transactions .. 190
6.4.4.3 Securing the IBM-supplied CAT1-transactions .. 191
6.4.4.4 Securing the IBM-supplied CAT2-transactions .. 193
6.4.4.5 Securing the IBM-supplied CAT3-transactions .. 194
6.4.4.6 Securing the MQSeries CICS transactions used for the NACT application 195
6.4.4.7 Securing the transactions NACT and CSKL .. 197

6.4.5 The CICS Command Security .. 197
6.4.5.1 The CICS Command Security Mechanism .. 197
6.4.5.2 Securing predefined CICS resources subject to CICS Command Security 198

6.5 Authorising access to the CICS region .. 206

6.6 Adjust the LOGIN terminal to pass capital letters to RACF ... 208

7 Summary and Further Work 213

7.1 Summary .. 213

7.2 Further Work .. 216

Bibliography .. 217
Appendices ... 221
Appendix A .. 223

A.1 Defining an SDS template using ISPF/PDF ... 223

A.1 Listings referenced to in chapter 4 ... 227

Appendix B ... 229
B.1 Reaching the log MSGUSR of the CICS region .. 229

B.2 Listings referenced to in chapter 5 ... 233

Appendix C .. 237
C.1 Restarting the CICS region .. 237

C.2 Correction of a CICS system log failure after an OS/390-server IPL and a CICS restart
238

C.3 Listings referenced to in chapter 6 ... 243

LIST OF FIGURES
Figure 1: Pedigree of the operating systems belonging to OS/390 ... 24

Figure 2: OS/390 – Basic architecture – Virtual address spaces (regions) ... 37

Figure 3: CICS – Basic architecture .. 37

Figure 4: The initial architecture of the CICS business applications NACT and MQNACT 40

Figure 5: FTP session – Uploading a file into a SDS .. 44

Figure 6: DATA SET LIST UTILITY screen in ISPF/PDF ... 44

Figure 7: DSLIST-screen in ISPF/PDF ... 45

Figure 8: Receiving the files from the data set “TBUSSE.CICSADP.NEWSEQ” 45

Figure 9: Receiving the files into the new data set “TBUSSE.CICSADP.LOADLIB” 46

Figure 10: List all received data sets (in blue colour) ... 46

Figure 11: Deleting the SDS template “TBUSSE.CICSADP.NEWSEQ” .. 47

Figure 12: Confirming the deletion of the SDS template .. 47

Figure 13: Confirmation that the SDS template was deleted ... 48

Figure 14: Message also appeared in the DSLIST utility .. 48

Figure 15: Summary of the components of the bank customer account application NACT 50

Figure 16: ACCOUNTS MENU screen .. 51

Figure 17: ACCOUNTS DETAILS screen (example) ... 51

Figure 18: ERROR REPORT screen (example) ... 52

Figure 19: Scratchpad facility vers. Queuing facility .. 59

Figure 20: The Scratchpad facilities CWA, TWA, and COMMAREA in comparison 62

Figure 21: CEDA DISP LI(DEMOLIST) ... 79

Figure 22: The two-way communication model for the MQNACT application (image taken from [AMQ95],

ch. 2.0) ... 86

Figure 23: Bidirectional communication ([ICM00], ch. 1.1.1.1.3) ... 90

Figure 24: The architecture of the MQSeries CICS application MQNACT ... 94

Figure 25: The architecture of the MQSeries CICS application MQNACT with named MQSeries objects

..95

Figure 26: MQSeries for OS/390 on CICS – Main Menu panel ... 98

Figure 27: MQSeries for OS/390 on CICS – Start a System Function panel .. 99

Figure 28: MQSeries for OS/390 on CICS – Stop a System Function panel .. 99

Figure 29: MQSeries for OS/390 on CICS – Display Connection panel .. 103

Figure 30: MQSeries for OS/390 on CICS – Display Connection panel .. 104

xii
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 31: After starting the CKBR transaction the monitor is locked, system is in wait status 107

Figure 32: Shutting down the MQSeries CICS Bridge manually – 01 .. 108

Figure 33: Shutting down the MQSeries CICS Bridge manually – 02 .. 108

Figure 34: Defining the transmission queue TBUSSE.NACT – 01 .. 114

Figure 35: Defining the transmission queue TBUSSE.NACT – 02 .. 114

Figure 36: Defining the transmission queue TBUSSE.NACT – 03 .. 115

Figure 37: Defining the transmission queue TBUSSE.NACT – 04 .. 115

Figure 38: Defining the remote queue definition TBUSSE.NACT.REPLYQ – 01 116

Figure 39: Defining the remote queue definition TBUSSE.NACT.REPLYQ – 02 117

Figure 40: Defining the channel sender for the transmission queue – 01 .. 119

Figure 41: Defining the channel sender for the transmission queue – 02 .. 119

Figure 42: Defining the channel receiver for the CICS Bridge queue – 01 .. 120

Figure 43: Defining the channel receiver for the CICS Bridge queue – 02 .. 121

Figure 44: Defining the queue manager TBUSSE.NACT – 01 .. 123

Figure 45: Defining the queue manager TBUSSE.NACT – 02 .. 123

Figure 46: The MQSeries Services, the green arrow indicates that the queue manager is up 124

Figure 47: System objects for the queue manager TBUSSE.NACT ... 124

Figure 48: NACT objects for the queue manager TBUSSE.NACT .. 125

Figure 49: All defined queues for TBUSSE.NACT .. 130

Figure 50: All created channels for TBUSSE.NACT ... 131

Figure 51: Input screen of the MQSeries JAVA-application .. 137

Figure 52: Displaying the active users on OS/390 .. 142

Figure 53: Displaying the started MQSeries Services – Channel initiator and TCP/IP listener – 01 143

Figure 54: Displaying the started MQSeries Services – Channel initiator and TCP/IP listener – 02 143

Figure 55: Starting the channel sender TBUSSE.NACT.WIN.OS ... 144

Figure 56: Message that the request to start the channel was accepted ... 145

Figure 57: Channel was successfully connected to the server queue manager .. 145

Figure 58: Connecting the channel sender with the client queue manager .. 147

Figure 59: Channel status after pressed the refresh key .. 147

Figure 60: Channel receiver was activated after successful call from the server queue manager 148

Figure 61: The Royal Bank of KanDoIT – Account Enquiry Client ... 149

Figure 62: The output messages on the DOS-console ... 150

Figure 63: List Channels panel – Stopping a channel sender of the OS/390-server queue manager 151

Figure 64: List Channels panel – Channel sender is stopped .. 152

Figure 65: Stopping the channel sender on the WINDOWS2000 client queue manager 152

Figure 66: Stopping the channel sender on the WINDOWS2000 client queue manager 153

Figure 67: Stopping the channel sender on the WINDOWS2000 client queue manager 153

List of Figures xiii

Figure 68: Stopping the channel sender on the WINDOWS2000 client queue manager 154

Figure 69: List Channels panel – Ghost connection .. 155

Figure 70: List Channels panel – List Channels panel – Perform a function .. 157

Figure 71: List Channels panel – Perform a Channel Function panel – Reset message sequence number

..157

Figure 72: MQSeries for WINDOWS2000 – Reset the message sequence number 158

Figure 73: System Authorisation Facility (SAF) ... 160

Figure 74: RLIST STARTED CICS*.** NORACF STDATA ... 174

Figure 75: The CICS SignOn panel ... 175

Figure 76: LISTUSER C001DEF NORACF CICS ... 177

Figure 77: Terminal screen after log on to CICS (without security) ... 183

Figure 78: Search for the transaction CESN – CEDA TRANS(CESN) DISP GR(*) 209

Figure 79: Display the transaction CEDA using DISP TRANS(CESN) GR(DFHSIGN) 209

Figure 80: Copy the transaction definition to the new group TYPENEU ... 210

Figure 81: Copy the profile definition to the new group TYPENEU as AAACICST 210

Figure 82: Display the contents of the group TYPENEU ... 211

Figure 83: Modify UCTRAN from NO to YES .. 211

Figure 84: Modify the profile name to the new one .. 212

Figure 85: CUSTOMPAC MASTER APPLICATION MENU on the JEDI OS/390-server 226

Figure 86: Data Set Utility screen in ISPF/PDF .. 226

Figure 87: “Allocate New Data Set” screen in ISPF/PDF ... 227

Figure 88: FTP session – Listing the own files on OS/390 ... 227

Figure 89: FTP-session – Copying one source file to OS/390 .. 228

Figure 90: Open the DA-Panel within SDSF .. 233

Figure 91: Placing a question mark in the column NP to display the logs .. 234

Figure 92: Placing the character ”S” in the column NP to display the MSGUSR log 234

Figure 93: Searching for the MQSeries CICS Bridge message ... 235

Figure 94: The MQSeries CICS Bridge has been successfully started ... 235

LIST OF TABLES
Table 1: Contents of the CD-ROM ... xxii

Table 2: The base elements and the optional features of OS/390 V2R7 ... 31

Table 3: Files transferred from the accompanied CD-ROM onto OS/390 .. 42

Table 4: CICS COBOL commands used in the application programs .. 56

Table 5: Storage hierarchy in S/390 computers .. 58

Table 6: Allowed operations on the CICS file objects .. 75

Table 7: Named queue manager objects used for the MQSeries CICS application MQNACT 92

Table 8: RACF commands .. 164

Table 9: RACF commands .. 166

Table 10: Authorisation Levels ... 166

Table 11: SIT-parameters set resp. modified for the CICS region A06C001 ... 170

Table 12: Access permission to the CICS data sets .. 181

Table 13: Profiles containing CAT2-transactions specified within the CLIST CAT2JEDI 194

Table 14: CAT3-transactions secured by the CLIST CAT3JEDI ... 195

Table 15: MQSeries-supplied CICS transactions secured by the CLIST MQSJEDI 196

Table 16: Access required for SP-type commands .. 198

Table 17: The CICS resources accessible by the SP-type commands ... 205

LIST OF LISTINGS
Listing 1: Extract from the COBOL copybook NACWCRUD (cf. Listing 17, page 228) 63

Listing 2: Extract from the CICS COBOL program NACT01 (cf. Listing 13, page 227) 63

Listing 3: Extract from the CICS COBOL program NACT02 (cf. Listing 14, page 227) 65

Listing 4: Extract from the COBOL copybook NACCCRUD (cf. Listing 19, page 228) 66

Listing 5: Extract from the member VSAM stored in TBUSSE.CICSADP.JCLLIB (part 1) 70

Listing 6: Extract from the member VSAM stored in TBUSSE.CICSADP.JCLLIB (part 2) 72

Listing 7: Extract from the member VSAM stored in TBUSSE.CICSADP.JCLLIB (part 3) 73

Listing 8: Extract from the data member SYS1.COMMON(CICSC001) ... 169

Listing 9: Extract from the CLIST CAT1JEDI stored in the data set CICS.COMMON.RACF 192

Listing 10: Extract from the CLIST COM1JEDI stored in the data set CICS.COMMON.RACF 199

Listing 11: The physical map of the map set NACTSET ... 227

Listing 12: The symbolic description map of the map set NACTSET ... 227

Listing 13: The 3270 presentation logic of the NACT application – NACT01 227

Listing 14: The CRUD business logic of the NACT application – NACT02 227

Listing 15: The Browse business logic of the NACT application – NACT05 227

Listing 16: The Error Handling business logic of the NACT application – NACT04 227

Listing 17: The COBOL copybook NACWCRUD ... 228

Listing 18: The COBOL copybook NACCTREC ... 228

Listing 19: The COBOL copybook NACCCRUD .. 228

Listing 20: Storing the data of the NACT application – Installing the account, locking, and name files on the

OS/390-server .. 228

Listing 21: The CICS resource definitions for the NACT application .. 228

Listing 22: The additional CICS SIT definition script C001 (besides COMMON and END) 228

Listing 23: The CICS startup script CICSC001 ... 229

Listing 24: The script IEFSSN00 for the OS/390 subsystem name table .. 233

Listing 25: The start script MQA1MSTR for the queue manager MQA1 ... 233

Listing 26: Non-recoverable objects for the queue manager MQA1 defined within the script CSQ4INP1

..233

Listing 27: Must have system objects for the queue manager MQA1 defined within the Script CSQ4INSG

..233

Listing 28: System objects for distributed queuing and clustering (not CICS) for the queue manager MQA1

defined within the script CSQ4INSX .. 233

xviii
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Listing 29: The script CSQ4STRT starts the Channel Initiator and the Channel Listener 233

Listing 30: CICS objects for the MQSeries CICS adapter defined within the script CSQ4B100 234

Listing 31: The script DFHCSD01 to update the CSD .. 234

Listing 32: The script CSQ4INYG defines additional general objects for the queue manager MQA1

..234

Listing 33: The updated CICS SIT definition script C001 (besides COMMON and END) 234

Listing 34: The script CSQ4CKBM defines the MQSeries CICS Bridge queue and its trigger process

..234

Listing 35: CICS objects for the MQSeries CICS Bridge defined within the script CSQ4CKBC ... 234

Listing 36: The MQSeries CICS Bridge – The script STRTCKBR to start the bridge automatically during

CICS start up .. 235

Listing 37: The MQSeries CICS Bridge – The CICS COBOL compiling script DFHYITVL 235

Listing 38: The MQSeries CICS Bridge – The PLT for programs loaded during CICS startup 235

Listing 39: The MQSeries CICS Bridge – The DFHAUPLE script that compiles PLT scripts 235

Listing 40: The MQSC file “mqadmvs.tst” defines the objects for the WINDOWS2000-client queue manager

TBUSSE.NACT .. 235

Listing 41: The batch file loads the MQSC script “mqadmvs.txt” .. 235

Listing 42: The MQSeries communication logic of the JAVA application – MQCommunicator.java

..236

Listing 43: The presentation logic of the JAVA application – MQClient.java 236

Listing 44: Error messages explain that the primary CICS system log cannot be accessed 239

Listing 45: The script LISTLOG displays information about the log stream and its definition 239

Listing 46: The output of the LIST LOGSTREAM request .. 240

Listing 47: The script DELCLOG deletes the log stream entry from the LOGR policy 241

Listing 48: The script DELCLOG deletes the log stream entry from the LOGR policy 241

Listing 49: The default CICS region's SIT script COMMON ... 243

Listing 50: The CICS region's 2nd SIT script C001 – temporary version ... 243

Listing 51: The CICS region's 2nd SIT script C001 – final version .. 243

Listing 52: The CLIST CAT1JEDI secures Category-1 transactions .. 243

Listing 53: The CLIST CAT2JEDI secures Category-2 transactions .. 243

Listing 54: The CLIST CAT3JEDI secures Category-3 transactions .. 244

Listing 55: The CLIST MQSJEDI secures MQSeries CICS transactions ... 244

Listing 56: The CLIST USERJEDI secures CICS User-transactions .. 244

Listing 57: The CLIST COM1JEDI secures CICS Resources subject to SP-type commands 244

LIST OF ABBREVIATIONS
Abbreviation Paraphrase Chapter
ACID Atomicity, Consistency, Isolation, Durability 2
AIX alternate index 3.4.1
AMI Application Messaging Interface 4.2.5
AMS Access Method Services 3.4.1
API Application Programming Interface 4.2.5
API Application Programming Interfaces 4.2.1
CICS Customer Information Control System 2
CMAM CUSTOMPAC MASTER APPLICATION MENU 3.2
COMMAREA communication area 3.3.4
CRS Cross-Region Sharing 3.4.2
CRUD Create, Read, Update, Delete 3.3.3
CSD CICS System Definition 3.5.1
CSS Cross-System Sharing 3.4.2
CWA Common Work Area 3.3.5
DASD Direct Access Storage Devices 3.3.5
DCT Destination Control Table 3.3.5
DSA Dynamic Storage Area 3.3.5
DSLU DATA SET LIST UTILITY 3.1
DSU DATA SET UTILITY 3.1
EIBAID EXEC Interface Block Attention Identifier 3.3.2
ESDS Entry-Sequenced Data Sets 3.4.1
ETDQ Extrapartition TDQ 3.3.5
FCT File Control Table 3.3.1
FIFO First in, First out 4.2.3
HTTP HyperText Transfer Protocols 4.2.1
IMS Information Management System 3.4.1
ISPF/PDF Interactive System Productivity Facility/Program Development Fa-

cility
3.1

ITDQ Intrapartition TDQ 3.3.5
JCL Job Control Language 3.3.2
JMS JAVA Message Service 4.2.5
KSDS Key-Sequenced Data Set 3.4.1
LSR local shared pool 3.5.1
MCA Message Channel Agent 4.2.6.2
MMC Microsoft Management Console 4.5.1
MQ Message Queuing 4.2.1
MQI Message Queue Interface 4.1
MQSC MQSeries commands 4.4.2.2
MVS 1
OS/390 Operating System for a 390 processor 1
PDS partitioned data set 3.1
PLT Program List Table 4.4.2.4
QM Queue manager 4.2.2
QMC QM Clusters 4.2.4
RLS Record Level Sharing 3.4.2
RPC remote procedure calls 4.2.1
RRDS Relative-Record Data Sets 3.4.1
SAM Sequential Access Method 3.3.5
SDS sequential data set 3.1
SDSF System Display and Search Facility 3.4.2
SIT System Initialisation Table 3.5.2
TCP/IP Transmission Control Protocol/Internet Protocol 4.1
TD Transient Data 3.3.5
TDQ Transient Data Queues 3.3.5
TRANSID transaction identifier 3.3.2
TS Temporary Storage 3.3.5
TSQ Temporary Storage Queues 3.3.5
TUA Terminal User Area 3.3.5
TWA Transaction Work Area 3.3.5

xx
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

UoW Unit of Work 3.3.1
VSAM Virtual Storage Access Method 3.4.1
PDF Portable Document Format Notices

NOTICES

Conventions in this Master Thesis

Throughout this master thesis, the following conventions are used:

Bold

Indicates important words or word phrases.

Italics

Used for WINDOWS2000 file names, for proper names of MQSeries for WINDOWS2000, for JAVA

statements, and for menu items and their sub items.

Italics bold

Indicates JAVA class names.

UPPERCASE ITALICS

Indicates data set, file, program, and script names used on the OS/390-server. Furthermore, this style is

used for proper names of the CICS RACF security management (User IDs, Group IDs, security profile

names, security classes, and so on).

“Italics”

Italics surrounded by non-italics quotes indicate citations.

UPPERCASE

Used for CICS object names, MQSeries object names, abbreviations, proper names in general, and some

other special names.

Lucida Console

This format type indicates commands outside the continuous text. Also used in the listings and in the clip-

pings of them.

Lucida Console Italics

Using this format style indicate commands and their parameters used in the continuous text.

xxii
Generation of a Java front end for a standalone CICS application accessed through MQSeries and
securing CICS with RACF

[...]

These brackets enclose the shortcuts for sources listed in on page .

About the CD-ROM

The CD-ROM accompanying this master thesis contains the source and compiled code of the developed applica-

tions (COBOL and JAVA code) and the scripts that are required to run these applications. The source code and

scripts are stored into folders of the CD-ROM in reference to the chapters where they are named (Table 1). Addi-

tionally, all the code referring to OS/390 is stored on the JEDI OS/390-server1. The code resp. scripts applying to

OS/390 data sets are stored on the CD-ROM into subdirectories of the listed folders in Table 1. Each subdirect-

ory represents a high qualifier of an OS/390 data set. For example, the script C001 is stored to following direct-

ory on the CD-ROM: listing\chapter3\os390\scripts\cics\common\sysin\c001. This script is also stored to the

JEDI OS/390-server into the data set CICS.COMMON.SYSIN as a member called C001. Each script is linked

from the chapter to an entry in its associated appendix. This entry links directly to the scripts on the CD-ROM.

Besides the source code, the CD-ROM contains the referenced textbooks, if available as an electronic book.

They are accompanied in IBM's own format readable by the IBM Softcopy Reader. Some of them are also avail-

able as Portable Document Format (PDF) files. The documents can be directly downloaded from the CD-ROM's

directory books or accessed through a web browser when the file index.html is opened. Within this file there can

also be linked to downloaded electronic documents referenced to in the text, that have been stored within the CD-

ROM because of future unavailability.

Code / scripts named in Code / scripts related to Code / scripts stored to folder:

chapter 4

“The CICS Business Application

NACT”

COBOL code

Other OS/390 scripts

listings\chapter3\os390\cobol

listings\chapter3\os390\scripts

chapter 5

“The MQSeries CICS Business Ap-

plication MQNACT”

OS/390 scripts

JAVA code

MQSeries batch files

listings\chapter4\os390\scripts

listings\chapter4\windows\java

listings\chapter4\windows\mqseries

chapter 6

“Securing CICS with RACF”
OS/390 scripts listings\chapter5\os390\scripts

Table 1: Contents of the CD-ROM

1 JEDI OS/390-server is one of the OS/390-servers of the university of Leipzig, Germany. For an apply of a login refer to the homepage
jedi.informatik.uni-leipzig.de.

1 INTRODUCTION TO OS/390

1.1 Introduction

For the computers of the IBM System/390 architecture exist a variety of operating systems, which are implemen-

ted in dependence of the size of the installation. That are Transaction Processing Facility (TPF), Multiple Virtual

Storage/Enterprise Systems Architecture, System Product Version 4 and Version 5 (MVS/ESA SP Version 4 &

5), Virtual Machine/Enterprise Systems Architecture (VM/ESA), Virtual Storage Extended/Enterprise Systems

Architecture (VSE/ESA), and OS/390. All these operating systems have been developed by IBM. Further, there

exist some other operating systems which also run on S/390 computers, for example Amdahl's operating system

Universal Time Sharing Release 4 (UTS R4), and Hitachi's operating system Hi-OSF/1-MJ2 a UNIX variation.

All the mentioned operating systems create “a different application execution environment with its own set of ad-

vantages and disadvantages.” ([HAF01]) Primarily, these environments vary in the interfaces between the ap-

plications and the operating systems. Further, they use central storage and create its virtual storage structure dif-

ferently. Using both storage areas were an important reason to develop periodical enhancements of the operating

systems for the S/3xx hardware.

The components of this master thesis are implemented on an S/390 computer system running with the operat-

ing system OS/390 Version 2 Release 7 (V2R7).

2 “OSF/1 is a variant of the Unix operating system that was largely a product of the so-called “Unix wars” of the mid- and late 1980s.
OSF/1's roots lie in being one of the first operating systems to use the Mach kernel developed at Carnegie Mellon University.” from
http://encyclopedia.thefreedictionary.com

24
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

1.2 History of OS/390

All the operating systems belonging to OS/390 have been evolved through several generations of large-computer

systems (Figure 1). The evolution starts with the OS/360 family developed in 1964 on behalf of the introduction

of the S/360 computers. It consists of the operating systems Primary Control Program (OS/PCP) as the simplest

one, Multiprogramming with a Fixed number of Tasks (OS/MFT), and Multiprogramming with Variable number

of Tasks (OS/MVT). OS/PCP had a sequential scheduler and could only handle 1 task at a time using maximum

12 KB central storage, whereas OS/MFT allowed up to 15 tasks to be processed at a time with a pre set memory

1964 OS/360 OS/PCP OS/MFT OS/MVT

1972 OS/VS OS/VS1 OS/VS2 SVS
1974 OS/VS OS/VS2 MVS R2

1979 OS/VS OS/VS2 MVS R3.8

1975 OS/VS OS/VS2 MVS R3

1981 MVS/370

1983 MVS/XA MVS/XA

1985 MVS/XA MVS/XA DFP Version 2
MVS/SP Version 2

1988 MVS/ESA MVS/ESA

MVS/SP Version 3

1990 MVS/ESA MVS/ESA SP Version 4
1994 MVS/ESA MVS/ESA SP Version 5

1995 OS/390 OS/390 Version 1 R1

1996 OS/390 OS/390 Version 1 R3
1997 OS/390 OS/390 Version 2 R4

1999 OS/390 OS/390 Version 2 R7

2000 OS/390

2000 z/OS z/OS Version 1 R1

2004 z/OS z/OS Version 1 R5

MVS/XA DFP Version 1

MVS/DFP Version 3

··· ···
··· ···
··· ···

···

··· ···

S/360

S/370

ESA/370

ESA/390 and S/390

S/390

2000 z/OS z/OS Version 1 R2

zSeries 900

zSeries 900 and 990

···

OS/390 Version 2 R10

MVS/370

MVS/SP Version 1 DFP/370

370-XA

S/370

Year

Operating
System
Family Operating Systems belonging to OS/390

Figure 1: Pedigree of the operating systems belonging to OS/390

Introduction to OS/390 25

allocation of central storage (up to 64 KB). The same amount of tasks could be processed by OS/MVT, but these

tasks could share whatever central storage was installed on the computer system (maximum 128 KB).

Eight years later, IBM announced System/370 hardware, that provided virtual storage capability. At the same

time, the next OS family OS/VirtualStorage (OS/VS) has been introduced to utilise the new hardware. OS/360

has to be transformed into a virtual storage system. Because many customers preferred OS/MFT and others

OS/MVT both should be satisfied. OS/MFT was improved to become OS/VS1 and OS/MVT became OS/VS2,

taking account of virtual storage in only a single partition up to 16MB (224bits = 16 MB). Therefore, OS/VS2 has

also be named as OS/VS2 Single Virtual Storage (SVS).

In 1974 the next offered release supported multiple virtual storage for each address spaces up to 16 MB and

was named OS/VS2 Multiple Virtual Storage (MVS) Release 2 (R2). The third release of OS/VS2 MVS (1975)

provided so-called Selectable Units (SUs) to allow the customer to tailor their operating system only to functions

they needed. In 1979, the last update OS/VS2 MVS R3.8 was published. Exceptionally, it was required as an in-

stallation base for the next developed operating system MVS/370 introduced with the new S/370 hardware. What

has been named as MVS/370 were in real a combination of two products – MVS/Service Product Version 1

(MVS/SP V1) and Data Facility Product/370 (DFP/370). This OS supported the 26 address bits of the central

storage provided by the processor architecture, hence, the MVS/370 could address up to 64 MB of this memory.

Although, the operating system had could utilise these 26 bits (226 bits = 64 MB) instead of the 24 bits for its vir-

tual storage, IBM did not wanted it because many existing MVS/370 applications would not properly work.

Therefore, only up to 16 MBs for virtual storage could be addressed per address space by MVS/370.

This problem has been resolved by a new hardware – the S/370 eXtended Architecture (370-XA), firstly

shipped in 1983. For the first time, the computer system had have 31 bits (231 bits = 2GB) of central storage and a

dynamic channel capability for I/O. The 370-XA has been utilised by a new version of MVS/370, called

MVS/eXtended Architecture (MVS/XA). This OS package also consisted of two products that made up the oper-

ating system – MVS/SP V2 and MVS/XA DFP V1. MVS/SP V2 supported both storage areas, whereas

MVS/XA DFP V1 contained five updated data-management function of OS/VS2 MVS R3.8 besides the func-

tions of DFP/370. Hence, OS/VS2 MVS R3.8 was not more required as a base for the new operating system.

Dynamic channel architecture could access up to eight I/O channels, although the hardware had only four. This

was the most visible feature of the new OS and I/O boosted dramatically. Furthermore, MVS/XA supported the

whole 31 bits to build the virtual storage up to 2 GB per address space. However, central storage could only be

addressed by MVS/XA in the range of maximum 256 MB (28 bits). Additionally, to provide compatibility with

previous versions, MVS/XA still supported the 24 bit mode for addressing virtual storage areas. In 1985 the

second version of MVS/XA DFP was published.

MVS/ESA was the successor of the MVS/XA operating system and has been introduced in 1988. This operat-

ing system run on a new hardware called Enterprise Systems Architecture/370 (ESA/370). It contained the third

versions of MVS/SP and MVS/XA DFP. Two years later (1990), a new hardware has been introduced – the

ESA/390 and ES9000 S/390 family. For both systems only a new version of one product of MVS/ESA has been

26
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

provided – MVS/ESA SP V4. The DFP version was not more needed. All its functions were integrated in the

new OS. In 1993, the fifth and last version of MVS/ESA SP was delivered. When in 1995 a new version was put

on the market, it was renamed to OS/390 Version 1 Release 1. Until October 2000 there were published every

half year a new release of OS/390 – the last was release 10. These operating systems for the S/390 architecture

are elaborated in the next chapter “OS/390 in general”.

However, OS/390 has also been replaced in 2000 by the z/Operating System (z/OS) family for the zSeries

computers3. These computer systems now provide the 64 bits addressing of the central storage, which the OS also

supports (264 bits = 17.179.869.184 GB = 16.777.216 Terabytes (TB) = 16.384 Petabytes (PB) = 16 Exabytes

(EB)).

Please look for a brief history for the operating systems of S/3xx computers in [HAF01] and on the interesting

homepage of T. Falissard [FAL01].

3 Is it a myth? The “z” in z/OS and zSeries paraphrases the meaning of “zero down-time” of the zSeries computer systems, as IBM intern-
al propagates. It means, that the zSeries computers, on which z/OS runs, do not have any down-time. Understand it as a homage to their
stable computer systems. Of course, it is a marketing philosophy.

Introduction to OS/390 27

1.3 OS/390 in general

An operating system like OS/390 is the intermediate layer between the application software and the hardware; it

works behind the scene. An OS consists of a set of programs to create and manage the environment in which oth-

er programs resp. applications can execute. Additionally, it allows to run several of those programs at the same

time. Each OS (OS/390, too) can be categorised into following operating-system functions (according to [ES-

1011]):

• Services (for applica-

tion programs):

contain functions provided by the OS that release the programs from man-

aging them.

• Resource Manage-

ment:

distributes resources to the application programs as they are running. Such

resources are the processor storage, processors, and I/O channels.

• Storage Management: divides the main storage proportionally and sufficiently to run the programs

in the system.

• Timer Services: supports time-dependent functions in application program logic.

• Serialisation Services: coordinates the shared resources and maintain the integrity of updated re-

sources.

In contrast to personal computer systems, large computer systems like S/390 can have multiple processors.

Managing these processors in a so-called multi-processing system is another must for such an operating system. It

must also handle interrupts generated by the S/390 hardware to allow pre-emptive multitasking (giving the pro-

grams execution priorities). As last but important feature, the OS must identify a hardware-detected error (ma-

chine or program check) to react appropriate.

OS/390 has been designed for enterprise computing to change rapidly highly competitive business environ-

ments. This operating system is described in [HAF01] as “a network-ready, integrated operational environment

for S/390.” An important advantage of OS/390 is that it remains operational through system difficulties and it can

be quickly recovered after a system disaster. According to [ES1011] OS/390 has the following characteristics:

• High-availability and high-performance

• Air-tight security

• Connectivity diversity

• Flexibility to handle ever growing complex integrated work flows

• Affordability in costs for the user.

Actually, OS/390 was a new name for the MVS/ESA SP Version 5 Release 2.2 (V5R2.2) (re-branding) intro-

duced in 1995 (see Figure 1 on page 24, too). The name OS/390 belongs to the S/390 architecture. However, this

system was introduced in 1990 with the Enterprise System Architecture/390 (ESA/390) and the ES/9000 S/390.

28
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

From this architectures the present name S/390 has been derived. The operating system running on the ESA/390

and S/390 systems was MVS/ESA until 1995. To honour the S/390 system MVS/ESA was renamed to OS/390.

In contrast to MVS/ESA, OS/390 has been delivered within a basic installation package containing a set of

separate but required products needed for S/390 operation. Optional functions could be additionally added to the

installation. All in all, OS/390 can be a bundling of up to 70 software components. To distinguish the operating

system from the OS/390 package, the older name MVS was used by the system operators to identify the OS. Be-

cause that the base OS of the OS/390 package is actually not more than MVS/ESA, the main operating system

features are described by means of MVS/ESA.

As mentioned above, MVS/ESA was the successor of the MVS/XA operating system. The evolution of oper-

ating systems is closely related with the storage management. As same as MVS/XA, MVS/ESA supports the 24-

bit and 31-bit mode of operation. But in contrast to MVS/XA, which only supported 256 MB of central storage

(contrary, architecture allowed up to 2 GB), MVS/ESA supported the whole 231 bits = 2 GB of central storage.

Virtual storage could be maximum of 2 GB per address space (often called region) created by both operating

systems. However, MVS/ESA can build another virtual storage area called data spaces ranging in size from 4 KB

to 2 GB. This storage area is byte addressable by an application program to store and access application relevant

data, nothing more. The normal virtual address spaces were thenceforth called primary address spaces. Once

again, applications can only run in a separate primary address spaces, not in data spaces. The data spaces are ac-

cessible by the applications through a facility called Access-Register Addressing. Of course, an application run-

ning in a primary address space can furthermore access another application running in another allocated primary

address space to pass control or to access data. Primary address spaces are linked together using the Cross

Memory Facility linkage as already used in earlier MVS versions.

MVS/ESA provides a better expanded storage utilisation than MVS/XA. This storage technique has been in-

troduced in 1985 and was firstly supported by MVS/XA at the same time. On S/390 systems is maximum 8 GB

expanded storage available. Access to expanded storage has only the central storage to transfer still needed in-

formation that is just not used or has a low priority. If this information is needed, it must be moved back to the

central storage. This transfer is managed by the operating system using paging instead of bytes-addressing.

What the expanded storage is for the central storage, is another address space called hiperspace for the

primary address space firstly supported by MVS/ESA. However, hiperspace normally resides in the expanded

storage to use its storage method (paging). Each data stored under control of the application program into the

hiperspace must be moved to the primary address space before the application program it can use. Today,

OS/390 uses the same storage management products and methods as MVS/ESA resp. MVS/XA.

With the introduction of MVS/ESA SP V4 in 1990 were delivered some resource enhancements for new and

old facilities. There has been added a support to connect a few processors to a single logical unit called a system

complex (Sysplex). Synchronising the time-of-day clocks on each sysplex is supported by a new facility called

Sysplex Timer. The new ESCON I/O channels have also been now supported. Another software function, called

Introduction to OS/390 29

Cross System Coupling Facility (XCF), has been added to the new operating system. “XCF provides the applica-

tion programming interface and services to allow communication among application groups on the separate

processors and provides a monitoring («heartbeat») and signaling capabilities.” ([HAF01]) XCF is used by the

Job Entry Subsystem 2 (JES2), CICS eXtended Recovery Facility (XRF), among others. Advanced Program-to-

Program Communications/MVS (APPC/MVS) has been included in later releases of MVS/ESA SP V4. There

have been also added some new functions to manage the storage environment. MVS/ESA SP V4 supports as first

the open systems environment with a POSIX-compliant API.

One of the main enhancements of MVS/ESA SP V5 introduced in 1994 was the support for Parallel Sysplex

services for up to 32 MVS/ESA systems. This method is called Coupling Facility. A new software product called

the WorkLoad Manager (WLM) has been introduced to define processing goals reflecting to specific business

needs. The most important package expansion was the MVS Open Edition, today called UNIX System Services

(USS). For a better batch handling there was included a product called BatchPipes/MVS.

MVS/ESA SP V5 was the last operating system version having the name MVS/ESA. OS/390 Version 1 Re-

lease 1 has been delivered in 1995. The base operating system, also called Base Control Program (BCP) was still

named MVS/ESA V5 R2.2. OS/390 V1R1 includes some base and optional elements. These have been also de-

livered as further enhancements within the OS/390 V2R7 described in the next chapter. After OS/390 V1R3 there

has been announced in 1997 as next operating system OS/390 Version 2. It started with the release 4 to continue

the release numbers. Within OS/390 V2 it has been firstly included the Domino Go Webserver (now named

WebSphere Application Server (WAS)). Furthermore, Tivoli's TME 10 Framework has then integrated into

OS/390. Distributed Computing is completed by the addition of the ENCINA Toolkit Executive, DCE Applica-

tion Support providing RPC, and the Lightweight Directory Access Protocol (LDAP) client support. There have

been added some enhancements to WLM and to the USS (UNIX Application Services as Shell, Utilities, and De-

bugger). USS now supports the UNIX 95 resp. XPG4.2 X/OPEN Company's Single UNIX Specification includ-

ing all the commands and utilities referred to it. Within the next release 5, OS/390 included as main part an up-

dated Domino Go Webserver. When a new hardware function support (here: FICON channel support) was avail-

able, all OS/390 releases down to release 3 have to be updated by a new software function. OS/390 V2R6 intro-

duced in September 1998 included some important enhancements for the eNetwork Communications Server sup-

port and for the Parallel Sysplex function. Six months later, in March 1999, OS/390 V2R7 was available – the

OS package that is installed on the JEDI OS/390-server.

Beyond OS/390 V2R7, there have been published 3 more releases of OS/390 before the new operating system

z/OS has been announced in 2000 for the new zSeries computer systems. The features of the elements of these

operating systems will not be reflected here, please refer to [HAF01]. Also, use this book for a comprehensive

overview of the referenced products for the operating systems.

30
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

1.4 OS/390 V2R7

On the JEDI OS/390-server is installed OS/390 V2R7 which has been offered in March 1999. Besides the base

operating system it contains a set of so-called OS services, distinguished into base elements always delivered and

optional features delivered on demand. Furthermore, USS has been also packaged as a base OS service into

OS/390. The important base Systems Services are the Base Control Program (BCP), JES2, Interactive System

Productivity Facility (ISPF), and TSO/E. System Modification Program/Extended (SMP/E) and the optional Sys-

tem Display Search Facility (SDSF) are Systems Management Services, among others, that have been installed

on the JEDI OS/390-server. Another important product that has been firstly included into OS/390 V2R5 is the

WebSphere Application Server (WAS). The optional Security Services including the Security Server and the Re-

source Access Control Facility (RACF4) have been also installed on OS/390-server. Some additional components

contain the language compilers for COBOL, Object-Oriented COBOL, PL/I, C/C++, JAVA Development Kit

(JDK) 1.1.8 with the SWING package and a JAVA Virtual Machine (JVM). Table 2 gives an overview of all

base and optional elements of OS/390 V2R7.

On the JEDI OS/390-server are installed furthermore two application managers that support the high-perform-

ance transaction processing: Information Management System (IMS) and Customer Information Control System

(CICS5).

OS Services Base Elements Optional Features
Systems
Services

• BCP
• Bulk Data Transfer (BDT)
• DFSMSdfp
• EREP
• ESCON Director Support
• High Level Assembler

(HLASM)
• ICKDSF

• ISPF
• JES2
• MICR/OCR Support
• TSO/E
• 3270 PC File Trans-

fer Program
• FFST
• TIOC

• JES3
• Bulk Data Transfer (BDT) File-to-File
• Bulk Data Transfer (BDT) SNA NJE

Systems
Management

Services

• Cryptographic Services (includes ICSF) (new)
• HCD
• SMP/E
• Tivoli Management Framework (new)

• DFSMSdss, DFSMSrmm, DFSMShsm
• HCM
• Open Cryptographic Services Facility (OCSF

France) (new)
• OCSF Security Level 1, 2, 3 (new)
• RMF
• SDSF
• System Secure Sockets Layer (SSL) Crypto (new)

Table 2: The base elements and the optional features of OS/390 V2R7 (continued on the next page)

4 Speak “RAAK-EFF”.
5 Speak “KICKS” or “C–I–C–S”.

Introduction to OS/390 31

OS Services Base Elements Optional Features
Application
Enablement

Services

• DCE Application Support
• Encina Toolkit Executive
• GDDM (includes PCLK and OS/2 Link)
• Language Environment (LE)
• Application Enabling Technology
• SOMobjects Runtime Library
• VisualLift Runtime Library
• C/C++ IBM Open Class Library

• C/C++ with Debug Tool
• C/C++ without Debug Tool
• DFSORT
• GDDM-PGF
• GDDM-REXX
• High Level Assembler (HLASM) Toolkit
• Language Environment Data Decryption
• SOMobjects Application Development Environment
• VisualLift Application Development Environment

for MVS, VSE, VM

Distributed
Computing

Services

• DCE Base Services (OSF DCE level 1.1)
• Distributed File Service (OSF DCE level 1.2.2)
• Network File System

• DCE User Data Privacy (DES and CDMF) - OSF
DCE 1.1 level

• DCE User Data Privacy (CDMF) - OSF DCE 1.1
level

• OS/390 Print Server
• OS/390 Print Interface
• Windows 95/NT client
• IP PrintWay
• NetSpool

eNetwork
Communica-
tions Server

• IP (formerly TCP/IP)
• SNA (includes AnyNet) (formerly VTAM)

• eNetwork Communications Server Security Level 1,
2, 3 (new)

• eNetwork Communications Server Network Print
Facility (NPF)

Network
Computing

Services

• WebSphere Application Server
• NetQuestion

• IBM HTTP Server Export Secure
• IBM HTTP Server France Secure
• IBM HTTP Server NA Secure

Softcopy
Services

• BookManager READ
• BookManager BookServer
• Softcopy Print (includes Softcopy Print for DBCS Lan-

guages)

• BookManager BUILD

UNIX Sys-
tem Services

(X/Open
UNIX 95
functions)

• OS/390 UNIX System Services Application Services
• Shell
• Utilities
• Debugger

• OS/390 UNIX System Services Kernel

LAN Ser-
vices

• LANRES
• LAN Server
• OSA Support Facility

Security
Server

• Security Server
• RACF
• DCE Security Server at OSF DCE level 1.1
• LDAP Server
• Firewall Technologies

• Security Server LDAP Server DES

Table 2: The base elements and the optional features of OS/390 V2R7

(according to [IRG99])

2 INTRODUCTION TO CICS

2.1 Introduction

Wherever today a day goes by, someone is involved in a transaction, somewhere in the world. It could be a

private or business purpose – for example paying at the cash desk in a supermarket, taking money from a bank

account using an automatic teller machine (ATM), delivering packages or checking and updating personal re-

cords in a business company, comparing customer contracts in an insurance company or taking a reservation in a

car rental or airline company. Stored in a database, this information is retrieved when a business application pro-

gram is started using a transaction that delivers the required data. Such transactions are business operations on

behalf of a company. Today the market, whether it is traditional, E-business or mixed, lives or dies due to con-

nected to On-Line Transaction Processing (OLTP) systems. CICS is such an OLTP product developed by IBM,

that manages those business applications.

However, on-line should not be confused with the today meaning – using a terminal for doing all interactions

on a server logically situated away from but connected with the terminal. Originally, on-line meant “that a file

could be read or manipulated in some manner other than a batch job.” ([YOU01], page 43) In contrast, early

on-line processes allowed only one user accessing one record at a time. Such a procedure has been usually called

as a transaction. But, the more users wanted to access a record concurrently the more a system has been needed

to manage such transaction traffic.

34
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

2.2 History of CICS

IBM introduced in 1968 for its mainframe computer system S/360 a transaction management system called Pub-

lic Utility Customer Information Control System (PUCICS) to manage the increasing transaction processing. Sur-

prisingly, this initial version of CICS became available as a free distribution. One year later, CICS was packaged

as a “Class A Program Product” (Class A PPs provides software defect support), now no more free of charge.

The first release of CICS for the OS/360 family supported only the ASSEMBLER programming language,

however, in 1970, CICS supported also the programming languages COBOL and PL/I. In 1972, CICS supported

the new technology of the IBM 3270 Display System, right away, including the Basic Mapping Support (BMS)

as well as sending and receiving native 3270 data streams directly to application programs. CICS also supported

from that year on the Virtual System (VS) environment introduced within the operating system VM/370 for

S/370 computer systems. Within the next years “a number of new technologies were added to CICS, including

support for online update and recovery/restart” [YEL01]6 as well as supporting the virtual storage and the Data

Language/I (DL/I). Furthermore, CICS got its command level programming interface in 1977. “Command level

program isolates the application from its physical environment and has enabled customers to implement distrib-

uted systems (client/server).” [YEL01] Until 1980 CICS supported additionally the Multiple Region Operation

(MRO) and the InterSystem Communication (ISC). Both support the easy distribution and running of user applic-

ations and data resources across multiple computer systems having multiple processors. During the 1980s CICS

was ported onto the personal computer having installed IBM's operating system OS/2, as same as ported onto

UNIX machines. Further, CICS was improved to run on the XA architecture to support the 31 bit addressing;

hence, the virtual storage CICS could address increased now above the so-called 16 megabit line. RACF became

more important as an external security manager for CICS to secure the access to CICS resources. The introduc-

tion of Resource Definition Online (RDO), the support for Advanced Program-to-Program Communication

(APPC) which involved the use of LU6.2 protocols, and the Extended Recovery Facility (XRF) to enable users to

achieve higher levels of system and application availability were another important features developed for CICS

during the early 1980s. With the introduction of parallel computer systems in the 1990s CICS was upgraded to

support these computers. CICS supports since 1992 IBM's Message Oriented Middleware (MOM) product

MQSeries. “By 1993, there were tens of thousands of CICS licenses for use of the product in MVS, ESA, AIX,

AS/400 and OS/2 environments. CICS had become the most widely used transaction processing system.”

[YEL02] In 1996, the first version of the CICS Transaction Server (TS) for OS/390, for Windows NT, and for

AIX resp. other UNIX systems became available. This new product supported Assembler, COBOL, C, PL/I,

JAVA plus support of APPC and the Transmission Control Protocol/Internet Protocol (TCP/IP). Within this

year, CICS resp. CICS TS was prepared for the Internet era supporting some new CICS-accessing methods, for

example the CICS Internet Gateway, the CICS Gateway for JAVA, the CICS Gateway for Lotus Notes, or the

CICS Web Interface (CWI). The next release of the CICS TS version 1.2 has included a major enhancement –

6 For an interesting homepage for CICS references and CICS related documents see “Follow The Yelavich Road”:
http://www.yelavich.com/

Introduction to CICS 35

the CICS 3270 bridge. Hence, CICS programmers were able to enable legacy CICS 3270 applications to access

them through the Internet without rewriting the original code.

In 1998, the CICS TS v 1.3 for OS/390 was announced and delivered within 1999. Following enhancements

and improvements were realised resp. developed:

• Supporting C++,

• CICS Transaction Gateway (CTG) containing the functions of the CICS Internet Gateway and the CICS

Gateway for Java,

• Open Transaction Environment (OTE) to execute CICS JAVA applications in an own CICS region, but

under an OTE Task Control Block (TCB) and not the primary CICS Quasi-Reentrant (QR) TCB, a special

MVS TCB,

• Business Transaction Services (BTS) allow users to define an overall business process and its related

transactions,

• Supporting the Common Object Request Broker Architecture (CORBA), and

• CICS Web Support (CWS), the restructured code of the CWI, to support the CICS domain architecture.

On the JEDI OS/390-server is installed the CICS TS 1.3 because this version is the last available one for

OS/390. Therefore, the master thesis bases on this OLTP system.

In the next years until 2004, three new versions of CICS TS for z/OS were introduced – CICS TS 2.1, 2.2,

and the last version 2.3. The most important enhancement of the CICS TS 2.1 for z/OS was the support of Enter-

prise JavaBeans (EJB). These three CICS versions improve each time the performance in using JVMs on z/OS.

For example, more than one CICS JAVA program can be used within a CICS task.

Besides CICS, there exist today a variety of other OLTP systems running on a huge number of operating sys-

tems – mainframe, open, and also on personal computer systems. However, a major part of transaction processing

takes still place on mainframe systems. For example, Siemens provides for its mainframe operating system

BS2000 an own TP monitor called Universal Transaction Monitor (UTM). Other known TP monitors for open

systems as openUTM from Siemens, Tuxedo from BEA Systems, or Encina from Transarc are used as for ex-

ample on IBM AIX, DCE DC/OSx, Hewlett-Packard HP-UX, or Novell Unixware resp. Netware.

36
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

2.3 CICS in general

However, CICS is one of the most important and most known TP monitors running on z/OS, OS/390, MVS/ESA,

OS/400, OS/2, Windows NT and 2000, and on the UNIX Systems AIX (IBM), Solaris (SUN), and HP-UX

(Hewlett-Packard). It is used for procedural development organisations and in large-scale applications that expect

to have many users and high transactions rates. That is why, CICS is also called a cross industry product. Suppor-

ted by more than 5000 software packages from more than 2000 vendors, CICS still defends its leading position

regarding to performance, reliability, and availability. This TP-monitor is used in business critical applications

which demand a high grade of these requirements. A total outage of such applications would terminate the whole

business process. Nothing may be lost, nothing may be falsified, and an unauthorised person must not see or

change any parts of the data. That means, that transactions must be routed securely, reliably, and efficiently

through the whole network of all involved computers. It takes care of the security and integrity of the data while

looking after resource scheduling. Transaction processing has been evolved to a heterogeneous application and

hence, “CICS is an «application server».” [YEL01] It integrates all the basic software services required by

OLTP applications. However, CICS has never been used this term.

CICS' function to allow reliable, concurrent access and manipulation of data is still fundamentally. Each inter-

action between the user and the CICS TS is done by a client. Such a client/server scenario is commonly known as

middleware. Middleware is described as a general purpose service between the heterogeneous computing plat-

form (hardware and operating system) and its transaction-based applications and to support their distribution

within the network. There are some different classifications of that what middleware is: Transaction Pro-

cessing (TP) monitors, DataBase Access (DBA) modules, Message-Oriented Middleware (MOM), Object Re-

quest Brokers (ORB), Remote Procedure Calls (RPC), security management products, and web servers, too.

Following description of CICS is given in chapter 1.1.1 of [APP90]:

“CICS (Customer Information Control System) is a general-purpose data communication system that can

support a network of many hundreds of terminals. You may find it helpful to think of CICS as an operat-

ing system within your own operating system … In these terms, CICS is a specialized operating system

whose job is to provide an environment for the execution of your online application programs, including

interfaces to files and database products.

The total system is known as a database/data-communication system …” (DB/DC system). “Your host

operating system, of course, is still the final interface with the computer; CICS is «merely» another inter-

face, this time with the operating system itself.”

CICS includes following features: End-to-End Integrity, Listener, Security, Scheduling, Naming, Perform-

ance, Exception Handling, Locking, Connectivity, Administration, Logging, Time Control, Multithreading, Re-

covery, and Authorisation. The TP monitor runs as a batch processing job in a separate virtual address space for

instance on an OS/390-server (Figure 2). Such a virtual address space is also called region. CICS application pro-

Introduction to CICS 37

grams run in the same virtual address space as the CICS kernel. In contrast, the database process runs in another

separate virtual address space of OS/390. The CICS kernel consists of the following components: Terminal Con-

trol, Program Control, Storage Control, File Control, and Interval Control. Each of these modules has an associ-

ated table in the main storage of OS/390 (Figure 3). Besides, running CICS as a single copy on an S/390 com-

puter, there can also be installed multiple CICS copies on a single S/390 computer, and further, multiple copies

on different S/390 computer systems, which communicate freely which each other. That is, share data!

Main Storage

CICS TSO/E MQSeries USS DB/2 WAS

OS/390 Kernel

Figure 2: OS/390 – Basic architecture – Virtual address spaces (regions)

CICS Region

CICS Applications

Terminal
Control

Program
Control

Storage
Control

File
Control

Interval
Control

Other OS/390 Regions

OS/390 Kernel

Figure 3: CICS – Basic architecture

38
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Some more interesting facts about CICS are assembled from [HKS04] and [ES1011]:

• Installed on 70.000 servers in 15.000 companies worldwide it is used by almost one million CICS applica-

tion engineers. Compared to this, about 30 millions CICS terminals are connected to these CICS servers.

In contrast, there exist 500 millions personal computers and 200 millions Internet connections. About 90%

out of the 2000 biggest companies use CICS.

• More than 150000 users can use a CICS application server concurrently at a time.

• CICS can serve up to 30 billion transaction a day and over 300 billion dollars are transferred in transac-

tions each week.

• CICS can handle thousands of transactions per second.

• More than 1 billion US-dollars have been invested in CICS based applications.

• CICS transactions can run programs written in a variety of programming languages, for example JAVA,

C, C++ COBOL, PL/I, Assembler, REXX, etc.

• CICS commands are the same on all platforms, beginning with an EXEC CICS statement.

• “CICS changes, the user's applications need not.” [YEL03]

• CICS works on basis of the ACID criteria (ACID = Atomicity, Consistency, Isolation, and Durability of

the data).

For a more comprehensive understanding about CICS, see chapter 7 of [HKS04] and chapter 1.1 of [APP90].

3 THE INITIAL ARCHITECTURE OF THE CICS BUSI-

NESS APPLICATIONS
Within the next two chapters we create two CICS business applications – describing two possibilities to use

CICS as an OLTP system and as an application server (see Figure 4 on next page). As the key components of

each application, a business logic component shared by both applications and a presentation logic component for

each application are created. They represent a bank program for debit and cash card holders to manage their cus-

tomer accounts stored to a database-like file by the clerical staff. The customer account file is stored on an

OS/390-server and is accessed by the CICS TS. The applications provide procedures to update the customer in-

formation, to create and delete customer accounts, and to read them.

Chapter 4 “The CICS Business Application NACT” on page 41 describes in detail the contents of the busi-

ness and presentation logic component of the CICS application NACT. All programs of the application are writ-

ten in COBOL. The application is invoked by an associated CICS transaction. Executed on a 3270 terminal

screen running on a WINDOWS2000 computer system, it inquires a customer record from the OS/390 database-

like file and displays the result on the screen. The services of this CICS application are provided by the legacy

3270 interface. This interface is used to send and receive special 3270 data streams between the CICS terminal

and the application programs where they are interpreted. To transport the data from the terminal to the CICS re-

gion, the 3270 interface uses the TCP/IP protocol.

A second method to inquire the customer records is explained in chapter 5 “The MQSeries CICS Business

Application MQNACT” on page 81. The created business application MQNACT also uses the COBOL business

logic created for the CICS application NACT, but has another presentation logic component written in JAVA.

We take advantage of JAVA's principle: Write once, run anywhere. That means, that anywhere, where a JVM is

installed, the MQSeries CICS business application can be executed. In case, the code is transformed into a JAVA

applet or servlet, it can be included as part of a web-based application running in a web browser. Exchanging the

inquired data between the presentation logic and the business logic is done by the Messaging and Queuing meth-

od also referred to as commercial messaging. IBM has developed a product called MQSeries. We use this

product in our sample application to explain the mechanisms of sending and receiving messages which transport

data streams from a client computer system (WINDOWS2000) to a server computer system (OS/390). On both

systems, MQSeries is installed as a server version connected through the TCP/IP protocol. When the JAVA pro-

gram inquires a customer record stored to the OS/390 database-like file, it sends the data to the MQSeries Server

installed on the client computer system by using the Message Queue Interface (MQI). The data is then packaged

in a message and send to the OS/390 MQSeries Server. Between this MQSeries Server and the CICS TS another

40
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

interface is used to transfer the inquire data to the business logic programs and to transfer the response data back

to MQSeries. This interface is called as the MQSeries CICS Bridge, sometimes also called as the MQSeries

CICS DPL Bridge. After the response data is transferred from the OS/390 MQSeries Server to the MQSeries

Server on the client computer system, it is picked up by the JAVA program using the MQI, too, and the informa-

tion is displayed.

In contrast to the CICS application NACT, the MQSeries CICS application MQNACT only read the informa-

tion of the customer account!

Figure 4: The initial architecture of the CICS business applications NACT and MQNACT

Business Logic

Component

Presentation Logic

Component

of NACT�

3270 Terminal

CICS

OS/390

Database

Presentation

Logic

Component

of MQNACT

WINDOWS2000

JVM

MQI

M
Q

Se
ri

es
 S

er
ve

r

M
Q

Series Server

MQSeries
CICS Bridge

TCP/IP

TCP/IP

3270 Interface

4 THE CICS BUSINESS APPLICATION NACT

A Bank Customer Account Program for the 3270 Terminal

4.1 Introduction

We want to create a CICS application for a bank that should perform operations on a customer account stored in

a data base. All employees of the bank should be able to create, read, update, delete, and browse such an account.

Furthermore, the customer accounts should be accessible through a menu-controlled program running on a CICS

terminal supporting IBM's 3270 Display System, in that case the 3278 Display Station Model 2.

Such a CICS business application consists always of three key elements – components, transactions, and error

handling. There are two key components of any business application – the business logic and the presentation lo-

gic. The presentation logic is an interface to use the business logic. In contrast, the business logic does the real

work. Presentation and business logic can be written in any programming language the operating system under-

stands and subsystems can call. The programs for the CICS application NACT are written in COBOL and use

BMS and can be accessed by the CICS subsystem using transactions – the second element. Error handling is star-

ted if an error occurs during processing. This third key element is represented by a distinct COBOL program

which is part of the business logic.

This chapter covers the description and the installation of both the business logic and the presentation logic. It

explains data structures used for administration of the customer accounts and how to install these data on the

OS/390-server. Furthermore, it explains how to deploy the application to CICS and how to display the result on a

terminal screen when using the 3270 interface.

All data, the source code and the compiled code, are available as raw material on a CD as a part of Horswill's

textbook [HOR00].

42
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

4.2 Uploading the files

The approach to transfer the files from the CD to the OS/390-server as described in Appendix A of [HOR00]

does not work using the standard FTP-terminal included as part of Windows 2000. This terminal does not under-

stand the suggested command bin fixed 80 to transfer files that have a length of 80 bytes per record stored

in fixed blocks. Partitioned data sets (PDS) are always consist of fixed record blocks with a length of 80 bytes

per record, but data cannot be transferred directly into PDSs. Those files have to be firstly transferred into se-

quential data sets (SDS) to receive them later into PDS. Therefore, the SDS has to be set to fixed record blocks.

Instead of this command, following command procedure can be used on the FTP-terminal to transfer the data

onto OS/390. Firstly, the command bin has to be executed. Afterwards, an additional command is to be entered

to create the fixed record block SDSs on the OS/390-server (Figure 5, page 44):

quote site recfm=fb lrec=80

The parameter recfm with the attribute fb specifies to create the fixed blocks. Within the parameter lrec is

specified the length of 80 bytes per records. The whole block size is automatically set to 6160 bytes (refer to the

messages shown in Figure 5). The file packages are copied from the CD (for folders stored to see Table 3) using

the put command into a SDS template named as TBUSSE.CICSADP.NEWSEQ (Figure 5):

put cicsadp.loa cicsadp.newseq

It is not required to specify tbusse.cicsadp.newseq; the shorter form cicsadp.newseq can be used,

because after logging on to the FTP-terminal, OS/390 always adds the user library name as high-level qualifier to

a data set.

Windows2000 OS/390

File name Stored on the CD-ROM into folder:
listings\chapter4\os390\cobol\compiled\ Data set name Data set type

cicsadp.cpy copybook TBUSSE.CICSADP.COBCOPY PDS
cicsadp.csd csddefs TBUSSE.CICSADP.CSDDEFS PDS
cicsadp.jcl vsam_jcl TBUSSE.CICSADP.JCLLIB PDS
cicsadp.loa loadlib TBUSSE.CICSADP.LOADLIB PDS
cicsadp.mac source TBUSSE.CICSADP.COBSRCE PDS
cicsadp.src source TBUSSE.CICSADP.COBSRCE PDS
cicsadp.txt vsam_data TBUSSE.CICSADP.VSAMDATA SDS

Table 3: Files transferred from the accompanied CD-ROM onto OS/390

After a file is successfully transferred into the template data set it is switched to the OS/390 terminal to re-

ceive the data into the correct PDS. Entering the command P.3.4 in the CUSTOMPAC MASTER APPLICA-

TION MENU (CMAM) leads to the Data Set List Utility (DSLU) of the Interactive System Productivity

Facility/Program Development Facility (ISPF)/(PDF) (Figure 6, page 44). Entering the user name TBUSSE into

the field Dsname Level and pressing the enter key list the data sets owned by TBUSSE (Figure 7, page 45).

The CICS Business Application NACT 43

When placing the cursor on the first position of the line beginning with the data set name

TBUSSE.CICSADP.NEWSEQ, the following command is entered to receive the data (Figure 8, page 45):

receive indsname(/)

The token / in the emphasis marks the data set in this line. It is noticed that the INSERT key on the keyboard

must be activated to overwrite the line. Afterwards, the message INMR901I indicates the data set is ready to be

restored into a new data set. The next message INMR906A demands to enter the restore parameters – this refers

to the data set in which the files should be copied (Figure 9, page 46):

dsn('TBUSSE.CICSADP.LOADLIB')

During executing the command a few messages are listed. After pressing the enter key and returning back to

the DSLU the first data set has been successfully uploaded from cicsadp.loa into the data set TBUSSE.CICSAD-

P.LOADLIB. Subsequently, the SDS template may be overwritten by the other files that have to be transferred to

OS/390 (Table 3). For transferring and receiving the file the same procedure is used, starting with the package

cicsadp.cpy. This is to be restored into its target data set as it is listed in Table 3.

All files are received into PDSs, except one file that remains as an SDS named as

TBUSSE.CICSADP.VSAMDATA (Table 3). For it, the quote site command needs to be executed again on

the FTP-terminal. A length of 383 bytes per record has to be set in the lrecl attribute:

quote site recfm=fb lrec=383

The records (account details) specified in the file cicsadp.txt have a length of 383 characters. Therefore, the file

is uploaded into an SDS having 383 bytes per record in one block. At the end, six new PDSs and one SDS are lis-

ted in the Dslist Utility (Figure 10, page 46).

Following files are stored in the partitioned data sets:

TBUSSE.CICSADP.COBCOPY: NACCBRWS, NACCCRUD, NACCERRH, NACCTREC,

NACTSET, NACWBRWS, NACWCRUD, NACWERRH,

NACWLITS, NACWLOCK, NACWTREC

TBUSSE.CICSADP.COBSRCE: NACTSET, NACT01, NACT02, NACT03, NACT04, NACT05

TBUSSE.CICSADP.CSDDEFS: CICS0ADP, CICSJADP

TBUSSE.CICSADP.JCLLIB: VSAM

TBUSSE.CICSADP.LOADLIB: NACTSET, NACT01, NACT02, NACT03, NACT04, NACT05

After all files are transferred and received correctly, the SDS TBUSSE.CICSADP.NEWSEQ may be deleted

(Figure 11-Figure 14, page 47-48).

44
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 5: FTP session – Uploading a file into a SDS

 Menu RefList RefMode Utilities Help
 ��

 Data Set List Utility

 blank Display data set list P Print data set list
 V Display VTOC information PV Print VTOC information

 Enter one or both of the parameters below:
 Dsname Level . . . TBUSSE______________________________________
 Volume serial . . ______

 Data set list options
 Initial View . . . 2 1. Volume Enter "/" to select option
 2. Space / Confirm Data Set Delete
 3. Attrib / Confirm Member Delete
 4. Total

 When the data set list is displayed, enter either:
 "/" on the data set list command field for the command prompt pop-up,
 an ISPF line command, the name of a TSO command, CLIST, or REXX exec, or
 "=" to execute the previous command.

 Option ===> __
 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 6: DATA SET LIST UTILITY screen in ISPF/PDF

The CICS Business Application NACT 45

 Menu Options View Utilities Compilers Help
���

DSLIST - Data Sets Matching TBUSSE Row 3 of 10

Command - Enter "/" to select action Message Volume

 TBUSSE.CICSADP.NEWSEQ SMS002
 TBUSSE.DDIR *VSAM*
 TBUSSE.DDIR.D DAVR7A
 TBUSSE.DDIR.I DAVR7A
 TBUSSE.ISPF.ISPPROF SMS001
 TBUSSE.SPFLOG1.LIST SMS002
 TBUSSE.SPFTEMP1.CNTL SMS002
 TBUSSE.SPF1.LIST SMS002
***************************** End of Data Set list ***************************

 Command ===> ___ Scroll ===> CSR
 F1=Help F3=Exit F5=Rfind F12=Cancel

Figure 7: DSLIST-screen in ISPF/PDF

 Menu Options View Utilities Compilers Help
���

DSLIST - Data Sets Matching TBUSSE Row 3 of 10

Command - Enter "/" to select action Message Volume

receive indsname(/)SADP.NEWSEQ SMS002
 TBUSSE.DDIR *VSAM*
 TBUSSE.DDIR.D DAVR7A
 TBUSSE.DDIR.I DAVR7A
 TBUSSE.ISPF.ISPPROF SMS001
 TBUSSE.SPFLOG1.LIST SMS002
 TBUSSE.SPFTEMP1.CNTL SMS002
 TBUSSE.SPF1.LIST SMS002
 ***************************** End of Data Set list ***************************

 Option ===> __
 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 8: Receiving the files from the data set “TBUSSE.CICSADP.NEWSEQ”

46
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

 Menu Options View Utilities Compilers Help
���

DSLIST - Data Sets Matching TBUSSE Row 3 of 10

Command - Enter "/" to select action Message Volume

receive indsname(/)SADP.NEWSEQ SMS002
 TBUSSE.DDIR *VSAM*
 TBUSSE.DDIR.D DAVR7A
 TBUSSE.DDIR.I DAVR7A
 TBUSSE.ISPF.ISPPROF SMS001
 TBUSSE.SPFLOG1.LIST SMS002
 TBUSSE.SPFTEMP1.CNTL SMS002
 TBUSSE.SPF1.LIST SMS002
 ***************************** End of Data Set list ***************************

INMR901I Dataset CTS.V130CICSJC.LOADLIB from JCOUSIN on WINMVS28
INMR906A Enter restore parameters or 'DELETE' or 'END'+
dsn('TBUSSE.CICSADP.LOADLIB')

Figure 9: Receiving the files into the new data set “TBUSSE.CICSADP.LOADLIB”

 Menu Options View Utilities Compilers Help
���

DSLIST - Data Sets Matching TBUSSE Row 3 of 16

Command - Enter "/" to select action Message Volume

 TBUSSE.CICSADP.COBCOPY SMS002
 TBUSSE.CICSADP.COBSRCE SMS002
 TBUSSE.CICSADP.CORLIB SMS002
 TBUSSE.CICSADP.CSDDEFS SMS002
 TBUSSE.CICSADP.JCLLIB SMS002
 TBUSSE.CICSADP.LOADLIB SMS002
 TBUSSE.CICSADP.NEWSEQ SMS002
 TBUSSE.CICSADP.VSAMDATA SMS002
 TBUSSE.DDIR *VSAM*
 TBUSSE.DDIR.D DAVR7A
 TBUSSE.DDIR.I DAVR7A
 TBUSSE.ISPF.ISPPROF SMS001
 TBUSSE.SPFLOG1.LIST SMS002
 TBUSSE.SPFTEMP1.CNTL SMS002
 ***************************** End of Data Set list ***************************

 Option ===> __
 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 10: List all received data sets (in blue colour)

The CICS Business Application NACT 47

 Menu Options View Utilities Compilers Help
���

DSLIST - Data Sets Matching TBUSSE Row 3 of 16

Command - Enter "/" to select action Message Volume

 TBUSSE.CICSADP.COBCOPY SMS002
 TBUSSE.CICSADP.COBSRCE SMS002
 TBUSSE.CICSADP.CORLIB SMS002
 TBUSSE.CICSADP.CSDDEFS SMS002
 TBUSSE.CICSADP.JCLLIB SMS002
 TBUSSE.CICSADP.LOADLIB SMS002
delete TBUSSE.CICSADP.NEWSEQ SMS002
 TBUSSE.CICSADP.VSAMDATA SMS002
 TBUSSE.DDIR *VSAM*
 TBUSSE.DDIR.D DAVR7A
 TBUSSE.DDIR.I DAVR7A
 TBUSSE.ISPF.ISPPROF SMS001
 TBUSSE.SPFLOG1.LIST SMS002
 TBUSSE.SPFTEMP1.CNTL SMS002
 ***************************** End of Data Set list ***************************

 Comand ===> __ Scroll ===> CSR
 F1=Help F3=Exit F5=Rfind F12=Cancel

Figure 11: Deleting the SDS template “TBUSSE.CICSADP.NEWSEQ”

���
� Confirm TSO Delete �
� �
� Data Set Name. : TBUSSE.CICSADP.NEWSEQ �
� Volume : SMS002 �
� �
� ** Caution ** If TSO delete command was issued against an uncataloged �
� data set, a cataloged version on a volume other than the �
� one listed here may be deleted. �
� �
� Creation date. : 2002/09/15 �
� �
� Command. . . . : DELETE 'TBUSSE.CICSADP.NEWSEQ' �
� �
� �
� �
� Instructions: �
� �
� Press ENTER key to confirm delete request. �
� Press CANCEL or EXIT to cancel delete request. �
� �
� Command ===> �
� F1=Help F3=Exit F12=Cancel �

���

48
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

���
� Confirm TSO Delete �
� �
� Data Set Name. : TBUSSE.CICSADP.NEWSEQ �
� Volume : SMS002 �
� �
� ** Caution ** If TSO delete command was issued against an uncataloged �
� data set, a cataloged version on a volume other than the �
� one listed here may be deleted. �
� �
� Creation date. : 2002/09/15 �
� �
� Command. . . . : DELETE 'TBUSSE.CICSADP.NEWSEQ' �
� �
� �
� �
� Instructions: �
� �
� Press ENTER key to confirm delete request. �
� Press CANCEL or EXIT to cancel delete request. �
IDC0550I ENTRY (A) TBUSSE.CICSADP.NEWSEQ DELETED

 Menu Options View Utilities Compilers Help
���
DSLIST - Data Sets Matching TBUSSE Row 3 of 16

Command - Enter "/" to select action Message Volume

 TBUSSE.CICSADP.COBCOPY SMS002
 TBUSSE.CICSADP.COBSRCE SMS002
 TBUSSE.CICSADP.CORLIB SMS002
 TBUSSE.CICSADP.CSDDEFS SMS002
 TBUSSE.CICSADP.JCLLIB SMS002
 TBUSSE.CICSADP.LOADLIB SMS002
 TBUSSE.CICSADP.NEWSEQ DELETE RC=0
 TBUSSE.CICSADP.VSAMDATA SMS002
 TBUSSE.DDIR *VSAM*
 TBUSSE.DDIR.D DAVR7A
 TBUSSE.DDIR.I DAVR7A
 TBUSSE.ISPF.ISPPROF SMS001
 TBUSSE.SPFLOG1.LIST SMS002
 TBUSSE.SPFTEMP1.CNTL SMS002
 ***************************** End of Data Set list ***************************

 Comand ===> __ Scroll ===> CSR
 F1=Help F3=Exit F5=Rfind F12=Cancel

Figure 14: Message also appeared in the DSLIST utility

The CICS Business Application NACT 49

4.3 The NACT COBOL programs and their commands

4.3.1 Overview

The business application programs running on a CICS Transaction Server v1.3 are NACT01, NACT02, NACT03,

NACT04, and NACT05 (Figure 15, next page). These CICS COBOL programs are transferred as compiled and as

source versions onto the OS/390-server. Besides these five CICS COBOL programs, a compiled and a source file

named NACTSET, containing one part of the presentation logic in BMS language, have also been transferred

(refer to page 43).

A set of such application programs is also known as a Unit of Work (UoW) and can transfer an unlimited

number of messages. The programs are not standard COBOL programs but so-called CICS COBOL programs.

Differing from regular COBOL programs, the files to be accessed are not defined in the CICS COBOL programs

themselves. They are stored in a CICS table – the File Control Table (FCT). This table links any access from the

terminal to the right file stored on OS/390. In addition, some COBOL file processing verbs, console I/O verbs,

statements, and compiler functions may not be used. A CICS COBOL program is usually short-running and pro-

cesses only a few requests. All used program commands are explained in the next sections and are listed together

in the Table 4 on page 56.

The COBOL copybooks, that belong to the COBOL programs, are also transferred onto the OS/390-server

(refer to Table 3, page 42 and to the data set TBUSSE.CICSADP.COBCOPY, page 43). COBOL copybooks are

libraries and act somewhat like functions or subroutines. They contain a segment of often used COBOL code for

use by the complete application. During execution of the COBOL compiler these copybooks are introduced into

COBOL programs like C and C++ include files into C or C++ programs.

4.3.2 The presentation logic component

When the transaction identifier (TRANSID or TRID) NACT is entered on the CICS terminal, the program

NACT01 is started. This program transfers data to the business logic, and, when it gets return data, it sends them

to the map set NACTSET, which displays the matching screens on the terminal using the 3270 interface (Figure

15). There are three screens, called the ACCOUNTS MENU screen (Figure 16, page 51), the ACCOUNTS DE-

TAILS screen (Figure 17, page 51), and the ERROR REPORT screen (Figure 18, page 52). Those screens are

created using the Basic Mapping Support (BMS) services – the CICS terminal input/output services. These ser-

vices constitute the native CICS presentation logic. The map set NACTSET contains for the each screen a map

that contains multiple fields. The map set has been written in a special BMS language (which is in reality an

S/390 assembler language macro facility). It is assembled with the help of the Job Control Language (JCL) into a

physical map and into a symbolic description map. The physical map named as NACTSET is stored in the execu-

tion library TBUSSE.CICSADP.LOADLIB but contains no executable code. This part of the map set holds attrib-

50
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

utes, labels, and titles for the screen image and adjusts the variable data to display all information correctly on the

screen (cf. Listing 11, page 227). The symbolic description map defines variable fields to refer them by name. It

must have the same name as the physical map and is compiled as a COBOL copybook into the data set

TBUSSE.CICSADP.COBCOPY. It is introduced into NACT01 as an include structure (cf. Listing 12, page 227).

Transaction
NACT (NACP)

Menu Maps
Accounts Menu

Accounts Details
Error Report

3270 Terminal 3270 Printer

Print screen

Display Program
NACT01

Print Program
NACT03

Presentation
Logic

Component

Business
Logic

Component
CRUD Program

NACT02
Browse Program

NACT05

Error handling
program
NACT04

Data
Base

VSAM
Name File

VSAM
Account File

Data
Base

VSAM
Locking File

Data
Base

32
70

 In
te

rf
ac

e

32
70

 In
te

rf
ac

e

Map Set
NACTSET

32
70

 In
te

rf
ac

e

Figure 15: Summary of the components of the bank customer account application NACT

The CICS Business Application NACT 51

 ACCOUNTS MENU

 TO SEARCH BY NAME, ENTER SURNAME AND IF REQUIRED, FIRST NAME

 SURNAME : (1 TO 18 ALPHABETIC CHRS)
 FIRST NAME : (1 TO 12 ALPHABETIC CHRS OPTIONAL)

 TO PROCESS AN ACCOUNT, ENTER REQUEST TYPE AND ACCOUNT NUMBER

 REQUEST TYPE: (D-DISPLAY, A-ADD, M-MODIFY, X-DELETE, P-PRINT)
 ACCOUNT : (10000 TO 79999)
 PRINTER ID : (1 TO 4 CHARACTERS (REQUIRED FOR PRINT REQUEST))

 ENTER DATA AND PRESS ENTER FOR SEARCH OR ACCOUNT REQUEST OR PRESS CLEAR TO EXIT

Figure 16: ACCOUNTS MENU screen

 ACCOUNTS DETAILS OF ACCOUNT NUMBER 11100

 SURNAME : BUSSE (18 CHRS) TITLE : Mr (4 CHRS OPTIONAL)
 FIRST NAME : TOBIAS (12 CHRS) MIDDLE INIT: (1 CHR OPTIONAL)
 TELEPHONE : 0000245756 (10 DIGS)
 ADDRESS LINE1: Hursley Park (24 CHRS)
 LINE2: Hants (24 CHRS)
 LINE3: UK (24 CHRS OPTIONAL)

 CARDS ISSUED : 1 (1 TO 9) CARD CODE : C (1 CHR)
 DATE ISSUED : 01 12 01 (MM DD YY) REASON CODE: N (N,L,S,R)
 APPROVED BY : IBM (3 CHRS)

 UPTO 4 OTHERS WHO MAY CHARGE (EACH 32 CHRS OPTIONAL)
 O1: FRAU ELSTER O2: RITTER RUNKEL
 O3: PITTIPLATSCH O4: DIE DIGEDAGS
 SPECIAL CODE1: 1 CODE2: 2 CODE3: 3 (EACH 1 CHR OPTIONAL)
 NO HISTORY AVAILABLE AT THIS TIME CHARGE LIMIT 1000.00 STATUS N

 NOTE:- DETAILS IN BRACKETS SHOW MAXIMUM NO. CHARACTERS ALLOWED AND IF OPTIONAL

 PRESS "CLEAR" OR "ENTER" TO RETURN TO THE MENU WHEN FINISHED

Figure 17: ACCOUNTS DETAILS screen (example)

52
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

 ACCOUNT FILE: ERROR REPORT

 ERROR AT 27/09/2002 12:40:18

 Error in transaction NACT, program NACT05 .
 Type is TRAP. Response is NOTOPEN , Reason is 0060 - STARTBR .

 PLEASE ASK YOUR SUPERVISOR TO CONVEY THIS INFORMATION TO THE
 OPERATIONS STAFF.

 THEN PRESS "CLEAR". THIS TERMINAL IS NO LONGER UNDER CONTROL OF
 THE "NACT" APPLICATION.

Figure 18: ERROR REPORT screen (example)

Three map-definition macros are needed to generate a particular map. One of these is the BMS map defintion

for a field introduced by the DFHMDF macro, for example (cf. Listing 11, page 227):

017 DFHMDF POS=(01,01),ATTRB=(ASKIP,BRT),LENGTH=13, X
018 INITIAL='ACCOUNTS MENU'

This example defines that the characters 'ACCOUNTS MENU' are to be displayed on the ACCOUNTS MENU

screen using the attribute INITIAL. The string is 13 characters long, thus the attribute LENGTH is set to 13.

Furthermore, the string is to be displayed at the upper left position of the screen by setting POS=(01,01) (line

no. 1 and column no. 1). There are also set predefined characteristics (ASKIP, BRT) in the ATTRB field. The

map field macro may be prefixed with a field name (label) if it is needed to refer to it. An example that has the la-

bel SUMTTLM is shown in line 56 in the same listing:

056 SUMTTLM DFHMDF POS=(14,01),ATTRB=(ASKIP,BRT),LENGTH=79

The DFHMDF macros must be part of a BMS map definition introduced by the DFHMDI macro. It may also

have a label, if more than one is defined. This is an example of such a macro:

016 ACCTMNU DFHMDI SIZE=(24,80),CTRL=(PRINT,FREEKB)

The macro starts with the identifier ACCTMNU. The parameter SIZE(height,length) defines the size of the

screen, in this case, the map fills the whole displayable area of a CICS terminal with 24 lines (height 24) and 80

The CICS Business Application NACT 53

characters per line (length 80). Characteristics of the 3270 terminal are defined by the item CTRL. For example,

the characteristic PRINT has to be specified if a printer is to be started to receive the data. The characteristic

FREEKB unlocks the keyboard after data is written to the map. All maps are assembled in the BMS map set

definition using the DFHMSD macro. This macro must be placed ahead of all the other macros. The DFHMSD

macro is shown in line 1 of Listing 11:

001 NACTSET DFHMSD TYPE=MAP,MODE=INOUT,LANG=COBOL,TIOAPFX=YES,STORAGE=AUTO

A map set is always introduced by a required notation (here: NACTSET) to create the right map set. The attribute

TYPE=MAP specifies that a physical map set is firstly to be created. After that, the symbolic map description is

assembled when the parameter MAP is replaced by DSECT. Both compiled versions of a map set get always the

same name – NACTSET. The physical map is stored in that data set into which all other installed programs are

compiled to – in that case into TBUSSE.CICSADP.LOADLIB. In contrast, the symbolic map description is al-

ways stored into the copybook data set. Because the map set is used for both directions – input and output – the

attribute MODE was set to INOUT. The LANG characteristic is needed to define the source language of the applic-

ation program into which the symbolic description map should be introduced. Therefore, the map was assembled

into a data definition for the COBOL program NACT01 (LANG=COBOL).

After NACT01 creates a menu map using BMS it sends the map, for instance the ACCOUNTS MENU map,

to the CICS terminal with the COBOL command EXEC CICS SEND MAP (e.g. line 1217 in Listing 13). In the

case of sending control information like erasing all unprotected fields or freeing the keyboard, the command

EXEC CICS SEND CONTROL is executed (line 597 in Listing 13). Any data the program NACT01 receives

from a terminal is collected within the command EXEC CICS RECEIVE MAP (e.g. line 619 in Listing 13).

Such data can be entered on the ACCOUNTS MENU screen and on the ACCOUNTS DETAIL screen. Before

NACT01 transfers data to the business logic programs, it validates the user account and all input data. If an error

occurs the error handling program NACT04 is called. In this case NACT04 identifies the problem and sends an er-

ror message back to NACT01. An ERROR REPORT screen containing this error message is created and the map

is transmitted to the CICS terminal. Input can also be transferred by pressing special keys on the terminal, for ex-

ample, the ENTER key, the CLEAR key, or the PA/PF keys. Processing input from a terminal to a program is

controlled by the EXEC Interface Block Attention Identifier (EIBAID). For a better understanding on how to use

EIBAID it is suggested to browse the Appendix A in [APR03].

Furthermore, NACT01 can start the program NACT03 (the print presentation logic) when the transaction

NACT has requested the NACP transaction (refer to Figure 15). A new task is started by using the command

EXEC CICS START TRANSID (line 1040 in Listing 13). The data to be printed is retrieved from a storage

area called communication area (COMMAREA) using the command EXEC CICS RETRIEVE. This program is

not be used by the application since no printer is installed on the JEDI OS/390-server.

54
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

For more information about printing see Horswill's textbook [HOR00], chapter 11 “Local Printing

(NACT03): Requests for Printing” on pages 241-242. All mentioned CICS COBOL commands are fully refer-

enced in chapter 1 of [APR03]. Information about BMS, macros, items, and characteristics that can be set is

available in [APG03], part 6 “Basic Mapping Support”. For BMS details see also [APR03] Appendix J, and K.

4.3.3 The business logic component

The programs NACT02, NACT04, and NACT05 are the business logic component of the CICS application. The

NACT02 and NACT05 programs act as stateless tasks on their own reacting to each request. NACT04 is invoked

if an error occurs during the program execution. An overview on how the business logic programs cooperate with

the presentation logic programs is shown in Figure 15 on page 50.

NACT02 is named as the CRUD program (Listing 14, page 227). This abbreviation stands for its operations

on a record of the account file (CREATE, READ, UPDATE, and DELETE). When the program is called it val-

idates and analyses the request to decide to accept it or not. After NACT02 accepts a request the CRUD-opera-

tions are performed. If a record is to be added to, or deleted from the account file, or the record is to be changed

the file must be locked to prevent concurrent updates. The lock is freed if one of these operations (create, update,

and delete) is successfully executed. In case of an error, a message is sent from the error handler to the caller.

The operation is aborted.

The CICS COBOL command EXEC CICS WRITE listed in NACT02 (e.g. line 359 in Listing 14) adds a

new record to the account file (CREATE). If a record is to be updated the command EXEC CICS REWRITE

(e.g. line 502 in Listing 14) is executed to overwrite this entry (UPDATE). However, at first, it is necessary to

perform a “read for update” operation using the EXEC CICS READ UPDATE command (e.g. line 482 in List-

ing 14). This command searches the account file for the record that is to be updated. The CICS command EXEC

CICS DELETE (e.g. line 438 in Listing 14) removes a record from the account file (DELETE). The READ op-

eration EXEC CICS READ (e.g. line 408 in Listing 14) is only an inquiry function and does not initiate locking

of the account file. In most cases the related command EXEC CICS READ UPDATE expects an update of the

account file and thus requires locking the file.

NACT05 browses the account file for a matching record using the sequential method. It is searched by name,

based on a user input (Listing 15, page 227). The browse process starts with the CICS command EXEC CICS

STARTBR and terminates with the command EXEC CICS ENDBR (e.g. line 376 resp. Line 487 in Listing 15)

After the start browse command was invoked only one match is reported, assuming a match exists in the file.

NACT05 however assumes that more than one match is stored in the account file. Therefore, the command EXEC

CICS READNEXT (e.g. line 529 in Listing 15) is executed to search for additional matches. The results are dis-

played on the screen. If no record matches the search criteria, a message indicating this fact is displayed.

NACT05 does not require locking the account file because the browse process uses only the READ operation

and expects no UPDATE, CREATE, or DELETE operation.

The CICS Business Application NACT 55

The error handler program NACT04 is called when an error or problem occurs during executing the CICS ap-

plication NACT (Listing 16, page 227). It must handle a comprehensive scenario that can happen or might hap-

pen in future. Nobody can predict every error but if such an unpredictable error occurs a message must sent to the

user to inform him or her. For example, problems could be caused be either the application or by CICS itself.

Consequently, NACT04 obtains any information about the current problem, builds and sends messages to the user

appropriate to the type of the error, and terminates the task. In any event, to meet the ACID criteria, the intended

modification is rolled back.

The first command NACT04 executes is EXEC CICS ASSIGN (line 954 in Listing 16). It passes informa-

tion from CICS about the environment and the problem back to the program. Besides, it determines which com-

mand was used to invoke the error handler. That can happen when a program, for instance NACT01, invokes the

commands EXEC CICS XCTL or EXEC CICS LINK and a serious problem occurred thereby (e.g. line 2129

resp. line 2441 in Listing 13). As a result of a CICS abnormal end processing, the programs call NACT04 using

the command EXEC CICS ABEND (NACT01, Listing 13, line 463). After NACT04 receives the control it has to

confirm that the program which called the error handler is the correct one, and if not, to find the program where

the error occurred using the command EXEC CICS INQUIRE PROGRAM (e.g. line 1173 in Listing 16). When

an error occurs a dump is taken with a code based on the type of the error using the command EXEC CICS

DUMP TRANSACTION DUMPCODE (e.g. line 1343 in Listing 16). This excludes a conflict with the CICS dump

codes. When a transaction fails and an error is produced, all updates on a record must be rolled back, and the pre-

vious version is restored with the command EXEC CICS SYNCPOINT ROLLBACK (e.g. line 1350 in Listing

16). Displaying the error message on the users terminal screen is done with the command EXEC CICS

WRITEQ TD QUEUE (e.g. line 1382 in Listing 16). It writes extra-partition transient data (the error message) to

a predefined symbolic destination (the queue) and if possible the message is displayed at a terminal. Executing

the command EXEC CICS WRITE OPERATOR TEXT (e.g. line 1400 in Listing 16) sends the error message

to a system console and thus to a system operator according to the CICS system definition. Additionally, a date

and a time stamp can be added to the error message header with command EXEC CICS ASKTIME resp. EXEC

CICS FORMATTIME, (e.g. line 1358 or line 1362 in Listing 16). The command EXEC CICS ISSUE DIS-

CONNECT (e.g. line 1467 in Listing 16) is invoked to terminate the session on the CICS terminal.

All commands used within these CICS COBOL programs are listed in Table 4 on the next page. The CICS

COBOL commands used in the business logic programs are fully referenced in chapter 1 of [APR03].

56
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Command Extension NACT01 NACT02 NACT03 NACT04 NACT05

EXEC CICS ASSIGN PROGRAM
NOHANDLE

X X X
X

X

EXEC CICS HANDLE ABEND X X X X

EXEC CICS ABEND ABCODE X X X X X

EXEC CICS GETMAIN LENGTH
SET

X
X

EXEC CICS RETURN TRANSID
X
X

X X X X

EXEC CICS XCTL PROGRAM X X X X

EXEC CICS SEND CONTROL
MAP

X
X X X

EXEC CICS RECEIVE MAP X

EXEC CICS START TRANSID X

EXEC CICS LINK PROGRAM X

EXEC CICS RETRIEVE X

EXEC CICS WRITE FILE
OPERATOR

X
X

EXEC CICS READ X

EXEC CICS DELETE X

EXEC CICS READ UPDATE X

EXEC CICS REWRITE X

EXEC CICS INQUIRE PROGRAM
PROGRAM START

X
X

EXEC CICS DUMP TRANSACTION X

EXEC CICS SYNCPOINT ROLLBACK X

EXEC CICS ASKTIME ABSTIME X

EXEC CICS FORMATTIME ABSTIME X

EXEC CICS WRITEQ TD QUEUE X

EXEC CICS ISSUE X

EXEC CICS STARTBR X

EXEC CICS ENDBR X

EXEC CICS READNEXT X

Table 4: CICS COBOL commands used in the application programs

4.3.4 Other commands that control the programs

There are additional CICS COBOL commands to control the programs of the CICS application. Two commands

previously mentioned – EXEC CICS LINK and EXEC CICS XCTL – pass control from one program to an-

other using the scratchpad facility COMMAREA. Such program calls are referred to as “synchronous”. Using

this method returns the control to the calling program when the call is completed. The LINK command transfers

data to another program in a synchronous manner using the COMMAREA and expects a return to continue the

execution. The linked-to program, that is called through the LINK command, gives back the control to the start-

The CICS Business Application NACT 57

ing point – the instruction that resides after the LINK command. In our sample application, the LINK command

is used by NACT01. On the other side, the XCTL command also transfers control in a synchronous manner from

one program to another using the COMMAREA, but it expects no return to call another program. This method is

very useful if an unexpected error is detected and the program cannot continue its work. This command is used

by all programs except NACT04. In connection with the LINK and XCTL commands the command EXEC CICS

RETURN used by all programs (e.g. line 523 in Listing 13) returns the control back to the previous program. In

addition, the control is given to the next transaction with the command EXEC CICS RETURN TRANSID (e.g.

line 2388 in Listing 13).

In case of terminating a transaction because of an abnormal situation the command EXEC CICS HANDLE

ABEND (e.g. line 456 in Listing 13) is invoked by all programs except NACT04 to establish the error handler pro-

gram NACT04. The transaction is terminated by the command EXEC CICS ABEND ABCODE (e.g. line 463 in

Listing 13). This command can give the control back to CICS or to the error handler NACT04. It causes to back

out all changes made by this unit of work and the record file remains unchanged. Besides, it can produce a dump

having the identifier given by the parameter ABCODE.

The command EXEC CICS ASSIGN is not only used in the NACT04 program to collect information about

the CICS system and the occurred error, it also collects the system information for all other programs.

All these additional CICS COBOL commands are fully referenced in chapter 1 of [APR03].

4.3.5 Excursion: Storing exchange data – When to use the COMMAREA?

4.3.5.1 Overview

The COMMAREA is a CICS standard area used by two CICS programs to exchange data within one transaction

or between transactions. This data is saved temporary for a specific, mostly short, time.

Storage hierarchy on S/390 computers is subdivided into different storage levels; the highest at the top, the

lowest on the bottom (refer to Table 5 on next page). Relevant for storing CICS exchange data are Processor

Storage, consisting of Central Storage plus Expanded Storage, and External Storage. Processor Storage is also

called Main Storage or Main Memory, and sometimes erroneously only Central Storage. However, Central Stor-

age is a component of Processor Storage. External Storage is sometimes also called Auxiliary Storage. Processor

Storage can be as large as 64 GB (z900), on the JEDI OS/390-server the size is 256 MB. External Storage on

JEDI OS/390-server is provided by one internal disc with 18GByte and 16 external discs with 9.1GBytes per

disc. The Processor Storage assigned to CICS is called CICS Main Storage, which is usually virtual storage. This

virtual storage is subdivided into the CICS Dynamic Storage Area (CDSA) and the Extended CICS Dynamic

Storage Area (ECDSA).

Storage place Storage level Access time

58
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Inside Central Processor

Registers few nanoseconds

Level-1-Cache nanoseconds

2nd-Level-Cache nanoseconds

Inside Processor Unit Processor Storage
Central Storage
 (+ Virtual Storage) many nanoseconds

Expanded Storage microseconds

External Storage Devices

Cache Disk Storage on a Direct Access Storage
Devices (DASD) milliseconds

DASD without Cache milliseconds

Optical Storage milliseconds

Tape Storage seconds

Table 5: Storage hierarchy in S/390 computers

(see [HAC99], p.52)

There exist two storage services for storing exchange data from the execution of a CICS transaction resp.

CICS program and to share it with other transactions/programs – the scratchpad facility and the queuing facility.

Both storage services are used in the CICS business application NACT. Saving the state of an interaction

between the terminal user and a program results in the use of such facilities. The scratchpad facility is used when

the state of program data is to be saved during program execution (without a task exit). When data is store to a

file or to a list, that are referenced later (for example for logging), queuing facility is used (a task exit is possible).

CICS scratchpad facilities uses scratchpad areas, which can be one of the following: COMMAREA, Transaction

Work Area (TWA), Common Work Area (CWA), and Terminal User Area (TUA). Display Screen can also be

used as a scratchpad area to store data for a time. Scratchpads use only CICS Main Storage. The other storage

service as already mentioned above is called queuing facility. As it, Temporary Storage and Transient Data can

be used. Contrary to scratchpad areas, both can use CICS Main Storage and External Storage (Figure 19, next

page).

The CICS storage services can further be subdivided into those associated with a single task or within shared

tasks. These types are called Task-Private Storage (also known as Task-Private Pool), Task-Shared Storage (also

known as Task-Shared Pool), and Private-Shared-Storage (also known as Region Pool) only owned by CICS.

Task-Private Storage is private to the task and cannot be addressed by any other CICS task in the system. The

COMMAREA and the TWA can use the Task-Private Storage. In contrast, the data stored in the Task-Shared

Storage can be shared between all CICS tasks. This storage can be used by the CWA, the TUA, and by the COM-

MAREA, too. In the CICS Private-Shared-Storage is stored data private to CICS, only information from this area

can be obtained.

The CICS Business Application NACT 59

Figure 19: Scratchpad facility vers. Queuing facility

4.3.5.2 Temporary Storage – queuing and scratchpad facility

Temporary Storage is the primary CICS facility for storing data that must be available for more than one transac-

tion. It can use both – CICS Main Storage and External Storage of the OS/390-server, but using CICS Main Stor-

age requires much more storage for Temporary Storage than External Storage requires. CICS exchange data is

kept in Temporary Storage Queues (TSQ) (Figure 19). When using CICS Main Storage the space for the queues

is taken from the CDSA, part of the Virtual Storage; when using the External Storage the queue is written as a se-

quential file stored in a VSAM data set. Data stored in External Temporary Storage implies “storing relatively

large amounts of data that have a relatively long lifetime or are accessed infrequently.” ([APG03], ch. 3.1.5)

The Temporary Storage Data Sharing holds both TSQ-types in Temporary Storage Pools to supports concurrent

access to the queues. TSQ stored in data sets can be recovered, in contrast to TSQs stored in CICS Main Storage

and to shared TSQs. Temporary Storage requires not to be allocate until it is required and it is only available as

long as it is required. Security for TSQs is also available. The name of TSQs can be up to 16 characters long.

Each queue requires a CICS resource definition called the Destination Control Table (DCT) entry.

TSQs consist of items that can be thought as a record. For the items on both TSQ types, a CICS internal index

is created, maintained in the CICS Main Storage. The items can be added to the queue, read, modified, and de-

leted from the queue by CICS programs within one task or more tasks. Furthermore, the items can be reread and

can be read in any order. The TSQ must not store more than 32.767 items resp. bytes. When an item is longer

than 1 byte, for example 12 bytes, the TSQ must not exceeded 32.755 bytes. If only one item is stored onto the

queue, the queue can be treated as a scratchpad capability (Figure 19). However, TSQs of more than one item

should only be used for direct or repeated access to the items, because Transient Data provides facilities for a

Scratchpad facility

Queuing facility
COMMAREA
CA1 CA2 ··· CAn

Temporary Storage
TS2 ··· TSn

Transient Data

CWA

TWA
TW1 TW2 ··· TWn

1 CWA per 1 CICS
address space

CICS address space

TUA
TU1 TU2 ··· TUn

Temporary Storage
TS1

TD1 TD2 ··· TDn

and some more

60
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

better and efficient handling of sequential files when accessed sometimes. Because the queuing facility is only

used in the CICS application NACT to send sometimes error messages to the user's terminal, Temporary Storage

has not been used for the CICS application, but Transient Data does.

4.3.5.3 Transient Data – queuing facility

Within the second queuing facility – Transient Data – the CICS exchange data is also stored as items/records

onto queues (Transient Data Queues (TDQ)) external or internal to the CICS region (Figure 19). If data is stored

onto a Intrapartition TDQ (ITDQ), it can only be accessed by a facility allocated to the CICS region. If data

should be sent external to the CICS region, it is stored onto an Extrapartition TDQ (ETDQ). ITDQs are similar to

External TSQ, they use also sequential files stored in VSAM data sets, but managed by the CICS region. ITDQs

cannot be created dynamically, items can only be read sequentially and only once, and an item cannot be

changed. After the item is read, it is removed from the queue. Therefore, intrapartition data can be used for mes-

sage switching, broadcasting, and database access (if the database is connected to the CICS region). Advantage-

ously, ITDQs can be physically or logically recoverable.

In contrast to ITDQs, EDTQs can also reside on any external sequential devices, such as a DASD, terminal,

tape, printer, and so on. Programs can access those queues outside or within the CICS region through the stand-

ard Sequential Access Method (SAM). Logging data, statistics, and transaction error messages are examples of

data that can be written to EDTQs. Within our sample CICS application (NACT04), extrapartition data is used to

display error messages on the terminal screen. The command EXEC CICS WRITEQ TD, as mentioned in

chapter 4.3.3 “The business logic component” on page 54, sends the error information to an EDTQ named CSSL.

Both TDQs require a CICS DCT entry and a queue definition. The name of Transient Data queues may only

be 4 characters long. Items, as on ITDQs, cannot be reread and modified and they can only be read in order as

they were added onto the queues. Read and write operations on ETDQs cannot be done concurrently.

For more information on Temporary Storage and Transient Date please refer to [APG03], for a good ex-

plained storage hierarchy and for a complete storage history refer to [HAC99].

4.3.5.4 COMMAREA – a scratchpad facility

As part of the scratchpad facility, the COMMAREA stores temporary data to pass it to a called program within or

of the next transaction (refer to Figure 19). A COMMAREA is a special form of user storage. With the use of

COMMAREAs, CICS can store the exchange data in DSAs and Extended DSAs to provide them for the same

CICS region, for different CICS regions, or for other address spaces external to CICS. When the COMMAREA

is used in the EXEC CICS LINK and EXEC CICS XCTL commands, exchange data is transferred between

programs of the same transaction or between transactions from the same terminal. Exchange data can be passed

between different terminals when the COMMAREA is used in the EXEC CICS RETURN command. When us-

The CICS Business Application NACT 61

ing this command only the first program of the next transaction is called. CICS ensures, that any COMMAREA is

addressable by the program, that receive the data. In our sample CICS business application NACT, all programs

except NACT04 use the COMMAREA.

Each COMMAREA must not exceed a limit of 32.763 bytes including an additional header. However to be

safe, it should not be exceeded a 24KB limit because of some factors that can reduce the limit from the maximum

([APG03], ch. 3.3.3.1). The length of the COMMAREA is stored in the EIBCALEN-variable (Execute Interface

Block COMMAREA Length). The header may have a length of up to 18 bytes, consisting of an identifier of the

target system (bytes 1-4), a program identifier for the called program name (bytes 5-12), a decimal return code

(bytes 13-16), and the COMMAREA length inclusive of the header (bytes 17-18). For example, such a header

applies to the COMMAREA in the XCTL and LINK command. Of course, the header of the COMMAREA used

in the RETURN command consists of the transaction identifier (4 bytes) instead of the program name (8 bytes).

When a CICS COBOL program calls a COMMAREA, it sets a pointer to the address of the COMMAREA

known to the system, and receives the data which was transferred from another program to it previously. Because

the COMMAREA is freed before the next program starts, a copy of the data area is created and a pointer to the

copy is passed to the called program.

Passing exchange data to a DPL program using a COMMAREA is the recommended method. In CICS CO-

BOL programs, the command DFHCOMMAREA creates the COMMAREA.

A COMMAREA is used as a Task-Private-Storage, when information is passed between one program and the

next in the same task. When information is passed in a pseudo-conversational sequence between one transaction

and the next, the COMMAREA is used as Task-Shared-Storage.

In Figure 20 on the next page it is shown, that the program PR1 of the transaction TR1 transfers data to the

program PR2 using the COMMAREA1. For example, the command EXEC CICS LINK PROGRAM('PR2')

has been executed. After PR2 has received the data, the data is processed and sent to the COMMAREA2 execut-

ing the command EXEC CICS RETURN TRANSID('TR2'). PR3 receives the data because this program is

the first program of the transaction TR2. When the data is executed, PR3 sends it to PR4 using the EXEC CICS

LINK PROGRAM('PR4') command. PR5 also uses the EXEC CICS LINK command to pass data to PR4.

62
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 20: The Scratchpad facilities CWA, TWA, and COMMAREA in comparison

Example: Using the COMMAREA in the CICS business application NACT

As an example, we describe, how a communication area is created and used, when NACT02 is called for a read

request from NACT01. Within the COBOL copybook NACWCRUD a logical record storing data has been

defined (cf. Listing 17, page 228). From this record, also called working storage, the COMMAREA is built by

the called program. The copybook defines a 25 bytes header and a 383 bytes buffer for the record. The name of

the working storage – WS-CRUD-COMMAREA – is only set to refer to it from NACT01 (line 21, Listing 1, next

page). All variables are only used to refer to them from NACT01. In the working storage there are only defined

pure data.

The program name to be called captures the first 8 bytes of the data area. Because a CICS COBOL program

can have maximal 8 characters and NACT02 consists only of 6, 2 blank characters have been inserted at the end

of the program name ('NACT02__'; cf. Lines 100-103, Listing 2, next page). This entry is automatically created,

when the COBOL command EXEC CICS LINK is executed within the keyword PROGRAM. As next, a few

entries have been created that hold some specific information. The first data item WS-CRUD-VER is set to 3

spaces (line 25, Listing 1). This item is filled with the data description entry WS-CRUD-CORRECT-VERSION to

'1A', if NACT01 sets this entry (line 26, Listing 1 & line 2127, Listing 2). The field WS-CRUD-FUNCTION is set

to one space to store the request type which is sent to NACT02. The request type describes an associated opera-

tion (line 36, Listing 1). For example, the user wants to read an account without locking the file, the request type

E is set within the variable WS-CRUD-REQ-ENQUIRE (line 41, Listing 1). The variable WS-CRUD-VALID-

Scratchpad facility

PR3 PR4 PR5

TR1

PR1 PR2

TWA1 TWA2

PR1 PR2 PR3 PR4 PR5

CWA

COMMAREA1 COMMAREA2

CICS address space

TR2 TR1

TR1 TR2

TR2

PR1 PR2 PR3 PR4 PR5

The CICS Business Application NACT 63

 ···
21 05 WS-CRUD-COMMAREA.
 ···
25 10 WS-CRUD-VER PIC XXX VALUE SPACES.
26 88 WS-CRUD-CORRECT-VERSION VALUE 'V1A'.
 ···
36 10 WS-CRUD-FUNCTION PIC X VALUE SPACES.
 ···
41 88 WS-CRUD-REQ-ENQUIRE VALUE 'E'.
 ···
44 88 WS-CRUD-VALID-REQUEST VALUE 'C' 'R' 'U' 'D'
45 'E' 'L' 'F'.
 ···
56 10 WS-CRUD-RESP PIC 9(4) VALUE ZERO.
 ···
59 88 WS-CRUD-NO-ERROR VALUE '0000'.
60 88 WS-CRUD-BAD-FORMAT VALUE 'FRMT'.
 ···
76 10 WS-CRUD-REAS PIC 9(4) VALUE ZERO.
 ···
81 88 WS-CRUD-REQUEST-ERROR VALUE 'REQE'.
 ···
90 10 WS-CRUD-CICS-FUNCTION PIC 9(5) VALUE ZERO.
 ···
97 10 NACTREC-DATA.
98 COPY NACWTREC.

Listing 1: Extract from the COBOL copybook NACWCRUD (cf. Listing 17, page 228)

 ···
 100 05 WS-PROGRAM-NAME PIC X(8) VALUE SPACES.
 101 05 CRUD-PROGRAM.
 102 10 WS-CRUD-PROGRAM-PREFIX PIC X(4) VALUE SPACES.
 103 10 FILLER PIC X(4) VALUE '02 '.
 ···
 306 COPY NACWCRUD.
 ···
2127 SET WS-CRUD-CORRECT-VERSION TO TRUE.
2128*
2129 EXEC CICS LINK
2130 PROGRAM(CRUD-PROGRAM)
2131 COMMAREA(WS-CRUD-COMMAREA)
2132 RESP(RESPONSE)
2133 RESP2(REASON-CODE)
2134 END-EXEC.
 ···

Listing 2: Extract from the CICS COBOL program NACT01 (cf. Listing 13, page 227)

Note: COBOL uses different level numbers to indicate the name, the functions, and the fields of the

COMMAREA. Such level numbers indicate the hierarchical position of the data items (level numbers 1-

49) or the special properties of a data description entry (level numbers 66, 77, and 88). For example, the

level number “05” sets the name of the data area, “10” indicates a field, and “88” refer to a variables

having a value.

64
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

REQUEST points to the same value as specified previously to validate the request type. For example, it points to

the value E that is set for the read-access and allows the reading (line 44&45, Listing 1). Four more bytes are re-

served for the response code values, set within the item WS-CRUD-RESP (line 56, Listing 1). There are also re-

served four bytes for the reason code within WS-CRUD-REAS (line 76, Listing 1). These codes will set during

passing the data to NACT02. For example, the entry WS-CRUD-NO-ERROR is set to '0000' in the field WS-

CRUD-RESP, in case the request was successful (line 59, Listing 1), or WS-CRUD-BAD-FORMAT is set to

'FRMT', if there was an interface error (line 60, Listing 1). Furthermore, the reason code variable WS-CRUD-RE-

QUEST-ERROR can be set to 'REQE' in the field WS-CRUD-REAS, if there was a request error (line 81, Listing

1). However, this reason code is only stored, if an interface error happened previously. The last 5 bytes of the

header have been reserved for a numeric value containing the character representation of the EIBFN value giving

rise to the exception condition (line 90, Listing 1). The EIBFN is of particular interest, because it shows the type

of the last EXEC command to be issued by NACT01. In our case, the decimal number 3586 resp. the hex number

E02 indicates the last performed command EXEC CICS LINK (EIBFN codes can be found in [CUH00]). At the

end, the 5 bytes account number plus an empty 378 bytes buffer is added to the working storage to store the re-

quested account record data. The variables of all these empty record fields have been defined within the copy-

book NACCTREC (line 97 & 98; for the copybook NACCTREC refer to Listing 18, page 228).

All in all, NACT01 creates the logical record for the COMMAREA, consisting of 408 bytes, when the CO-

BOL copybook NACWCRUD is loaded within the COBOL command COPY (line 306, Listing 2). This record

named as WS-CRUD-COMMAREA is passed to NACT02, when the COBOL command EXEC CICS LINK is

executed using the keyword COMMAREA plus the name of the record (lines 2129-2134, Listing 2). For example,

following record could be sent to NACT02 to built the COMMAREA (underlined blanks indicate the empty

bytes):

NACT02__V1AE000000000358611100___

__

where the values mean:

NACT02__ Program name to be called

V1A “Eyecatcher” sent in this string to NACT02

E Request type sent in this string to NACT02

0000 Fields for response code sent to NACT02

0000 Fields for reason code sent to NACT02

03586 Indicates the last performed command – EXEC CICS LINK

11100 The requested account number

The CICS Business Application NACT 65

From this data the COMMAREA is created, when the COBOL command DFHCOMMAREA is executed from

the LINKAGE SECTION of the called program (line 192, Listing 3). This command only applies to CICS CO-

BOL programs, if not specified, the compiler creates a default communication area consisting of 1 byte. The

COMMAREA is built within the masks set in the COBOL copybook NACCCRUD and has the same format as it

did in the passing program NACT01 (line 193, Listing 3; for the copybook NACCCRUD refer to Listing 19, page

228). The name of the communication area is set to CA-CRUD-COMMAREA (line 22, Listing 4). This name is

only used to call the data area from NACT02 as same as calling all other fields defined by the copybook

NACCCRUD. These variables have been introduced to assign correct names for the COMMAREA-fields to point

them from NACT02. Before NACT02 can built the COMMAREA from the record, it must know the address of

the working storage. Within the COBOL command SET the system provides the address of the record (line 249

referring to line 96, Listing 3).

The first 3 bytes of the record behind the 8 byte program name refer to the first mask set in the copybook

NACCCRUD – CA-CRUD-CORRECT-VERSION in the CA-CRUD-VER field (line 26 & 27, Listing 4). The

value of CA-CRUD-CORRECT-VERSION has not been set by NACT02 to 'V1A'! It is only used to compare the

passed value with the one specified in the mask (line 261, Listing 3). If the values are the same, it is checked

whether the request type is valid or not (line 262, Listing 3 and lines 45 & 46, Listing 4). If it is valid, for ex-

ample it points to the value 'E' to read an account, a function is executed that indicates some fields to lock an ac-

count (line 263, Listing 3). After the request type has been transmitted it is evaluated which request type has been

 ···
 96 05 DEBUG-COMMAREA-ADDR USAGE IS POINTER.
 ···
191 LINKAGE SECTION.
192 01 DFHCOMMAREA.
193 COPY NACCCRUD.
 ···
249 SET DEBUG-COMMAREA-ADDR TO ADDRESS OF DFHCOMMAREA.
 ···
261 IF CA-CRUD-CORRECT-VERSION
262 IF CA-CRUD-VALID-REQUEST
263 PERFORM A-ANALYZE-REQUEST
264 EVALUATE TRUE
 ···
273 WHEN CA-CRUD-REQ-ENQUIRE
274 PERFORM C-READ-THE-RECORD
 ···
279 END-EVALUATE

408 EXEC CICS READ
409 FILE(WS-LITS-FILES-ACCOUNT)
410 RIDFLD(ACCTDO IN NACTREC-DATA)
411 INTO(NACTREC-DATA)
412 RESP(CA-CRUD-RESP)
413 RESP2(CA-CRUD-REAS)
414 END-EXEC
415 MOVE EIBFN TO WORK-FN-X
416 MOVE WORK-FN TO CA-CRUD-CICS-FUNCTION
 ···

Listing 3: Extract from the CICS COBOL program NACT02 (cf. Listing 14, page 227)

66
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

passed into the COMMAREA (line 264-279, Listing 3). Because the request type 'E' has been passed referring to

the COMMAREA-field CA-CRUD-REQ-ENQUIRE (line 42, Listing 4), a function called C-READ-THE-RE-

CORD is performed to read the account record (lines 273 & 274, Listing 3).

Before passing the data through the COMMAREA to NACT01 back, the values for the response and reason

codes will also be set as same as they was set for the record which was sent to NACT02. For example, in the field

CA-CRUD-RESP entry CA-CRUD-NO-ERROR is set to '0000' because the request was successful (line 60,

Listing 4). Furthermore, the reason code has also been set to '0000' because no error occurred. The EIBFN value

stores the decimal number 1538 resp. the hex number 602 to indicate the last executed EXEC CICS command, in

that case EXEC CICS READ.

At the end, the account record data is copied in the masks specified within the copybook NACCTREC (line 98

& 99, Listing 4). All data stored in the COMMAREA are received by NACT01 as a record consisting of the pure

data, for example (for the terminal display please refer to Figure 17 on page 51):

NACT02__V1AE000000000153811100BUSSE TOBIAS Mr 0000245756Hursley Park
Hants UK FRAU ELSTER RITTER
RUNKEL PITTIPLATSCH DIE DIGEDAGS
1011201NCIBM123N 1000.00 0.00000000 0.00000000 0.00 0.00000000
0.00000000 0.00 0.00000000 0.00000000 0.00

 ···
22 05 CA-CRUD-COMMAREA.
 ···
26 10 CA-CRUD-VER PIC XXX.
27 88 CA-CRUD-CORRECT-VERSION VALUE 'V1A'.
 ···
37 10 CA-CRUD-FUNCTION PIC X.
 ···
42 88 CA-CRUD-REQ-ENQUIRE VALUE 'E'.
 ···
45 88 CA-CRUD-VALID-REQUEST VALUE 'C' 'R' 'U' 'D'
46 'E' 'L' 'F'.
 ···
57 10 CA-CRUD-RESP PIC 9(4).
58 10 CA-CRUD-RESP-X REDEFINES CA-CRUD-RESP
59 PIC X(4).
60 88 CA-CRUD-NO-ERROR VALUE '0000'.
61 88 CA-CRUD-BAD-FORMAT VALUE 'FRMT'.
 ···
77 10 CA-CRUD-REAS PIC 9(4).
78 10 CA-CRUD-REAS-X REDEFINES CA-CRUD-REAS
79 PIC X(4).
80 88 CA-CRUD-VERSION-ERROR VALUE 'VERE'.
 ···
91 10 CA-CRUD-CICS-FUNCTION PIC 9(5).
92 10 CA-CRUD-CICS-FUNCTION-X
93 REDEFINES CA-CRUD-CICS-FUNCTION
94 PIC X(5).
 ···
98 10 NACTREC-DATA.
99 COPY NACCTREC.

Listing 4: Extract from the COBOL copybook NACCCRUD (cf. Listing 19, page 228)

The CICS Business Application NACT 67

4.3.5.5 Common Work Area, Transaction Work Area, and Terminal User Area – other scratch-

pad facilities

The Common Work Area (CWA) is a fixed size data area created at CICS startup that exists only for one CICS

address space during a CICS session. “The whole system, the format, and use of this area must be agreed upon

by all transactions in all applications that use it.” ([HOR00], page 84) Because changing transaction definitions

or program contents in future, affinities could cause major problems. Using the CWA is not regulated by CICS,

all programs using the CWA must agree the rules for shared access. Data stored in the CWA is unrecoverable if a

transaction or the system fails and it cannot be secured by the CICS resource level security. After creation, the

CWA is always allocated; hence, it is not suitable for large data or short-time data. However, it is suitable for

small amounts of data, that is read or updated by multiple programs, for example status information. The CWA

must be prevented from any overload, that will corrupt all storage areas created in the CICS Task-Shared Stor-

age.

As same as in the example for the COMMAREA, it is shown, that the program PR1 of the transaction TR1

transfers data to program PR2 using the CWA in the same address space (refer to Figure 20, page 62). After PR2

has received the data, it is processed, and is also sent to the CWA. PR4 of the transaction TR2 receives the data

and executes it. The CWA uses only the EXEC CICS XCTL PROGRAM and EXEC CICS LINK PROGRAM

commands to call the programs.

The Transaction Work Area (TWA) is used to pass data among programs executed in the same transaction

not between programs of different transactions. Therefore, only one transaction with its program(s) can use this

area. Because the TWA exists for the entire transaction, a large fixed size area (up to 32.767 bytes) has a greater

benefit for the conversational than for pseudo-conversational transactions. The TWA uses the EXEC CICS

XCTL PROGRAM and EXEC CICS LINK PROGRAM commands to call the programs. In the example shown in

Figure 20, data can only be transferred within the one transaction TR1 or TR2. For example, the data can be ex-

changed between program PR1 and PR2 using the TWA1, or the programs grouped in the transaction TR2 use

the TWA2 to exchange the data among each other.

As another scratchpad facility the Terminal User Area (TUA) is allocated at log on to CICS for both, autoin-

stalled and non-autoinstalled terminals (please refer to Figure 19 on page 59). It is similar to the CWA, but this

area is only shared among the transactions using that terminal until log out. It can be used by pseudo-conversa-

tional transactions for small amount of data that should only be exchanged during a terminal session.

The TWA, CWA, TUA, the Temporary Storage, and Intrapartition Transient Data have not been used for the

CICS application NACT. Contrary, the COMMAREA and the Extrapartition Transient Data have been chosen.

68
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

4.4 Storing the data – account file, locking file, and name file

4.4.1 File description

The account file stored on OS/390 saves the customer information into data records. Each customer has an as-

signed account number. This number has to be entered into the ACCOUNT MENU screen on the CICS terminal

by the employee of the bank to get an access to the data. Subsequently, the transaction NACT sends the data to

NACT01 which sends this request over NACT02 to the account file TBUSSE.CICSADP.ACCTFILE (cf. Figure

15, page 50). The account file is stored as a Key-Sequenced Data Set (KSDS) organised with the Virtual Storage

Access Method (VSAM KSDS). This method was introduced by IBM in the 1970s for systems having virtual

storage and to use this storage. A VSAM is created with the VSAM definition language Access Method Services

(AMS). The data of a VSAM data set is managed in a VSAM catalogue – the central information point. In this

catalogue are stored the physical properties of the data set, for instance, the maximal record length, or the posi-

tion of the key within the record. This simplifies programs because they can take the information from the cata-

logue to process the data and not from the application program itself. VSAM data sets are referred to as clusters.

A VSAM KSDS cluster consists of two physical parts, a data component, and an index component. Other VSAM

data sets are Entry-Sequenced Data Sets (ESDS) and Relative-Record Data Sets (RRDS). They are also referred

to as clusters but use other access methods. ESDS and RRDS clusters consist of only of the data component.

Each record in the data component of a KSDS cluster contains a key field, which must be the same length and

occurs in the same relative position in each record. Based upon their key field values the records are stored in lo-

gical sequence in the data component. The index component of the KSDS cluster contains the list of key values

for the records in the cluster with pointers to the corresponding records in the data component. Usually, a KSDS

was used as a database by IMS. For more information about VSAM and non-VSAM data sets and how to use

AMS see [UDS00], [SPR77], and [MOS03].

The account file is accessed through the Keyed Access Method using the account number as key. Because all

CRUD operations can be executed on the account file a separate external data base is not needed. Consisting of

22 fields/entries the account file is distinguished into some fields with read access and a few to be modified. Im-

portant data fields to be read and modified are the account number, the surname, and first name, address, and a

debit card code. Data fields with only read access are account status and charge limit. Fields for future use, in

case the debit card is used, are balance, bill date, bill amount, date, and amount paid. It is not necessary to define

these record fields because the format of the entries are provided by the KSDS.

The account file must be prevented from concurrent updating a record field. When a user modifies an account

record other users must be detained from a concurrent update, so long as the first user frees the transaction/record

(“Isolation” of ACID). To prevent this, an account locking file is created. The file called

TBUSSE.CICSADP.ACTINUSE notices the account number of the record that is being updated and the user ID

The CICS Business Application NACT 69

with the associated terminal ID. The locking file is also a VSAM KSDS. In contrast to the account file, it only

consists of six data fields.

When a user wants to update an account record it is firstly checked whether the file is in use by another pro-

cess. The NACT02 program searches the locking file for the stored account number. If found, an error message is

sent to the user terminal with the information that the modifying is not allowed. At the end, the process is abor-

ted. But it is conceivably that a record is locked for an unlimited time. The ACID criteria implies that transac-

tions may not wait for any user input. They should only be in use for a “short” time. Therefore, an account record

has to be updated in a specified period of time. After this time is elapsed, the account record is freed, and other

users can modify it. It does not care whether the first user has ended the update process. Another user who is

waiting owns now the record and can modify it. The current time and date of the update are also stored into the

locking file.

Unfortunately, freeing an account record after the time has expired, dislodge the business application a bit

from the main property “Isolation” of the ACID criteria for transactions. The record is only isolated in the spe-

cified time. For the application it is decided to rate the property “short” slightly more than the property “Isola-

tion”. Because in an environment, where multiple users modify records, the locking scheme for this problem is a

better solution than abiding the ACID criteria absolutely. An example:

When user Barbie tries to update a record, which is updating by user Ken, she gets a message to try

again later and her update process is declined. Why? The program scanned the locking file and detected

that the record is in use by Ken. He has a short period of time to complete his update process. As soon as

he has modified the record it is freed and the account number is deleted from the locking file. After that,

Barbie may modify the same record.

Supposed, that Ken is modifying a record and he is going to lunch for an hour in the meantime. He

forgets to finish the update. Since he stays too long away, his owning time is elapsed and the update pro-

cess is abandoned and backed out. Ken loses his possession right of the account record and the account

number is erased from the locking file. Thus the record is freed. Meanwhile, Barbie wants to update the

same account record which is now locked by her. The account number is again stored into the locking

file until the record is freed again. At this point, Ken can only read the account data. But, when Ken

comes back he sees the same screen displaying all changes he made as he left. He finishes his update

process but the changes are not saved to the account file because he does not own the record at this time.

Don’t worry, his changes are not loss, they are stored to the transient data.

All in all, the record updates of Barbie are saved to the account file. Ken’s update does not change

the record. In case of recovery, Ken can salvage his changes and can add these to the account file later.

Calling the account file by the CICS program NACT02 means calling the appropriate file entry ACCTFIL in

the CICS FCT. The FCT forwards the request to the account file to execute it. This method keeps CICS programs

70
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

independent of the access to the data files. If the locking file TBUSSE.CICSADP.ACTINUSE is called in case of

an update, delete, or create process, NACT02 calls the FCT entry ACINUSE.

The browse program NACT05 calls entry ACCTNAM in the CICS FCT to make a request on the VSAM file

TBUSSE.CICSADP.ACCTNAME – the name file. That file is a path via an alternate index

(TBUSSE.CICSADP.ACCTNAIX) to the account file. An alternate index (AIX) is a CICS facility that sorts the

account file, for instance, by the customer’s surname. The account number can also be queried through the index.

Hence, browsing a file is possible through an AIX without any extra intervention by an application. The AIX cre-

ates a new account file, in that case the name file.

4.4.2 Installing the storing data

The JCL script called VSAM, uploaded into the data set TBUSSE.CICSADP.JCLLIB, defines the account, lock-

ing, and name file used for the CICS business application (for a complete listing see Listing 20, page 228). In

contrast to the CICS COBOL programs and the map set this script has to be compiled on OS/390 during the in-

stall procedure.

The script starts with an absolute necessary jobcard, where ACCTJCL1 is the name of the job indicated by

the parameter JOB (Listing 5). For instance, this name refers to a log created during execution of the script. The

parameter is followed by parameters set for the script, for example, who is to be informed in case of a successful

or failed compilation (NOTIFY). If the jobcard is globally set, it can be omitted. The program IDCAMS creates

VSAM data sets and stores the data set information automatically into the default VSAM catalogue

OS390.MASTER.CATALOG.IDCAMS manages all of the housekeeping needs of VSAM data sets. The print out

for the procedure protocol is set in line 19, in that case the it is the user system output, accessible from the Sys-

tem Display and Search Facility (SDSF) program. The SYSIN statement introduces the job control data. Listing

5 shows the commands and attributes used:

01 //ACCTJCL1 JOB (),CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),NOTIFY=&SYSUID,
02 // TIME=1440
 ···
18 //SETUP EXEC PGM=IDCAMS,REGION=2M
19 //SYSPRINT DD SYSOUT=*
20 //SYSIN DD *

Listing 5: Extract from the member VSAM stored in TBUSSE.CICSADP.JCLLIB (part 1)

The account file TBUSSE.CICSADP.ACCTFILE and the locking file TBUSSE.CICSADP.ACTINUSE are cre-

ated using the AMS DEFINE command (Listing 6, page 72). If these files are previously defined they are firstly

deleted (line 24 and 25) before defining them new. Actually, the account file, which is a KSDS, is organised as a

VSAM cluster consisting of a data component and an index component (lines 30 – 41). The AMS command

DEFINE CLUSTER creates and the parameter NAME names the VSAM cluster which must be unique in the

The CICS Business Application NACT 71

VSAM catalogue. KEYS is only used in a KSDS and sets the length (five-digit account number) and position of

the key fields in the VSAM catalogue (counting begins at position 0). The length of the key corresponds to the

account numbers specified in the input data file TBUSSE.CICSADP.VSAMDATA, which fills up the account file.

Since the keys are numeric, only 99.999 customer accounts can be created. In case of future expansion, alphanu-

meric keys may be used “and with just one letter in the (record) key can grow to 359.964.” ([HOR00], p.42)

INDEXED indicates the key-sequenced data, the first number of RECORDSIZE specifies the average length

(383) and the second the maximal length (383) of the data records, in that case the length of one customer entry

in the input data file:

Account number (5 records) Date issued (3*2 records)
Surname (18) Reason issued (1)
First name (12) Card code (1)
Middle initial (1) Approver – initials (3)
Title (4) Special codes (3*1)
Phone number (10) Account status (2*1)
Address line (24*3) Charge limit (8)
Other charge name (32*4)
Cards issued (1)

Payment history: Balance (8), Bill date (6), Bill
amount (8), Date paid (6), Amount paid (8)

Total: 383 records

Indeed, the account numbers and the customer entries are fixed, a variable record length is a better solution

and can be simple added in future. The parameter RECORDS (shortcut REC) sets “the amount of space to alloc-

ate for the cluster.” ([UDS00], ch. 2.2.2.3) 80 records (1 track) are allocated as primary space, a secondary

space is not set. Sharing the VSAM data set is defined with the option SHAREOPTION (shortcut SHR). The first

number refers to the Cross-Region Sharing (CRS) and the second refers to the Cross-System Sharing (CSS). Be-

cause Record Level Sharing (RLS) is not activated between the CICS region and the OS/390 region on the

JEDI-server the first number of the CRS-parameter is set to 2. RLS is used to share VSAM data for many applic-

ations between many CICS regions in an MVS parallel sysplex. With this option, any non-RLS user is allowed to

access the data set for read processing. Additionally, it can also be accessed by one non-RLS user for write pro-

cessing. “VSAM ensures write integrity by obtaining exclusive control for a control interval when it is to be up-

dated.” ([UDS00], ch. 2.7.2.1) The CSS-SHAREOPTION is set to number 3 – the data set can be fully shared.

This option is only important if the CRS-SHAREOPTION fits number 3 or 4, which means, “each user is re-

sponsible for read and write integrity for the data.” ([UDS00], ch. 2.7.2.1) For more information about sharing

VSAM data sets refer to “Chapter 13 – Sharing VSAM Data Sets” in [UDS00]. The data set recovery option is

set within the parameter LOG to UNDO for backout only. This parameter applies only when the file is accessed in

RLS mode, otherwise VSAM ignores this attribute. The VOLUMES parameter allocates space for the file cluster

on the volume serial number SMS002. The DATA and INDEX parameters are only specified when subparameters

are explicitly required for the data and index component. Within the NAME parameter are defined separately

names for the components. Both components are created on the specified volume (SMS002) with the parameter

UNIQUE. If UNIQUE is specified, free space must exist on the volume SMS002.

72
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

The locking file locks currently accessed records of the account file to prevent concurrent updates on them.

Therefore, the properties in the locking file cluster are copied from the account file cluster (lines 45 – 56). Only

the RECORDSIZE parameter is changed to a smaller amount (25) because only six data fields are noticed in the

locking file:

Account number (5 records)
Owner: user name (8) + terminal identifier (4)
Date (4)
Time (4)

Total (25)

The account file is replenished with the source data set TBUSSE.CICSADP.VSAMDATA using the REPRO

command (Listing 6, lines 62 – 64). All records in the data file must be in ascending order by non-duplicated ac-

count numbers as keys. INDATASET (shortcut IDS) specifies the source data set, and OUTDATASET (shortcut

ODS) the output data set – the account file. With the AMS command DEFINE AIX the alternate index is created

(Listing 7, lines 71 – 82). It is named by the NAME parameter as TBUSSE.CICSADP.ACCTNAIX and relates to

the account file within the RELATE parameter. A space of 80 records for the AIX is also allocated; SHARE-

OPTION and VOLUMES are set as same as in the file cluster definitions. However, the alternate index uses other

24 DELETE TBUSSE.CICSADP.ACCTFILE
25 DELETE TBUSSE.CICSADP.ACTINUSE
 ···
30 DEFINE CLUSTER(NAME(TBUSSE.CICSADP.ACCTFILE) -
31 KEYS(5 0) -
32 INDEXED -
33 RECORDSIZE(383 383) -
34 REC(80) -
35 SHR(2 3) -
36 LOG(UNDO) -
37 VOLUMES(SMS002)) -
38 DATA(NAME(TBUSSE.CICSADP.ACCTFILE.DATA) -
39 UNIQUE) -
40 INDEX(NAME(TBUSSE.CICSADP.ACCTFILE.INDEX) -
41 UNIQUE)
 ···
45 DEFINE CLUSTER(NAME(TBUSSE.CICSADP.ACTINUSE) -
46 KEYS(5 0) -
47 INDEXED -
48 RECORDSIZE(25 25) -
49 REC(80) -
50 SHR(2 3) -
51 LOG(UNDO) -
52 VOLUMES(SMS002)) -
53 DATA(NAME(TBUSSE.CICSADP.ACTINUSE.DATA) -
54 UNIQUE) -
55 INDEX(NAME(TBUSSE.CICSADP.ACTINUSE.INDEX) -
56 UNIQUE)
 ···
62 REPRO -
63 IDS(TBUSSE.CICSADP.VSAMDATA) -
64 ODS(TBUSSE.CICSADP.ACCTFILE)

Listing 6: Extract from the member VSAM stored in TBUSSE.CICSADP.JCLLIB (part 2)

The CICS Business Application NACT 73

KEYS attributes. The first attribute is set to 18 because the alternate index is build on the customer's surname,

which has maximal 18 characters. Since the surname begins on the sixth position in the account file, the second

attribute is set to 5 (the five-digit account number starts at position 0). NONUNIQUEKEY (shortcut NUNQK) is set

to specify that unique keys are not needed because same surnames could be exist in the customer database. With

the UPGRADE (shortcut UPG) parameter VSAM updates the alternate index whenever there is a change to the as-

sociated account file. The alternate index should not be called by the CICS application itself but by the name file

TBUSSE.CICSADP.ACCTNAME, that has still to be created. This file is defined as a path using the AMS com-

mand DEFINE PATH. It is filled up with the AIX specified within the PATHENTRY (shortcut PENT) parameter.

Hence, when the alternate index is updated, the name file is also updated (UPDATE parameter). At the end, the

AMS command BLDINDEX (shortcut BIX) is used to build the internal keys for the alternate index from the ac-

count file specified on the IDS parameter (shortcut for INDATASET). The keys are sorted within the parameter

INTERNALSORT.

After the JCL script is successfully submitted, the file clusters (account & locking file), the AIX and the path

(name file) are created on OS/390.

71 DEFINE AIX(NAME(TBUSSE.CICSADP.ACCTNAIX) -
72 RELATE(TBUSSE.CICSADP.ACCTFILE) -
73 VOLUMES(SMS002) -
74 KEYS(18 5) -
75 NONUNIQUEKEY -
76 UPGRADE -
77 REC(80) -
78 SHR(2 3)) -
79 DATA(NAME(TBUSSE.CICSADP.ACCTNAIX.DATA) -
80 UNIQUE) -
81 INDEX(NAME(TBUSSE.CICSADP.ACCTNAIX.INDEX) -
82 UNIQUE)
 ···
86 DEFINE PATH(NAME(TBUSSE.CICSADP.ACCTNAME) -
87 PATHENTRY(TBUSSE.CICSADP.ACCTNAIX) -
88 UPDATE)
 ···
95 BLDINDEX IDS(TBUSSE.CICSADP.ACCTFILE) -
96 ODS(TBUSSE.CICSADP.ACCTNAIX) -
97 INTERNALSORT

Listing 7: Extract from the member VSAM stored in TBUSSE.CICSADP.JCLLIB (part 3)

74
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

4.5 The CICS resource definitions

4.5.1 Overview

Since the employees of the bank should access the business application through a CICS terminal there has to be

defined some CICS resources. “(CICS resource) Definitions are stored on the CICS system definition (CSD) file,

and are installed into an active CICS system from the CSD file.” ([RDG03], ch. 1.1) The CSD can be created on-

line using the CEDA/B/C7 transaction or off-line within the CSD update utility DFHCSDUP. Besides, there exist

three more methods to define resource definitions – within automatic installation, within system programming us-

ing EXEC CICS CREATE commands, and within macro definition. The resource definitions for the sample CICS

application are created off-line with the help of a JCL surrounded script calling the DFHCSDUP program. For

details on how to create resource definitions using these five methods see [RDG03].

During the upload process two CSD update scripts – CICS0ADP and CICSJADP – are transferred into the

data set TBUSSE.CICSADP.CSDDEFS (refer to Table 3, page 42). The script CICS0ADP is renamed to

CICSCSD. The other script CICSJADP is not required; it defines CICS resources for the JAVA interface.

4.5.2 Setting up the CICS resources

There are defined 11 CICS resource definitions – three file objects, one map set object, five program objects, and

two transaction objects. All these definitions have been installed into the CICS group CICS0ADP. The script be-

gins with a definition of the file objects (cf. Listing 21, page 228). For example, the account file

TBUSSE.CICSADP.ACCTFILE stored on OS/390 is accessed by the following CICS resource definition:

07 DEFINE FILE(ACCTFIL) GROUP(CICS0ADP)
08 DESCRIPTION(MAIN ACCOUNT FILE)
09 DSNAME(TBUSSE.CICSADP.ACCTFILE) RLSACCESS(NO) LSRPOOLID(1)
10 READINTEG(UNCOMMITTED) DSNSHARING(ALLREQS) STRINGS(1)
11 RECORDSIZE(383) KEYLENGTH(5) STATUS(ENABLED) OPENTIME(FIRSTREF)
12 DISPOSITION(SHARE) DATABUFFERS(2) INDEXBUFFERS(1) TABLE(NO)
13 MAXNUMRECS(NOLIMIT) UPDATEMODEL(LOCKING) LOAD(NO)
14 RECORDFORMAT(F) ADD(YES) BROWSE(NO) DELETE(YES) READ(YES)
15 UPDATE(YES) JOURNAL(NO) JNLREAD(NONE) JNLSYNCREAD(NO)
16 JNLUPDATE(NO) JNLADD(NONE) JNLSYNCWRITE(YES) RECOVERY(NONE)
17 FWDRECOVLOG(NO) BACKUPTYPE(STATIC)

When the CICS account file object ACCTFIL is created using the DEFINE FILE command the CICS group

CICS0ADP specified on the parameter GROUP is immediately created. In this group the CICS file object is

stored. Some important parameters are described in detail, for a full description of all parameters used see Part 5

of [RDG03].

7 CEDA is the abbreviation of CICS Execute-level Dynamic Add; CEDB and CEDC consist of a few transactions CEDA contains. They
got the endings B and C solely CEDA ends with an A.

The CICS Business Application NACT 75

The parameter DSNAME refers to the associated account file on OS/390. Since RLS is not supported on the

JEDI OS/390-server, the option RLSACCESS has to be set to NO. Since the VSAM file is not accessed through

RLS it has to be accessed using a local shared pool (LSR) or not. An LSR having number 1 is set within the LS-

RPOOLID parameter. On RECORDSIZE has to be specified the same length as on the eponymous AMS paramet-

er specified for the VSAM KSDS account file cluster (383). KEYLENGTH(5) sets the length of the characters

used for the account number. The amount of concurrent updates allowed on the account file is set with the

STRINGS parameter, in that case one user can update the account file; concurrent updates are permitted. Buffers

to be used for the data component are set within the DATABUFFERS parameter. The minimum value that must be

specified is one more than the number specified in STRINGS. Additionally, buffers has also to be set for the in-

dex component of the account file within the INDEXBUFFERS parameter. The minimum number to be specified

for this parameter is the same as set in STRINGS. The STRINGS, DATABUFFERS, and INDEXBUFFERS para-

meters are required because RLS mode access is not activated. These parameters are set globally, but usually, it

is recommended to define these parameters in an LSR resource definition that corresponds to the LSRPOOLID.

The attribute ENABLED on the STATUS parameter specifies that the CICS file object may be used. Because the

records in the account file have a fixed length the RECORDFORMAT parameter is set to F.

The CICS locking file object ACINUSE has few parameters different from the parameters defined in the

CICS account file object. The format of the records is set to variable length within the RECORDFORMAT para-

meter. Hence, only the required characters up to 25 are to be stored. The records may not be longer as specified

in the VSAM file definition for the locking file TBUSSE.CICSADP.ACTINUSE.

For the CICS name file object ACCTNAM are specified the same parameters as for the CICS account file ob-

ject except the missing parameters RECORDSIZE and KEYLENGTH. The CICS name file object accesses the

VSAM name file for browsing on the surnames but this file is only a path to the alternate index file which gets

the records from the account file. Therefore, record size and key length are not needed for the CICS name file ob-

ject.

Five important parameters are not mentioned yet – ADD, BROWSE, DELETE, READ, and UPDATE. The CICS

file objects declare the restrictions on how the VSAM file on OS/390 can be accessed by the CICS COBOL pro-

grams as shown in Table 6.

CICS file object
CICS Resource definition parameters

ADD BROWSE DELETE READ UPDATE

ACCTFIL YES NO YES YES YES

ACCTNAM NO YES NO YES NO

ACINUSE YES YES YES YES YES

Table 6: Allowed operations on the CICS file objects

76
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

The map set NACTSET stored on OS/390 has also to be linked to CICS to display the screens of the applica-

tion. This CICS map set object for the CSD, also named as NACTSET, is created and stored in the CICS group

CICS0ADP using the DEFINE MAPSET command (Listing 21):

40 DEFINE MAPSET(NACTSET) GROUP(CICS0ADP)
41 DESCRIPTION(DISPLAYS THE MENUS)
42 RESIDENT(NO) USAGE(NORMAL) USELPACOPY(NO) STATUS(ENABLED)

For a detailed description of the parameters see Part 5 of [RDG03].

The five CICS program objects are created as the example for NACT01 shows:

43 DEFINE PROGRAM(NACT01) GROUP(CICS0ADP)
44 DESCRIPTION(PRESENTATION LOGIC FOR THE TERMINAL)
45 LANGUAGE(COBOL) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
46 USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) DATALOCATION(BELOW)
47 EXECKEY(USER) CONCURRENCY(QUASIRENT) DYNAMIC(NO)
48 EXECUTIONSET(FULLAPI) JVM(NO)

The same parameters are set for the other four CICS program objects, of course, the name of the program has to

be changed for each program and DESCRIPTION can also be changed to a proper description of the program.

The important parameter of this resource definition is LANGUAGE. This parameter designates the programming

language in which the program is written, in that case COBOL. Other languages that could be specified are AS-

SEMBLER, LE370, C, and PLI resp. PL/1. A detailed description of all other parameters specified could also

be found in Part 5 of [RDG03].

As last objects, the script defines the CICS transaction objects NACT and NACP. NACT is the transaction

ID that the user needs to run the application on the CICS terminal, NACP is the transaction ID to print the dis-

play. NACP is defined but not used yet. The NACT transaction is defined by following parameters:

82 DEFINE TRANSACTION(NACT) GROUP(CICS0ADP)
83 DESCRIPTION(NACT TRANSACTION)
84 PROGRAM(NACT01) TWASIZE(0) PROFILE(AAACICST) STATUS(ENABLED)
85 TASKDATALOC(BELOW) TASKDATAKEY(USER) STORAGECLEAR(NO)
86 RUNAWAY(SYSTEM) SHUTDOWN(DISABLED) ISOLATE(YES) DYNAMIC(NO)
87 ROUTABLE(NO) PRIORITY(1) TRANCLASS(DFHTCL00) DTIMOUT(NO)
88 RESTART(NO) SPURGE(NO) TPURGE(NO) DUMP(YES) TRACE(YES)
89 CONFDATA(NO) ACTION(BACKOUT) WAIT(YES) WAITTIME(0,0,0)
90 RESSEC(NO) CMDSEC(NO)

The transaction NACT is defined within the command DEFINE TRANSACTION. Some important parameters are

described, for all other parameter see Part 5 of [RDG03]. The parameter PROGRAM specifies the program which

is executed when the transaction NACT is issued on the terminal. PROFILE sets the name of the profile defini-

tion (AAACICST) that specifies the processing options used in conjunction with the terminal that initiated the

transaction. This profile has been used to convert all entered letters into capitals. How to define such a profile is

described in chapter 6.6 “Adjust the LOGIN terminal to pass capital letters to RACF” on page 207. The paramet-

The CICS Business Application NACT 77

er SHUTDOWN specifies whether a transaction can be used during a CICS shutdown, furthermore. The transaction

itself has no own security options defined (RESSEC(NO) and CMDSEC(NO)) because the application should be

accessible for all users in any way.

These CICS resource definitions are installed to the CSD file by using the DFHCSDUP job. There has to be

inserted some JCL code around the definitions before the script can be executed:

01 //CSDADP EXEC PGM=DFHCSDUP,REGION=0M,
02 // PARM='CSD(READWRITE),PAGESIZE(60),NOCOMPAT'
03 //STEPLIB DD DSN=CICSTS13.CICS.SDFHLOAD,DISP=SHR
04 //DFHCSD DD UNIT=SYSDA,DISP=SHR,DSN=CICS.COMMON.DFHCSD
05 //SYSPRINT DD SYSOUT=A
06 //SYSIN DD *
 ···
91 /*

In the first line the item PGM refers to the program DFHCSDUP using the parameters specified in the next line.

To update the CSD file the parameter CSD is set to READWRITE. The program is stored in the data set

CICSTS13.CICS.SDFHLOAD specified by the item STEPLIB. The item DFHCSD links to the data set where the

CSDs are stored. When submitting this script, all resource definitions are installed into the CICS group

CICS0ADP. Attention, the CSD file must be closed before updating it because the off-line update utility

DFHSCDUP is used. This utility only performs its operations on a closed CSD! The CSD file is closed either no

user is logged on to CICS, or CICS has been shut downed. If it is open, an error is indicated (level 12) and the

log notes following message:

DFH5128 S PROCESSING TERMINATED. PRIMARY CSD ACCESSED BY ANOTHER USER AND COULD
NOT BE SHARED. DDNAME: DFHCSD
DFH5103 I ERROR(S) OCCURRED WHILE PROCESSING DEFINE COMMAND.
DFH5104 W SUBSEQUENT COMMANDS ARE NOT EXECUTED BECAUSE OF ERROR(S) ABOVE.

If the script is successfully executed (level 0), the log notes success messages. For example, the DEFINE

FILE command that creates the CICS object file ACCTFIL is successfully executed:

DFH5120 I PRIMARY CSD OPENED; DDNAME: DFHCSD
DFH5143 I GROUP CICS0ADP CREATED.
DFH5159 I FILE ACCTFIL DEFINED IN GROUP CICS0ADP
DFH5101 I DEFINE COMMAND EXECUTED SUCCESSFULLY.

At the end of the log, a brief information is listed:

DFH5107 I COMMANDS EXECUTED SUCCESSFULLY: 11 COMMANDS GIVING WARNING(S): 0
DFH5108 I COMMANDS NOT EXECUTED AFTER ERROR(S): 0
DFH5109 I END OF DFHCSDUP UTILITY JOB. HIGHEST RETURN CODE WAS: 0

As next step, the new CICS group CICS0ADP has to be added to one of the scripts for the CICS System Ini-

tialisation Table (SIT) to load the group during the CICS region startup. In the SIT are stored CICS system ini-

78
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

tialisation parameters that specify CICS system attributes. For more information about the SIT definition scripts

refer to chapter 6.3.1 “The CICS region's SIT” on page 169.

C001 is one of those three scripts that sets the CICS transaction server definition. It is stored in the data set

CICS.COMMON.SYSIN (cf. Listing 22, page 228). The SIT-parameter GRPLIST set in the script C001 con-

tains 4 lists which are loaded during CICS starts up – DFHLIST, C001LIST, PPLIST, and DEMOLIST. To

add the group CICS0ADP to one of these lists it is chosen to create a new list named DEMOADP. Besides the

group CICS0ADP, this new list should also contain all the groups DEMOLIST previously contained. The entry

DEMOLIST is then replaced by DEMOADP on the GRPLIST SIT-parameter (cf. Listing 22, page 228):

23 GRPLIST=(DFHLIST,C001LIST,PPLIST,DEMOADP), RDO GROUP LISTS

After that, CICS has to be started to copy the groups of the list DEMOLIST into the new list DEMOADP.

The CEDA transaction lists all groups DEMOLIST contains (see Figure 21 on next page):

 CEDA DISP LI(DEMOLIST)

The groups of the list DEMOLIST have been copied into the new list DEMOADP with this command:

CEDA APpend LIst(DEMOLIST) To (DEMOADP)

The CICS group CICS0ADP that stores the resources for the CICS business application is also added to the new

list:

CEDA ADd Group(CICS0ADP) List(DEMOADP)

At the end, all objects of the group CICS0ADP has to be installed dynamically on CICS to make the resource

definitions available to an active CICS system.

CEDA INSTALL GROUP(CICS0ADP)

Before executing the transaction NACT, the CICS startup JCL script CICSC001 located in the data set

SYS1.PROCLIB must be completed by an entry in the DFHRPL concatenation (cf. Listing 23, page 229) :

30 // DD DISP=SHR,DSN=TBUSSE.CICSADP.LOADLIB ADP-SAMPLE

The library TBUSSE.CICSADP.LOADLIB contains the compiled CICS COBOL programs to which CICS con-

nects the CICS program objects ACCTFIL, ACINUSE, and ACCTNAM during startup. The DFHRPL concaten-

ation works like a load path. After these settings are made CICS needs to be restarted to accept the changes of the

DFHRPL concatenation (refer to chapter C.1 “Restarting the CICS region”, page 239).

After CICS is restarted the transaction ID NACT can be issued and the CICS business application NACT will

start (cf. Figure 16, page 50).

The CICS Business Application NACT 79

CEDA DISP LI(DEMOLIST)

 ENTER COMMANDS
 NAME TYPE LIST DATE TIME
 CSQSAMP GROUP DEMOLIST 01.346 18.04.50
 EBUS GROUP DEMOLIST 01.346 18.05.05
 ARTT GROUP DEMOLIST 01.346 18.06.11

 SYSID=C001 APPLID=A06C001
 RESULTS: 1 TO 5 OF 5 TIME: 03.05.25 DATE: 03.322
PF 1 HELP 3 END 4 TOP 5 BOT 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 21: CEDA DISP LI(DEMOLIST)

5 THE MQSERIES CICS BUSINESS APPLICATION

MQNACT

Another Bank Customer Account Program for the JVM

5.1 Introduction

The CICS business application NACT runs on the CICS TS. It consists of a set of programs to gather inform-

ation about a customer, changes customer details, or deletes customer accounts. For instance, details of a custom-

er account can be displayed on the screen using the CICS transaction NACT on a CICS terminal. But there are

many reasons a company could say: 'Is there another method to use the and display the data?'. For one reason, the

company decides, that the customer should not use a terminal program to display the details because the connec-

tion to the terminal is probably not available through all the time or the GUI is not attractive enough for him. For

another reason, the customer wants a billing receipt after an order is made and wants to print this receipt on the

client printer at home. Or the printing of the billing receipt requires an additional check on a non-CICS applica-

tion. For all cases, the company wants to provide an assured and unattended access to the data stored on the

OS/390-server using the existing CICS business logic with a high degree of network independence. Furthermore,

the bank wants to provide a high availability of the GUI application over a range of operating systems and hard-

ware platforms wherever and whenever the customer wants to access the data. What possibilities the company

has?

The company decides to use a middleware system for connecting and transporting data to and from the the ex-

isting CICS business logic component on the OS/390-server. Either getting the information from programs and

transactions running within CICS on one or more OS/390-servers, or getting the information from transaction

monitors running on non-mainframe platforms, for example an AIX machine, MQSeries (new: WebSphere

MQSeries) – the commercial middleware product introduced by IBM 1992, can be used to solve this problem.

MQSeries is part of a generic group called Message Oriented Middleware (MOM). IBM presents it as a “family

of products for cross-network-communication” ([AMQ95], S.7), consisting of the MQSeries Server and the

MQSeries Client, the MQSeries Integrator, and the MQSeries Workflow. Across a network of unlike components

(CPU, operating systems, communication protocols), the user/company gets with MQSeries a simple and consist-

ent GUI-application-to-program/transaction communication. As a result, it exists an indirect program-to-program

communication that handles data using messaging and queuing. For example, queries can be queued from one

branch to another or within a branch of the bank company.

82
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

This thesis uses the existing CICS business logic programs NACT02 and NACT04 of the CICS business ap-

plication NACT to create a new MQSeries CICS application called MQNACT. On the OS/390-server the IBM

MQSeries Server v2.1, as one part of the message queuing product, has been installed. On the Windows2000 cli-

ent the IBM MQSeries Server v5.2.1, including the MQSeries support pack MA888, has been installed. This sup-

port pack provides the JAVA classes for the Message Queue Interface (MQI) which establishes a connection

between the JVM and the MQSeries server. Furthermore, a connection called MQSeries CICS Bridge has to be

created and started on the OS/390-server that runs the CICS TS. This bridge links the CICS TS with the OS/390

MQSeries Server. The presentation logic and the MQSeries communication logic for the WINDOWS2000 client

is programmed in JAVA (MQClient.java and MQCommunicator.java). JAVA makes it possible to display the

customer accounts on every system on which a JVM is installed. A programmer of the JAVA application requires

no knowledge of the business logic running on the CICS region. There is no need to restructure the CICS busi-

ness logic programs on the OS/390-server, and other client applications can also use these programs, e.g. the

CICS business application NACT. The JAVA Runtime Environment (JRE) version 1.3.1_02 including the

SWING package has to be installed on the WINDOWS2000 computer system to run the JAVA application.

8 For downloading this package, please point to:
http://www-306.ibm.com/software/integration/support/supportpacs/individual/ma88.html
or point to the CD: \ additions\Windows2000\MQSeries_v5.2.1\MA88

The MQSeries CICS Business Application MQNACT 83

5.2 Messaging and Queuing

5.2.1 Overview

Messaging and Queuing, or Message Queuing (MQ), is one of four program-to-program communication models

defined in the IBM Open Blueprint [OBP96] published in 1996. Other alternatives are the Application Program-

ming Interfaces (API) for conversation, remote procedure calls (RPC), and HyperText Transfer Protocols

(HTTP). MQ can be used by any application or application-service to obtain appropriate communication support,

which may be TCP/IP-oriented, OSI-oriented, or SNA-oriented.

The following definition for MQ is given in [AMQ95], chapter PREFACE:

Messaging: “Programs communicate by sending each other data in messages rather than by

calling each other directly.”

Queuing: “The messages are placed on queues in storage, so that programs can run inde-

pendently of each other, at different speeds and times, in different locations, and

without having a logical connection between them.”

In principle, MQ is not more then putting messages on message queues and taking messages from them. [AM-

Q95] mentions three main characteristics of MQ:

1. “Communicating programs can run at different times.”

The program-to-program communication is handled by MQSeries. Programs do not communicate directly

with each other, they use message queues. When a sender program sends a request to a receiver program,

MQSeries creates a message and forwards it to the receiver program. If this program is currently unavail-

able, MQSeries stores the message until the program is activated. The receiver program executes the re-

quest and sends the response back to MQSeries. This data is again stored in a message to be sent to the

sender program when it is available. Both programs continue their work without waiting for a response of

each other. MQSeries ensures that messages are sent and received without requiring programs to run con-

currently. This method is known as asynchronous program-to-program communication. Synchronous com-

munication implies, an application waits for a response to come back before starting the next request.

2. “There are no constraints on application structure.”

Messages can be transferred between two or more applications, also known as one-to-one, many-to-one,

or one-to-many connections. Programs may be “on the same processor in a single environment, on the

same processor in different environments, or on different processors in different environments.” ([AM-

Q95], ch. 2.0)

84
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

3. “Programs are insulated from network complexities.”

Programs do not communicate directly through a network, they use a middleware that distribute the mes-

sages to the right destination. These applications are freed from understanding how the network works and

how it is maintained. A network connection is only controlled by MQSeries and not by the programs

themselves. Furthermore, program execution is not impacted by a network error or restart.

These three key principles implies four important characteristics:

• time-independent communication

• connectionless communication

• conversational communication

• parallel processing.

MQ distinguishes two different communication models – Point-to-Point and Publish-and-Subscribe. When ap-

plications communicate through the Point-to-Point method, messages are delivered from exactly one sender to

one receiver. Other applications have no access to the queue or message. When the Publish-and-Subscribe meth-

od is used, a few applications (producer) can produce messages to store them into a message queue. Other applic-

ations (consumer) can be registered on specific topics and when a message for such a topic is stored onto the

message queue it is immediately transferred to the consumer. Such a message is also called as an event; the com-

munication is event-driven.

MQ provides assured “only once” delivery of the message onto the queue. Optionally, it can start the target

application to handle the message (called triggering). When no more requests are available for the application it

is deactivated until a new trigger message arrives. This optimises resource utilisation.

One characteristic is important for a company. When using MQ, existing business code needs not to be up-

dated or thrown away. The company can use its existing programs for requests and a new one for another request

– together without changing the existing one. The new communication code is easy to use and to implement be-

cause programs using MQ “have clearly defined inputs and outputs (messages) and a standard interface to other

programs that does not vary as the programs themselves are changed and moved.” ([AMQ95], ch. 3.0)

5.2.2 Excursion: MQSeries is the UK Post Office

This example describes how MQSeries is represented by the UK Post Office. All Post Office items are tried to

paraphrase by MQSeries items.

One of the Post Office main jobs is to deliver letters, cards, and parcels. The method is in MQSeries' point of

view Message Queuing and the objects are messages. The Post Office consists of Post Offices branches that

manage the delivery of all postings. Those Post Offices branches are called queue managers.

The MQSeries CICS Business Application MQNACT 85

Imaginary, an invitation letter (request message) is written by a customer (sender program) and should be de-

livered to his/her friend (receiver program). Such a letter expects an answer. An addressee written on the envel-

ope (message descriptor) and the invitation card (request data) built the invitation letter. An addressee is usu-

ally stored in the brain of a human, in MQSeries it is stored in the remote queue. After putting the letter into a

postbox (transmission queue) it is transferred by a postman (channel sender) of the home Post Office branch

(client queue manager (QM)) to another Post Office branch (server QM). Even if the postbox is outside of a

Post Office branch, it is also managed by the branch as same as the postman is an employee of the branch! The

postman of the home Post Office branch knows to which branch the letter has to be shipped to. However, from

the addressee inscription he gets the name, street, town and postcode. The postcode refers to a unique Post Office

branch the letter should be delivered to. After the letter arrived the other Post Office branch, another postman

(channel receiver) delivers the letter to the addressee. The letter is put by the postman into the mailbox of the

addressee (request queue). The addressee opens the letter and replies to the invitation (receiver program).

The addressee (sender program) writes a confirmation back (reply data) and becomes now the sender. The

sender knows the address where to send the letter to (reply message/response message) because it stands on the

invitation letter's back. When the letter is complete, consisting of the answer (reply data) and the new addressee

(message descriptor), it is again put into a postbox (transmission queue). The postman (channel sender) of the

Post Office branch (server QM) delivers the letter to the Post Office branch of the new addressee (client QM).

There, the letter is shipped by another postman (channel receiver) to the mailbox of the originator (reply-to

queue). At the end, either the request is confirmed by the invited person or not, the whole process is successfully

closed. In MQSeries this method is known as the two-way communication.

In the next sections all mentioned MQ catchwords are described in MQ's view.

5.2.3 Messages

MQSeries consists of a number of components to handle message queuing. The most important object is the mes-

sage itself. It stores application data to be transferred from one MQ-system to another. The message itself is

stored in a specific data structure – the message queue. Additionally, this data structure contains a message

descriptor (also called message header). It stores control information required for the message, for example the

message type (MsgType). Message type datagram is specified, when the sender does not need a reply from the

receiver. Request is specified when the sender requires a reply from the receiver. Reply or report can also be spe-

cified. Each message can have its own 24-byte string called a message identifier (MsgId) which identifies

uniquely a particular message. A message may also contain a 24-byte string called a correlation identifier (Cor-

relId) that usually matches exactly the message identifier of another message that relates to the current message.

For example, it stores the message identifier of the request message to refer to the correct message. Furthermore,

it can also set attributes for sending messages in First in, First out (FIFO) or Priority order, for expiring messages

after a specified time (expiry), or for assuring the application data in the messages by using the persistence attrib-

86
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

ute. If a message is sent using the assured delivery attribute it is stored in a secondary dump until it is success-

fully delivered to the receiver program. Additional information may be specified in the message descriptor;

please refer to [MQI94], ch. 2.2.

Messages can be transferred using a one-way (unidirectional) or a two-way (bidirectional) communication.

Unidirectional communication means, sending a message from one program to another using one queue manager

without waiting for a response. When using a bidirectional communication, as described in chapter 5.2.2 “Excur-

sion: MQSeries is the UK Post Office” on page 84, two message queues needs to be defined per QM because

message queues work always unidirectional. Figure 22 shows the two-way communication that is used for our

MQSeries CICS application. When Program A (sender program) want to request a program B it firstly transfers

the request data to its QM. The request data is stored in a request message on the specified message queue

Queue1 from which it is sent to the program B (receiver program). Program B picks up the request data, ex-

ecutes and answers it, and creates the reply data. The reply data is also stored in a message – the reply message

(response message). This is filed on another message queue called Queue2 from which the starting program A

receives the reply data. Queue1 and Queue2 are actually generic terms for the transmission queue and the reply-

to/request queue.

Figure 22: The two-way communication model for the MQNACT applic-
ation (image taken from [AMQ95], ch. 2.0)

The main component of the message is the application data. There are no constraints on the content of the

data because MQSeries does not interpret this part of the message. Messages can store data up to 100 MB

(MQSeries for WINDOWS2000 v5). In case the data is bigger, MQSeries can split the data into a few messages

organised by a message group. A message can also be stored on a message queue for a specified time in case

many programs want the message data. Hence, each program gets a message copy.

For more information about messages and message descriptors see [AMQ95], [MQI94] and [HKS04].

The MQSeries CICS Business Application MQNACT 87

5.2.4 Queue manager

“A queue manager is the system service that provides the message queuing facilities used by applications.”

([MQI94], ch. 1.3) The queue manager manages all MQ objects, for example message queues, channels, name

lists, and process definitions. Other queue manager objects are only required on specialised platforms, such as

buffer pools, storage classes, or client connections. As a minimum, one QM with a unique name has to exist on a

processor. Applications using MQSeries as middleware communicate with each other only through QMs. For a

simple set up, only one QM and one message queue are required (one-way communication). This is realised,

when a MQSeries Server is installed on the server computer system, whereas on the client computer system the

MQSeries Client as part of the MQSeries family is installed. However, the MQSeries CICS application

MQNACT uses the two-way communication which requires at least two QMs. One QM resides on the

OS/390-server (server queue manager) and the other on the WINDOWS2000 client (client queue manager) set up

within the MQSeries Server product installed on both sides. Using two QMs improves the robustness of the

sample business application MQNACT. In case, the OS/390-server is unavailable for any reason, the messages to

be sent are kept until the OS/390-server is available again. Referring to as assured delivery, it ensures that the

message is delivered once and only once when the broken OS/390-server is available. The QMs in our sample

application are named MQA1 for the OS/390-server queue manager and TBUSSE.NACT for the WIN-

DOWS2000 client queue manager. In this scenario, messages are created on a local QM and are transferred to

another QM (remote QM) using different message queues. Additionally, there are required transport channels to

transfer the messages from one QM to the another.

Queue managers manage the network, look for remote queue managers, and communicate with them. The

communication between QMs is handled by TCP/IP. Each QM insures that changes of MQ objects are logged.

Messages are built inside a queue manager; an application sends only pure data to it. If messages are to long they

are segmented and grouped by the QM. Messages can be send as copies to different QMs. The QM also insures

to deliver the messages. For improved administration, QMs can be grouped into QM Clusters (QMC). For more

information about QM objects and QMCs see [HKS04] and [QMC00].

5.2.5 Queue manager objects

5.2.5.1 Local and remote queues

Queues are MQ objects that store messages until they are picked up, for instance by applications. They are classi-

fied into local and remote queues. All queues are administered by a queue manager. Each queue has an own name

unique to each QM. Messages are added onto a queue at the end and removed from the front. This FIFO-method

is set per default. In case of priority storing, the messages are stored on their priority level. Each queue is spe-

cified with its own attributes. The following queue types are used in the MQSeries CICS application MQNACT:

88
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

a) Reply-to queue

This queue is a local queue stored on the local queue manager and is connected with a local program. The

reply-to queue stores messages sent by a remote program and provides the received data for the local pro-

gram. On the OS/390-server this queue is called as request queue, or in connection with its task, it is also

called as the MQSeries CICS Bridge queue. This queue receives the request messages. On the WIN-

DOWS2000-client the queue is named as the reply-to queue receiving response messages.

b) Remote queue definition (remote queue)

The remote queue definition is usually simple called remote queue. However, this “queue” works not like

a normal queue. It stores only control information for a message to be sent and not the message itself.

Therefore, the complete name “remote queue definition” is used in this thesis, however, “definition” is

written in italic style. The message consists of this copied information (message descriptor) and the ap-

plication data. The remote queue definition stores the name of the local queue at the remote location

(reply-to resp. request queue), the name of the remote queue manager, and the name of the local transmis-

sion queue.

c) Transmission Queue

Before sending messages to a remote queue manager they are transmitted onto a special kind of a local

queue called a transmission queue. For our sample-application MQNACT, one transmission queue exists

for each QM . Transmission queues are only required when two QMs communicate with each other. Mes-

sages are sent to the remote queue manager by a channel sender which is connected with the transmission

queue. One default transmission queue can be predefined for the QM. Usually, an own transmission queue

is to be created. Furthermore, the transmission queue is connected with the remote queue definition.

The OS/390 MQSeries v2.1 product contains a particular limitation. The OS/390-server queue man-

ager always assigns automatically the transmission queue with the same as the remote queue manager. In

other words, the transmission queue on the OS/390-server queue manager must have the same name as the

WINDOWS2000-client queue manager. If the transmission queue on the OS/390-server queue manager

has another name as the WINDOWS2000-client queue manager, the OS/390-server queue manager as-

signs the default transmission queue as the transmission queue instead of the specified one. When a mes-

sage is created, it gets control information from the remote queue definition of the OS/390-server queue

manager and is normally put onto the transmission queue specified in the remote queue definition. But the

OS/390-server queue manager wants to put the message on a queue named as the WINDOWS2000-client

queue manager. If this queue is not found by the OS/390-server queue manager, the message is put onto

the default transmission queue. However, the default transmission queue cannot forward the message to

the WINDOWS2000-client queue manager because the default transmission queue is linked to another

channel sender and not to the channel sender originally specified in the specification of the correct trans-

The MQSeries CICS Business Application MQNACT 89

mission queue. If a default transmission queue is not specified the message is stored on the dead-letter

queue.

d) Dead-Letter Queue

A dead-letter queue stores messages, that cannot be delivered. For example, the destination queue is not

defined on the remote QM, or the destination queue cannot receive messages. The dead-letter queue must

be a local queue. Each QM should have a dead-letter queue. In the Post Office, this dead letter queue is

represented by a Dead Letter Office.

There are some more queue types that can be specified, for example an alias queue or model queue. For informa-

tion see [MQI94] and [HKS04].

5.2.5.2 Message Channels

The QM transfer transfer messages to another QM via channels. There are two channel types – one to connect

QMs (message channel) and the other to connect a QM with a MQSeries application (MQI-channel). They are

unidirectional and consist always of two parts – the channel sender and channel receiver. IBM calls them also as

sender channel resp. receiver channel. However, this notation can be confusing. Therefore, only the notations

channel sender and channel receiver are used in this thesis. The channel sender is always located on the local

queue manager, the channel receiver always on the remote queue manager. Both channel parts must have the

same name9 and thus build together a single channel. The MQSeries CICS application requires a two-way com-

munication between the two queue managers. Hence, two message channels are created, having one channel

sender and one channel receiver per message channel (Figure 23, next page).

Both channel parts communicate with each other using a communication protocol such as TCP/IP or LU6.2.

Each channel part has a Message Channel Agent (MCA), for the channel sender a sender MCA and for the chan-

nel receiver a receiver MCA (Figure 23). This software controls the sending and receiving of messages. A mes-

sage is taken from the transmission queue by a sender MCA and is put to the communication link. The receiver

MCA gets the message and delivers it to the remote QM resp. to the reply-to/request queue. In another view, an

MCA that initiates the communication is called a caller MCA, otherwise, it is a responder MCA.

The sender MCA needs to be initiated by a channel initiator program. The receiver MCA is initiated by a

channel listener program. This program detects incoming network requests and starts the associated channel re-

ceiver. Usually, both programs are started automatically during the startup of the QM. In some situations they can

be started manually.

For more information about message channels and Distributed Queue Management see [ICM00].

9 Channel names must not have more than 20 characters!

90
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 23: Bidirectional communication ([ICM00], ch. 1.1.1.1.3)

5.2.5.3 MQI Channels

MQI channels connect MQSeries Clients with a queue manager on an MQSeries server. This one channel sets up

a two-way link (bidirectional) to transfer MQI calls and responses. One part of this MQI channel is called the

server-connection channel, the other one is called the client-connection channel. The notation “channel” is omit-

ted because both parts build together the channel. A server-connection has been created to connect the JAVA ap-

plication with the WINDOWS2000-client queue manager. The client-connection is created automatically when a

server-connection is used. This feature is a new function added to MQSeries Server v5.2.1. The MQI channel

does not transfer messages between the WINDOWS2000-client queue manager and the MQNACT application

but pure request resp. response data. Such an MQI channel is only required on the WINDOWS2000-client. On

the OS/390-server queue manager it is used another method to transfer the request/response data to the CICS CO-

BOL application. For more details on MQI channels see [CLI00].

5.2.6 Message Queuing Interface

Queue managers communicate with each other using the MQI. It consists of only a few function calls, is easy to

use and consistent in every environment. Hence, it is not required to write complex communication code; the pro-

grammer can concentrate on programming presentation and business logic.

There are only two important basic calls – MQPUT and MQGET. One for putting messages on a message

queue and the other for getting messages from the message queue. This is the “e-mail for applications” part. All

in all, 11 calls are provided by the MQI used for MQSeries v2.1, but approximately 90 percent of all calls used in

MQSeries applications are MQPUT and MQGET. The MQCONN call, for example, is used to enable a connec-

tion between the application and MQSeries, MQDISQ terminates it. MQOPEN opens the message queue to get

ready for an MQPUT call. After getting messages for a message queue using MQGET, the MQCLOSE call

closes the message queue. These calls are also known as major calls. Minor calls are used for special purpose.

The MQSeries CICS Business Application MQNACT 91

For instance, MQINQ provides information of message queues to manage them. Some queue attributes can be

modified by application programs using the MQSET call. If an application encounters problems or errors during

executing MQPUT or MQGET calls, it can back out all operations performed on the message queue using the

MQBACK call. Operations performed on a queue can be committed by the MQCMIT call. The last call –

MQPUT1 – simplifies putting messages on a queue. It represents a sequence of MQOPEN, MQPUT, and

MQCLOSE calls. In MQSeries v.5 are introduced 2 new API-calls – MQBEGIN and MQCONNX. More inform-

ation about these 2 calls and the MQI in general provides [MQI94] and [HKS04].

Programmers who does not want to use the functions provided by the MQI can use another simple interface to

connect applications with MQSeries – the MQSeries Application Messaging Interface (AMI). This interface “is

more abstract in nature than MQI, but provides less flexibility because not all features available through MQI

are available in AMI.” ([YOU01], page 170) Still another interface is the JAVA Message Service (JMS). This

interface is based on an object-oriented method rather than a procedural interface as the MQI. For more informa-

tion about the AMI see [AMI00] and about the JMS see [MUJ00].

92
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

5.3 The architecture of the MQSeries CICS application

The MQSeries CICS application consists of two program parts – the JAVA presentation and MQSeries commu-

nication logic on the WINDOWS2000-client and the CICS business logic on the OS/390-server. The MQSeries

communication logic of the WINDOWS2000-client is only used to create a connection to the MQSeries queue

manager on the WINDOWS2000-client. The actual business logic is the OS/390 CICS COBOL program

NACT02. The JAVA program MQClient.java requests information from a customer account and access the CICS

COBOL program NACT02. Both programs communicate through MQSeries; they put messages on and receive

messages from message queues. Using MQ is a simple and elegant way to send requests to and to get responses

from the CRUD program. The functionality of such a procedure is shown in Figure 24 on page 94 in general and

in Figure 25 on page 95 where each object is named. The numbers of the following descriptions refer to both –

Figure 24 and Figure 25.

Firstly, the JAVA program connects itself to the WINDOWS2000-client queue manager TBUSSE.NACT us-

ing the MQI channel called the server connection channel TBUSSE.NACT.CLIENT (No.1). Within this channel

the request data is transported to the remote queue definition TBUSSE.NACT.REMOTEQ (No.2). The remote

queue definition provides necessary information to create the request message. This message is immediately put

on the transmission queue TBUSSE.NACT.XMITQ (No.3). From this queue the message is transmitted to the

OS/390server queue manager MQA1 using the channel sender TBUSSE.NACT.WIN.OS (No.4a). The channel

sender is connected with the eponymous channel receiver specified on the OS/390-server queue manager and

builds the channel called request channel (No.4b). When the channel receiver gets the request message, it reads

the message descriptor that contains the request queue name SYSTEM.COMMAND.CICS.BRIDGE among oth-

er object names, and puts the request message onto this queue (No.5).

Queue manager objects
OS/390-Server
Queue Manager

MQA1

WINDOWS2000-Client
Queue Manager
TBUSSE.NACT

Reply-to/Request Queues SYSTEM.COMMAND.BRIDGE.QUEUE TBUSSE.NACT.REPLYQ

Transmission Queues TBUSSE.NACT TBUSSE.NACT.XMITQ

Remote Queue Definitions TBUSSE.NACT.REPLYQ TBUSSE.NACT.REMOTEQ

Channel Senders TBUSSE.NACT.OS.WIN TBUSSE.NACT.WIN.OS

Channel Receivers TBUSSE.NACT.WIN.OS TBUSSE.NACT.OS.WIN

Server Connection --- TBUSSE.NACT.CLIENT

Table 7: Named queue manager objects used for the MQSeries CICS application MQNACT

The CICS Bridge Monitor Task consecutively checks the request queue if a “start UoW” message has arrived

(No.6). After some relevant authorisation checks, the CICS DPL Bridge Task is started (No.7). This task re-

moves the message from the request queue and builds a COMMAREA from the data delivered within the mes-

sage (No.8). Afterwards, the NACT02 program is called (No.9). The program executes the request and sends the

The MQSeries CICS Business Application MQNACT 93

response back to the COMMAREA (No.10). The response data is carried to the remote queue definition

TBUSSE.NACT.REPLYQ stored on the OS/390-server queue manager (No.11). The control information of the

remote queue definition is added to the response data and the response message is built and put onto the transmis-

sion queue TBUSSE.NACT (No.12). The channel sender TBUSSE.NACT.OS.WIN connected with the transmis-

sion queue transfers the response message to the WINDOWS2000-client queue manager (No.13a). The WIN-

DOWS2000 channel receiver (No.13b) builds together with the eponymous OS/390 channel sender the response

channel. The channel receiver reads the message descriptor containing the reply-to queue name TBUSSE.N-

ACT.REPLYQ among other object names and puts the response message onto the queue (No.14). After the mes-

sage is stored on this queue the MQI channel TBUSSE.NACT.CLIENT wakes up and transmits the response data

to the JAVA program where the information is displayed (No.1).

94
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 24: The architecture of the MQSeries CICS application MQNACT

Server
Connection

Channel

Request
Data

Response
Data Remote Queue

Definition

Request
Message

Response
Message

Remote Queue
Definition

OS/390

MQSeries
v2.1

Queue Manager
MQA1

MQSeries CICS
bridge

monitor task

CICS
COBOL
Program

CICS Region
CICS TS

v1.3

CICS DPL
bridge task

MQGet
Browse request

EXEC
CICS START

Request data

MQGet
request

Response
data

MQPut
response

EXEC
CICS LINK

EXEC
CICS RETURN

Response message

JAVA Application

MQI

Windows 2000

MQSeries
v5.2.1

MQPut

Request
Message

MQPutMQGet

Reply-To Queue

Transmission Queue

Receiver

Transmission Queue
Request Queue

“MQSeries CICS
Bridge Queue”

1
2

5

67

8

9

10

11

14

Java 1.3.1

Sender 4a
Receiver

12

Response
Channel

Queue Manager
TBUSSE.NACT

Request
Channel

Sender

≈≈ ≈ MQIMQI

3

4b
13a

13b

≈

The MQSeries CICS Business Application MQNACT 95

Figure 25: The architecture of the MQSeries CICS application MQNACT with named MQSeries objects

TBUSSE.NACT.CLIENT

Request
Data

Response
Data

TBUSSE.NACT.REMOTEQ

Request
Message

Response
Message

TBUSSE.NACT.REPLYQ

OS/390

MQSeries
v2.1

Queue Manager
MQA1

CKBRNACT02
(NACT04)

CICS Region A06C001
CICS TS

v1.3

CKBP

MQGet
Browse request

EXEC
CICS START

Request data

MQGet
request

Response
data

MQPut
response

EXEC
CICS LINK

EXEC
CICS RETURN

Response message

MQClient

MQI

Windows 2000

MQSeries
v5.2.1

Request
Message

MQPutMQGet

TBUSSE.NACT.REPLYQ

TBUSSE.NACT.XMITQ

TBUSSE.NACT
SYSTEM.CICS.BRIDGE.QUEUE

1 2

5

6

8

79

10

11

14

Java 1.3.1

TBUSSE.NACT.WIN.OS

Queue Manager
TBUSSE.NACT

TBUSSE.NACT.WIN.OS

4aTBUSSE.NACT.OS.WIN

TBUSSE.NACT.OS.WIN

12

3

4b
13a

13b

≈

≈MQI≈≈ MQI

96
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

5.4 Setting up MQSeries on the OS/390-server

5.4.1 The OS/390-server queue manager MQA1

On the MQSeries server on the JEDI OS/390-server runs only one queue manager called MQA1. It is started

when following command is entered in the command line in any panel of the SDSF program:

/!MQA1 START QMGR10

The SDSF program can be reached from the CUSTOMPAC MASTER APPLICATION MENU entering SD in

the command line. Each queue manager on OS/390 may consist of maximal four characters because its name is

also the name of the MQSeries subsystem which may be only four characters long. Such a MQSeries subsystem

is a formal defined OS/390 subsystem and must be defined to the subsystem name table of OS/390. A queue

manager can only be started if the assigned MQSeries subsystem is created and loaded previously. For instance,

an MQSeries subsystem can be manually created with the SETSSI command:

/SETSSI ADD,S=ssid,I=CSQ3INI,P='CSQ3EPX,cpf,scope'

where ssid is the name of the subsystem ('MQA1'). cpf is the command prefix that must preceding an MQSer-

ies command to identify the OS/390 subsystem for which the commands are intended for, for instance '!MQA1'.

The last parameter scope is only important if the subsystem is created in an OS/390 sysplex, if not, 'M' has to be

specified. However, the command that creates the MQSeries subsystem MQA1 reads as follows:

/SETSSI ADD,S=MQA1,I=CSQ3INI,P='CSQ3EPX,!MQA1,M'

It is suggested to include an entry into the IEFSSNXX member of SYS1.PARMLIB. Hence, it is not required to

input this command after every IPL. On the JEDI OS/390-server there exit two of such members, IEFSSN00 and

IEFSSN02; executed one after another. Following entry is entered in IEFSSN00 (cf. Listing 24, page 234):

10 SUBSYS SUBNAME(MQA1) INITRTN(CSQ3INI) INITPARM('CSQ3EPX,!MQA1,M')

There are created four more MQSeries subsystems on the JEDI OS/390-server – MQA2, MQA3, MQA4, and

MQA5. Of course, the associated entries are also written into the IEFSSN00 member. These subsystems should

be used for further practise. Additional information on how to create an MQSeries subsystem and an MQSeries

queue manager is given in [SMQ99].

Using the START QMGR command the MQSeries executes the startup script MQA1MSTR stored in the data

set SYS1.PROCLIB (Listing 25, page 234). This script is also called the MQSeries started task procedure. The

name of the script always consists of the queue manager name, here MQA1, plus the string MSTR. After a subsys-

tem has been created, such a script has to be defined to load and start the queue manager. During the startup of

10 Any command entered from the command line of SDSF must be prefixed by a slash “/”. If the slash is entered alone the System Com-
mand Extension panel appears. The advantage is that more command strings as on the command line can be entered.

The MQSeries CICS Business Application MQNACT 97

the queue manager MQA1 a few queue manager objects have been created using the CSQINP1 and CSQINP2

steps (line 42-47). Within these both steps following scripts are loaded:

42 //CSQINP1 DD DSN=MQM.MQA1.SCSQPROC(CSQ4INP1),DISP=SHR
43 //CSQINP2 DD DSN=MQM.MQA1.SCSQPROC(CSQ4INSG),DISP=SHR
44 // DD DSN=MQM.MQA1.SCSQPROC(CSQ4INSX),DISP=SHR
45 // DD DSN=MQM.MQA1.SCSQPROC(CSQ4INYG),DISP=SHR
46 // DD DSN=MQM.MQA1.SCSQPROC(CSQ4CKBM),DISP=SHR
47 // DD DSN=MQM.MQA1.SCSQPROC(CSQ4STRT),DISP=SHR

The script CSQ4INP1 loaded within the CSQINP1 step creates non-recoverable objects for the queue manager

(Listing 26, page 234). Within the script CSQ4INSG some system objects are defined. They must be created the

first time the queue manager MQA1 is started (Listing 27, page 234). For the non-CICS distributed queuing and

clustering facility some more objects are defined within the script CSQ4INSX (Listing 28, page 234). These three

scripts are required for each OS/390-server queue manager and may not be changed.

Additional general objects for the queue manager MQA1 have been defined using the script CSQ4INYG

provided within the MQSeries installation. For instance, this script defines the default transmission queue and the

default dead-letter queue. Enabling the communication between CICS and MQSeries requires creating the initi-

ation queue CICS01.INITQ. This queue is used by the MQSeries CICS adapter and enables the CICS applica-

tions to use the MQI to communicate between MQSeries and CICS. The script CSQ4CKBM defines the request

queue resp. MQSeries CICS Bridge queue and a trigger for this queue. But, triggering is not used for our sample

application MQNACT, however, the trigger definition is created for future use.

The last loaded script CSQ4STRT starts the channel initiator and the channel listener programs for the

OS/390-server queue manager (cf. Listing 29, page 234). Within the command START CHINIT the channel ini-

tiator is started. On the PARM keyword is specified the data set in which the definitions for the channel initiator

are stored (line 11). The command START LISTENER starts the channel listener program on the specified port

PORT(1414). The TCP/IP method has been chosen as transport type TRPTYPE(TCP), however, port and the

transport type can be omitted because these are the default parameters (line 15):

11 START CHINIT PARM(CSQXPARM)
 ···
15 START LISTENER PORT(1414) TRPTYPE(TCP)

Both programs can also be started manually using the command line of the SDSF application or the MQSeries

panels. For starting both services from the command line execute the following commands, subsequently:

/!MQA1 START CHINIT

/!MQA1 START LISTENER

98
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

When starting these programs from the MQSeries panels, open the “Main Menu” panel and enter in the field

Action the number 6 as a shortcut for Start. Furthermore, fill in the field Object type the entry SYSTEM and press

Enter.

An entry in the field Name is not required (Figure 26). Pressing the ENTER key opens the “Start a System

Function” panel. Firstly, choose the number 1 to start the channel initiator (Figure 27). When the channel initiator

has been started successfully, the listener can be started choosing number 3 in the “Start a System Function” pan-

el. Both services can be stopped in the same way as they were started. The commands to stop them from the com-

mand line of the SDSF application read as follows:

/!MQA1 STOP CHINIT

/!MQA1 STOP LISTENER

In case, the channel initiator and the channel listener need to be stopped, it is only required to stop the chan-

nel initiator. This stops the listener automatically. When both services should be stopped from the MQSeries pan-

els, enter number 7, the shortcut for Stop, instead number 6 in the field Action on the MQSeries “Main Menu”

panel. This opens the “Stop a System Function” panel (Figure 28). Choose the numbers to stop the service and

press Enter.

 IBM MQSeries for OS/390 - Main Menu

 Complete fields. Then press Enter.

 Action 6 1. Display 5. Perform
 2. Define 6. Start
 3. Alter 7. Stop
 4. Delete

 Object type SYSTEM +
 Name TBUSSE.*
 Like __

 Connect to queue
 manager : MQA1
 Target queue manager : MQA1
 Response wait time . : 30 seconds

 (C) Copyright IBM Corporation 1993,1999. All rights reserved.

 Command ===> __
 F1=Help F2=Split F3=Exit F4=Prompt F6=QueueMgr F9=Swap
 F10=Messages F12=Cancel

Figure 26: MQSeries for OS/390 on CICS – Main Menu panel

The MQSeries CICS Business Application MQNACT 99

 Start a System Function

 Select function type, complete fields, then press Enter to start system
 function.

 Function type 1 1. Channel initiator
 2. Channel listener for LU6.2
 3. Channel listener for TCP/IP

 Channel initiator
 Parameter module name . . ________
 JCL substitution __
 __

 Listener for LU6.2
 LU name _________________

 Listener for TCP/IP
 Port number 1414

 Command ===> __
 F1=Help F2=Split F3=Exit F9=Swap F10=Messages F12=Cancel

Figure 27: MQSeries for OS/390 on CICS – Start a System Function panel

 Stop a System Function

 Select function type, then press Enter to stop system function.

 Function type 1 1. Channel initiator
 2. Channel listener for LU6.2
 3. Channel listener for TCP/IP

 Command ===> __
 F1=Help F2=Split F3=Exit F9=Swap F10=Messages F12=Cancel

Figure 28: MQSeries for OS/390 on CICS – Stop a System Function panel

100
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

If it is needed to stop the queue manager MQA1, following command has to be executed from the command

line of the SDSF application:

/!MQA1 STOP QMGR MODE(option)

The attributes for option in the optional keyword MODE can be one of the following: QUIESCE, FORCE, and

RESTART. QUIESCE allows programs currently being executed to finish processing. This is the default option;

if the keyword MODE with its parameter is omitted, this option is always used to shut down the queue manager.

The FORCE option terminates the queue manager without ending the programs in their normal way. Both options

deregister MQSeries from the MVS automatic restart manager. The option RESTART allows an automatic re-

start. All three options exclude starting of new programs during terminating the queue manager. If the queue

manager is terminated it can be restarted because the OS/390 subsystem MQA1 is not terminated. It waits for an

reactivation call of the queue manager. Following message is written to the system log to indicate the complete

termination:

£HASP395 MQA1MSTR ENDED
CSQ3104I !MQA1 CSQ3EC0X - TERMINATION COMPLETE
CSQ3100I !MQA1 CSQ3EC0X - SUBSYSTEM MQA1 READY FOR START COMMAND

5.4.2 The MQSeries CICS Bridge

5.4.2.1 Overview

The Java-GUI front end on the WINDOWS2000-client wants to access the CICS COBOL program NACT02 with

the help of MQSeries. NACT02 should only be called by the MQSeries CICS application and may not be modi-

fied because an application programmer should not need to know about the mainframe programming. The pro-

grammer has only to know the name of programs and of the MQ objects which process the request. Therefore, it

is required to use a method that connects CICS with MQSeries to work in the background. For this situation,

IBM offers to use the MQSeries CICS Bridge. It solves the problem of transferring data between the interfaces of

MQSeries and CICS using the MQI. Hence, any application outside of CICS can run a single program or a set of

programs (UoW) on CICS. Additionally, the MQSeries CICS Bridge queue supports the synchronous and the

asynchronous processing of data.

NACT02 is executed by the MQSeries CICS application when a request within a message is sent to the CICS

Bridge Monitor Task of the MQSeries CICS Bridge. Firstly the message has to be put on the request queue – the

MQSeries CICS Bridge queue – which is constantly browsed by the CICS Bridge Monitor Task. When the task

recognises that a message has arrived, it checks the authentication, and it starts the CICS DPL Bridge Task ex-

ecuting the EXEC CICS START command. It collects the request data from the MQSeries CICS Bridge queue

and deletes the message from the queue. From the data is build the COMMAREA and an EXEC CICS LINK

command is issued to call NACT02. The CICS COBOL program processes the data and returns the response back

The MQSeries CICS Business Application MQNACT 101

into the COMMAREA. From this area, the CICS DPL Bridge Task reads the response data using the EXEC

CICS RETURN command and transmits it to the remote queue definition of the OS/390-server.

On the one hand, the MQSeries CICS Bridge is an application consisting of the CICS Bridge Monitor Task

started by the CICS transaction CKBR and consisting of the CICS DPL Bridge Task started by the transaction

CKBP. But on the other hand, it is defined as a local queue on the OS/390-server queue manager MQA1. Until

these both tasks have been installed to the CICS TS and the local queue is created to MQSeries, the bridge can be

successfully started, and data can be transferred between the OS/390-server queue manager and the CICS region.

Every CICS region having an installed CICS Bridge Monitor Task and a CICS DPL Bridge Task can run a

MQSeries CICS Bridge, if an assigned local queue exists on a OS/390-server queue manager – same or different

queue managers. However, using the MQSeries CICS Bridge requires, that both, the OS/390-server queue man-

ager and the CICS region, run in the same OS/390 region.

5.4.2.2 Configuring CICS to use the MQSeries CICS Bridge

The MQSeries CICS adapter must be started at first before the MQSeries CICS Bridge tasks can run on CICS.

The adapter provides control functions to manage the connection between CICS and MQSeries, for example,

starting and stopping the connection to the OS/390-server queue manager. As second functionality, the adapter

implements the MQI support used by CICS programs. For example, it “can handle up to eight MQI calls concur-

rently.” ([SMQ99], ch. 3.1.1.2)

The MQSeries CICS adapter is started by the CKTI transaction during CICS startup. This transaction and its

assigned programs have been defined within the script CSQ4B100 stored in the library

CICS.COMMON.CSDDEFS. This script also defines all other objects required by the MQSeries CICS adapter to

the CICS region A06C001 (cf. Listing 30, page 235). These objects have been installed into an own CICS group

called CSQ (line 232). A complete specification of CSQ4B100 is omitted because the script is provided within

the CICS TS installation and needs only to be executed. However, at the end of the script one command has been

inserted. It adds the CICS group CSQ to one of the four CICS startup lists. These lists works like a search path to

find the necessary objects to start the MQSeries CICS adapter during CICS startup. The CICS group list PPLIST

has been chosen (line 242):

232 DEFINE TRANSACTION(CKTI) GROUP(CSQ)
 ···
242 ADD GROUP(CSQ) LIST(PPLIST)

102
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

The objects specified in CSQ4B100 have been added to the CICS region using the Update Resource Defini-

tion Utility DFHCSDUP. The script DFHCSD01 stored in CICS.COMMON.JCL executes the utility and loads as

input the script CSQ4B100 (line 8, and 14, cf. Listing 31, page 235):

08 //CSDUP EXEC PGM=DFHCSDUP,REGION=4M
 ···
14 //SYSIN DD DISP=SHR,DSN=CICS.COMMON.CSDDEFS(CSQ4B100)

In order to use the MQSeries CICS adapter, an initiation queue has to be created on the OS/390-server queue

manager. This queue is automatically created during each queue manager startup executing the script CSQ4INYG

(cf. Listing 32, page 235). The initiation queue is named as CICS01.INITQ:

223 DEFINE QLOCAL('CICS01.INITQ') REPLACE +

Additionally, it is required to add the parameter INITPARM to the CICS SIT definition script C001 to de-

clare the initiation queue to the CICS region (line 5, Listing 22):

05 INITPARM=(CSQCPARM='SN=MQA1,TN=001,IQ=CICS01.INITQ')

where the parameters mean:

SN – The MQSeries queue manager name to which the MQSeries CICS adapter should be connected to,

TN – The trace number to identify the MQSeries CICS adapter in the CICS trace entries,

IQ – The name of the initiation queue on the queue manager provided for the MQSeries CICS adapter.

Note: Attributes of INITPARM must not be more than 60 characters long; counted from 'SN=…'

until '…INITQ':

Furthermore, there are added some required MQSeries libraries to the STEPLIB and to the DFHRPL concat-

enation in the CICS startup procedure CICSC001 (lines 13-38, Listing 23):

13 //STEPLIB DD DISP=SHR,DSN=&CICSHLQ..SDFHAUTH CICS
 ···
17 // DD DISP=SHR,DSN=MQM.SCSQANLE MQSERIES
18 // DD DISP=SHR,DSN=MQM.SCSQAUTH MQSERIES
 ···
25 //DFHRPL DD DISP=SHR,DSN=CICS.COMMON.TABLIB CICS TABLES
 ···
35 // DD DISP=SHR,DSN=MQM.SCSQANLE MQSERIES
36 // DD DISP=SHR,DSN=MQM.SCSQCICS MQSERIES
37 // DD DISP=SHR,DSN=MQM.SCSQAUTH MQSERIES
38 // DD DISP=SHR,DSN=MQM.SCSQLOAD MQSERIES

The MQSeries CICS Business Application MQNACT 103

At last, the SIT-parameter MQCONN in the CICS SIT definition script C001 has to be activated to auto-con-

nect MQSeries and CICS (line 5, cf. Listing 33, page 235):

05 MQCONN=YES AUTO-CONNECT TO MQ

Hence, the MQSeries CICS adapter is started and the connection between the CICS region and the

OS/390-server queue manager is established. That can be checked when the CICS transaction CKQC is started

on the CICS terminal. After the initial panel appears, point the cursor under “Connection”, press the enter key,

and choose option number 4 to display the connection status (Figure 29). The “Display Connection” panel shows

the name of the CICS region, the name of the queue manager connected to, and that a connection persists

between both (Figure 30, next page).

After the successful installation and running of the MQSeries CICS adapter it is possible to set up the MQSer-

ies CICS Bridge on the CICS region. The MQSeries CICS Bridge usually consists of three tasks. However, run-

ning CICS DPL programs requires only two of these – the CICS Bridge Monitor Task and the CICS DPL Bridge

Task. The CICS Bridge Monitor Task consists of the transaction CKBR calling the program CSQCBR00 whereas

the CICS DPL Bridge Task consists of the transaction CKBP calling the program CSQCBP00 and the abend

handler program CSQCBP10. The error messages program CSQBTX relates to both tasks. The third task – the

MQSeries CICS Bridge Exit Task – consists of the 3270 CICS Bridge Exit and of the Data Conversion Exit. The

3270 CICS Bridge Exit program CSQCBE00 is only used if 3270 transactions should be run within MQSeries.

CSQCBDCI, the program for the Data Conversion Exit, drives conversion of 3270 map data.

 CKQCM2 Display Connection panel

 Read connection information. Then press F12 to cancel.

 CICS Applid = A06C001 Connection Status = Connected QMgr name= MQA1
 Trace No. = 001 Tracing = On API Exit = Off
 Initiation Queue Name = CICS01.INITQ
 ---------------------------- S T A T I S T I C S -----------------------------
 Number of in-flight tasks = 2 Total No. of API calls = 516505
 Number of running CKTI = 1
 APIs and flows analysis Syncpoint Recovery
 -- ------------------- ---------------
 Run OK 547 MQINQ 3 Tasks 181 Indoubt 0
 Futile 0 MQSET 0 Backout 0 UnResol 0
 MQOPEN 184 ------ Flows ------ Commit 180 Commit 0
 MQCLOSE 0 Calls 517047 S-Phase 180 Backout 0
 MQGET 516138 SyncComp 1268 2-Phase 0
 GETWAIT 515958 SuspReqd 0 ------------------------------------
 MQPUT 0 MsgWait 515779 InitTCBs 8 StrtTCBs 8 BusyTCBs 0
 MQPUT1 180 Switched 517046

 F1=Help F12=Cancel Enter=Refresh

Figure 29: MQSeries for OS/390 on CICS – Display Connection panel

104
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

 CKQCM2 Display Connection panel

 Read connection information. Then press F12 to cancel.

 CICS Applid = A06C001 Connection Status = Connected QMgr name= MQA1
 Trace No. = 001 Tracing = On API Exit = Off
 Initiation Queue Name = CICS01.INITQ
 ---------------------------- S T A T I S T I C S -----------------------------
 Number of in-flight tasks = 2 Total No. of API calls = 516505
 Number of running CKTI = 1
 APIs and flows analysis Syncpoint Recovery
 -- ------------------- ---------------
 Run OK 547 MQINQ 3 Tasks 181 Indoubt 0
 Futile 0 MQSET 0 Backout 0 UnResol 0
 MQOPEN 184 ------ Flows ------ Commit 180 Commit 0
 MQCLOSE 0 Calls 517047 S-Phase 180 Backout 0
 MQGET 516138 SyncComp 1268 2-Phase 0
 GETWAIT 515958 SuspReqd 0 ------------------------------------
 MQPUT 0 MsgWait 515779 InitTCBs 8 StrtTCBs 8 BusyTCBs 0
 MQPUT1 180 Switched 517046

 F1=Help F12=Cancel Enter=Refresh

Figure 30: MQSeries for OS/390 on CICS – Display Connection panel

All these three tasks have been defined to the CSD using the script CSQ4CKBC stored in the library

CICS.COMMON.CSDDEFS (cf. Listing 35, page 235). When the off-line update resource definition utility

DFHCSDUP is executed, all MQSeries CICS Bridge objects are added to the CICS region. As known, this utility

program is loaded within the script DFHCSD01 (cf. Listing 31, page 235). But now, its SYSIN step refers to

CSQ4CKBC (line 14, Listing 31):

14 //SYSIN DD DISP=SHR,DSN=CICS.COMMON.CSDDEFS(CSQ4CKBC)

All MQSeries CICS Bridge objects have been installed into the CICS group CSQCKB as same as the transac-

tion CKBP (line 24, Listing 35):

24 DEFINE TRANSACTION(CKBP) GROUP(CSQCKB)

After all objects have been defined, the CICS group CSQCKB has also to be added to any of the four CICS

group startup lists; it is again chosen to use PPLIST (line 84, Listing 35):

84 ADD GROUP(CSQCKB) LIST(PPLIST)

The MQSeries CICS Business Application MQNACT 105

5.4.2.3 Configuring MQSeries to use the MQSeries CICS Bridge

The MQSeries CICS Bridge queue must be defined as a local queue on the OS/390-server queue manager

MQA1. Additionally, this queue must be connected to the CICS Bridge tasks to enable the MQSeries CICS

Bridge. Provided within the dataset MQM.MQA1.SCSQPROC the sample script CSQ4CKBM is used to create

the MQSeries CICS Bridge queue (cf. Listing 34, page 235). Within the MQSeries command (MQSC) DEFINE

QLOCAL the queue with its name has been defined – 'SYSTEM.CICS.BRIDGE.QUEUE' (line 32). The attrib-

utes set in line 36 to 39 are common queue attributes for a local queue. The queue has the lowest priority (DEF-

PRTY(0), line 36) and can process persistent messages (DEFPSIST(YES), line 37). To recover messages in

case of errors, they are set persistently on the queue. Furthermore, to put messages sent from the CICS DPL

Bridge Task onto the queue the keyword PUT is set to 'ENABLED' (line 39). Because the CICS Bridge Monitor

Task gets messages from the MQSeries CICS Bridge queue, GET has also to be enabled within the keyword GET

(line 49). These options are set in the local queue attributes section that spread from line 43 until line 56. Instead

of priority sequence message delivery there is chosen to use per default the FIFO method. This allows an efficient

answering to the messages in the sequence as they are catered to the bridge; the oldest request message is the first

to process (MSGDLVSQ(FIFO), line 54). The keyword HARDENBO is set to maintain an accurate back out for

this queue (line 55). This ensures that messages are not reprocessed erroneously after an emergency restart. As

well as, both, the CICS Bridge Monitor Task and the CICS DPL Bridge Task, read messages stored on the

MQSeries CICS Bridge queue, shared access onto the queue has to be permitted (SHARE, line 56):

32 DEFINE QLOCAL('SYSTEM.CICS.BRIDGE.QUEUE') REPLACE +
 ···
36 DEFPRTY(0) +
37 DEFPSIST(YES) +
38 DESCR('MQSERIES CICS BRIDGE QUEUE') +
39 PUT(ENABLED) +
 ···
43 * BOQNAME(' ') +
44 BOTHRESH(0) +
45 CLUSNL(' ') +
46 CLUSTER(' ') +
47 DEFBIND(OPEN)+
48 DEFSOPT(SHARED) +
49 GET(ENABLED) +
50 INDXTYPE(NONE) +
51 INITQ('CICS01.INITQ') +
52 * MAXDEPTH(5000) +
53 * MAXMSGL(4 194 304) +
54 MSGDLVSQ(FIFO) +
55 HARDENBO +
56 SHARE +

For future extensions, a trigger and a trigger process have also been created. Since the script CSQ4CKBM

should be worked off automatically during every OS/390-server queue manager start up, it has to be pointed

within the queue manager startup script MQA1MSTR as described in 5.4.1 “The OS/390-server queue manager

MQA1” on page 96 (line 46, Listing 25). After each restart of the OS/390-server queue manager, this queue is al-

ways created new.

106
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Tu sum up, on the CICS region there are installed and activated the required MQSeries CICS adapter, the

CICS Bridge Monitor Task, and the CICS DPL Bridge Task. On the OS/390-server queue manager has been cre-

ated the MQSeries CICS Bridge queue also known as request queue. As next, both – the CICS region and the

MQSeries queue manager – are connected to activate the MQSeries CICS Bridge.

5.4.2.4 Running the MQSeries CICS Bridge

The CICS transaction CKBR entered on a CICS terminal establishes the connection between the CICS Bridge

Monitor Task/CICS DPL Bridge Task and the MQSeries CICS Bridge queue. The complete transaction com-

mand is specified as:

CKBR Q = <queue name>, AUTH = <option>, WAIT = nnn

For instance, the command could be read as:

CKBR Q = SYSTEM.CICS.BRIDGE.QUEUE, AUTH = LOCAL, WAIT = 30

The parameter Q specifies the name of the MQSeries CICS Bridge queue. The security parameter AUTH is set to

the option LOCAL; security is not used. The last parameter WAIT is set to 30 seconds. The following message is

displayed within the CICS log MSGUSR, part of the CICS started procedure CICSC001, when the MQSeries

CICS Bridge is successfully started (for reaching this log refer to B.1, page 231):

CSQC700I CKBR 0000043 IBM MQSeries for OS/390 V2.1 - CICS bridge. Copyright(c) 1997,1999 IBM, All rights reserved
CSQC702I CKBR 0000043 Monitor initialization complete
CSQC703I CKBR 0000043 Auth=LOCAL, WaitInterval=30000, Q=SYSTEM.CICS.BRIDGE.QUEUE

Setting the WAIT parameter to 30 seconds implies that the CICS Bridge Monitor Task waits this time until a

second subsequent request message arrives. When no more requests are outstanding on the queue, the MQSeries

CICS Bridge terminates. For each request on the CICS programs NACT02 and NACT03 the MQSeries CICS

Bridge can be started manually, but this is not recommended. As another possibility, omitting the WAIT paramet-

er implies that the bridge is ever running. The log displays WaitInterval = –1 instead WaitInterval

= 30000. However, if the bridge is started as ever running task from a CICS terminal, the terminal is not freed

until the CICS Bridge Monitor Task ends. No more entries could be written on the terminal (Figure 31, next

page). The CICS terminal can only be freed using three different procedures. First method: changing the queue

parameter GET of the MQSeries CICS Bridge queue and sets GET(DISABLED). Following command is entered

on SDSF's command line:

/!MQA1 ALTER QL(SYSTEM.CICS.BRIDGE.QUEUE) GET(DISABLED)

Changing this parameter in a sub panel of the OS/390 MQSeries program is another possibility. The MQSeries

MAIN MENU is started from the CMAM when an 'M' is entered on the command line. In this menu the paramet-

ers, that alter the queue, are set as shown in Figure 32 on the next page. In the sub panel “Alter a Local Queue”

the parameter GET has to be set to NO (Figure 33, next page).

The MQSeries CICS Business Application MQNACT 107

Of course, a shutdown of the MQSeries queue manager MQA1 or a CICS shutdown also terminate the

MQSeries CICS Bridge. Following message is written, after a successful shutdown of the MQSeries CICS

Bridge, in the CICS log part MSGUSR of CICSC001:

CSQC712I CKBR 0000027 Bridge quiescing
CSQC713I CKBR 0000027 Bridge terminated normally

Figure 31: After starting the CKBR transaction the monitor is locked, system is in wait status

108
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

 IBM MQSeries for OS/390 - Main Menu

 Complete fields. Then press Enter.

 Action 3 1. Display 5. Perform
 2. Define 6. Start
 3. Alter 7. Stop
 4. Delete

 Object type QLOCAL +
 Name SYSTEM.CICS.BRIDGE.QUEUE
 Like __

 Connect to queue
 manager : MQA1
 Target queue manager : MQA1
 Response wait time . : 30 seconds

 (C) Copyright IBM Corporation 1993,1999. All rights reserved.

 Command ===> __
 F1=Help F2=Split F3=Exit F4=Prompt F6=QueueMgr F9=Swap
 F10=Messages F12=Cancel

Figure 32: Shutting down the MQSeries CICS Bridge manually – 01

 Alter a Local Queue

 Complete fields, then press F8 for further fields, or Enter to alter queue.

 More: +

 Queue name : SYSTEM.CICS.BRIDGE.QUEUE
 Description MQSERIES CICS BRIDGE QUEUE

 Put enabled Y Y=Yes,N=No
 Get enabled N Y=Yes,N=No
 Usage N N=Normal,X=XmitQ
 Storage class DEFAULT
 Creation method : PREDEFINED
 Output use count : 0
 Input use count : 1
 Current queue depth : 0

 CSQ9022I !MQA1 CSQMMSGP ' ALTER QLOCAL' NORMAL COMPLETION
 Command ===> __
 F1=Help F2=Split F3=Exit F6=Clusinfo F7=Bkwd F8=Fwd
 F9=Swap F10=Messages F12=Cancel

Figure 33: Shutting down the MQSeries CICS Bridge manually – 02

The MQSeries CICS Business Application MQNACT 109

5.4.2.5 An automatic start job for the MQSeries CICS Bridge

In contrast to start and stop the MQSeries CICS Bridge manually, a permanent process of the bridge, running in

the background, is a better and pleasant way to get the MQSeries CICS Bridge operated. Of course, when the

transaction CKBR is entered on a terminal, the bridge never ends, but the terminal is locked as long as the bridge

is shut down. The following procedure shows, how to implement the automatic start and the “background” run of

the MQSeries CICS Bridge at CICS startup without using a terminal.

The new created COBOL program STRTCKBR starts the bridge during CICS startup (Listing 36, page 236).

The script consists of COBOL statements surrounded by JCL code. Such a script is also called a COBOL stub. It

is stored in the data set CICS.COMMON.CICSSRC. One part of the COBOL stub – the JCL-statements – can be

found in the lines 1-15 and the others in the lines 54-56 of the script, whereas in line 19 the COBOL parameters

are introduced by the parameter TRN.SYSIN. From this point the data, that will start the transaction CKBR, is

passed to another script called DFHYITVL (Listing 37, page 236). This procedure is stored in the data set

CICSTS13.CICS.SDFHPROC. CICS provides it for the COBOL translate, compile, and link-edit jobs.

Firstly, DFHYITVL passes the data to the COBOL translator DFHECP1£ stored in

CICSTS13.CICS.SDFHLOAD (cf. Listing 37, page 236, lines 16-24). As next, the data is sent to the COBOL

compiler IGYCRCTL stored in the data set IGY.V2R1M0.SIGYCOMP to compile the script (cf. Listing 37, page

236, lines 29-46). All these three script and load modules are provided within the installation of the CICS Trans-

action Server (DFHYITVL, DFHECP1£) resp. IBM COBOL for OS/390 (IGYCRCTL). Compiling the

STRTCKBR script creates the program STRTCKBR that is placed into one of the CICS program load libraries, for

example CICS.COMMON.CICSLOAD. Such a load library has to be specified in the CICS region startup script

CICSC001 (cf. Listing 23, page 229, line 34). A load library works like a path to the programs stored in it. When

the program STRTCKBR is called during CICS startup all load libraries are searched to find this program. Hence,

the transaction CKBR resp. the MQSeries CICS Bridge is started during the CICS region startup.

The STRTCKBR script starts in line 1 with the name of the compile job AUTCKBR1 and with options set for

it:

01 //AUTCKBR1 JOB (0),RACF,MSGCLASS=X,REGION=3M,TIME=1439,
02 // CLASS=A,NOTIFY=&SYSUID
 ···
09 //JCLLIB JCLLIB ORDER=CICSTS13.CICS.SDFHPROC
10 //COMPILE EXEC DFHYITVL, X
11 // INDEX='CICSTS13.CICS', CICS X
12 // PROGLIB='CICS.COMMON.CICSLOAD', TARGET FOR LMOD X
13 // AD370HLQ='IGY.V2R1M0', COBOL COMPILER X
 ···
19 //TRN.SYSIN DD *

In line 9 of the STRTCKBR script is written the library where to find the script DFHYITVL called in line 10. Line

12 points to the program load library where the program STRTCKBR is placed to after the compilation. The lib-

110
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

rary of the CICS COBOL compiler is set in line 13. Line 19 refers to the JCL stepname TRN in the procedure

DFHYITVL to execute the COBOL translator and compiler.

The CICS COBOL program code is introduced by the language statement CBL (or COBOL) in line 20 and

ends in line 52 with the COBOL statement GOBACK. Behind the language statement there are listed two translat-

or options within the XOPT option. CICS indicates that the COBOL translator is to process EXEC CICS com-

mands and EDF starts the Execution Diagnostic Facility during compilation. The CICS COBOL program code is

subdivided as follows:

IDENTIFICATION DIVISION
DATA DIVISION

WORKING STORAGE SECTION
PROCEDURE DIVISION

Within the IDENTIFICATION DIVISION (line 22) is defined the COBOL program name STRTCKBR

(line 23) and a few program data. The DATA DIVISION comprises the data to use in the program (line 28-31).

The WORKING STORAGE SECTION of this division defines the parameter CKBRPARM (line 30):

20 CBL XOPTS(CICS,EDF)
21 ***
22 IDENTIFICATION DIVISION.
23 PROGRAM-ID. STRTCKBR.
 ···
28 DATA DIVISION.
29 WORKING-STORAGE SECTION.
30 01 CKBRPARM PIC X(37) VALUE
31 'Q=SYSTEM.CICS.BRIDGE.QUEUE,AUTH=LOCAL'.

The parameter declares the name of the MQSeries CICS Bridge queue 'SYSTEM.CICS.BRIDGE.QUEUE.' The

bridge is accessed by CKBR with the authority provided by the default CICS user ID. That is the default spe-

cified by AUTH=LOCAL (see ch. 6.4.4.6 “Securing the MQSeries CICS transactions used for the NACT applica-

tion” on page 195 for more information). The WAIT attribute has been omitted to start an ever running MQSeries

CICS Bridge. In the PROCEDURE DIVISION the parameter CKBRPARM is used to execute the CICS transac-

tion CKBR starting the CICS command EXEC CICS START TRANSID (line 48). The COBOL statement GO-

BACK specifies the logical end of the COBOL program (line 57):

48 EXEC CICS START TRANSID('CKBR')
49 FROM(CKBRPARM)
50 LENGTH(37)
51 END-EXEC.
52 GOBACK.

The MQSeries CICS Business Application MQNACT 111

The last JCL statement LKED.SYSIN links to the step LKED in the script DFHYITVL to place the compiled

CICS COBOL program STRTCKBR into the right program load library, in this case

CICS.COMMON.CICSLOAD using the parameter PROGLIB (cf. Listing 37, line 12):

54 //LKED.SYSIN DD *
55 NAME STRTCKBR(R)

After the STRTCKBR script is written, it is compiled, when sub is entered on the command line in the editor. If

the status report appears including the message part 'MAXCC=0' the job is well done. In case, a problem occurs

during the compilation, the SDSF program needs to be started to view the log of the compile job. In the SDSF

program the status of the finished job (by typing 'ST') gives an error message back. The printout of the compile

job AUTCKBR1 (spelled in line 1 of STRTCKBR) can be opened by entering an 'S' before the job name. Looking

for the word pattern 'STMT NO. MESSAGE' shows an error report with a detailed description of the failure and

lists the line number where the failure appeared. It should be no problem to solve this, for example, there is writ-

ten a wrong parameter, a COBOL statement is not set or written wrong, or the library entries links to the wrong

one.

In the last step, the CICS Program List Table (PLT) that holds CICS programs to be started during the CICS

region initial start has to be adapted. But beware, there are two different PLTs – one is loaded during the CICS

region initial start and one is executed during the termination of this CICS region. Within the CICS SIT defini-

tion script C001 (stored in the data set CICS.COMMON.SYSIN) both tables are loaded using the SIT-parameters

PLTPI (PLT Program Initialisation) resp. PLTSD (PLT ShutDown):

16 PLTPI=IT, PGMS AT CICS INIT (USE TOR PLT)
17 PLTSD=ST, PGMS AT CICS TERM (USE TOR PLT)

IT and ST are suffixes for the PLT scripts. Completely, they are named as DFHPLTIT for the initial table

and DFHPLTST for the system termination table. Because the string DFH is automatically added during compila-

tion in front of the script name, their real script names consists of the string PLT plus the suffixes IT resp. ST –

PLTIT resp. PLTST. Theses scripts are stored in the dataset CICS.COMMON.TABSRC. The compiled tables are

placed into the dataset CICS.COMMON.TABLIB from where they are loaded.

A new entry in the table PLTIT is required to start the COBOL program script STRTCKBR to initiate the

MQSeries CICS Bridge queue during the initial start of the CICS region (cf. also Listing 38, page 236):

09 //S1 EXEC DFHAUPLE
10 //ASSEM.SYSUT1 DD *
 ···
18 DFHPLT TYPE=ENTRY,PROGRAM=STRTCKBR ENABLE CICS BRIDGE

112
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

PLTIT is compiled using the procedure DFHAUPLE (Listing 39, page 236) that is also stored in the dataset

CICS.COMMON.TABSRC. Therefore, a concatenation is not required to refer to another library. DFHAUPLE is

called in line 9. The JCL step ASSEM.SYSUT1 in line 10 links to the step ASSEM in the DFHAUPLE script

(Listing 39, line 31):

31 //ASSEM EXEC PGM=IEBGENER

After the successful compiling of the table PLTIT, the MQSeries CICS Bridge is automatically started during

every initial start of the CICS region A06C001. However, to load the initial PLT and to start the MQSeries CICS

Bridge, the CICS region has to be restarted firstly. It should be considered, that, before starting the CICS region,

the OS/390-server queue manager MQA1 has also to be terminated. Afterwards, the queue manager must be star-

ted at first because the CICS region may only be started after the queue manager is up. Whilst the queue manager

is started, it executes the script CSQ4CKBM to create the MQSeries CICS Bridge queue SYSTEM.CIC-

S.BRIDGE.QUEUE to MQA1. When the CICS region A06C001 is started afterwards, the compiled CICS CO-

BOL program STRTCKBR is executed to connect the CICS region to the MQSeries CICS Bridge queue. The suc-

cessful connection is reported in the CICS MSGUSR log as follows:

DFHPG0209 03/01/04 02:04:29 A06C001 STCCICS CPLT PPT entry for STRTCKBR has been autoinstalled using model DFHPGAPG.
CSQC700I CKBR 0000027 IBM MQSeries for OS/390 V2.1 - CICS bridge. Copyright(c) 1997,1999 IBM, All rights reserved
CSQC702I CKBR 0000027 Monitor initialization complete
CSQC703I CKBR 0000027 Auth=LOCAL, WaitInterval=-1, Q=SYSTEM.CICS.BRIDGE.QUEUE

Note:Note:Note:Note: An ever running MQSeries CICS Bridge queue can decrease the performance of the

system. Therefore, it is suggested to enable triggering the MQSeries CICS Bridge in fu-

ture.

5.4.3 The required queue manager objects

5.4.3.1 The transmission queue TBUSSE.NACT

Besides the MQSeries CICS Bridge queue, the request queue, four more objects has to be defined to the

OS/390-server queue manager: the transmission queue, the remote queue definition, the channel sender of the re-

sponse channel, and the channel receiver of the request channel. All objects are created using the panels of the

MQSeries product on OS/390. The first panel, the MQSeries “Main Menu”, can be reached from the CMAM

when an M is entered on the command line of the first screen appearing after log on to the OS/390-server.

Firstly, the transmission queue TBUSSE.NACT for the OS/390-server queue manager MQA1 is to specify

(Figure 34, page 114). Into the field Object type of the MQSeries “Main Menu” panel is entered the type of

the queue which must always be QLOCAL, because only a local queue can be transformed into a transmission

queue. Pressing the PF4 key opens a selection of all object types. When number 2 is chosen, shortcut for QLOC-

The MQSeries CICS Business Application MQNACT 113

AL, and the enter key is pressed, this object type is filled into the field Object type. In the field Name has to

be entered the name of the queue. It is again alluded, that the name of this transmission queue must have the same

name as the WINDOWS2000-client queue manager.

The transmission queue is created, when the field Action is set to 2 as synonym for 'Define'. As next

screen the sub panel “Define a Local Queue” appears. When the parameter Usage is set to X the transmission

queue is created. Both parameters, Put enabled and Get enabled, have to be set to Y. With it, the transmis-

sion queue can get response messages from the MQSeries CICS Bridge queue and can transfer these messages

onto the reply-to queue on the WINDOWS2000-client queue manager. Furthermore, a description for the trans-

mission queue is added (Figure 35, page 114). All next panels for defining additional queue parameters can be

reached when pressing the PF8 key. On the second panel, the parameter Message delivery sequence is

changed from Priority to FIFO to retrieve messages in order of “First in, First out” method. As a future as-

pect, shared access to the transmission queue is permitted and more than one application could retrieve messages;

the parameter Permit shared access is set to Y. If shared access is forbidden, only one specified applica-

tion can communicate with the queue. Coherently with the parameter Permit shared access, the parameter

Default share option has to be set to S. In case of an illicit access, the Exclusive option (E) has to be

set (Figure 36, page 115).

On the next panel a trigger process can be defined (press PF8), however, this has been omitted. The panel for

event control has been also skipped and on the last panel for backout reporting the parameter Hardenbo has

been set to Y to maintain an accurate back out for this queue (Figure 37, page 115).

When pressing the enter key, the queue is created. If the queue is successfully created the first sub panel

screen appears displaying following message in the lower area:

CSQ9022I !MQA1 CSQMMSGP ' DEFINE QLOCAL' NORMAL COMPLETION

114
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

 IBM MQSeries for OS/390 - Main Menu

 Complete fields. Then press Enter.

 Action 2 1. Display 5. Perform
 2. Define 6. Start
 3. Alter 7. Stop
 4. Delete

 Object type QLOCAL +
 Name TBUSSE.NACT
 Like __

 Connect to queue
 manager : MQA1
 Target queue manager : MQA1
 Response wait time . : 30 seconds

 (C) Copyright IBM Corporation 1993,1999. All rights reserved.

 Command ===> __
 F1=Help F2=Split F3=Exit F4=Prompt F6=QueueMgr F9=Swap
 F10=Messages F12=Cancel

Figure 34: Defining the transmission queue TBUSSE.NACT – 01

 Define a Local Queue

 Complete fields, then press F8 for further fields, or Enter to define queue.

 More: +

 Queue name TBUSSE.NACT
 Description XMITQ THAT STORES RESPONSE______
 MESSAGES TO BE SEND_____________

 Put enabled Y Y=Yes,N=No
 Get enabled Y Y=Yes,N=No
 Usage X N=Normal,X=XmitQ
 Storage class DEFAULT

 Command ===> __
 F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
 F10=Messages F12=Cancel

Figure 35: Defining the transmission queue TBUSSE.NACT – 02

The MQSeries CICS Business Application MQNACT 115

 Define a Local Queue

 Press F7 or F8 to see other fields, or Enter to define queue.

 More: - +

 Default persistence N Y=Yes,N=No
 Default priority 0 0 - 9
 Message delivery sequence . . F P=Priority,F=FIFO
 Permit shared access Y Y=Yes,N=No
 Default share option S E=Exclusive,S=Shared
 Index type N N=None,M=MsgId,C=CorrelId,T=MsgToken
 Maximum queue depth 999999999 0 - 999999999
 Maximum message length . . . 4194304 0 - 4194304
 Retention interval 999999999 0 - 999999999 hours

 Cluster name __
 Cluster namelist name __
 Default bind O O=Open,N=Notfixed

 Command ===> __
 F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
 F10=Messages F12=Cancel

Figure 36: Defining the transmission queue TBUSSE.NACT – 03

 Define a Local Queue

 Press F7 to see previous fields, or Enter to define queue.

 More: -

 Backout Reporting

 Backout threshold 0 0=No backout reporting

 Harden backout counter . . Y Y=Yes,N=No
 Backout requeue name . . . __

 Command ===> __
 F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
 F10=Messages F12=Cancel

Figure 37: Defining the transmission queue TBUSSE.NACT – 04

116
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

5.4.3.2 The remote queue definition TBUSSE.NACT.REPLYQ

For the reply-to queue TBUSSE.NACT.REPLYQ created on the WINDOWS2000-client queue manager has to

be defined a remote queue definition on the OS/390-server queue manager (Figure 38). It is chosen to give it the

same name as the reply-to queue on the remote queue manager. In the field Object type is entered the object

type QREMOTE; if the selection panel is used (press PF4) the number 3 is to be chosen. A description for this ob-

ject is also added. On the next panel “Define a Remote Queue” (Figure 39, next page) has to be specified the

name of reply-to queue – TBUSSE.NACT.REPLYQ – on the field Remote name. The WINDOWS2000-client

queue manager name TBUSSE.NACT has to be entered into the field Remote queue manager. As last defini-

tion, the name of the transmission queue for MQA1 – TBUSSE.NACT – has to be entered into the field Trans-

mission Queue. Pressing PF8 leads to the next panel on which nothing needs to be altered. When hitting the

enter key, the remote queue definition is created and if successfully, following message is displayed:

CSQ9022I !MQA1 CSQMMSGP ' DEFINE QREMOTE' NORMAL COMPLETION

 IBM MQSeries for OS/390 - Main Menu

 Complete fields. Then press Enter.

 Action 2 1. Display 5. Perform
 2. Define 6. Start
 3. Alter 7. Stop
 4. Delete

 Object type QREMOTE +
 Name TBUSSE.NACT.REPLYQ
 Like __

 Connect to queue
 manager : MQA1
 Target queue manager : MQA1
 Response wait time . : 30 seconds

 (C) Copyright IBM Corporation 1993,1999. All rights reserved.

 Command ===> __
 F1=Help F2=Split F3=Exit F4=Prompt F6=QueueMgr F9=Swap
 F10=Messages F12=Cancel

Figure 38: Defining the remote queue definition TBUSSE.NACT.REPLYQ – 01

The MQSeries CICS Business Application MQNACT 117

 Define a Remote Queue

 Complete fields, then press F8 for further fields, or Enter to define queue.

 More: +

 Queue name TBUSSE.NACT.REPLYQ
 Description REMOTE QUEUE DEFINITION FOR THE_
 REPLY-TO QUEUE ON TBUSSE.NACT___

 Put enabled Y Y=Yes,N=No
 Default persistence N Y=Yes,N=No
 Default priority 0 0 - 9
 Remote name TBUSSE.NACT.REPLYQ_____________________________
 Remote queue manager TBUSSE.NACT_____________________________________
 Transmission queue TBUSSE.NACT_____________________________________

 Command ===> __
 F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
 F10=Messages F12=Cancel

Figure 39: Defining the remote queue definition TBUSSE.NACT.REPLYQ – 02

5.4.3.3 The dead-letter queue MQA1.DEAD.QUEUE

The dead-letter queue has been defined on the OS/390-server queue manager MQA1 using the script CSQ4INYG

provided within the MQSeries installation (cf. Listing 32, page 235). Therefore, a manually creation using the

MQSeries panels is not required. The dead-letter queue is also a local queue as same as the MQSeries CICS

Bridge queue. The MQSC DEFINE QLOCAL plus the name of the queue MQA1.DEAD.QUEUE, and setting the

keyword USAGE to NORMAL create the queue (line 143, 164). Wrong-sent/failure messages are stored onto the

queue (line 153) until they are picked up to check them (line 147). Activating DEFPSIST sets all dead-letter

messages persistent on the queue (line 149). The shared access to the queue has also to be enabled because all

programs should be able to store wrong-sent/failure messages onto the dead-letter queue (lines 154, 155). Mes-

sages to be stored onto the queue uses the FIFO method (line 156). A backout for the dead-letter messages is not

required, therefore NOHARDENBO is specified (line 160). For the dead-letter queue a trigger is also not required;

NOTRIGGER has been set (line 177):

143 DEFINE QLOCAL('MQA1.DEAD.QUEUE') REPLACE +
 ···
146 DESCR('MQA1 dead-letter queue') +
147 PUT(ENABLED) +
148 DEFPRTY(0) +
149 DEFPSIST(YES) +
 ···
153 GET(ENABLED) +
154 SHARE +
155 DEFSOPT(SHARED) +
156 MSGDLVSQ(FIFO) +

 ···

118
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

160 NOHARDENBO +

 ···
164 USAGE(NORMAL) +
 ···
177 NOTRIGGER +

Further, the same script also defines some needed MQSeries objects, an initiation queue required for the

MQSeries CICS adapter and a default transmission unused by the MQSeries CICS application.

5.4.3.4 The channel sender TBUSSE.NACT.OS.WIN

A channel sender needs to be created to send the response messages from the transmission queue to the WIN-

DOWS2000-client queue manager. On the MQSeries “Main Menu” panel is entered the string CHLSENDER into

the field Object Type (Figure 40, next page). If the selection panel is used (press PF4), number 13 has to be

chosen. The name of the channel sender is set to TBUSSE.NACT.OS.WIN. The character sequence OS.WIN

indicates the direction from where the channel sender transmits the response messages to which target – from

OS/390 to WINDOWS2000. Some more parameters has to be specified on the next panel “Define a Sender

Channel” (Figure 41, next page). The response messages are sent to the remote queue manager using the TCP/IP

protocol with the port number 1414 as default. Parameter T is specified in the field Transport type to use

the TCP/IP protocol. In the field Connection name, the IP address of the remote WINDOWS2000 computer

is filled in, in this case 80.135.230.111. The host address is followed by the port number 1414 in paren-

theses. The closing parenthesis is optional. Into the field Transmission queue is entered the name of the

local transmission queue. Fields on the next three panels need not to be set up. After confirming the creation of

the channel sender, this message appears:

 CSQ9022I !MQA1 CSQMMSGP ' DEFINE CHANNEL' NORMAL COMPLETION

The MQSeries CICS Business Application MQNACT 119

 IBM MQSeries for OS/390 - Main Menu

 Complete fields. Then press Enter.

 Action 2 1. Display 5. Perform
 2. Define 6. Start
 3. Alter 7. Stop
 4. Delete

 Object type CHLSENDER +
 Name TBUSSE.NACT.OS.WIN
 Like __

 Connect to queue
 manager : MQA1
 Target queue manager : MQA1
 Response wait time . : 30 seconds

 (C) Copyright IBM Corporation 1993,1999. All rights reserved.

 Command ===> __
 F1=Help F2=Split F3=Exit F4=Prompt F6=QueueMgr F9=Swap
 F10=Messages F12=Cancel

Figure 40: Defining the channel sender for the transmission queue – 01

 Define a Sender Channel

 Complete fields, then press F8 for further fields, or Enter to define channel.

 More: +

 Channel name TBUSSE.NACT.OS.WIN
 Description CHANNEL FOR THE XMITQ TO SEND___
 THE RESPONSE MESSAGES___________

 Transport type T L=LU6.2,T=TCP/IP
 Connection name 80.135.230.111(1414)_________________________
 LU6.2 mode name ________
 LU6.2 TP name ________________________________

 Transmission queue TBUSSE.NACT_____________________________________

 Command ===> __
 F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
 F10=Messages F12=Cancel

Figure 41: Defining the channel sender for the transmission queue – 02

120
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

5.4.3.5 The channel receiver TBUSSE.NACT.WIN.OS

Request messages sent by the channel sender of the WINDOWS2000-client queue manager to the OS/390-server

queue manager are received by the channel receiver TBUSSE.NACT.WIN.OS. The channel receiver must have

the same name as the remote channel sender to create a message channel. After the message is received it is for-

warded to the request queue – the MQSeries CICS Bridge queue.

Such a channel receiver is created when CHLRECEIVER is entered into the field Object type; number 15

can also be chosen from the selection panel that is reached by pressing PF4 (Figure 42). The name of the channel

receiver has to be entered in the associate field. On the next both panels is no modifying required, except adding

a description if wanted (Figure 43, next page). Note: The field Sequence number wrap must have the same

number as specified on the remote channel sender, usually it is set to 999999999. After confirming the creation

of the channel receiver, the same message as for the channel sender is displayed:

CSQ9022I !MQA1 CSQMMSGP ' DEFINE CHANNEL' NORMAL COMPLETION

All required MQSeries objects for the OS/390-server queue manager MQA1 are now defined. As next, the

MQSeries objects for the WINDOWS2000-client queue manager TBUSSE.NACT have to be created.

 IBM MQSeries for OS/390 - Main Menu

 Complete fields. Then press Enter.

 Action 2 1. Display 5. Perform
 2. Define 6. Start
 3. Alter 7. Stop
 4. Delete

 Object type CHLRECEIVER +
 Name TBUSSE.NACT.WIN.OS
 Like __

 Connect to queue
 manager : MQA1
 Target queue manager : MQA1
 Response wait time . : 30 seconds

 (C) Copyright IBM Corporation 1993,1999. All rights reserved.

 Command ===> __
 F1=Help F2=Split F3=Exit F4=Prompt F6=QueueMgr F9=Swap
 F10=Messages F12=Cancel

Figure 42: Defining the channel receiver for the CICS Bridge queue – 01

The MQSeries CICS Business Application MQNACT 121

 Define a Receiver Channel

 Complete fields, then press F8 for further fields, or Enter to define channel.

 More: +

 Channel name TBUSSE.NACT.WIN.OS
 Description GETS RESPONSE MESSAGES, FORWARDS
 THEM TO THE MQ CICS BRIDGE QUEUE

 Put authority D D=Default,C=Context,O=OnlyMCA,A=AltMCA

 Command ===> __
 F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap
 F10=Messages F12=Cancel

Figure 43: Defining the channel receiver for the CICS Bridge queue – 02

122
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

5.5 Setting up MQSeries on the Windows2000 client

5.5.1 The WINDOWS2000-client queue manager TBUSSE.NACT

For the management of the MQSeries system on WINDOWS2000, two Snap-Ins for the Microsoft Management

Console (MMC) have been installed – the MQSeries Services and the MQSeries Explorer. Using both pro-

grams help to create, start, stop and delete queue managers and its objects on the WINDOWS2000 client.

MQSeries objects are managed by the MQSeries Explorer, as well as the status of the queue managers can be

checked with this Snap-In. In contrast, the MQSeries Services do all that what a user understands in services. It

starts and stops the MQSeries command server, the channel initiator program, and the channel listener program.

For instance, these services can be configured to start them automatically, to use error checking, or to use trans-

mission protocols. Furthermore, the alert monitor can be started in case of an abnormal error, and a trace facility

can trace the whole processes.

After the MQSeries application is installed, the WINDOWS2000-client queue manager is to be created. It

manages message queuing between the JAVA presentation logic and the CICS business logic. The WIN-

DOWS2000-client queue manager is created using the MQSeries assistant. In the MQSeries Services window, a

right mouse click on Queue Managers as shown in Figure 44 on the next page pops up a menu on which New and

then Queue Manager is clicked to open the panel “Create Queue Manager (Step 1)”. On this first panel the name

of the queue manager TBUSSE.NACT, the name of the default transmission queue TBUSSE.NACT.XMITQ,

and the name of the dead letter queue TBUSSE.NACT.DEAD.LETTER.QUEUE are keyed in (Figure 45, a),

next page). However, these queues exist not yet, they are defined and created later as described in chapter “The

required queue manager objects” on page 125. When clicking on Next, the panel “Create Queue Manager (Step

2)” appears (Figure 45, b)). On this panel can be defined where to file the error log. The default parameters are

chosen and a click on Next leads to the panel “Create Queue Manager (Step 3)” to mark the box Start Queue

Manager (Figure 45, c)). On the last panel “Create Queue Manager (Step 4)” the box Create listener configured

for TCP/IP is marked and the port number 1414 is entered in the box Listen on port number (Figure 45, d)). This

creates a listener, automatically. When clicking on the Finish button the queue manager is created and already

started with all services it needs. It is also not required to create manually a command server and a channel initi-

ator. These services are always loaded automatically when the queue manager starts. The green upturned arrow in

front of the queue manager's name confirms that the queue manager is started. If the arrow is red coloured and is

oriented down the queue managers is stopped. All created and started services are shown in the right window of

the MQSeries Services (Figure 46, page 124). After switching to the MQSeries Explorer window, all created de-

fault MQSeries system objects can be viewed, e.g. the created system queues (Figure 47, page 124). The option

Show/Hide System Objects must be enabled to see the default objects. It is recommended to switch off this option

to not loosing the overview, if own objects need to be defined.

The MQSeries CICS Business Application MQNACT 123

Figure 44: Defining the queue manager TBUSSE.NACT – 01

a) b)

c) d)

Figure 45: Defining the queue manager TBUSSE.NACT – 02

124
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 46: The MQSeries Services, the green arrow indicates that the queue manager is up

Figure 47: System objects for the queue manager TBUSSE.NACT

The MQSeries CICS Business Application MQNACT 125

5.5.2 The required queue manager objects

5.5.2.1 A definition script for the queue manager objects

As on the OS/390-server queue manager adjacent queue manager objects has to be created on the WIN-

DOWS2000-client queue manager. A transmission queue to send the request messages to OS/390-server queue

manager, a reply-to queue that receives the response messages from the OS/390-server queue manager, a remote

queue definition for the request queue on OS/390, and a dead-letter queue on which all messages are stored that

are unable to send have been created. As channel objects, a channel sender and a channel receiver have been cre-

ated to build the request channel. Additionally, an MQI channel has to be created to connect the WIN-

DOWS2000-client queue manager with the JAVA application.

All these definitions can be defined using the MQSeries assistant in the MQSeries Explorer. For example, the

reply-to queue can be defined as shown in Figure 48. Clicking on Local queues opens the panel “Create Local

Queue” on which all specifications can be made. Instead using this manual method as used for the OS/390-server

queue manager objects, a batch script and an MQSC script have been created. In an MQSC script all parameters

can also be set for every queue manager object. Such a script can be either created for the OS/390-server queue

manager (for example Listing 30, page 235; refer also to chapter 5.4.2.2 “Configuring CICS to use the MQSeries

CICS Bridge”, page 101) or for the WINDOWS2000-client queue manager (cf. Listing 40, page 236).

Figure 48: NACT objects for the queue manager TBUSSE.NACT

126
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

The MQSC script is executed within the batch file def.cmd (cf. Listing 41, page 236). The first batch com-

mand strtmqm checks whether the queue manager has been started previously (line 06). If not, the local queue

manager TBUSSE.NACT is started. Usually, the second batch command runmqsc, executed from a MS-DOS-

console, starts an MQSeries console on which MQSCs can be entered. However, the command runmqsc can

also be used to read input data from an external MQSC script and to write a report to another file (line 11). Be-

hind both batch commands it is required to write the name of the queue manager referring to:

06 strmqm TBUSSE.NACT
 ···
11 runmqsc TBUSSE.NACT < MQadmvs.tst > MQadmvs.out

All MQSCs are put together in the MQSC file mqadmvs.tst (Listing 40). The report is sent to the output file

mqadmvs.out. If following message stands at the end of the report file, all MQSCs were successfully executed:

8 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

In the next sections are described the required MQSCs with their keywords and attributes for each MQSeries

object that needs to be created. However, default parameters are adopted for the most objects. For a complete

specification of all MQSCs, their keywords, and attributes please refer to [MCR00].

5.5.2.2 The transmission queue TBUSSE.NACT.XMITQ

The transmission queue TBUSSE.NACT.XMITQ is defined with the MQSC DEFINE QLOCAL. In parentheses

the name of the queue is written (cf. Listing 40):

01 DEFINE QLOCAL('TBUSSE.NACT.XMITQ') REPLACE +
02 DESCR('XMITQ that stores request messages to be send') +
03 TRIGGER TRIGTYPE(FIRST) +
04 TRIGDATA(TBUSSE.NACT.WIN.OS) +
05 PROCESS('MQCLIENT') +
06 INITQ(SYSTEM.CHANNEL.INITQ) +
05 USAGE(XMITQ)

The keyword REPLACE defines the transmission queue always new when the command file is executed. Such an

MQSC can often be spread over a few lines. The plus sign at the end of a line continues the command on the next

line. Of course, on the last line of the MQSC this character has to be omitted. When specifying DESCR, a de-

scription of the queue can be added, as shown in line 2. An important note aside – the name of the queue and the

description must be always surrounded by single quotes. In case trigger messages should be written to the initi-

ation queue to trigger an application (named by the PROCESS keyword), TRIGGER has to be specified. Such a

trigger is defined but not used for the MQSeries CICS business application (line 3). This is a reference for future

use. A trigger message is send to the initiation queue when the first request message arrives on the transmission

The MQSeries CICS Business Application MQNACT 127

queue. TRIGDATA names the data that is additionally inserted in the trigger message, in that case the name of the

channel sender (line 4). When an error occurs, a message is displayed on the screen to check whether the channel

sender has been started as the message was sent or not. On the keyword PROCESS is specified the triggered busi-

ness application (line 5). The trigger messages are transmitted to the initiation queue SYSTEM.CHAN-

NEL.INITQ specified on the keyword INITQ (line 6). When the keyword USAGE is set to XMITQ, the local

queue becomes a transmission queue (line 7).

As referenced by the MQSC that creates the transmission queue, a process object needs to be defined to use

the trigger. This object is created within the MQSeries command DEFINE PROCESS and the assigned name

MQCLIENT (cf. Listing 40):

09 DEFINE PROCESS('MQCLIENT') REPLACE +
10 DESCR('MQSeries CICS Application') +
11 APPLICID('java MQClient') +
12 APPLTYPE(WINDOWSNT) +
13 USERDATA('80.135.230.111 TBUSSE.NACT.CLIENT TBUSSE.NACT +
14 TBUSSE.NACT.REMOTEQ TBUSSE.NACT.REPLYQ')

The keyword APPLICID specifies the application to be started and APPLTYPE specifies the application type.

Because the application is running on a WINDOWS2000 operating system, the type has to be WINDOWSNT. On

the parameter USERDATA is listed a string consisting of user-specific information for the application to be star-

ted. This specification can be used by a trigger monitor. The trigger monitor sends the user data as part of the

parameter list to the started application. The trigger monitor has been previously created and started on the WIN-

DOWS2000-client queue manager to use the trigger.

5.5.2.3 The reply-to queue TBUSSE.NACT.REPLYQ

All response messages are sent from the OS/390-server queue manager onto the reply-to queue. This queue is a

local queue defined also with the MQSC DEFINE QLOCAL (line 16, Listing 40). When the keyword USAGE is

omitted only a local queue is created. Setting the keyword DEFPSIST to YES make messages persistent to sur-

vive a queue manager restart (line 18). If NO is set, all messages are lost during a restart. As defined for the re-

quest queue on OS/390, the share option is also set using the keyword SHARE (line 19). Hence, shared access to

the reply-to queue is permitted. For example, two independent screens of the application have been started; both

can use the same reply-to queue to get the response messages:

16 DEFINE QLOCAL('TBUSSE.NACT.REPLYQ') REPLACE +
17 DESCR('Reply-to queue to store the response messages') +
18 DEFPSIST(YES) +
19 SHARE

128
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

5.5.2.4 The remote queue definition TBUSSE.NACT.REMOTEQ

On the WINDOWS2000-client queue manager a remote queue definition for the request queue/MQSeries CICS

Bridge queue on OS/390 has to be created. The name of this remote queue definition is not the same as the name

of the request queue on the OS/390-server queue manager (SYSTEM.CICS.BRIDGE.QUEUE). Because objects

having the leading characters SYSTEM are system objects for MQSeries. When the option “Show/Hide System

Objects” in the MQSeries Explorer is disabled, system objects are not displayed and hence, the remote queue

definition would also not be displayed. Therefore, the remote queue definition is named as TBUSSE.NACT.RE-

MOTEQ defined with the MQSC DEFINE QREMOTE (line 21, cf. Listing 40, page 236):

21 DEFINE QREMOTE('TBUSSE.NACT.REMOTEQ') REPLACE +
22 DESCR('Remote queue definition for the MQSeries CICS Bridge') +
23 RNAME('SYSTEM.CICS.BRIDGE.QUEUE') +
24 RQMNAME('MQA1') +
25 XMITQ('TBUSSE.NACT.XMITQ')

The request queue name is specified on the keyword RNAME and the remote queue manager is specified within

RQMNAME. Onto which transmission queue the request message is transferred to, specifies the keyword XMITQ.

This information is grabbed into a header data which is added to the request data. Both the header and the request

data builds the request message.

5.5.2.5 The dead letter queue TBUSSE.NACT.DEAD.LETTER.QUEUE

As specified within the definition of the WINDOWS2000-client queue manager the default dead letter queue

does not exist yet. Such a queue is also a local queue and is created using the same MQSC as for the definition

for the reply-to queue as defined within the chapter 5.5.2.3 “The reply-to queue TBUSSE.NACT.REPLYQ” on

page 127 (line 27, Listing 40). It is only required to set the SHARE option to permit shared access to the queue to

store all wrong-sent messages on it (line 28). Other parameters need not to be defined; they are set automatically

to default parameters:

27 DEFINE QLOCAL('TBUSSE.NACT.DEAD.LETTER.QUEUE') REPLACE +
28 DESCR('Dead letter queue on TBUSSE.NACT') +
29 SHARE

5.5.2.6 The server connection TBUSSE.NACT.CLIENT

For the communication between the WINDOWS2000-client queue manager TBUSSE.NACT and the JAVA ap-

plication an MQI channel is used. It consists of the server connection TBUSSE.NACT.CLIENT and an automat-

ically created client connection. The server connection is part of the channel objects, so it is created with the

same MQSC DEFINE CHANNEL. Within the keyword CHLTYPE the type of the channel is set, in that case

The MQSeries CICS Business Application MQNACT 129

SVRCONN, to specify the server connection. This parameter must be written immediately behind the MQSC and

before all other keywords defining the other parameters. The MQI channel uses the TCP/IP transport type, which

is set with the keyword TRPTYPE. MCAUSER sets up the user identifier for the MCA. However, a user identifier

is not used because there is no need for it (cf. Listing 40):

31 DEFINE CHANNEL('TBUSSE.NACT.CLIENT') CHLTYPE(SVRCONN) REPLACE +
32 DESCR('MQI channel to connect the application with the QMGR') +
33 TRPTYPE(TCP) +
34 MCAUSER(' ')

5.5.2.7 The channel sender TBUSSE.NACT.WIN.OS

As another part of the channel family it is required to create the channel sender for the request channel on the

WINDOWS2000-client (cf. Listing 40). Behind the MQSC DEFINE CHANNEL and the channel's name, it must

be specified the channel type SDR within the keyword CHLTYPE to create the channel sender (line 36). Message

to be transmitted to the OS/390-server queue manager use TCP/IP specified with the keyword TRPTYPE (line

38). The keyword XMITQ specifies the name of the transmission queue (line 39). This queue uses the channel

sender to transfer the messages to the OS/390-server queue manager. The keyword CONNAME sets the IP address

of the OS/390-server (line 40). MCAUSER leaves blank (line 41):

36 DEFINE CHANNEL('TBUSSE.NACT.WIN.OS') CHLTYPE(SDR) REPLACE +
37 DESCR('Channel for the XMITQ to send the request messages') +
38 TRPTYPE(TCP) +
39 XMITQ('TBUSSE.NACT.XMITQ') +
40 CONNAME('139.18.4.97(1414)') +
41 MCAUSER(' ')

5.5.2.8 The channel receiver TBUSSE.NACT.OS.WIN

The channel receiver of the response channel has been created using same MQSC as used for the channel sender.

However, within the keyword CHLTYPE the attribute ”RCVR” is specified. RCVR is a shortcut for the type chan-

nel receiver (line 43). Response message to be received use the TCP/IP protocol (line 45). The keyword SE-

QWRAP sets where the sequence numbers wrap of messages starts. The next number wrap always begins at 1.

This number must match the same number as specified for the channel sender of the request channel. A user iden-

tifier for the channel receiver MCA is also not used; the default one is taken (cf. Listing 40):

43 DEFINE CHANNEL('TBUSSE.NACT.OS.WIN') CHLTYPE(RCVR) REPLACE +
44 DESCR('Gets response messages & forwards them to the local REPLYQ') +
45 TRPTYPE(TCP) +
46 SEQWRAP(999999999) +
47 MCAUSER(' ')

130
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 49 shows all defined queues as well as Figure 50 on the next page shows all created channels of the

WINDOWS2000-client queue manager TBUSSE.NACT.

Hence, all definitions for the WINDOWS2000-client queue manager TBUSSE.NACT and the OS/390-server

queue manager MQA1 have been made. However, before connecting both queue managers, the JAVA presenta-

tion and MQSeries communication logic have to be created.

Figure 49: All defined queues for TBUSSE.NACT

The MQSeries CICS Business Application MQNACT 131

Figure 50: All created channels for TBUSSE.NACT

132
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

5.6 Building the JAVA application

5.6.1 Coding the MQSeries communication logic

5.6.1.1 Creating a connection to the WINDOWS2000-client queue manager

The JAVA-file MQCommunicator.java consists of the MQSeries communication logic, that uses the MQI to es-

tablish a connection to the MQSeries WINDOWS2000-client queue manager, to send the request messages to the

OS/390 business logic, and to receive the response messages from the OS/390 business logic (Listing 42, page

237). With this JAVA-application an account record is read and displayed on the WINDOWS200-client. For us-

ing the MQI within JAVA-applications, IBM offers the product extension MA8811. Within the JAVA-package

com.ibm.mq.jar all required classes for the MQI-calls are provided.

For using the MQI to send and receive messages, an instance of MQCommunicator is constructed:

09 public class MQCommunicator
···
41 public MQCommunicator(String hostname, String channel, String qManager, +
 String aRequestQueue, String aReplyQueue)

The parameters used for the MQCommunicator constructor method read as follows:

hostname IP-address of the WINDOWS2000 computer
channel Name of the server connection of the MQI-channel
qManager Name of WINDOWS2000-client queue manager
aRequestQueue Name of the Remote Queue Definition (= Request Queue on OS/390)
aReplyQueue Name of the Reply-To-Queue

Firstly, a connection to the WINDOWS2000-client queue manager has to be established using the constructor

method MQQueueManager of the MQSeries supplied JAVA-class MQQueueManager. Before constructing an

MQQueueManager instance for use in client mode, some static member variables must be set in the MQSeries

supplied JAVA-class MQEnvironment because they take effect when the constructor is called – that are host-

name, channel, and port (lines 44-46). The application start command passes the IP-address to hostname and the

name of the MQI-channel to channel. The port on which the MQSeries Server listens for incoming connection

requests is hard coded within the attribute port to 1414 in the JAVA source program. The method enableTracing

is commented, when enabled, the MQSeries Client JAVA trace facility is started (line 47).

After setting these parameters, the connection to the WINDOWS2000-client queue manager qManager can

be established, when an instance of MQQueueManager is created (line 51). The creation of such an object is in-

11 For the MA88-extension downloading instructions refer to 5.2.1 on page 83.

The MQSeries CICS Business Application MQNACT 133

tercepted by an exception, in case the queue manager cannot be connected. If the connection fails, CICS sends

back a completion code to get to the bottom of the error (lines 95-104, please refer to Listing 42).

44 MQEnvironment.hostname = hostname;
45 MQEnvironment.channel = channel;
46 MQEnvironment.port = 1414;
47 // MQEnvironment.enableTracing(1, System.out);
···
51 qMgr = new MQQueueManager(qManager);

5.6.1.2 Opening the MQSeries queues for message transport

Before both queues are opened to perform PUTs and GETs on them (input=get, output=put), the name of

reply-to queue is stored to the new variable replyQueueName to stores the response message on the right queue.

66 replyQueueName = aReplyQueue;

As next operation, the queues have to be opened. For placing messages on the request queue, the open option

is set to MQC.MQOO_OUTPUT (line 73). This option is used for the method accessQueue of the MQSeries sup-

plied class MQQueueManager (line 77). The first parameter aRequestQueue assigns the name of the request

queue and the second parameter openOptions assigns the open options for the request queue. The last three para-

meters have been set to null, they are assigned to the default values: null, if it is the queue manager to which

MQQueueManager is actually connected to; null, if a model queue is not used; and null, if the default user ID is

used.

73 openOptions = MQC.MQOO_OUTPUT;
 ···
77 requestQueue = qMgr.accessQueue(aRequestQueue, openOptions, null, null,null);

For placing the response messages onto the reply-to queue, the open option for the queue is set to MQC.M-

QOO_INPUT_AS_Q_DEF (line 87). As same as for the request queue, the method accessQueue assigns the

name of the reply-to queue, the open options, and the default values for the queue manager name, the model

queue, and the user ID (line 88).

87 openOptions = MQC.MQOO_INPUT_AS_Q_DEF;
88 replyQueue = qMgr.accessQueue(aReplyQueue, openOptions, null, null, null);

134
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

In case, the reply-to queue and the request queue have the same name (that is possible), the open options have

been set as follows.

70 openOptions = MQC.MQOO_INPUT_AS_Q_DEF | MQC.MQOO_OUTPUT;

5.6.1.3 Creating the request message and send it

The request message object is created within the send-method of the JAVA-class MQCommunicator (line 109).

The request message object sendMessage is initialised (line 113) before it is created as an instance of the MQSer-

ies supplied JAVA-class MQMessage (line 117). The format of the message (sendMessage.format) is set to the

queue manager built-in format MQC.MQFMT_STRING to indicate the nature of the data in the message

(line 126). In line 134 is specified the type of the message (sendMessage.messageType); the value

MQC.MQMT_REQUEST sets the message to a request message. Both – the message format and the message

type – build the message descriptor. The previously stored name of the reply-to queue replyQueueName specifies

that queue on which the response messages are stored (line 137):

109 public MQMessage send(String customerNumber) {
···
113 MQMessage sendMessage = null;
···
117 sendMessage = new MQMessage();
···
126 sendMessage.format = MQC.MQFMT_STRING;
···
134 sendMessage.messageType = MQC.MQMT_REQUEST;
···
137 sendMessage.replyToQueueName = replyQueueName;

As next, a string is defined consisting of the contents of the request COMMAREA. It is specified by the

strings bufferFront, the customerNumber, and the bufferEnd (line 140). This data string is always 408 characters

long as same as the request COMMAREA measures. It consists of a 25 bytes bufferFront, a 5 digit custom-

erNumber, and at least, a 378 bytes bufferEnd. The strings bufferFront and bufferEnd are defined in the MQSer-

ies communication logic class MQCommunicator. The customerNumber is passed as a string from the external

JAVA-class MQClient defined within the file MQClient.java.

Within the string bufferFront there are listed three fixed values and some blank characters – that is the header

of the COMMAREA. The first 8 characters specifies the CICS program which is to be called, in that case

NACT02 (line 24). Additionally, 2 blank characters have to be inserted behind the name to get an 8 bytes pro-

gram name (“NACT02__”). The characters V1A refer to the version and is the “eyecatcher” to create the correct

COMMAREA (line 25). Because the account is to be read, the request type E has also to be added to the buffer-

Front (line 26). The next 13 characters leave free to contain response and reason codes and an EIBFN code (lines

27-29). The string customerNumber (position 26-30 of the record) contains the account number to request the

The MQSeries CICS Business Application MQNACT 135

customer account. Position 31 through 408 of the record is filled with empty strings to store the account record

data on response (lines 30-37). With the method writeString of the MQMessage-instance sendMessage, the buf-

fer/data is added to the message (line 141):

 24 bufferFront = "NACT02 " +
 25 "V1A" +
 26 "E" +
 27 " " +
 28 " " +
 29 " ",
 30 bufferEnd = " " +
 31 " " +
 32 " " +
 33 " " +
 34 " " +
 35 " " +
 36 " " +
 37 " ";
···
140 String buffer = new String(bufferFront + customerNumber + bufferEnd);
141 sendMessage.writeString(buffer);

For a complete description on how the buffer is used to transmit data, please refer to the chapter 4.3.5.4

“COMMAREA – a scratchpad facility” on page 60.

After the message has been created, consisting of the message descriptor and the request data, it is put onto

the request queue using the put-method of the MQSeries supplied JAVA-class MQQueue using default options

set within an instance of the MQSeries object MQPutMessageOptions (line 144 & 148). When the message is

placed onto the queue, a note is displayed (line 154). To retrieve the correct response message after requesting

NACT02, a new MQSeries message object named storedMessage is created in which the message identifier is

stored as a correlation identifier (line 159, 162 & 168). This object is used as a reference for the response mes-

sage. If an error occurs on creating or sending the response message, some exception routines are specified (lines

170-182, please refer to Listing 42).

144 MQPutMessageOptions pmo = new MQPutMessageOptions();
···
148 requestQueue.put(sendMessage, pmo);
···
154 print("Message placed on queue");
···
159 storedMessage = new MQMessage();
···
162 storedMessage.correlationId = sendMessage.messageId;
···
168 return storedMessage;

136
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

5.6.1.4 Receiving the response message

When NACT02 has answered on the request and a message is sent back from the MQSeries server on OS/390 the

JAVA application has to receive the response message. For this response message, the MQSeries message object

is already supplied as the parameter replyMessage in the instance storedMessage (line 187):

187 public String receive(MQMessage replyMessage) {
···
190 MQGetMessageOptions gmo = new MQGetMessageOptions();
···
195 gmo.options = MQC.MQGMO_WAIT | MQC.MQGMO_CONVERT;
···
198 gmo.waitInterval = 60000;
···
211 replyQueue.get(replyMessage,gmo);
···
217 int msglen = replyMessage.getMessageLength();
···
220 String msgText = replyMessage.readString(msglen);
···
225 return msgText;

The message is received with the get-method of the MQSeries supplied JAVA-class MQQueue using options set

within an instance of the MQSeries object MQGetMessageOptions (line 190). The default options are not used. If

the response message is not yet transmitted onto the reply-to queue, the application waits for it using the option

MQC.MQGMO_WAIT. The received chars are converted to the right char set using the option

MQC.MQGMO_CONVERT (line 195). The time period to wait for the response message is set to 60 seconds us-

ing the integer waitInterval (line 198). After the options are set, the get-method is used to receive the account re-

cord data (line 211). Defining the integer msglen provides the length of the transmitted message (line 217). This

length is used to read the message data using the method readString (line 220 & 225). The data is stored within

the string msgText. Receiving the response message is also intercepted by exceptions; however, for this code

fragment refer to Listing 42.

5.6.1.5 Finalising the connection to the WINDOWS2000-client queue manager

The finalise-method closes the request and the reply-to queue after the response message is received. Closing the

queues is done with the close-method of the MQSeries supplied JAVA-class MQQueue (line 246 & 249). At the

end, the connection to the queue manager is terminated with the disconnect-method of the MQSeries supplied

JAVA-class MQQueueManager (line 252):

243 public void finalise() {
···
246 requestQueue.close();
···
249 if (requestQueue != replyQueue) replyQueue.close();
···
252 qMgr.disconnect();

The MQSeries CICS Business Application MQNACT 137

5.6.2 Coding the presentation logic

The JAVA-file MQClient.java contains the presentation logic. It requests an customer account record by passing

the typed-in account number to the MQSeries communication logic class. When the request is successful, the ac-

count record data is displayed within the JAVA-GUI on the WINDOWS2000 screen. The JAVA GUI uses the

JAVA SWING classes.

The JAVA application is started when following command, including the required parameters, is executed on

the command line of a MS-DOS console:

java MQClient <<WINDOWS-IP-ADDRESS>> <<server connection>> +

<<queue manager>> <<remote queue definition>> <<reply-to queue>>

This opens an application screen as shown in Figure 51. With the command parameters and the constructor

method of the JAVA class MQClient, an instance of the JAVA class MQCommunicator named MQComms is

created (line 141). For a description of and using the parameters refer to chapter 5.6.1 “Coding the MQSeries

communication logic ”, page 132.

The input screen is build with the JFrame structure consisting of a menu bar created with the JAVA class

JMenuBar using the createClientMenuBar-method (lines 149 & 366-403, Figure 51, No.1) and of two panels

Figure 51: Input screen of the MQSeries JAVA-application

138
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

created as an instance of the JAVA-class JPanel. One panel, that holds the field to input the account number and

a button to fetch it, is created using the method createFetchPanel (lines 154 & 440-469, Figure 51, No.2). The

other panel is created as a scroll panel using the method createRecordPanel and displays the account record data

(lines 150, 155 & 472-681, Figure 51, No.3). Both panels are adjusted using the standard layout manager Bor-

derLayout (lines 153-155):

141 MQComms = new MQCommunicator(hostname, channel, qManager, requestQueue, +
 replyQueue);
···
149 setJMenuBar(createClientMenuBar());
150 JScrollPane scrollpane = new JScrollPane(createRecordPanel());
···
153 getContentPane().setLayout(new BorderLayout());
154 getContentPane().add("North", createFetchPanel());
155 getContentPane().add("Center", scrollpane);
···
366 protected JMenuBar createClientMenuBar()
···
440 protected JPanel createFetchPanel()
···
472 protected JPanel createRecordPanel()

The account number field is a combination box used for input and for choosing an account number from a

list. It is built as an instance of JComboBox (lines 447-449, Figure 51, No.2a). The entry can be fetched by a

clickable button created as an instance of JButton (lines 452-461, Figure 51, No.2b). It can also be fetched by a

menu bar item created as an instance of JMenuItem within the method createClientMenuBar (lines 366 & 378-

382). Both fetch methods have to be activated to get a response; this is handled by the method createEventHand-

lers (lines 175 & 339-363). With the method enableDisableListItems the fetch button and the fetch menu bar

item are set enabled (lines 406, 408 & 410). Getting the response using the fetch button resp. the fetch menu bar

item is done with the get-methods in line 415 resp. 420:

175 createEventHandlers();
···
339 protected void createEventHandlers()
···
366 protected JMenuBar createClientMenuBar()
···
378 menuFetch = new JMenuItem("Fetch Record");
···
406 public void enableDisableListItems(boolean option)
···
408 getMenuItemFetch().setEnabled(option);
···
410 getButtonFetch().setEnabled(option);
···
415 protected JButton getButtonFetch()
···
420 protected JMenuItem getMenuItemFetch()
···
447 accountNumberField = new JComboBox();
···
452 buttonFetch = new JButton(new ImageIcon("images/up.gif"));

The MQSeries CICS Business Application MQNACT 139

Whether, if one of both fetch methods is used, the method clickedFetch is always activated to retrieve the ac-

count number from the account number field when clicked on the button or used the menu bar item (line 190-

282). This method gets the account number as a string using the method getAccountNumber (lines 684-715). Us-

ing the method getAccountNumberField retrieves the number from the input field whereas getSelectedItem re-

trieves the number from the pull down list of the combination box (lines 435 & 687). The number is then passed

to MQComms using its send-method (lines 207 referring to line 192). The clickedFetch-method also receives the

requested data from MQComms using receive-method of MQComms (line 221) and validates whether the enquiry

has been successful or not (lines 238-277). If the enquiry has been successful (lines 238-244), the methods dis-

playRecord and setAccountHistory are executed to display the account record data (lines 718-742 & 745-780).

Both methods calls the two external application classes AccountRecord and AccountHistory to extract the re-

ceived account record data into the correct strings. If the response is returned with an error code, some informa-

tion messages are displayed and the fields are cleared using the clearDisplay-method, that is called for example

from line 202 (lines 783-811):

190 public void clickedFetch()
···
192 String requested = getAccountNumber();
···
202 clearDisplay();
···
207 currentRequest = MQComms.send(requested);

221 messageReturned = MQComms.receive(currentRequest);
···
238 if(CICSresponseCode.equals("0000")){

240 customerDetails = messageReturned.substring(25,408);
241 AccountRecord retrieved=new AccountRecord(customerDetails);
242 displayRecord(retrieved);
243 return;
244 }
···
435 protected JComboBox getAccountNumberField()
···
684 public String getAccountNumber()

687 String accountNumber = (String)getAccountNumberField().getSelectedItem();
···
718 public void displayRecord(AccountRecord record)

741 setAccountHistory(record);
···
745 private void setAccountHistory(AccountRecord record)
···
783 public void clearDisplay()

The panel created within the createRecordPanel-method consists of 4 more panels arranged top left, top

right, bottom left, and bottom right using the GridLayout with 2 rows and 2 columns (lines 478-494 & 669-677).

The top left panel displays personal information about the customer (Figure 51, No.3a). The fields are arranged

using the GridLayout again. There are used 9 rows and 2 columns (lines 587-610). In the first row is written the

header for the panel using JLabel (line 551 & 552). The next 8 rows contains the output fields with an associated

140
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

label. In the first column are displayed the names using instances of JLabel, too (lines 553-560). The non-edit-

able output fields besides the names are set in the second column using instances of the external application class

DisplayField (497-504 & 93-100). All fields are added to the top left panel using the add-method (lines 593-

610). The bottom left panel uses also the GridLayout consisting of 9 rows and 2 columns (Figure 51, No.3b).

This panel is used to display the credit card details. The objects are defined as same as for the top left panel (lines

105-114, 507-516 & 562-571). The top right panel displays a scrollable table of the account history created as an

instance of JTable and JScrollPane that calls another external application class AccountHistoryTableModel

(lines 117-119, 534-548 & 651, Figure 51, No.3c). Furthermore, a title is also added with a JLabel instance

(lines 573 & 650). The last panel, the bottom right panel displays user who are authorised to use the customer's

credit cards, too (Figure 51, No.3d). This panel is once more arranged by a GridLayout consisting of 9 rows and

only 1 column (lines 656-659). The labels and output fields are defined as same as the fields for the personal in-

formation (lines 101-104, 524-527, 575-576 & 661-666):

478 topLeft = new JPanel(), topRight = new JPanel(), // Defining the Panels
479 bottomLeft = new JPanel(), bottomRight = new JPanel();
···
497 titleField = new DisplayField(50, background);
···
534 dataModel = new AccountHistoryTableModel();
536 JTable tableView = new JTable(dataModel);
···
547 JScrollPane scrollpane = new JScrollPane(tableView);
548 scrollpane.setPreferredSize(new Dimension(tableWidth, tableHeight));
···
551 JLabel personalLabel = new JLabel("PERSONAL ", JLabel.RIGHT),
552 personal1Label = new JLabel("INFORMATION"),
553 titleLabel = new JLabel("Title: ", JLabel.RIGHT),

 ···
562 creditCardLabel = new JLabel("CREDIT ", JLabel.RIGHT),
563 creditCard1Label = new JLabel("CARD DETAILS"),
···
573 acctHistoryLabel = new JLabel("ACCOUNT HISTORY"),
···
575 emptyLabel = new JLabel(""),
576 othersLabel = new JLabel("Additional Authorised Card User:",JLabel.LEFT);
···
587 GridLayout gridLeft = new GridLayout(9, 2); // Layout topLeft Panel
···
593 topLeft.add(personalLabel); // Heading "Personal
594 topLeft.add(personal1Label); // Information"
595 topLeft.add(titleLabel); // Label for Title
596 topLeft.add(titleField); // Title output
···
615 GridLayout gridBottomLeft = new GridLayout(9, 2); // Layout bottomLeft Panel
···
620 bottomLeft.add(creditCardLabel); // Heading "Credit Card
621 bottomLeft.add(creditCard1Label); // Details"
···
650 topRight.add(acctHistoryLabel); // Heading Account History
651 topRight.add(scrollpane); // Table
···
656 GridLayout gridRight = new GridLayout(9, 1); // Layout bottomRight Panel
···
661 bottomRight.add(emptyLabel);
662 bottomRight.add(othersLabel); // Heading
···
669 GridLayout gLay = new GridLayout(2, 2); // Layout for Main Panel

The MQSeries CICS Business Application MQNACT 141

In case, errors occur, they are intercepted by exceptions and the user are informed by popping up a message

window. Some messages are displayed on the MS-DOS console such as MQSeries status messages or CICS re-

sponse and reason codes.

At the end of the application class MQClient, it is instantiated by the main-method (lines 814-828). The class

ends in line 828.

814 public static void main (String[] args) throws Exception
···
822 new MQClient(args);

142
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

5.7 Connecting both queue managers

5.7.1 Checking the status of the queue managers and activate services

Before connecting both queue managers, a query has to be started to check whether all required services have

been started successfully – the subsystem/command server, the queue manager, the channel initiator, and the

TCP/IP listener. On the OS/390-server, an entry in the DA-panel shows if the MQSeries subsystem and the queue

manager have been started. The jobid entry MQA1MSTR confirms that the MQSeries subsystem is up and the

queue manager runs (Figure 52). Reaching the DA-panel is described in Appendix B.1 on page 231. When the

jobid MQA1CHIN is displayed in the same panel, the channel initiator is activated, too (Figure 52). On the SDSF

command line following command can be typed-in to show whether the channel initiator and the TCP/IP listener

are started12:

/!MQA1 DISPLAY DQM

The output displays that both have been started (Figure 53, next page). This message can also be displayed using

the MQSeries panels. On the main screen “MAIN MENU” choose DISPLAY (shortcut 2) and SYSTEM in the

field Object type. Characters are not required to input in the field Name. On the next panel “Display a System

Function” choose the option “1” for Distributed queuing and press the enter key. A similar output as on the DA-

panel is displayed (Figure 54, next page).

 Display Filter View Print Options Help

 SDSF DA SYS1 DAVI PAG 0 SIO 0 CPU 41 LINE 35-51 (68)
 NP JOBNAME STEPNAME PROCSTEP JOBID OWNER C POS DP REAL PAGING SIO
 JES2AUX JES2AUX NS F5 45 0.00 0.00
 JGATE01 JGATE01 *OMVSEX STC03560 STCJGATE WM FF 55 0.00 0.00
 JGATE013 *OMVSEX STC02675 STCJGATE IN F9 2293 0.00 0.00
 LLA LLA LLA NS FE 260 0.00 0.00
 MQA1CHIN MQA1CHIN PROCSTEP STC13524 STCMQA1 IN F5 177 0.00 0.00
 MQA1MSTR MQA1MSTR PROCSTEP STC13523 STCMQA1 NS FE 454 0.00 0.00
 NFSC NFSC MVSCLNT STC09109 NFSC NS FE 95 0.00 0.00
 NFSS NFSS GFSAMAIN STC09128 NFSS NS FD 359 0.00 0.00
 OMVS OMVS OMVS NS FF 2380 0.00 0.00
 PCAUTH PCAUTH NS F5 50 0.00 0.00
 PORTMAP PORTMAP PMAP STC09119 PORTMAP WM FF 111 0.00 0.00
 RACF RACF RACF STC09108 RACF NS FE 78 0.00 0.00
 RASP RASP NS FF 128 0.00 0.00
 RXSERVE RXSERVE RXSERVE STC09121 RXSERVE WM FF 146 0.00 0.00
 SDSF SDSF SDSF STC09115 ++++++++ NS F5 57 0.00 0.00
 SMF SMF IEFPROC NS FF 47 0.00 0.00
 SMS SMS IEFPROC NS FE 183 0.00 0.00
 COMMAND INPUT ===> SCROLL ===> CSR
 F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 52: Displaying the active users on OS/390

12 Suggestion: Use the command line of the syslog panel.

The MQSeries CICS Business Application MQNACT 143

On the WINDOWS2000-client queue manager it is only required to start the MMC Snap-In “MQSeries

Services” and all services will start automatically. When choosing the queue manager TBUSSE.NACT the ser-

vices with their status will displayed (Figure 46, page 124).

Now, both queue managers can be connected.

 Display Filter View Print Options Help

 SDSF SYSLOG 9096.106 SYS1 SYS1 01/10/2004 LINE 27,613 COLUMNS 51 130
 COMMAND INPUT ===> /!MQA1 DISPLAY DQM SCROLL ===> CSR
0090 CSQ9022I !MQA1 CSQNCDSP ' DISPLAY CMDSERV' NORMAL COMPLETION
0290 !MQA1 DISPLAY DQM
0090 CSQM137I !MQA1 CSQMDDQM DISPLAY DQM COMMAND ACCEPTED
0090 CSQX830I !MQA1 CSQXRDQM Channel initiator active
0090 CSQX845I !MQA1 CSQXRDQM TCP/IP system name is TCPIP
0090 CSQX846I !MQA1 CSQXRDQM TCP/IP listener started, for port number 1414
0090 CSQX849I !MQA1 CSQXRDQM LU 6.2 listener not started
0090 CSQX831I !MQA1 CSQXRDQM 8 adapter subtasks started, 8 requested
0090 CSQX832I !MQA1 CSQXRDQM 5 dispatchers started, 5 requested
0090 CSQX840I !MQA1 CSQXRDQM 2 channel connections current, maximum 200
0090 CSQX841I !MQA1 CSQXRDQM 0 channel connections active, maximum 200
0090 CSQX842I !MQA1 CSQXRDQM 0 channel connections starting, 123
0090 2 stopped, 0 retrying
0090 CSQ9022I !MQA1 CSQXCRPS ' DISPLAY DQM' NORMAL COMPLETION
DUMP DATA SETS AVAILABLE FOR DUMPID=012 BY JOB (CICSC001). USE THE DUMPDS COMMAN
DUMP DATA SETS AVAILABLE FOR DUMPID=011 BY JOB (DBA1DIST). USE THE DUMPDS COMMAN
S READY* IMS1
******************************** BOTTOM OF DATA ********************************
 F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 53: Displaying the started MQSeries Services – Channel initiator and TCP/IP listener – 01

 Display a System Function

 S | Display messages Row 1 of 11 |
 | |
 | |
 F | CSQX830I !MQA1 CSQXRDQM Channel initiator active |
 | CSQX845I !MQA1 CSQXRDQM TCP/IP system name is TCPIP |
 | CSQX846I !MQA1 CSQXRDQM TCP/IP listener started, for port number 1414 |
 | CSQX849I !MQA1 CSQXRDQM LU 6.2 listener not started |
 | CSQX831I !MQA1 CSQXRDQM 8 adapter subtasks started, 8 requested |
 | CSQX832I !MQA1 CSQXRDQM 5 dispatchers started, 5 requested |
 | CSQX840I !MQA1 CSQXRDQM 2 channel connections current, maximum 200 |
 | CSQX841I !MQA1 CSQXRDQM 0 channel connections active, maximum 200 |
 | CSQX842I !MQA1 CSQXRDQM 0 channel connections starting, |
 | 2 stopped, 0 retrying |
 | CSQ9022I !MQA1 CSQXCRPS ' DISPLAY DQM' NORMAL COMPLETION |
 | |
 | Command ===> __ |
 | F1=Help F2=Split F3=Exit F7=Bkwd F8=Fwd F9=Swap |
 | F12=Cancel |

 Command ===> __
 F1=Help F2=Split F3=Exit F9=Swap F10=Messages F12=Cancel

Figure 54: Displaying the started MQSeries Services – Channel initiator and TCP/IP listener – 02

144
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

5.7.2 Connecting the WINDOWS2000-client queue manager with the
OS/390-server queue manager

After the “MQSeries Services” MMC has been confirmed that all the required services for the WINDOWS2000-

client queue manager TBUSSE.NACT are activated it is switched to the MQSeries Explorer. A right mouse click

on the channel sender TBUSSE.NACT.WIN.OS pops up a menu where the option Start has been chosen to start

the channel sender (Figure 55). Be sure, that the IP-address has been set correctly (JEDI's one is always

139.18.4.97). After the Start-button is clicked, a message appears and informs that The request to start the chan-

nel was accepted (see Figure 56, next page). That does not imply that the channel sender is successfully connec-

ted to the OS/390-server queue manager. Only the green turned up arrow in front of the channel sender name

shows whether the start command has been successfully executed or not (Figure 57, next page). If not, a red

turned down arrow appears and the error has to be found, for example looking at the log for the queue manager.

The channel receiver is set active automatically when the WINDOWS2000-client queue manager is connec-

ted to the OS/390-server.

Figure 55: Starting the channel sender TBUSSE.NACT.WIN.OS

The MQSeries CICS Business Application MQNACT 145

Figure 56: Message that the request to start the channel was accepted

Figure 57: Channel was successfully connected to the server queue manager

146
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

5.7.3 Connecting the OS/390-server queue manager with the WINDOWS2000-
client queue manager

After the channel sender of the WINDOWS2000 queue manager is started, the channel sender TBUSSE.N-

ACT.OS.WIN of the OS/390-server queue manager has to be started and connected with WINDOWS2000. The

channel sender is started from the MQSeries panel “List Channels”. This panel can be reached from the MQSer-

ies MAIN MENU. On the field action Display (shortcut 2), on the field Object type the string CHANNEL, and on

the filed Name the string T* have been entered. This panel is usually used to check the status of all channel ob-

jects of MQA1. As first, it can be seen, that the channel receiver TBUSSE.NACT.OS.WIN has been activated; in

the column Status stands RUN. To start the channel sender the number 6 (shortcut for Start) is entered in front of

the channel name (Figure 58, next page). If the IP-address of the WINDOWS2000-client has been changed dur-

ing this set up, it has to be changed into the right one. If number 3 (shortcut for Alter) is keyed in, the channel can

be altered. After modifying is done it is turned back to the panel “List Channels” (pressing PF12 instead of PF3)

and the channel sender can be started. The next panel “Start a Channel” is only confirmed and immediately a

message is shown that the channel sender is started:

CSQ9022I !MQA1 CSQXCRPS ' START CHANNEL' NORMAL COMPLETION

Pressing PF12 leads back to the panel “List Channels” that displays the status of the channel objects. But, the

status of the channel sender has not been changed into RUN. When pressing PF5, the screen is refreshed and the

status of the channel changes into “RUN” (Figure 59, next page). The WINDOWS2000-client queue manager

also displays that the response channel is activated. On WINDOWS2000 the Refresh Key (F5) has to be used to

switch the status of the channel receiver. The green turned up arrow indicates that the receiver has been started

(Figure 60, page 148).

After both queue managers are connected, the MQSeries CICS application MQNACT, as next and last step,

are started.

The MQSeries CICS Business Application MQNACT 147

 List Channels Row 1 of 2

 Type action codes. Then press Enter.
 1=Display 2=Define like 3=Alter 4=Delete 5=Perform
 6=Start 7=Stop

 Name Type Status
 6 TBUSSE.NACT.OS.WIN CHLSENDER STOP
 _ TBUSSE.NACT.WIN.OS CHLRECEIVER RUN
 ******** End of list ********

 Command ===> __
 F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd
 F9=Swap F10=Messages F11=Status F12=Cancel

Figure 58: Connecting the channel sender with the client queue manager

 List Channels Row 1 of 2

 Type action codes. Then press Enter.
 1=Display 2=Define like 3=Alter 4=Delete 5=Perform
 6=Start 7=Stop

 Name Type Status
 _ TBUSSE.NACT.OS.WIN CHLSENDER RUN
 _ TBUSSE.NACT.WIN.OS CHLRECEIVER RUN
 ******** End of list ********

 Command ===> __
 F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd
 F9=Swap F10=Messages F11=Status F12=Cancel

Figure 59: Channel status after pressed the refresh key

148
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 60: Channel receiver was activated after successful call from the server queue manager

The MQSeries CICS Business Application MQNACT 149

5.8 Starting the JAVA application

After both – the request and response channels – have been created, which implies the connection of both queue

managers, the MQSeries CICS application needs only to be started using this command on the DOS-console:

java MQClient <<WINDOWS-IP-ADDRESS>> <<server connection>> +

<<queue manager>> <<remote queue definition>> <<reply-to queue>>

Example: java MQClient 80.135.228.155 TBUSSE.NACT.CLIENT +

TBUSSE.NACT TBUSSE.NACT.REMOTEQ TBUSSE.NACT.REPLYQ

This starts the JAVA interpreter to execute the code specified in the main-method of MQClient.java. When

all parameters are transmitted, the connection to the WINDOWS2000-client queue manager is established and

the screen “The Royal Bank of KanDoIT – Account Enquiry Client” appears. When a request on the account

number 11100 is done, an application window like the Figure 61 appears. Synchronously, MQSeries status mes-

sages appear on the MS-DOS console (Figure 62, next page).

Figure 61: The Royal Bank of KanDoIT – Account Enquiry Client

150
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 62: The output messages on the DOS-console

The MQSeries CICS Business Application MQNACT 151

5.9 Terminating the connection between the MQSeries servers

In case the connection between the both queue managers is terminated after the MQSeries CICS application

MQNACT was closed, both channel senders need to be stopped. For stopping the channel sender of the

OS/390-server queue manager switch, the MQSeries “List Channels” panel is to be opened on OS/390. Choosing

option number 7 and filling it into the input field before the name of the channel sender (Figure 63) and pressing

Enter opens the “Stop a Channel” panel. In this panel choose one of the two stop modes, press Enter and a in-

formation message confirms the termination. Returning to the “List Channels” panel and pressing PF5 refreshes

the panel and the status of the channel sender switches to “STOP” (Figure 64, next page).

On the WINDOWS2000 client queue manager the channel sender is stopped when a right mouse click on this

object is performed and the option “STOP” is chosen (Figure 65, next page). As next, a “Stop a Channel” panels

opens and clicking on “Yes” stops the channel. In case, a force interrupt is wanted, choose the associated option

and click on “Yes” (Figure 66, page 153). An information message appears and the green turned up arrow of the

channel sender switches into a red one. The connection between both queue managers is now terminated.

If wanted, both queue managers can also be stopped, but consider, that both queue managers run on a MQSer-

ies server. How to stop the queue manager on OS/390 is described in chapter 5.4.1 “The OS/390-server queue

manager MQA1” on page 96. The WINDOWS2000-client queue manager is stopped with a right mouse click on

the queue manager name and choosing “STOP” (Figure 67, page 153). The “End Queue Manager” panel opens to

choose a controlled or immediate shutdown (Figure 68, page 154). Again, the green turned up arrow of the WIN-

DOWS2000-client queue manager switches into a red one.

 List Channels Row 1 of 2

 Type action codes. Then press Enter.
 1=Display 2=Define like 3=Alter 4=Delete 5=Perform
 6=Start 7=Stop

 Name Type Status
 7 TBUSSE.NACT.OS.WIN CHLSENDER RUN
 _ TBUSSE.NACT.WIN.OS CHLRECEIVER RUN
 ******** End of list ********

 Command ===> __
 F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd
 F9=Swap F10=Messages F11=Status F12=Cancel

Figure 63: List Channels panel – Stopping a channel sender of the OS/390-server queue manager

152
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

 List Channels Row 1 of 2

 Type action codes. Then press Enter.
 1=Display 2=Define like 3=Alter 4=Delete 5=Perform
 6=Start 7=Stop

 Name Type Status
 _ TBUSSE.NACT.OS.WIN CHLSENDER STOP
 _ TBUSSE.NACT.WIN.OS CHLRECEIVER RUN
 ******** End of list ********

 Command ===> __
 F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd
 F9=Swap F10=Messages F11=Status F12=Cancel

Figure 64: List Channels panel – Channel sender is stopped

Figure 65: Stopping the channel sender on the WINDOWS2000 client queue manager

The MQSeries CICS Business Application MQNACT 153

Figure 66: Stopping the channel sender on the WINDOWS2000 client queue manager

Figure 67: Stopping the channel sender on the WINDOWS2000 client queue manager

154
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 68: Stopping the channel sender on the WINDOWS2000 client queue manager

The MQSeries CICS Business Application MQNACT 155

5.10 Common MQSeries problems indicated due to this thesis

5.10.1 Ghost channel connections on the OS/390-server queue manager

When a network outage occurs the channel receiver is often unaware of this and remains running even though the

channel sender is retrying. When connected both queue managers again, the channel sender attempts to start a

new receiver instance to OS/390 and sets its status, for example, to “2 RUN” because it does not detected the

communication failure (Figure 69). That means, the more active connections are lost and reactivated the more

channel receivers are activated when connected again. MQSeries believes that there has been an invalid attempt

to start multiple instances of the same channel receiver, from the same channel sender and location, and accord-

ingly treats this as an error, and fails the request. However, the communication behaves in a strange manner be-

cause sometimes the request is well done whereas in other situations the request fails.

 List Channels Row 1 of 2

 Type action codes. Then press Enter.
 1=Display 2=Define like 3=Alter 4=Delete 5=Perform
 6=Start 7=Stop

 Name Type Status
 _ TBUSSE.NACT.OS.WIN CHLSENDER RUN
 _ TBUSSE.NACT.WIN.OS CHLRECEIVER 2 RUN
 ******** End of list ********

 Command ===> __
 F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd
 F9=Swap F10=Messages F11=Status F12=Cancel

Figure 69: List Channels panel – Ghost connection

This misfeature is known by IBM and is remedied by a Program Temporary Fix (ptf). Every time a customer

reports a problem, IBM creates a report called Authorized Program Analysis Report (APAR). The APAR

PQ3435513 documents a requirement for the channel receivers of MQSeries in OS/390 to behave differently after

a network outage. Within this document it is suggested to download the PTF UQ40939 to install two new func-

tions to MQSeries – AdoptMCA and AdoptCH. Within AdoptMCA an orphaned instance of a channel connec-

tion can be automatically stopped. This PTF is also included in the IBM Corrective Service Package 3907547614,

13 Information about the APAR PQ34355 to download the PTF UQ40939 can be found at:
http://www-306.ibm.com/software/integration/mqfamily/support/apars/mvs210cl.html
or browse the CD (includes the PTF): \additions\OS390\MQSeries_v2.1\apar\PQ34355

14 The IBM Corrective Service Package COER390754765 can be found on the CD at:

156
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

a full repository of all required updates until January 2003. However, this package is no more available at IBM,

but included on the CD. Unfortunately, this update has not been installed on OS/390 because this must be done

with the SMP/E product. However, this was not part of this master thesis. Managing SMP/E should be handled in

future.

When such a failure occurs, simply terminate the channel initiator and restart it again using the MQSeries

panels or the command line of the SD-panels as described in chapter 5.4.1 “The OS/390-server queue manager

MQA1” on page 96.

5.10.2 Resetting channel in-doubt status – The message sequence error

Sometimes, the channel sender cannot communicate with the channel receiver due to a message sequence failure.

In that case, MQSeries fails to deliver the message and sets the transmission queue to GET disabled. The OS/390

syslog and the MQSeries log on OS/390 notes following message due to this error:

+CSQX526E !MQA1 CSQXRCTL Message sequence error for TBUSSE.NACT.OS.WIN,
sent=1 expected=904
+CSQX506E !MQA1 CSQXRCTL Message receipt confirmation not received for
TBUSSE.NACT.OS.WIN

On the WINDOWS2000-client such MQSeries messages are recorded in the log AMQERR01.LOG usually

stored in the folder “\MQSeries_home\Qmgrs\TBUSSE!NACT\errors\”, where MQSeries_home is the high-level

qualifier of the folder where MQSeries has been installed, and where TBUSSE!NACT is the name of the queue

manager. The message written in the log due to the message sequence failure reads as:

03/18/2004 11:25:33
AMQ9526: Message sequence number error for channel 'TBUSSE.NACT.OS.WIN'.

This misfeature can be remedied when the sequence number of the channels sender is reset. On OS/390 open

the MQSeries “List Channels” panel and choose number 5 to execute the Perform operation (Figure 70, next

page). After the Enter was pressed, the “Perform a Channel Function” appears. Number 1 has to be chosen to re-

set the message sequence number (Figure 71, next page).

The channel sender on the WINDOWS2000-client queue manager is reset as it is shown in (Figure 72,

page 158).

\additions\OS390\MQSeries_v2.1\coer\390754765

The MQSeries CICS Business Application MQNACT 157

 List Channels Row 1 of 2

 Type action codes. Then press Enter.
 1=Display 2=Define like 3=Alter 4=Delete 5=Perform
 6=Start 7=Stop

 Name Type Status
 5 TBUSSE.NACT.OS.WIN CHLSENDER RUN
 _ TBUSSE.NACT.WIN.OS CHLRECEIVER RUN
 ******** End of list ********

 Command ===> __
 F1=Help F2=Split F3=Exit F5=Refresh F7=Bkwd F8=Fwd
 F9=Swap F10=Messages F11=Status F12=Cancel

Figure 70: List Channels panel – List Channels panel – Perform a function

 Perform a Channel Function

 Select function type, complete fields, then press Enter.

 Function type 1 1. Reset sequence number
 2. Ping
 3. Resolve with commit
 4. Resolve with backout

 Channel name : TBUSSE.NACT.OS.WIN
 Channel type : CHLSENDER
 Description : CHANNEL FOR THE XMITQ TO SEND
 THE RESPONSE MESSAGES

 Reset
 Sequence number 1 1 - 999999999

 Ping
 Data length 16 16 - 32768

 Command ===> __
 F1=Help F2=Split F3=Exit F9=Swap F10=Messages F12=Cancel

Figure 71: List Channels panel – Perform a Channel Function panel – Reset message sequence number

158
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 72: MQSeries for WINDOWS2000 – Reset the message sequence number

6 SECURING CICS WITH RACF

6.1 Introduction

During the installation of some CICS objects used for the two business applications NACT and MQNACT it is

necessary to access the CICS region. Unfortunately, the CICS subsystem on the JEDI OS/390-server has not been

protected by a security manager at this time. However, with the rise of more and more users who have to use this

transaction monitor on the JEDI OS/390-server, securing the access to it is a really important feature. Without se-

curing, each user could access CICS without logging on to the system, shut down the subsystem, change CICS-

specific options, and change, discard, or delete all resources defined to the subsystem. All things considered, the

user would have the full control of CICS. Since, this is intolerable access restriction to any CICS region is a must

have. This part of the master thesis describes how to establish a standard CICS security management on the

JEDI OS/390-server after CICS has been installed and configured. When the CICS security is installed, any user

may log on to CICS and may only execute allowed CICS transactions and CICS commands on behalf of the asso-

ciated security profile. Any access to unauthorised data is forbidden and recorded to a log journal, too.

CICS itself has no own security mechanism. Controlling, restricting, revoking, and resuming the access to any

subsystem on an OS/390-server is done by the OS/390 security mechanism System Authorisation Facility (SAF).

All incoming authorisation requests are sent from SAF to an External Security Manager (ESM), such as IBM’s

product RACF. This is the IBM security management product for OS/390 and VM. In 1976, the first release of

RACF for MVS and VM has been shipped as a stand-alone version. Since march 1996, RACF is included as part

of the OS/390 Security Server, later known as SecureWay Security Server for OS/390. This platform includes

RACF, the DCE Security Server, OS/390 Firewall Technologies, and the LDAP Server. The JEDI OS/390-server

runs RACF Version 2 Release 615.

RACF is running like a CICS subsystem or an MQSeries queue manager in its own address space resp. region

in the OS/390 kernel. Any security decision is routed from the resource manager (e.g. CICS) with the help of the

system service SAF to the RACF router to invoke the correct RACF function calling the RACF database (Figure

73, next page). Hence, SAF acts primarily as a router facility (also called the OS/390 router). The resource man-

ager gets a message back from RACF and due to this message it makes the decision. This security processing is

controlled by the RACROUTE macro (Figure 73). The OS/390 router is present on all OS/390-systems even if

RACF is not installed. In that case, an installation-supplied security-processing exit (equivalent to the OS/390

15 Hint: There is recorded the identifier “HRF226” in the OS/390-syslog during an IPL. This refers to the RACF Version 2 Release 6. For
name conventions of these identifiers belonging to RACF versions refer to [HEN03].

160
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

router) can call another ESM (Figure 73). Such well known alternatives to RACF are Computer Associates

CA-ACF2 for OS/390 (now: eTrust ACF2 Security for z/OS and OS/390), and CA-Top Secret for OS/390 (now:

eTrust CA-Top Secret Security for z/OS and OS/390). In the latest operating system z/OS, IBM has excluded the

RACROUTE macro to replace it by providing callable services written in the most common programming lan-

guages. Further descriptions of the security concept of the Operating System/390 can be found in [GUS01], [HK-

S04], and [RSG03].

The next sections gives a short explanation of the RACF principles and how to invoke its services to show

that securing CICS relies on a number of facilities provided by RACF. Securing a resource manager like a CICS

region by RACF can be done in phases to have a up-to-date secured system at the required level. Firstly, the

CICS Region User ID (CRU) is set up to allow the CICS subsystem an access to other subsystems on the

OS/390-server. The Default CICS User ID (DCU) is defined to give, for example, all users a simple access to

the CICS region as same as giving applications access to the CICS region. For programs that are executed during

the CICS system initialisation an own user ID called the PLTPI User ID (PLTPIU) has been created. Further

and as an important part, it is described how to define security profiles for the resources of the CICS region to

give each CICS user an appropriate access to them. Last but not least, it is described how the CICS login terminal

accepts not only the upper case characters.

Figure 73: System Authorisation Facility (SAF)

Resource
Managers

OS/390
Kernel

SAF

Security
Managers

CICS

MQSeries

TSO/E

others

ESM

RACF

RACROUTE

SAF Callable
Services

Optional Exit

Exit Return Code

RACF CALL

RACF Return Code

RACF databases

Resource
Profiles

Access?
YES/NO

Securing CICS with RACF 161

6.2 RACF Topics

6.2.1 RACF mechanisms

The approach of RACF to data security is to provide an effective user verification, resource authorisation, and

logging capabilities. Each component of the operating system and users like system administrators can invoke the

services of RACF.

The concept of the user accountability is one of the prime security objectives RACF supports. IBM uses the

word “user” in context to human users who work with the system through a terminal and in context to compon-

ents which access RACF-protected resources in the same way as a user. Such a component could be a subsystem

running on OS/390 like CICS or IMS, a machine like a printer which executes an output, or an application which

reads, changes, or deletes data. Both the human user and the system component have an assigned user identifica-

tion (user ID) and usually a password to access the called resources. Each user ID may be created to RACF only

once. With it the user can access different subsystems, for example TSO/E or CICS, or a subsystem can access

another subsystem. RACF stores the access information about the permission a user has to a demanded subsys-

tem.

To simplify the maintenance of the system access, users are organised very flexible in groups. Each user must

be connected to minimal one group and can be connected to any number of groups. The authority assigned to the

group can be used to give one ore more permissions for all users defined in the group and to supervise the user

activity. Such a RACF group could be pointed for example to a department, project, number of applications, or to

administrators, data controllers, trainees, or secretaries, and so on. There is one superior or owning group to

every group – the system supplied SYS1 group. Each user or group defined to RACF is linked with the group

SYS1 in any way. This relationship can be sketched very good in a tree diagram.

For each user and group RACF builds profiles and stores them in its own database. These profiles consist of

one or more segments. The first or basic segment is always the RACF segment to both the user and group profile.

It contains RACF specific user resp. group information. The RACF segment is subdivided into a few divisions.

This could be in a user profile the user identification, the owner of the user profile, user attributes, the groups as-

sociated with the user, or additional installed security classifications. The RACF segment of the group profile

stores information about the owner of the group profile, the superior group, subgroups if exist, and connected

users.

User attributes are one of the importing RACF segment information in a user profile. It is differentiated with

respect to user attributes and to group-related user attributes. A user attribute applies all of the time and is spe-

cified at the system level. In contrast to that, a group-related user attribute applies to a specified group or groups

and is specified at the group level. User attributes can be used to administrate RACF centralised or decentralised.

Centralised administration refers to the resources and functions controlled by users system-wide. Such a user has

for example the user attribute SPECIAL. With it the user can modify all entries in the RACF database and may

162
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

perform all RACF functions, except auditing-related commands, on the scope of the system. That is why it is also

called the system-SPECIAL user attribute. Contrary, the decentralised administration refers to all users who have

a group-related user attribute. They can manage the authority in the scope of the groups to which they are con-

nected. For instance, one user has the group-SPECIAL user attribute within her/his connected groups she/he is

able to use the same RACF commands a user with the system-SPECIAL user attribute can use. User attributes

that also can be assigned to the system or group level are the AUDITOR, OPERATIONS, ADSP and REVOKE

attributes. In contrast to those user attributes the CLAUTH user attribute is not assigned to the group level, it is

assigned only to users who defines and modifies profiles in general resource classes. The administrator who

wants to enable CICS security to a CICS region must have the system-SPECIAL user attribute.

Beside the basic RACF segment there could be defined some more segments to a user/group profile. They can

contain user resp. group information for another secured and activated subsystem on the OS/390-server. For a

user and for a group there can be defined same segments, but the user profile can obtain a few more segments. A

segment created to both is the OMVS segment. It specifies information about the OS/390 UNIX subsystem. The

CICS segment, containing CICS terminal user data, is only defined to the user profile. It is not necessary to

define an appendant segment in a profile to use a resource. RACF will take the default built-in system values. If

required, in case of future demands, a non-activated segment can be added to a profile later.

Resource authorisation provides access control to the OS/390-components and their associated data. Access

control is the process of determining who – the user – has access to what – the protected resource. At the end of a

security request sent to the resource manager an access control decision is delivered back. Immediately, the man-

ager allows or denies the access to the demanded resource. Each access control decision depends on transmitted

factors to determine which access to the resource is demanded. Should have the user a read access to get informa-

tion about the resource, or may he modify, execute, or delete resp. remove the resource? May the user access the

resource on the date he wants the access?

Referring to a subsystem installed on OS/390, an access request to a resource is always sent first to a security

manager, in this case RACF. The security manager identifies and authenticates the originator of the access re-

quest. It does not matter whether a system or a user-implemented resource is accessed. RACF protects such re-

sources with resource security profiles, in which all the required information to access that resource is stored. For

example, the access list of such a profile lists the users resp. groups with their authority to access the resource.

Following authorisation levels are valid in an access list, specified from the highest security level to the lowest:

ALTER, CONTROL, UPDATE, READ, EXECUTE, NONE (refer to Table 10 on page 166). In addition to own

defined access rights the user gets the same rights the group has as long as he is connected to the group. If the

user has no own access list he inherits the rights to access a resource from the connected group or groups.

Furthermore, RACF is able to log any security-related event and informs the associated user about the event.

Consequently, RACF is used by security administrators, auditors, storage administrators, TSO, SDSF and CICS

administrators, management and others, if the assigned access level permits the use. An administrator must have

Securing CICS with RACF 163

the SPECIAL attribute, whereas the user attributes AUDITOR or OPERATIONS should only be assigned to

those users who monitor RACF.

More information about the authorities required to control RACF and to work with CICS is given in the

books [RAG98], [RUG98], and in the paper [GUS01].

6.2.2 RACF commands

Managing the RACF database means adding resource security profiles to and deleting these from the database, as

same as modifying and listing them. These functions are started by RACF commands entered on the command

line or started within special RACF panels. On the ISPF/PDF application panels the commands can be typed-in

on the command panel. This panel can be reached when P.6 is entered in the OPTION line of the CMAM.

RACF commands can also be executed from the TSO/E command line everywhere where this line turns up, for

example in the SDSF application. However, it is noticed, that the system prefix / must be written in front of the

commands (refer also to footnote 10 on page 96). A better and common way is to build command scripts called

TSO/E CLISTs16, that include the RACF commands, in particular to summarise RACF commands.

Table 8 on the next page lists the special commands to list, add, change, or delete profiles to or from the

RACF database. Within the table there are also listed commands to connect resp. remove users to or from groups.

An access for a user/group to data sets resp. general resources is given with the RACF command PERMIT. The

RACF command PASSWORD is used to change or reset the user's password, or to change the password interval.

With the command SEARCH it is possible to search the RACF database for data set and general resource profiles.

Setting RACF options is done by the command SETROPTS.

The command HELP displays information about the function, syntax, and operands of RACF commands. The

RACF command DISPLAY is only available for users/groups having the OPERATOR attribute. It displays in-

formation held in the signed-on-from list. Entries in the signed-on-from list possess user IDs, groups, APPLs (the

names of the local Logical Units (LU) from which the user is signed on), POEs (the names of the partner LUs

from which the user is signed on), and SECLABEL (security labels to search for). There are a few more not so

important RACF commands, for a complete list refer to [RCR98].

However, the most important command is RVARY which activates resp. deactivates RACF databases and

hence, RACF, too. The command RVARY LIST displays all currently activated RACF databases on the

OS/390-server. On the JEDI OS/390-server only one active RACF database is stored in the sequential data set

SYS1.RACF on the volume DAVS7A. When the command RVARY LIST is executed on the JEDI OS/390-server

following information is displayed:

ICH15013I RACF DATABASE STATUS:
ACTIVE USE NUMBER VOLUME DATASET
------ --- ------ ------ -------
 YES PRIM 1 DAVS7A SYS1.RACF

16 Speak: “Cee lists”.

164
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

ICH15020I RVARY COMMAND HAS FINISHED PROCESSING.

6.2.3 Data set and general resource profiles

CICS resources are subdivided into general resources and data sets. Data sets can be installed and created on

hard disk drives like a DASD or on tape volumes. Indeed, DASDs and tape volumes are general resources. For

instance, the following resources are also general resources: load modules (programs), terminals (VTAM), ap-

plication resources (such as resources for IMS, CICS, and DB2), and other installation-defined-resources. For

each CICS resource there can be created a security profile protected by RACF. This resource profile is stored in a

profile class which is listed in the class descriptor table (CDT). CICS resource profiles can be organised in

groups to simplify the maintenance of the RACF database.

CICS resource profiles can be classified into generic and discrete profiles. Generic profiles protect several

data sets resp. resources with one profile. RACF detects these profiles by substitute characters: the percent char-

acter (%) stands for exact one character, the asterisk character (*) stands for any character string in 1 qualifier,

and the double asterisk character (**) is for any character string in n-qualifier. It is noticed, that Enhanced Gener-

ic Naming (EGN) has to be in effect to create generic data set profiles, for general resource profiles EGN is al-

ways in effect. EGN for data set profiles is activated when the RACF command SETROPTS (SETR) is executed:

SETROPTS EGN

USERS GROUPS DATA SET
GENERAL

RESOURCES

LIST LISTUSER (LU) LISTGRP (LG) LISTDSD (LD) RLIST (RL)

ADD ADDUSER (AU) ADDGROUP (AG) ADDSD (AD) RDEFINE (RDEF)

CHANGE ALTUSER (ALU) ALTGROUP (ALG) ALTDSD (ALD) RALTER (RALT)

DELETE DELUSER (DU) DELGROUP (DG) DELDSD (DD) RDELETE (RDEL)

CONNECT (CO)

REMOVE (RE)

PERMIT (PE)

PASSWORD (PW)

SEARCH (SR)

RVARY

SETROPTS (SETR)

HELP

DISPLAY

Table 8: RACF commands

Securing CICS with RACF 165

Discrete profiles may not have any substitute token, they always identify the whole data set. However, such

profiles should not be used because of their disadvantages in protecting each data set with an own profile. This

results in reducing the number of profiles needed to protect data sets, and in reducing the size of the RACF data-

base by using generic data set profiles.

Furthermore, RACF distinguishes also between two other types of CICS resource profiles – profiles for user

data sets/single general resources, and profiles for group data sets/group of profiles. Each data set profile has to

be associated with an own RACF user/group ID – the profiles for user data sets with a RACF user ID and the

profiles for group data sets with a RACF group that has the same name as the data set's high-level qualifier name.

All data set profiles have to be stored in the RACF profile class DATASET. There have to be created data set

profiles for the CICS transaction server install data set and for each CICS region data set. Usually they are

defined as generic data set profiles.

General resource profiles for CICS are managed in a set of IBM-supplied resource classes for CICS, in own

defined resource classes, and in IBM-supplied RACF general resource classes affecting CICS. The default re-

source classes for CICS can protect several resources stored in a member resource class as same as a group of re-

sources stored in a group resource class. Table 9 on the next page gives an overview of the IBM-supplied CICS

resource class names.

There have been defined general resource profiles for CICS transactions and CICS commands for the CICS

region A06C001 of the JEDI OS/390-server. For instance, several CICS transactions (e.g. the business transac-

tion NACT) have been secured using the member resource class TCICSTRN whereas CICS transactions listed in

groups (e.g. CICS system transactions) have been protected using the resource class GCICSTRN. How to enable

the CICS transaction and the CICS command security and how to define profiles for their associated resource

classes is described in chapter 6.4 “Securing the resources for the CICS region A06C001” on page 185.

Following IBM-supplied RACF resource classes affect CICS: APPCLU, APPL, CONSOLE, DIGTCERT,

FACILITY, FIELD, LOGSTRM, OPERCMDS, PROPCNTL, PTKTDATA, RACFVARS, RACGLIST, STAR-

TED, SUBSYSNM, SURROGAT, TERMINAL, and VTAMAPPL. How to use the class names that are format-

ted bold is explained in the next chapters. For example, within the resource class APPL there are defined security

profiles to control the terminal user access to a CICS region (refer to chapter 6.5 “Authorising access to the CICS

region” on page 205). Data set and general resource profiles consist of authority levels to decide which protected

CICS resource the RACF-users resp. RACF-groups can access in which way (Table 10, next page).

Class name Type Protect these resources:
TCICSTRN
GCICSTRN

Member
Group CICS transactions

GCICSCMD
VCICSCMD

Member
Group CICS system commands & CICS FEPI system commands

166
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

ACICSPCT
BCICSPCT

Member
Group

CICS transactions started with the EXEC CICS START command (known as
started transactions) & following CICS commands:

COLLECT STATISTICS TRANSACTION
DISCARD TRANSACTION
INQUIRE TRANSACTION
SET TRANSACTION
INQUIRE REQID CANCEL

FCICSFCT
HCICSFCT

Member
Group CICS files

MCICSPPT
NCICSPPT

Member
Group CICS programs

PCICSPSB
QCICSPSB

Member
Group CICS DL/I Program Specification Blocks (PSBs) for IMS

JCICSJCT
KCICSJCT

Member
Group CICS journals and log streams

SCICSTST
UCICSTST

Member
Group CICS temporary storage queues

DCICSDCT
ECICSDCT

Member
Group CICS transient data queues

Table 9: RACF commands

Authorisation Description

ALTER
Full access to data set/general resource (profile is also accessible)
Allowing access for other users/groups to the data set/general resource
Add and delete data sets/general resources

CONTROL Used only for VSAM-data protecting mechanism (only data set)
User/group can modify the VSAM file

UPDATE
User/group can modify the data set/general resource
Data set: User/group can delete PDSs

User/group cannot modify a VSAM file

READ User/group can read the data set/general resource, and can print and copy the
data set

EXECUTE User/group can execute predefined programs (only data set)
NONE User/group has no access to data set/general resource

Table 10: Authorisation Levels

A general resource class must be activated first before the general resource profiles can be used by RACF.

The RACF-command SETROPTS CLASSACT activates such classes stored in the CDT. Usually, each RACF

resource class needs to be activated separately. In case, a few general resource classes have the same position

number (POSIT-number) in their CDT definitions only one resource class out of them needs to be activated. For

example, all the CICS general resource classes have the same POSIT-number in their CDT definitions. It is no-

ticed, that the group resource classes cannot be activated because they are managed by the member resource

class:

SETROPTS CLASSACT(class_name)

Securing CICS with RACF 167

Example: SETROPTS CLASSACT(TCICSTRN)

The command SETROPTS NOCLASSACT deactivates any protection for the profiles of the general resource

class. However, when using this command the class is not deleted:

SETROPTS NOCLASSACT(class_name)

Example: SETROPTS NOCLASSACT(TCICSTRN)

Although, EGN is active for general resource resp. data set profile names, their associated profile classes

need also to be set up to store such generic profiles with the command SETROPTS GENERIC (Example 1). Each

class that stores generic profiles has to be refreshed after a new generic profile has been added to the class as Ex-

ample 2 shows:

SETROPTS GENERIC(class_name) [REFRESH]

Example 1: SETROPTS GENERIC(DATASET)

Example 2: SETROPTS GENERIC(DATASET) REFRESH

For performance reasons, consider activating the sharing of the general resource profiles using the RACF

command SETROPTS RACLIST (Example 1). In that case, discrete and generic profiles are stored in main/virtu-

al storage and RACF will not require accessing its database stored in a file when making an access decision. Each

time such an in-storage profile is changed, it must be refreshed using the attribute REFRESH (Example 2). This

storage method is recommended for all CICS general resource classes but not for the OS/390 DATASET class

because data set profile may not stored to the main/virtual storage.

SETROPTS RACLIST(class_name) [REFRESH]

Example 1: SETROPTS RACLIST(TCICSTRN)

Example 2: SETROPTS RACLIST(TCICSTRN) REFRESH

For a small number of frequently referenced generic profiles stored in general resource profiles in the

main/virtual storage can be also used the SETROPTS GENLIST command (Example 1). As same as for RAC-

LIST, each time a generic profile is created, the main/virtual storage needs to be refreshed (Example 2, next

page). Data set profiles also cannot use GENLIST processing.

SETROPTS GENLIST(class_name) [REFRESH]

Example 1: SETROPTS GENLIST(CCICSCMD)

Example 2: SETROPTS GENLIST(CCICSCMD) REFRESH

The RACLIST and GENLIST of all CICS general resource classes can also be refreshed with the CICS trans-

action CEMT. To refresh the main/virtual storage execute from a CICS terminal:

168
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

CEMT PERFORM SECURITY REBUILD

For the general resource classes eligible for the RACLIST and GENLIST processing see chapter Appendix C

in [RMI98]. For more information on data set profiles and general resource profiles, that are not described in this

thesis, and on how to create own resource class names refer to [RSG03].

Securing CICS with RACF 169

6.3 Implementing RACF protection for the CICS region A06C001

6.3.1 The CICS region's SIT

In the SIT are stored CICS system initialisation parameters that specify system attributes. Some are required to

secure the CICS region, some set attributes for the MQSeries CICS connection (refer to the chapters 5.4.2.2

“Configuring CICS to use the MQSeries CICS Bridge” and 5.4.2.5 “An automatic start job for the MQSeries

CICS Bridge” on page 101 resp. 109), and some set other CICS system parameters (refer to chapter 4.5.2 “Set-

ting up the CICS resources” on page 74). The SIT is assembled as a load table during the CICS region's start up.

The information stored in it is used to suit the region environment to a well-suited level. Some CICS regions can

share one SIT together, but if required, the CICS region can also have an own SIT. There should be used several

scripts that built one SIT for a CICS region. Hence, the script for the SIT provided with the CICS installation

leaves original. In another script there could be specified the modified parameters. If a failure happens due to

modifying the SIT-parameters the original script can be used to remedy it. For instance, the SIT for the CICS re-

gion A06C001 is built by three scripts that are loaded within the SYSIN section of the CICS region start script

CICSC001 (Listing 8). This start script resides in the data set SYS1.PROCLIB.

01 //CICSC001 PROC SYSIDNT=C001,
 ···
50 //SYSIN DD DISP=SHR,DSN=CICS.COMMON.SYSIN(COMMON)
51 // DD DISP=SHR,DSN=CICS.COMMON.SYSIN(&SYSIDNT)
52 // DD DISP=SHR,DSN=CICS.COMMON.SYSIN(END)

Listing 8: Extract from the data member SYS1.COMMON(CICSC001)

During startup of CICS the default SIT for the CICS region is assembled from the default script COMMON

that is stored in the CICS region data set CICS.COMMON.SYSIN (Listing 49, page 245). The second SIT script

C001 (Listing 50 & Listing 51, both page 245), that is loaded after the COMMON script has been executed,

changes some default SIT entries. It also specifies some new attributes for the CICS region, for example the re-

gion's application identifier APPLID. The script C001 is located in the data set CICS.COMMON.SYSIN, too. As

last script the third SIT script END is executed and the SIT is created. This script should be used for entries that

specify some attributes for the CICS region shut down. However, this script is empty at this time.

Table 11 on the next page lists all SIT-parameters that have been modified during the process of securing the

CICS region. The set options have been marked bold. Consider to activate the SIT-parameter SEC=YES rather

at the end of the whole security procedure because it secures the CICS region completely. When no additional se-

curity mechanism has been previously set up and the SIT-parameter SEC is already activated, CICS resources

cannot be accessed or executed.

The region's SIT can only be reassembled when the CICS region is restarted. For restarting the CICS region

refer to APPENDIX C.1“Restarting the CICS region” on page 239. Explanations about all CICS SIT parameters,

if not described in this thesis, can be obtained from the book [SDG03] in part 3.

170
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

SIT-parameter Description
Refer to

chapter

SEC = YES|NO
Activates the CICS security resp. initialises

the external security interface
this chapter

DFLTUSER = <userid> Specifies the name of the DCU 6.3.4, page 175

PLTPISEC = RESSEC|CMDSEC|NONE
Specifies whether to use resource or com-
mand security checking for PLT-programs
executed during CICS initialisation

6.3.5, page 177

PLTPIUSR = <User ID>
Specifies the name of the user ID used for
PLT-programs running during the CICS
initialisation

6.3.5, page 177

GMTEXT = <text> The “Good Morning” text to be displayed
on the first screen after log/sign on 6.3.7, page 182

GMTRAN = <TRID> The transaction that display the “Good
Morning” text on the terminal 6.3.7, page 182

GNTRAN = <TRID>
Specifies the transaction that CICS invokes
when a user's terminal-timeout period ex-
pires

6.3.8, page 183

PSBCHK=YES|NO PSB authorisation check for remote termin-
al users 6.3.8, page 183

SECPRFX = YES|NO Specifies whether to use the CRU as a pre-
fix for all resource names, or not. 6.3.8, page 183

XUSER = YES|NO|<name> Activates the surrogate user checking 6.4.3, page 187

XTRAN = YES|NO|<name> Security checking for attached transactions 6.4.4, page 189

XCMD = YES|NO|<name> Security checking for EXEC CICS system
commands 6.4.5, page 197

CMDSEC = ASIS|ALWAYS

ASIS means that CICS obeys the CMDSEC
option in the resource definition. When AL-
WAYS is chosen, the CMDSEC option of
the resource definition is ignored and a
command check is always done.

6.4.5, page 197

RESSEC = ASIS|ALWAYS

ASIS means that CICS obeys the RESSEC
option in the resource definition. When AL-
WAYS is chosen, the RESSEC option of the
resource definition is ignored and a re-
source check is always done.

see [RSG03],
chapter 3

APPLID = <name> Specifies the name of the CICS region 6.5, page 205

Table 11: SIT-parameters set resp. modified for the CICS region A06C001

Securing CICS with RACF 171

6.3.2 User management of the CICS region

The consideration which RACF user may access the CICS region has to precede the authorisation management.

This results in thinking about which user should access the subsystem in which relationship. On the JEDI

OS/390-server all users accessing TSO/E may also access the CICS region A06C001. These TSO/E-users have

been summarised in following RACF user groups (date 1.3.2004):

RACF User Group: RACF User IDs:
ADMIN: BOSCH, BREITI, BUWD, BUWD1, DRECKER, HROMBA, JHORSWI,

JOANNE, KDEGI, NILSM, NMICHA, VPET, PHERRM, RECKER, SPRUTH,

MUELLER, EKOPP, WGS, WGREIS, TBOEHM, ELPUR, USTEMP, USETEM
DIPLOM: MBEYER, RRONNE, SMUNZ, STEFANM, TBUSSE, YCUBAS, OAVIEN,

ORAIB, AZIENT, MSCHLO
GAST: GAST1, GAST2, GAST3, GAST99

PRAKT: PRAKT1 … PRAKT22, PRAKT24, PRAKT30 … PRAKT53, PRAKT55 …

PRAKT69, PRAKT71 … PRAKT100, PRAK100 … PRAK183, PRAK190,

PRAK500

All the listed users/groups should access CICS with different permissions to the resources of CICS. The users

of the group GAST should only play with some resources of the CICS subsystem without modifying anything.

Trainees who are organised in the group PRAKT should access CICS to solve their study exercises with rights to

modify only those resources that are needed during their exercises. Users defined in the group ADMIN and DIP-

LOM require an access to CICS to control and update the resources of the CICS region.

Additionally, the two required CICS user IDs – the CRU STCCICS and the DCU C001DEF – need also an

access to special CICS resources. The user ID PLTCICS needed for the PLT-programs, that are started during the

initial start of the CICS region, requires also an access to some specified CICS resources:

RACF User Group: RACF Users:

CICSDEF C001DEF

CICSREG STCCICS

SURRGRP1 PLTCICS

6.3.3 The CRU

6.3.3.1 What is it?

From RACFs point of view each started CICS region on OS/390 has to be associated with an own unique RACF

user ID, since a CICS region, as a subsystem of OS/390, is treated like a user and hence it identifies itself to

RACF. The CRU is required to start the CICS region under RACF control. With its authority RACF decides

172
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

which protected resources on the JEDI OS/390-server the CICS region may access. Furthermore, a CRU be-

comes important, when more than one CICS region are installed on an OS/390-server. In this case, CICS uses the

region user ID to prefix resource definitions before sending a request to RACF. For example, a CICS transaction

should be secured by a RACF transaction security profile. In that case, this profile has to stored with the CRU as

prefix to use the transaction in the preferred region.

6.3.3.2 Defining the CRU to RACF

The CRU STCCICS is defined to RACF after the data for the CICS region have been installed. But firstly, its de-

fault user group CICSREG has to be added to the RACF database using the command ADDGRP (AG):

Example: ADDGROUP CICSREG OWNER(SYS1) SUPGRP(SYS1) OMVS(GID(1))

The owner SYS1 is also the default group and the superior group of the user group CICSREG. SYS1 is a IBM-

supplied group and resides always on the highest level of the user group hierarchy. Within the OMVS keyword

there are added the default OS/390 UNIX group identifier (GID) to the OMVS segment of the group (OMVS =

OpenMVS, the OS/390 UNIX substem). For more information on this segment please refer to [RSA98]. Into the

group CICSREG there can also be added other CRUs to assign one authority level to that group resp. to all CRUs

connected within the group.

The user ID for the CICS region A06C001 is defined using the RACF command ADDUSER (AU):

ADDUSER user_id DFLTGRP(group_id) NAME(user_id_description) +

OWNER(owner_id) PASSWORD(********) +

segment_1(attributes) … segment_n(attributes)

Example: ADDUSER STCCICS DFLTGRP(CICSREG) NAME(A06C001-REGION_ID) +

OWNER(CICSREG) PASSWORD(********) +

OMVS(UID(1) HOME(/) PROGRAM(/bin/sh))

Within the keyword DFLTGRP the CRU for A06C001 has been added to its default user group CICSREG. A

name for the user ID has been specified with the NAME keyword whereas the OWNER of the user ID is IBMUSER.

In case, that the CICS region wants to access some resources on the OS/390 UNIX subsystem, it has been added

the OMVS segment with some default parameters to the user profile. As a security aspect, always define a pass-

word for the CRU, do not set it to the default one which is the name of the default group. The password is never

checked by RACF to access resources.

After the CRU is created, it is used to run the CICS region. There are three ways to run the CICS region: as a

Started Task using the RACF started procedure table ICHRIN03, as a Started Job, or simple as a Job. The CICS

region A06C001 runs as a Started Job. For information on how to start CICS as a Started Task and as a Job refer

to [RSG03].

Securing CICS with RACF 173

6.3.3.3 Authorising the CRU to invoke CICS as a Started Job

Invoking the CICS region A06C001 as a Started Job requires that the CRU is specified on a STARTED general

resource class profile. This profile refers to the CICS region start up script name CICSC001 and to the script's

job name, that is also CICSC00117. Therefore, the discrete STARTED general resource profile is named as

CICSC001.CICSC001. In case, another CICS region should be started with the same script using another job

name, for example CICSC002, the discrete STARTED general resource profile has to be named as CICSC001.-

CICSC002. If one CRU should be used for different CICS regions started by the same start script but with differ-

ent job names, the profile could be named as CICSC001.CICSC**.

The profile CICSC001.CICSC001 has been added to the STARTED general resource class with the RACF

command RDEFINE (RDEF):

RDEFINE STARTED script_name.job_name OWNER(owner_id) +

STDATA(USER(CRU))

Example: RDEFINE STARTED CICSC001.CICSC001 OWNER(IBMUSER) +

STDATA(USER(STCCICS))

The OWNER of the profile is IBMUSER and the CRU is added to the associated STDATA segment using the

keyword USER. The profile can be displayed with the RACF command RLIST (RL). The connected CRU is dis-

played if the segment name is entered as showed on Figure 74on the next page.

After defining the STARTED general resource profile to the general resource class STARTED, the profiles in

main/virtual storage need to be refreshed using the command SETROPTS RACLIST:

Example: SETROPTS RACLIST(STARTED) REFRESH

In case, the general resource class has not been activated and has not been stored in main/virtual storage pre-

viously, it must be firstly activated using the SETROPTS CLASSACT command together with the RACLIST

command:

Example: SETROPTS CLASSACT(STARTED) RACLIST(STARTED)

17 The script is stored in the data set SYS1.PROCLIB on the JEDI OS/390-server.

174
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

 Menu List Mode Functions Utilities Help
——
 ISPF Command Shell
Enter TSO or Workstation commands below:

===> RLIST STARTED CICSC001.CICSC001 NORACF STDATARLIST STARTED CICSC001.CICSC001 NORACF STDATARLIST STARTED CICSC001.CICSC001 NORACF STDATARLIST STARTED CICSC001.CICSC001 NORACF STDATA

•••

CLASS NAME
----- ----
STARTED CICS*.** (G)

STDATA INFORMATION

USER= STCCICS
GROUP=
TRUSTED= NO
PRIVILEGED= NO
TRACE= NO

Figure 74: RLIST STARTED CICS*.** NORACF STDATA

6.3.3.4 Authorities required for the CRU

The CRU needs an access to all the resources CICS itself needs to use. There are two types of these resources –

resources external to CICS, such as files on hard disks, or the spool system and resources internal to CICS, such

as some CICS transactions. The authority to access external resources is obtained from the CRU, not from the

CICS terminal user. Each CRU has to be associated with all the disk data sets that it uses. On JEDI OS/390-serv-

er the CRU has got an access to the whole CICS TS install data set having the high-level qualifier CICSTS13.

Authorising the access for the CRU to that data set is described in chapter 6.3.6 “The CICS region data set pro-

tection” on page 178. More authorities required for CICS region user IDs to access external resources of CICS

can be obtained from the book [RSG03] in chapter 3 “CICS data set and system security”.

Internal resources like CICS data sets and CICS system transactions need also to be authorised by the CRU.

Authorising these so-called Category-1-transactions is explained in chapter 6.4.4 “The CICS Transaction Secur-

ity” on page 189. When the SIT-parameter XUSER has been activated, the CRU has to be used as a surrogate

user of some other user IDs. There are three types of using the CRU as a surrogate user ID – for the DCU, for the

PLTPIU, and for the user ID used for transient data trigger transactions. How to use the Surrogate User Security

is described in chapter 6.4.3 “The Surrogate User Security” on page 187. To define the PLTPIU refer to chapter

6.3.5 “The PLTPIU” on page 177.

Securing CICS with RACF 175

6.3.4 The DCU

6.3.4.1 What is it?

When a CICS region is to be secured, it is needed to define the DCU. This user ID must match the value of the

SIT-parameter DFLTUSER. If no value is specified on this parameter, CICS refers to the IBM-supplied user ID

CICSUSER. In that case, a RACF user profile for CICSUSER must be defined to the RACF database. Each CICS

region should have an own DCU as an aid to debugging. However, one DCU can be shared for all CICS regions.

CICS always signs on the DCU each time a CICS region starts up. If no DCU has been created to RACF resp.

specified on the SIT-parameter DFLTUSER, CICS cannot sign on the DCU, and therefore, the CICS initialisation

is terminated and a failure message is issued. When the sign on of the DCU is successful, its security attributes

are assigned to all terminal users before they sign on. Therefore, a user connected to the CICS terminal is always

logged on to CICS, but not signed on. If this user wants to sign on to CICS, the DCU must be able to execute a

sign on transaction. This could be the IBM-supplied CICS transaction CESN, which opens the “Signon to CICS”

panel (Figure 75). On this panel a valid RACF user ID with its associated password must be entered to access the

CICS region and to execute some authorised resources. Furthermore, some other transactions, that need no pro-

tection, can also be authorised for the DCU. For example, each CICS user may additionally use the CMAC trans-

action to display on-line messages and codes without signing on to the CICS region. In that case, the DCU must

also have a permission to initiate the CMAC transaction. To execute such “unsecured” transactions by the DCU a

CICS general resource profile for those transactions has to be created. How to define such a profile is described

in chapter 6.4.4 “The CICS Transaction Security”on page 189.

 Signon to CICS APPLID A06C001

 --------------- WELCOME AT UNIVERSITY OF LEIPZIG --------------- -JEDI-
 BITTE TRANSAKTION <CESF LOGOFF> ZUM AUSLOGGEN BENUTZEN! -CICS-

 Type your userid and password, then press ENTER:

 Userid Groupid . . .
 Password . . .
 Language . . .

 New Password . . .

 DFHCE3520 Please type your userid.
 F3=Exit

Figure 75: The CICS SignOn panel

176
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

And last, but not least, the CICS segment of the DCU's terminal user data is established for user who have no

own CICS segment data in their RACF user profile.

6.3.4.2 Defining the DCU to RACF

For the CICS region A06C001 the DCU has been already defined to the RACF database. But, this user ID

matched the CRU of that CICS region. Such a combination is not a good choice, because both are two different

kinds of user IDs. To rectify this problem, a new DCU has been created. Firstly, a group for the DCU has been

added to RACF. Into this group there can also be added other DCUs to give them the same authority level as the

group have. If required, there can also be created another group that holds DCUs having another authority level.

The group for the DCU C001DEF has been named as CICSDEF having the superior group and the owner SYS1:

Example: ADDGROUP CICSDEF SUPGROUP(SYS1) OWNER(SYS1) OMVS(GID(1))

After that, the DCU C001DEF has been created using the RACF command ADDUSER:

Example: ADDUSER C001DEF DFLTGRP(CICSDEF) NAME(A06C001-DEFAULT_ID) +

OWNER(CICSDEF) PASSWORD(*******) +

OMVS(UID(1) HOME(/) PROGRAM(/bin/sh)) CICS(OPCLASS(1))

The default group of the DCU is CICSDEF, has the owner SYS1, and the well fitting name description

A06C001-DEFAULT_ID. A password should always be defined for the DCU. If omitted, it is set to the default

one – the group identifier, but this is not suggested. Within the OMVS segment there has been specified some

parameters used for the OS/390 UNIX subsystem: the UNIX identifier, the home directory, and the program dir-

ectory. For the DCU there has been also added a CICS segment with some default operator data, that should be

differently for each DCU defined to RACF. The CICS segment for the DCU C001DEF contains the operator

class 1 specified within the keyword OPCLASS. If no CICS segment is specified on the user's profile, CICS as-

signs built-in system default values for the DCU as same as for each user who has no own CICS segment and

who signs on to the CICS region. On the CICS segment there can be specified some more terminal operator data

– the operator identification OPIDENT, the operator priority OPPRTY, the TIMEOUT, and the XRFSOFF para-

meters. These parameters are explained in the book [RSG03] in detail. After the DCU is defined to the RACF

database, its information can be displayed with the RACF command LISTUSER as used in Figure 76 on the next

page.

Furthermore, the DCU has to be defined on the access list of the CICS region's APPL general resource profile

to access the CICS region itself. For information on how to grant this access browse to chapter 6.5 “Authorising

access to the CICS region” on page 205. If the SIT-parameter XUSER is activated, the CRU should be authorised

to be the surrogate user of the DCU. How to authorise the CRU to be a surrogate of the DCU is explained in

chapter 6.4.3 “The Surrogate User Security”on page 187.

Securing CICS with RACF 177

The DCU is assigned to the CICS region when it is defined to RACF and when it is set on the SIT-parameter

DFLTUSER. However, it is not required to specify a DCU on this SIT-parameter. In this case, the IBM-supplied

DCU CICSUSER is chosen. Therefore, a user profile for that user ID must be defined to RACF. The DCU of the

CICS region A06C001 C001DEF has been specified in the default SIT script C001 as same as the parameter

SEC:

11 DFLTUSER=C001DEF, DEFAULT CICS USER
 ···
37 SEC=YES, CICS SECURITY (STANDARD = YES)

 Menu List Mode Functions Utilities Help
——
 ISPF Command Shell
Enter TSO or Workstation commands below:

===> LISTUSER C001DEF NORACF CICS OMVS

•••

USER=C001DEF

CICS INFORMATION

 OPCLASS= 001
 OPIDENT=
 OPPRTY= 00000
 TIMEOUT= 00:00 (HH:MM)
 XRFSOFF= NOFORCE

OMVS INFORMATION

UID= 0000000001
HOME= /
PROGRAM= /bin/sh

Figure 76: LISTUSER C001DEF NORACF CICS

6.3.5 The PLTPIU

All CICS programs that are executed during the initialisation of the CICS region have to run under an own user

ID that is called the PLTPIU. Those programs are compiled to the PLT that is loaded during the CICS system ini-

tialisation. For each CICS region this user ID is specified in the SIT on the parameter PLTPIUSR. If this para-

meter is omitted the CRU is used for all PLTPI programs. Therefore, the CRU must have an access to all the re-

sources that these programs use including all the transactions started within the PLT-programs. On the CICS re-

gion A06C001 an own PLTPIU is used for programs started during such post-initialisation processing. The new

user ID PLTCICS stored to the user group SURRGRP1 has been created to the RACF database using the two

commands ADDGROUP and ADDUSER:

178
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Example 1: ADDGROUP SURRGRP1 OWNER(SYS1) SUPGROUP(SYS1)

Example 2: ADDUSER PLTCICS NAME(PLT_USER-ID) OWNER(SURRGRP1) +

DFLTGRP(SURRGRP1)

After that, the created PLTPIU has to be specified on the SIT-parameter PLTPIUSR (refer to Listing 51,

page 245). For the PLTPIU exists an additional SIT-parameter called PLTPISEC. It specifies whether or not to

use resource (PLTPISEC=RESSEC) or command security (PLTPISEC=CMDSEC) checking for PLT-programs

executed during CICS initialisation. The resource security has been chosen for the PLT-programs (Listing 51).

CICS always performs a surrogate user security check to authorise the CRU acting as a surrogate user of the

user ID specified within the SIT-parameter PLTPIUSR. A surrogate user security check is not required if no

PLTPIU is specified resp. the CRU is the PLTPIU. For information on how to enable the surrogate user security

checking for the PLTPIU refer to chapter 6.4.3 “The Surrogate User Security” on page 187.

6.3.6 The CICS region data set protection

6.3.6.1 Protecting the CICS region data sets

All data, that is required to start and run the CICS region A06C001, is installed to the data sets having the

high-level qualifier “CICS” and “CICSTS13”. After the installation, both data sets have to be secured by the

RACF data set protection. To secure the data sets generic group data set profiles have to be defined to the DATA-

SET resource class. For the whole CICS TS install data, the RACF data set profile CICSTS13.** is created

whereas the whole CICS region data set is protected by the data set profile CICS.**. Following listing shows how

to use the RACF command ADDSD (shortcut AD) to create the generic data set profile CICS.**:

ADDSD 'data_set_name' OWNER(user_id) UACC(option)

Example: ADDSD 'CICS.**' OWNER(ADMIN) UACC(NONE)

Because of using the double asterisk, RACF knows to store the profile in its database as a generic one. It pro-

tects all data having the high-level qualifier “CICS” with this one profile. When executing this command, nobody

has an access to the data stored within this data set. This is specified within the keyword UACC meaning universal

access. The generic data set profiles for the CICS install data set having the high-level qualifier “CICSTS13”

have been created using the same way.

Due to a failure occurred during the CICS region reinitialisation after an IPL of the JEDI OS/390-server, an

additional data set profile is created to store the CICS system log having the qualifiers CICS.A06C001.**. This

data set profile secures the VSAM KSDSs used for the primary and secondary CICS system logs. Differently

from the other two data set profiles the universal access has been set to UPDATE because CICS requires it to

Securing CICS with RACF 179

write CICS log messages to the data set. If this access is not permitted, the primary CICS system log DFHLOG

will not be reinitialised after the CICS region is restarted due to an IPL of an OS/390-server. Usually, it is not re-

commended to specify an UPDATE authority to the UACC-parameter because any user is in the position to delete

the data set. Therefore, the a few CICS terminal users have been excluded from the access; see next chapter for

the specification of an access list to this data set. How to patch such an access failure is described in chapter Ap-

pendix C.2 “Correction of a CICS system log failure after an OS/390-server IPL and a CICS restart” on page

240.

Furthermore, there have been defined four more data set profiles. Two of them protect the CICS load modules

libraries named as CICSTS13.CICS.SDFHLOAD and CICSTS13.CICS.PRAKLOAD – both parts of the CICS TS

install data set. The other two protect the transient data intrapartition data set stored in CICS.C001.DFHINTRA

and the temporary storage data set CICS.C001.DFHTEMP – both parts of the CICS region data sets. They all

have been specified using the ADDSD command as described above. The data set profile CICSTS13.CICS.PRAK-

LOAD is used as an example on how to define a generic data set profile having no substitute characters. The pro-

tected data set CICSTS13.CICS.PRAKLOAD is used to store CICS programs created by CICS users. It has been

protected using following RACF command:

Example: ADDSD 'CICSTS13.CICS.PRAKLOAD' GENERIC OWNER(SYS1) UACC(READ)

To secure this profile even though as a generic data set profile, the keyword GENERIC (GEN) must be spe-

cified within the ADDSD command. In case of modifying or deleting this profile, GENERIC must always be writ-

ten within the RACF command behind the data set profile name. If it has been omitted, this data set profile is not

found by RACF but the discrete profile is displayed, if defined..

Summarised, the UACC-parameter for all the defined data set profiles has been set as follows:

CICS.** UACC(NONE)

CICSTS13.** UACC(NONE)

CICS.A06C001.** UACC(UPDATE)

CICSTS13.CICS.PRAKLOAD UACC(READ)

CICSTS13.CICS.SDFHLOAD UACC(READ)

CICS.C001.DFHINTRA UACC(NONE)

CICS.C001.DFHTEMP UACC(NONE)

It is noticed, when a data set profile is to be created, the high-level qualifier of the associated data set must be

firstly defined as a group ID to RACF. For the generic data set profiles the group IDs CICS (Example 1) resp.

CICSTS13 (Example 2, next page) have been defined using the RACF command ADDGROUP (AG):

Example 1: ADDGROUP CICS OWNER(SYS1) SUPGRP(SYS1)

Example 2: ADDGROUP CICSTS13 OWNER(SYS1) SUPGRP(SYS1)

180
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Attention, do not forget updating the RACF database using the SETROPTS command to activate the data set

protection:

Example: SETROPTS GENERIC(DATASET) REFRESH

6.3.6.2 Authorising access to the CICS data sets

For all the six defined data set profiles there have to be added RACF users/groups to the access list of the pro-

files. As an example on how to add such an access list to a data set profile, the profile CICS.** is chosen. Since

the universal access has been set to NONE, no user has an access to the data set until the user is added with an ap-

propriate authority level to the data set profile. For all users there is needed a well configured access list to the

data set. It should be accessed by the ADMIN and DIPLOM group with an ALTER access permission because

both need the full control of this data set (Example 1). The CRU STCCICS gets at least the UPDATE access be-

cause it changes some data in the data sets during the CICS region runs (Example 2). Other users get no access to

the whole data set at this time. If required, those users, who need also an access, can be added to the access list

with the appropriate permission. Using the RACF command PERMIT adds the user/group IDs with their assigned

permission to the data set profile CICS.**. This command must be executed for each security level:

PERMIT 'data_set_profile_name' ACCESS(option) ID(user_id1, +

user_id1, …, user_idn)

Example 1: PERMIT 'CICS.**' ID(ADMIN,DIPLOM) ACCESS(ALTER)

Example 2: PERMIT 'CICS.**' ID(STCCICS) ACCESS(UPDATE)

Defining an access list for a data set profile consisting of non-substitute characters is explained using the data

set profile CICSTS13.CICS.PRAKLOAD as an example. Everybody has at least READ access to the protected

data as specified within the UACC parameter. Additionally, the user groups ADMIN and DIPLOM get an ALTER

access to have the full control of the data set (Example 3). Because this data set should be used by trainees to

store, modify, and delete their load modules created during an educational course, the group PRAKT has to get an

UPDATE access (Example 4, next page). The following definitions adds the user groups with their permissions to

the access list of such a generic data set profile having no substitute characters. Each command must include the

keyword GENERIC, hence, the access list will be added to the generic data set profile instead the discrete one, if

it exists. Otherwise an error message is displayed:

Example 3: PERMIT 'CICSTS13.CICS.PRAKLOAD' GENERIC ID(ADMIN,DIPLOM) +

ACCESS(ALTER)

Example 4: PERMIT 'CICSTS13.CICS.PRAKLOAD' GENERIC ID(PRAKT) +

ACCESS(UPDATE)

Securing CICS with RACF 181

Summarised, the following table lists all the specified access lists of the data set profiles:

Data set security profile Users/Groups Access permission

CICS.**
ADMIN, DIPLOM ALTER

STCCICS UPDATE

CICSTS13.**
ADMIN, DIPLOM ALTER

STCCICS READ

CCIS.A06C001.**
ADMIN, DIPLOM ALTER

PRAKT, GAST NONE

CICSTS13.CICS.PRAKLOAD
ADMIN, DIPLOM ALTER

PRAKT UPDATE

CICSTS13.CICS.SDFHLOAD ADMIN, DIPLOM ALTER

CICS.C001.DFHINTRA STCCICS CONTROL

CICS.C001.DFHTEMP STCCICS CONTROL

Table 12: Access permission to the CICS data sets

The access list of the generic data set profile CICSTS13.** is created using the command PERMIT as de-

scribed within the data set profile CICS.**. The other three generic data set profiles having no substitute charac-

ters have been defined as described within the data set profile CICSTS13.CICS.PRAKLOAD.

The CICS transaction NACT of the CICS application can only be executed if the CRU STCCICS has at least

the READ authority to the data set with the high-level qualifier “TBUSSE.CICSADP”. But with this authority

only the browse function can be used, if another function like modifying or deleting should be executed, the ap-

plication replies with an error message. These functions can only be executed, when the CRU has an UPDATE ac-

cess to the data set. The command to define the appropriate authority for the CRU reads as follows:

Example: PERMIT 'TBUSSE.CICSADP.**' ID(STCCICS) ACCESS(UPDATE)

But beware, this data set is allocated to the CICS start up libraries. Each changing of the access list of their

associated data set profiles implies a restart of the CICS region. Only after restarting, the access list is updated.

How to add such a data set to the CICS start up libraries is explained in chapter 4.5.2 “Setting up the CICS re-

sources” on page 74.

After the RACF data set profiles have been added, they can be listed using the command LISTDSD (LD). For

displaying the generic data set profiles having no substitute characters the keyword GENERIC must also be used.

When AUTH is specified only authority information is displayed, but when specifying ALL the whole profile in-

formation is listed – for example the creation date, the authority information, too, and some more. There can be

specified some more keywords, for using them refer to [CSB98].

LISTDSD DATASET('data_set_name') [AUTH] [GENERIC] [ALL]

Example 1: LISTDSD DATASET('CICS.**') ALL

182
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Example 2: LISTDSD DATASET('CICSTS13.CICS.PRAKLOAD') GEN AUTH

The command LISTDSD can also be used to display the profile information of all profiles beginning with the

same characters. It is only needed to know a few prefix characters of the data sets, for example CICS:

LISTDSD PREFIX(prefix_characters) [AUTH] [GENERIC] ALL

Example 1: LISTDSD PREFIX(CICS) ALL

Example 2: LISTDSD PREFIX(CICS) GENERIC ALL

If no prefix is known, the RACF command SEARCH (SR) lists the names of all data set profiles stored in the

RACF database when NOMASK is specified (Example 1). Some characters specified within the MASK parameter

provides the same result as the LISTDSD PREFIX command (Example 2). CLASS needs not to be specified be-

cause it is the default value when no alternative item or operand is specified:

Example 1: SEARCH CLASS(DATASET) NOMASK

Example 2: SEARCH CLASS(DATASET) MASK(CICS)

As next, it is necessary to specify some entries in the SIT definition script of the CICS region to prepare the

activation of the CICS region security.

6.3.7 Informing CICS terminal users about the forthcoming security change

Before activating the security for the CICS region, all CICS users have to be informed about the forthcoming up-

date. This information should appear on the first screen each time a CICS user logs on to CICS until the security

is activated. Such a message text can be specified on the SIT-parameter GMTEXT. To display it there can be used

two IBM-supplied CICS transactions – CSGM known as the ”Good Morning” transaction, or CESN known as

the “Sign On” transaction. Before the CICS region has been RACF-protected, the CICS transaction CMSG has

been always executed as first transaction after a user has been logged on to CICS terminal entry panel because it

was specified on the SIT-parameter GMTRAN (cf. Listing 50, page 245). As the other possibility, the CICS trans-

action CESN can also be specified on this SIT-parameter (cf. Listing 51, page 245):

C001-temporary version:

15 GMTRAN=CSGM, ENTRY PANEL CSGM|CESN

C001 – final version:

Securing CICS with RACF 183

17 GMTRAN=CESN, START PANEL - <CESN> SIGN ON PANEL

The message text specified within GMTEXT can contain up to 246 characters and can be three lines at all. The

following text has been used to inform the users of the security update (cf. Listing 50, page 245):

C001-temporary version:

12 GMTEXT='CICS C001 A06C001 -- WELCOME AT UNIVERSITY OF LEIPZIG
13 !!ACHTUNG!! AB MITTWOCH, 26.02.2003, MUSS SICH JEDER FUER CICS
14 ANMELDEN! WIR REAGIEREN DAMIT AUF DIE SICHERHEITSPROBLEME!',

After the CICS region has been restarted to generate the new SIT, the information about the security update

appears on the entry screen as shown on Figure 77. Now each users knows that the CICS region will be secured

until the date 26.02.2003.

CICS C001 A06C001 -- WELCOME AT UNIVERSITY OF LEIPZIG
!!ACHTUNG!! AB MITTWOCH, 26.02.2003, MUSS SICH JEDER FUER CICS
ANMELDEN! WIR REAGIEREN DAMIT AUF DIE SICHERHEITSPROBLEME! 17:12:24

 ******\ ******\ ******\ ******\
 ********\ ******\ ********\ ********\
 ****\ **\\\ ****\ ****\
 **\ \\ **\ **\ \\ **\ \\
 \ **\ **\ *****\
 \ **\ **\ *****\
 **\ **\ **\ **\
 **\ **\ **\ **\ **\ **\ **\
 ********\ ******\ ********\ ********\
 ******\\ ******\ ******\\ ******\\
 \\\\\\ \\\\\\ \\\\\\ \\\\\\ TM

Figure 77: Terminal screen after log on to CICS (without security)

6.3.8 Other parameters necessary for CICS security

There have been set resp. modified two more important parameters in the SIT definition script C001 to overwrite

the parameters of the COMMON script – SECPRFX, GNTRAN, and PSBCHK (Listing 51, page 245). The para-

meter SECPRFX is activated in the default SIT definition script COMMON, but is only used if multiple CICS re-

gions are running on the OS/390-server. With it, CICS prefixes the resource names of the different CICS regions

to pass them to RACF for authorisation. SECPRFX has been set inactive in the script C001 – SECPRFX=NO

184
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

(Listing 51, line 38). In contrast to the GMTRAN parameter, the GNTRAN (“Good Night” TRANsaction) specifies

the CICS transaction invoked due to the expiration of the terminal time-out period. The default parameter in

COMMON is set to GNTRAN=CESN to return to the Sign-On panel after the terminal time-out. However, in case

of such a time-out CICS should log off the user from the terminal. Therefore, the transaction CESF with the op-

tion LOGOFF has been specified on the GNTRAN parameter (Listing 51, line 19). Furthermore, when the user

signs off with transaction CESF plus option GOODNIGHT, CICS logs off the user, too.

The SIT-parameter PSBCHK can be activated, when a PSB authorisation check should be made for remote

terminal users. Because this parameter has been set to PSBCHK=NO CICS checks only the remote link, but not

the remote user.

Securing CICS with RACF 185

6.4 Securing the resources for the CICS region A06C001

6.4.1 Decision about useful and necessary security mechanism

Before any user may access a secured CICS region it is important to find out what security levels RACF provides

for the transaction monitor. The access to the region is controlled by the following different security mechanisms

(according to [RSG03]):

• Terminal User Security

• Preset Terminal Security

• Surrogate User Security

• CICS Transaction Security, also called Transaction-Attach Security

• CICS Command Security

• CICS Resource Security, subdivided into security for:

• Advanced Program-to-Program Communication through an LU6.2 session (APPC LU6.2)
• DB2 Resource Classes
• Transient Data
• VSAM and BDAM Files
• Journals and Log Streams
• STARTED- and XPCT-checked Transactions
• CICS Application Programs
• PSBs
• Temporary Storage

• QUERY SECURITY Command Security as part of the CICS Command security

• CICS Web Support Security

• MultiRegion Operation (MRO) Security

• Front End Programming Interface (FEPI) Security

• CICS Business Transaction Services (BTS) Security

• RACF PassTickets.

For the CICS region A06C001 on the JEDI OS/390-server there has been enabled the Terminal User Secur-

ity, the Surrogate User Security, the CICS Transaction Security, and the CICS Command Security. The terminal

user security is not more as defining user IDs to the RACF database. These user IDs have to be used to sign on

the CICS region. When they enter their user IDs with their associated passwords using a Sign On transaction (for

example CESN), CICS verifies the user IDs and the passwords. If both are valid the user may access the CICS re-

gion. Although the user is signed on to CICS, he/she cannot use any resource of the CICS region until the user

gets the authorisation to use CICS transactions, for example. For using the Terminal User Security refer to

chapter 6.4.2 “The CICS Terminal User Security”on page 187.

With the Surrogate User Security CICS is able to check whether a surrogate user is authorised to act for an-

other user without knowing the user's password. CICS can enforce surrogate user security checking for the DCU,

for preset terminals, and for the user ID of started transactions, of PLT post-initialisation programs, of BTS pro-

186
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

cesses, and of EXCI calls. Also, the user ID associated with transient data queues, and the user ID supplied on

DB2-parameters can have a surrogate user ID. On the CICS region A06C001 there is performed a surrogate user

checking against the CRU, if it is authorised to act as a surrogate user of the DCU and of the user ID of the PLT

programs (cf. chapter 6.4.3 “The Surrogate User Security” on page 187).

Using the CICS Transaction Security secures one part of the CICS resources – the CICS transactions. The

CICS users may only initiate those transactions in the CICS region, for which they have a permission. Such a

transaction is for example the CICS-supplied transaction CEMT (CICS Execute-level Master Terminal). With

this transaction there can be displayed or altered CICS environmental information. Another CICS-supplied trans-

action that is to be protected is the CEDA transaction. CEDA can be used to define and/or delete CICS resources.

Implementing the transaction security is described in chapter 6.4.4 “The CICS Transaction Security” on page

189.

After activating these security mechanisms, a problem with the CICS Transaction Security has been occurred

on the CICS region. Due to security reasons, the CEMT transaction has been only allowed to execute by desig-

nated users because this transaction assumes the control of CICS system parameters. These parameters can be

displayed and changed with CICS commands called System Programming (SP)-type commands. Aside changing

system parameters using the transaction CEMT, they can also be changed by the SP-type commands executed

within CICS application programs. However, SP-type commands also provide information about user- and sys-

tem-started resources. A simple example illustrates such a common situation. On the one hand, only authorised

users may shut down the CICS region using the CICS SP-type command PERFORM SHUTDOWN executable with-

in the transaction CEMT. It is simple to understand that a student or trainee should not have the right to perform

this command. On the other hand, a trainee, who wants to monitor the execution of a started resource (e.g. a

CICS program), gets this information when the CICS SP-type command INQUIRE TASK is executed within the

transaction CEMT. Hence, users who may shut down a CICS region and users who only want information about

a started resources need different access permissions for the SP-type commands such as READ, UPDATE, or AL-

TER. Such CICS SP-type commands are secured with the CICS Command Security mechanism. Please refer to

chapter 6.4.5 “The CICS Command Security” on page 197 for using this security mechanism.

When all these security options are set, the JEDI OS/390-server will have a right secured CICS region at the

demanded level. In case of future security demands, it could be possible that more security options have to be ac-

tivated. For example, a secured preset terminal gives only a special local terminal and its associated user access

to CICS transactions without sign on. Preset Terminal Security is usually used for terminals without keyboards.

More security levels could be set when intercommunication between different CICS regions is used; either if con-

nected by an SNA access method in various sysplexes like APPC, or using MRO in a single sysplex. If full re-

source control is required for CICS application programs, program specification blocks, files, journal logging, or

for specific queues the associated security parts of the CICS Resource Security may be activated.

All security mechanisms for the CICS region are activated within the CICS region's SIT.

Securing CICS with RACF 187

6.4.2 The CICS Terminal User Security

The terminal user security is the main CICS security mechanism. This mechanism controls whether a user is

defined to RACF when the user wants to sign on to the CICS region. Such a user must have a predefined RACF

user ID profile. However, all users may log on to the CICS region. A user who is not signed on can use only

those resources, for example transactions, the DCU C001DEF may use or transaction that have a universal ac-

cess. Which resources the user may use after a sign on to the CICS region depends on other CICS security mech-

anisms, for example the transaction and command security. These security mechanisms secure the CICS re-

sources using associated resource security profiles. If a user or a user group is added to the access list of a re-

source security profile they may use all the resources specified within the member list of the security profile.

The consideration which user may sign on to the CICS region A06C001 has to precede the user management

of CICS. This results in thinking about which user should access the subsystem in which relationship. On the

JEDI OS/390-server users of the RACF groups ADMIN, DIPLOM, GAST, and PRAKT may access the CICS re-

gion. Refer to chapter 6.5 “Authorising access to the CICS region” on page 205 on how to give these four user

groups an access to the CICS region.

When the SIT-parameter SEC is activated (SEC=YES), all users must sign on to the CICS region with their

user ID and the associated password. But at this point no other security mechanism is set. Because of this, the

signed on users cannot use any of the CICS resources in the CICS region A06C001. Therefore, some more secur-

ity mechanisms have to be established, firstly it is described how to activate the CICS transaction security mech-

anism. After all required security mechanisms have been activated the SIT-parameter SEC may be set (cf. line 36,

Listing 51, page 245).

6.4.3 The Surrogate User Security

On the CICS region A06C001 the CRU STCCICS is used as a surrogate user for the DCU C001DEF and for the

user ID of PLT programs resp. started transactions PLTCICS. Surrogate user checking is enabled when

XUSER=YES is specified as a parameter in the SIT (cf. line 45, Listing 51, page 245). On this parameter it can

only be chosen between the values YES or NO because this SIT-parameter always refers to the IBM-supplied

general resource class SURROGAT. An own defined resource class cannot be used. The surrogate user security

comes only in effect, when the SIT-parameter SEC is also activated.

There are three forms of surrogate security profiles, which must conform the following naming conventions:

• userid.DFHINSTL: This form of a surrogate class profile is required for the PLTPIU if specified on the

SIT-parameter PLTPIUSR, for the DCU specified on the SIT-parameter DFLTUSER, for user IDs associ-

ated with trigger-level transactions, for user IDs specified for preset terminal security, and for user IDs

specified within the DB2 resource definition. On the CICS region A06C001 there have been created two

188
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

of such profiles, one for the PLTPI user ID, and one for the DCU. The CRU STCCICS has to be author-

ised to act on behalf of these both users.

• userid.DFHSTART: Such a surrogate security profile can be created for user IDs of started transactions

or for user IDs of CICS BTS processes started by a RUN command. One profile has been created to start

the MQSeries CICS Bridge under the authority of the surrogate user PLTCICS instead of the DCU.

• userid.DFHEXCI.: This surrogate security profile is only needed for EXCI calls. Such a profile has not

been defined the SURROGAT general resource class. For information on how to use this profile refer to

chapter 7 “Surrogate user security” in [RSG03].

After the DCU C001DEF has been created to the RACF database and it has been specified within the SIT-

parameter DFLTUSER its surrogate security profile has to be created using following command:

RDEFINE SURROGAT DCU.DFHINSTL UACC(option) OWNER(DCU)

Example: RDEFINE SURROGAT C001DEF.DFHINSTL UACC(NONE) OWNER(C001DEF)

The CRU STCCICS has been added to the access list of the surrogate profile C001DEF.DFHINSTL using the

RACF command PERMIT. It is noticed, that each surrogate user must have at least READ access:

PERMIT DCU.DFHINSTL CLASS(SURROGAT) ID(CRU) ACCESS(option)

Example: PERMIT C001DEF.DFHINSTL CLASS(SURROGAT) ID(STCCICS) +

ACCESS(READ)

As next, the CRU STCCICS must also be authorised as a surrogate user to run the PLT-programs during the

CICS region initialisation on behalf of the PLTPIU PLTCICS. Following commands has been executed:

Example 1: RDEFINE SURROGAT PLTCICS.DFHINSTL UACC(NONE) OWNER(PLTCICS)

Example 2: PERMIT PLTCICS.DFHINSTL CLASS(SURROGAT) ID(STCCICS) +

ACCESS(READ)

For example, during the CICS region initialisation” there is started the MQSeries CICS Bridge using the

PLT-program STRTCKBR (refer to ch. 5.4.2.5 “An automatic start job for the MQSeries CICS Bridge”, page

109). All the resources started within PLT-programs must run under the authority of the PLTPIU. Therefore, this

user ID must be authorised to all the resources referenced by STRTCKBR, for example the transaction CKBR

which starts the MQSeries CICS Bridge Monitor Task. This transaction again starts another one – the MQSeries

CICS DPL Bridge Task transaction CKBP. However, this transaction may always run under the authority of the

DCU (see chapter 6.4.4.6 “Securing the MQSeries CICS transactions used for the NACT application”, page

195)!

CICS requires that each user ID who starts a transaction without using a terminal is a surrogate of the user ID

that runs the transaction. Therefore, the PLTPIU which starts the CICS transaction CKBP must be a surrogate

Securing CICS with RACF 189

user of the DCU under which CKBP is running. Following commands create such a surrogate class profile for the

DCU and add the PLTPIU as the surrogate user to the access list of the profile:

Example 1: RDEFINE SURROGAT C001DEF.DFHSTART UACC(NONE) OWNER(C001DEF)

Example 2: PERMIT C001DEF.DFHSTART CLASS(SURROGAT) ID(PLTCICS) +

ACCESS(READ)

After all these profiles have been defined, the general resource class SURROGAT stored in main/virtual stor-

age must be refreshed using the RACF command SETROPTS RACLIST. If this security class is not activated

yet, the SETROPTS CLASSACT command has to be entered. For the general resource class SURROGAT it is also

required to activate sharing of the in-storage profiles, therefore RACLIST should also be specified within the

SETROPTS command:

Example 1: SETROPTS RACLIST(SURROGAT) REFRESH

Example 2: SETROPTS CLASSACT(SURROGAT) RACLIST(SURROGAT)

6.4.4 The CICS Transaction Security

6.4.4.1 The CICS Transaction Security Mechanism

As next, the CICS transactions as part of the CICS resources have to be secured. The permission to execute a

CICS transaction is controlled by the CICS Transaction Security Mechanism whether the transaction is initiated

by the user, by another transaction, or by programs external to CICS using the CICS terminal. This method is

sometimes referred to as Transaction-Attach Security. A transaction that is executed without accessing the ter-

minal directly, for instance during the CICS region start up, is also RACF checked. This method of the transac-

tion security mechanism is also called as the Non-Terminal Transaction Security.

The Transaction Security Mechanism is activated by the associated SIT-parameter XTRAN set in the CICS

SIT which becomes only active when the SIT-parameter SEC is also set to YES. If the SIT-parameter XTRAN is

set to YES, RACF has to use the security profiles stored within the IBM-supplied RACF resource classes

TCICSTRN and GCICSTRN, whereas specifying an own defined resource class name on the SIT-parameter

XTRAN implies, that RACF has to use the security profiles stored in this resource class.

Transactions existing on CICS regions can be subdivided into CICS transactions supplied by IBM and trans-

actions installed by CICS users. CICS-supplied transactions can be indicated as those IBM-supplied transactions

that start with the letter C. They cannot be modified or deleted. In contrast, the transactions installed by CICS

users are, for instance, the MQSeries CICS transactions, and, of course, the transaction NACT of the bank cus-

tomer account application NACT.

190
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

IBM groups its supplied CICS transactions into three default categories. All transactions which CICS needs

for internal use are called CAT1-transactions. No user except the CRU STCCICS requires an access to initiate

these transactions. In contrast to these CICS-supplied internal transactions there exist two other transaction cat-

egories – CAT2- and CAT3-transactions. Transactions which CICS does not require for internal processing and

which should not be executed by everybody are called CAT2-transactions. CAT2-transactions can be initiated by

CICS users in dependence on their access permission, whereas CAT3-transactions are exempt from any security

check. All CICS users must have an access to the CAT3-transactions, therefore, CICS permits all users to use

these transactions. Protecting the CICS transactions is done by adding the user/group ID to the access list. Be-

cause it is only checked whether a user may initiate the transaction, it is only required a READ access to them.

6.4.4.2 Using security profiles to protect CICS transactions

CICS transactions can be secured by RACF transaction security profiles stored into IBM-supplied or own defined

security classes. Single transactions should be secured by profiles stored within a member security class instead

of creating a group consisting of this one and only transaction. When the IBM-supplied security classes are used

the member security class is called TCICSTRN. Grouped transactions have to be secured by profiles stored within

a group security class. IBM provides for them the GCICSTRN security class. Using transaction group profiles

simplifies the security administration. The users need only an access to the transaction group to use its transac-

tions.

Each profile and its access list can be added to the RACF classes when submitting appropriate RACF com-

mands on the TSO/E command line. A better and common way is to build TSO/E CLISTs. They can contain spe-

cial TSO/E commands or complex programming tasks written with the interpretive CLIST language. There are

some important statement each CLIST contains. The PROC statement must be always the first command of a

CLIST. It is followed by the CONTROL statement which defines the processing options for the CLIST. If the op-

tion MAIN is specified the main CLIST follows. ASIS means that the character strings have to be read as they

were written, for example if written in lower case the letters will not be converted into upper case. The SET state-

ment assigns values to a symbolic or control variable. The WRITE and WRITENR statements display a message

on the screen. Using the WRITE statement causes the cursor to return to the beginning of the next line after the

message. When using the WRITENR statement, the cursor remains at the end of the message text (NR is for “No

Return”). Further information about TSO/E CLISTs is available from the book [TEC99].

Securing CICS with RACF 191

In the case, the SIT-parameters SEC=YES and XTRAN=YES are set and the CICS region is restarted before

any transaction security profile is defined, nobody has an access to initiate a CICS transaction. Hence, there has

been firstly defined one generic profile called ** stored to the member security class TCICSTRN. This profile

gives all CICS users an access to all transactions of the CICS region, the transactions defined on their own, too.

Therefore, UACC=READ has to be set. However, before any generic profile can be defined to the RACF security

class TCICSTRN following command must be issued to activate the storing of generic profiles to the member se-

curity class TCICSTRN:

Example: SETROPTS GENERIC(TCICSTRN)

Afterwards, the transaction security profile is created using the RACF command RDEFINE:

Example: RDEFINE TCICSTRN ** UACC(READ)

Because all transactions should not be accessible by all CICS users some transactions have been protected

against an unauthorised access. Such transactions are for instance the IBM-supplied CICS transactions and the

transactions for CICS transactions supplied by MQSeries. They are grouped in different group profiles to be

stored to the GCICSTRN security class. Although, this class stores profiles for groups of transactions, each trans-

action itself is secured by the super class TCICSTRN. Only three transactions in the CICS region A06C001 are

secured using member profiles stored to the TCICSTRN class directly. For defining the transaction security pro-

files to the TCICSTRN and GCICSTRN transaction security classes there can be used the two example scripts

DFH$CAT1 and DFH$CAT2 stored in the CICS install library CICSTS13.CICS.SDFHSAMP. According to these

CLISTs, there have been created five scripts CAT1JEDI, CAT2JEDI, CAT3JEDI, MQSJEDI, and USERJEDI

stored in the data set CICS.COMMON.RACF.

The CAT1-transactions have been secured within one group profile specified in the script CAT1JEDI, where-

as CAT2JEDI specifies groups containing CAT2-transactions. The CAT3JEDI also contains only one group that

secures the CAT3-transactions though they are exempt from any security check per default. A security check for

those transactions is only used for the QUERY SECURITY Command Security (see chapter 9 in [RSG03]).

MQSJEDI defines one member and two group profiles to secure CICS transactions supplied by MQSeries. With-

in USERJEDI some user-relevant transactions have been still secured as member profiles. All the profiles are

stored into the RACF database and in the main/virtual storage of JEDI OS/390-server.

6.4.4.3 Securing the IBM-supplied CAT1-transactions

Based on the CLIST CAT1JEDI it is described how to built such a script to add a security profile to the CICS

RACF group class (Listing 9 on the next page resp. Listing 56 on page 246). Line 1 of CAT1JEDI starts with the

CLIST command PROC. The number behind this command refers to the number of positional parameters to ex-

pect, 0 represents none. The CONTROL statement in line 29 introduces the main CLIST statements. Firstly, some

variables have been set within the lines 34-37 using the SET statement. The CAT1-transactions to be secured

192
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

have been summarised in the group profile CAT1 created with the RACF command RDEFINE (lines 41-50).

Within the parameter ADDMEM the transaction identifiers are added to the profile CAT1. Authorised users have

been added to the access list with the RACF command PERMIT in line 54. It is not needed to specify the AC-

CESS attribute together with an authority level, in case, a READ access is wanted as the level. Per default RACF

assigns the READ access. The authorised user – the CRU STCCICS – has been set in line 37 using the variable

ACCESSLIST. All messages to be displayed on the screen have been specified to the script using the CLIST

commands WRITE resp. WRITENR (line 52, 56-58). Within the ADDMEM parameter there have been listed only

the CAT1-transactions available on the CICS region A06C001. However, there are some more CAT1-transac-

tions IBM usually provides within the CICS installation. For more information about these missing transactions

and for a description of the function of the listed transactions refer to chapter 10 of [RSG03].

After the first time, this script has been successfully executed, the CICS resource class TCICSTRN needs to be

activated using the RACF command SETROPTS CLASSACT to activate the CICS-supplied transaction security

class TCICSTRN. Because the profiles should be stored in main/virtual storage the attribute RACLIST has been

also specified:

Example: SETROPTS CLASSACT(TCICSTRN) RACLIST(TCICSTRN)

Using this command activates also all other CICS general resource and stores them to the main/virtual storage

because they all have the same POSIT-number. Therefore, only one of the member classes needs to be refreshed

with the SETROPTS command after a profile – group or member – has been modified or added to the RACF

01 PROC 0
 ···
29 CONTROL MAIN ASIS
 ···
34 SET NOTIFY = NILSM
35 SET OWNER = SYS1
36 SET CLASSNAME = GCICSTRN
37 SET ACCESSLIST = STCCICS
 ···
41 RDEFINE &CLASSNAME CAT1 UACC(NONE) +
42 NOTIFY(&NOTIFY) +
43 OWNER(&OWNER) +
44 ADDMEM(CATA, CATD, CDBD, CDBF, CDBO, +
45 CDBQ, CDTS, CESC, CEX2, CFTS, +
46 CIOD, CIOF, CIOR, CITS, CMTS, +
47 CRMD, CRMF, CRSQ, CRSY, CSFU, +
48 CSKP, CSNC, CSNE, CSPQ, CSQC, +
49 CSTE, CSZI, CWBG, CWXN, CXCU, +
50 CXRE)
51
52 WRITENR CICS CAT1-Transactions have been defined to RACF.
53
54 PERMIT CAT1 CLASS(&CLASSNAME) ID(&ACCESSLIST)
55
56 WRITENR The specified users have now access to the CAT1-Transactions.
57 WRITE
58 WRITENR End of CAT1JEDI CLIST.

Listing 9: Extract from the CLIST CAT1JEDI stored in the data set CICS.COMMON.RACF

Securing CICS with RACF 193

database. For CICS general resource classes and POSIT-numbers refer to chapter 6.2.3 “Data set and general re-

source profiles” on page 164.

6.4.4.4 Securing the IBM-supplied CAT2-transactions

The sample DFH$CAT2 supplied in the library CICSTS13.CICS.SDFHSAMP can be used as a template to define

all the other transaction security profiles. From that script the CLIST CAT2JEDI has been created to secure the

CAT2-transactions containing ten group profiles stored to the GCICSTRN security class (cf. Listing 55, page

246): ALLUSER, CICSGAST, DBCTL, DEVELOPER, INQUIRE, INTERCOM, OPERATOR, PRAKT, SYSADM,

and WEBUSER. Table 13 on the next page lists all the profile groups consisting of some transactions defined

within the script CAT2JEDI. The profiles DBCTL and WEBUSER have been created to deny any access to trans-

actions specified within. Therefore, no access list has been defined to both profiles. The owner of all the created

profiles is the RACF super user group SYS1 (line 47, Listing 55). The access to the CAT2-transactions have been

given in necessity of the needs by the CICS users. The UACC parameter in all CAT2-transaction group profiles is

set to NONE except the one in the profile ALLUSER, where the universal access has been set to READ (lines 63-

66, Listing 55). The three transactions secured with this group profile are needed by all CICS terminal users. The

other CAT2-transactions are closed against a universal access. Only users added to the access list of the security

profiles with at least a READ authority are allowed to execute those transactions protected by the profiles.

The profile CICSGAST permits an access to transactions executable by the users of the GAST TSO/E-group

(lines 69-73, Listing 55) The GAST-users should only test the CICS environment, hence, they have gotten an ac-

cess to some special transactions which can demonstrate some capabilities of the system. The user group PRAKT

has an access to the transactions of the profiles DEVELOPER and PRAKT (lines 84-88, and 113-117, Listing 55).

Access to the transactions of the profile DEVELOPER also have the user groups ADMIN, and DIPLOM. Fur-

thermore, they have an access to the transactions of the profiles INQUIRE (lines 91-95, Listing 55), OPERATOR

(lines 105-109, Listing 55), and SYSADM (lines 120-124, Listing 55). The profile INTERCOM secures transac-

tions to be used for intercommunication within CICS. For future usage, the user group STCGRP containing some

of the important user IDs of applications running on OS/390 has been given the authority to initiate these transac-

tions.

Furthermore, there have been defined on the script CAT2JEDI two more profiles which should protect trans-

actions in the future. The members CDBC (interface menu transaction), CDBI (interface inquiry transaction),

CDBM (interface operator transaction), CDBT (interface disconnection transaction) have been specified for the

profile DBCTL (lines 85-89, Listing 55). These transactions should be protected, but no one needs them at this

time, so no one has an access. The last listed profile WEBUSER protecting the single transaction CWBA is also

protected by RACF but not accessible by any CICS user at this time (lines 137-141, Listing 55).

Profile Name Transaction ID Description

194
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

ALLUSER
CMAC CICS Messages And Codes transaction
CRTX Routing transaction
CSGM Good Morning transaction

CICSGAST

CEMT Master terminal transaction
CEOT Inquires on user's own terminal transaction
CMSG Message switching transaction
CWTO Write to operator transaction

PRAKT
CEMT, CEOT, CMSG, CWTO see profile CICSGAST

CEDA Dynamic add resources transaction
CEST Supervisor terminal transaction

INQUIRE
CDBI DB2 control interface (DBCTL) inquiry transaction
CEDC Transaction to view CICS resource definitions

OPERATOR

CEOT, CEST, CMSG, CWTO see profile PRAKT
CRTE Start of transaction routing sessions
CSFE Test field engineering terminal transaction
DSNC DB2 attachment facility transaction

SYSADM

CEDA, CEMT see profile PRAKT
CDBC DBCTL interface menu transaction
CESD Shutdown assist transaction
CETR Transaction for inquire and set trace options
CIND In-doubt test tool transaction

INTERCOM

CDFS Dynamic starts with interval transaction
CEHP CICS OS/2 remote server mirror transaction
CEHS CICS/VM remote server mirror transaction
CPMI CICS OS/2 LU6.2 mirror transaction
CSMI ISC mirror transaction
CSM1 ISC SYSMSG model transaction
CSM2 ISC scheduler model transaction
CSM3 ISC queue model transaction
CSM5 ISC DL/1 model transaction
CVMI LU6.2 synclevel 1 mirror transaction

Table 13: Profiles containing CAT2-transactions specified within the CLIST CAT2JEDI
(according to [RSG03], ch. 10)

6.4.4.5 Securing the IBM-supplied CAT3-transactions

The script CAT3JEDI defines one transaction security profile called CAT3 containing the CAT3-transactions

(cf. Listing 54, page 246). Because all these transactions must be accessible by all the CICS terminal users the

UACC parameter of the profile CAT3 has been set to READ as same as for the profile ALLUSER defined within

the script CAT2JEDI. Two important CICS transactions of the CAT3-transactions are the Sign-On and Sign-Off

transactions with the identifier CESN resp. CESF. If the users do not have an access to these transactions they

Securing CICS with RACF 195

cannot be sign on to the CICS terminal resp. sign off from it. Table 14 lists the transactions which have been ad-

ded to the transaction security profile CAT3:

Transaction ID Description

CSPP 3270 print support transaction
CSPG BMS terminal paging transaction
CSPS Scheduler for BMS terminal paging transaction

CLS1, CLS2, CLS3 ISC LU services model transactions
CLS4 Transaction to manage password expiry for ISC LU
CMPX Transaction to ship ISC local queuing
CRSR ISC remote scheduler transaction
CSSF Transaction to cancel CRTE (see profile Operator)
CXRT Transaction for the routing relay of transactions
CLQ2 Transaction for the outbound resynchronisation for APPC and MRO
CLR1 Transaction for the inbound resynchronisation for MRO
CLR2 Transaction for the inbound CNOS for APPC and MRO
CSRS Transaction for the synchronisation of the 3614 message
CESN Sign on transaction
CESF Sign off transaction
CEGN Goodnight transaction
CATR Transaction to delete the auto-installed restart terminal
CQRY Transaction to provide ATI query support
CSAC Transaction to process the program abnormal condition
CSCY Transaction to print the 3270 screen
CSPK Transaction to provide the 3270 screen print
CSRK Transaction to provide the 3270 screen print – release keyboard

Table 14: CAT3-transactions secured by the CLIST CAT3JEDI
(according to [RSG03], ch. 10)

6.4.4.6 Securing the MQSeries CICS transactions used for the NACT application

When the transaction security is enabled on the CICS region A06C001 the MQSeries CICS transactions should

also be secured. Because at this time, all the CICS transactions are accessible on the CICS region except the

IBM-supplied CICS transactions distinguished into CAT1-, CAT2, and CAT3-transactions. Within the script

MQSJEDI there are defined two group profiles called MQSeries and PLTMQS, and one member profile for the

MQSeries CICS DPL Bridge Task transaction CKBP (cf. Listing 55, page 246). The group profile MQSeries se-

cures the transactions to administer the MQSeries CICS adapter. Table 15 lists all the transactions of the profile

MQSeries with their descriptions. These transactions have been authorised for the user groups ADMIN and DIP-

LOM (lines 35-39, Listing 55).

Transaction ID Description

Profile MQSeries :

196
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

CKBM Transaction to open the MQSeries CICS adapter control initial panel
CKQC Same as CKBM
CKRT Transaction to return to the MQSeries CICS adapter control initial panel

Transactions executed from the MQSeries CICS adapter control panels:
CKCN Connects the MQSeries queue manager and the MQSeries CICS adapter
CKDL Starts the line mode display
CKDP Transaction for the full screen display
CKRS Displays some statistics
CKSD Disconnects the MQSeries queue manager from the MQSeries CICS adapter
CKSQ Start/stops the MQSeries CICS adapter resp. the transaction CKTI

Profile PLTMQS :

CKAM Handles unscheduled events (pending events) and generates messages to be sent to the
terminal console

CKBR Starts the MQSeries CICS BMT
CKTI Starts the MQSeries CICS Task Initiator

Profile CKBP :
CKBP Starts the MQSeries CICS BDT

Table 15: MQSeries-supplied CICS transactions secured by the CLIST MQSJEDI

The transaction security profile PLTMQS consists of the three CICS transactions CKAM, CKBR, and CKTI

(lines 42-45, Listing 55, and Table 15). These transactions are called when the MQSeries CICS adapter and

bridge are started during the CICS region initialisation. CKBR starts the MQSeries CICS Bridge Monitor Task

(BMT). In case a failure happens during the process, CKAM – the alert monitor of MQSeries – is called. For ex-

ample, it reconnects MQSeries and CICS after an MQSeries restart, if the automatic connection is activated.

CKTI monitors all the processes of the MQSeries CICS connection, for example it starts resp. monitors MQSer-

ies-supplied CICS transactions, for example when a message is put onto a specific queue. Because all these trans-

actions are referenced during the PLT-program STRTCKBR is loaded, the PLTPIU PLTCICS needs a READ ac-

cess to them (line 46, Listing 55). For defining the PLTPIU refer to chapter 6.3.5 “The PLTPIU” on page 177.

The PLT-program STRTCKBR is explained in chapter 5.4.2.5 “An automatic start job for the MQSeries CICS

Bridge” on page 109.

After the MQSeries CICS BMT is started by the transaction CKBR and a message is put onto the MQSeries

CICS Bridge queue the MQSeries CICS Bridge DPL Task (BDT) is initiated by the transaction CKBP (see Table

15). In case, no user ID has been specified in the message the MQSeries CICS BDT, the task always runs with

the LOCAL level of authentication. Contrary, if a user ID is specified in a message there can be used three more

levels – IDENTIFY, VERIFY_UOW, and VERIFY_ALL (refer to [RSG03], ch. 8.3.4.3, “Security considera-

tions for the CICS bridge”). The MQSeries CICS Bridge has been started in the CICS region A06C001 with the

LOCAL level of authentication. This means, that each CICS program run by the MQSeries CICS BDT is started

with the DCU. Hence, the DCU needs an access to the MQSeries CICS BDT started by the transaction CKBP.

This transaction has been secured by the transaction member profile CKBP. Consider, transaction member pro-

files must be stored in to the transaction security class TCICSTRN. The DCU C001DEF has been added to the

Securing CICS with RACF 197

access list (lines 50-53, Listing 55). It has also to be verified that the PLTPIU PLTCICS is the surrogate user of

the DCU, that is a must (refer to ch. 6.4.3 “The Surrogate User Security”, page 187).

6.4.4.7 Securing the transactions NACT and CSKL

Within the CLIST USERJEDI there have been defined two more member profiles – profile NACT secures the

CICS transaction NACT and profile CSKL secures the transaction for the CICS Socket Listener for TCP/IP

CSKL (cf. Listing 56, page 246). Both transaction profiles have been stored to the security class TCICSTRN.

READ access to the CICS transaction NACT have got the user groups ADMIN, DIPLOM, GAST, and PRAKT

(lines 36-39, Listing 56). Hence, they can initiate this transaction from the CICS terminal.

The CICS Socket Listener transaction CSKL that handles all inbound socket requests of the TCP/IP-protocol

has to be authorised for the PLTPIU PLTCICS because it is also started by a PLT-program (lines 42-46, Listing

56).

6.4.5 The CICS Command Security

6.4.5.1 The CICS Command Security Mechanism

Due to the problems with the CICS Transaction Security, as described in chapter 6.4.1 “Decision about useful

and necessary security mechanism” on page 185, there has been enabled the CICS Command Security. This

mechanism secures the so-called SP-type commands. Using the SIT-parameter XCMD=YES enables the CICS

Command Security Mechanism which is only activated when the SIT-parameter SEC is also enabled (cf. line 44,

Listing 51, page 245). Per default RACF loads the standard command security classes CCICSCMD for the com-

mand member profiles and VCICSCMD for the command group profiles. If there should be used own defined

command security classes they have to be named on this SIT-parameter.

All the SP-type commands are executable within the CEMT transaction or within a CICS application program

that calls a specified CICS resource. SP-type commands used in a CICS application are also named as EXEC

CICS commands. The subsets of the CEMT transaction CEBT, CEOT, and CEST use some but not all SP-type

commands. The transaction CECI uses the same command-level interpreter as CEMT to enter an EXEC CICS

command. All these transactions refer to the command security profiles stored within the CICS Command Secur-

ity. With the SP-type commands only predefined CICS resources can be accessed. It is only needed to define the

required authority level to these CICS resources to get an access to them, which can be one out of these three:

READ, UPDATE, and ALTER. Table 16 lists the SP-type commands with the required access to execute them.

For example, the INQUIRE command on a CICS resource can only be executed, when a READ access to the re-

quired CICS resource is permitted. For descriptions of CICS resources and how to secure them see next chapter.

Access permission Command name

198
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

READ COLLECT INQUIRE

UPDATE
DISABLE ENABLE EXTRACT

PERFORM RESYNC SET

ALTER CREATE (CEDA INSTALL) DISCARD

Table 16: Access required for SP-type commands

(according to [RSG03], ch. 8)

CICS Command Security applies also to transactions which have an enabled CMDSEC option in their trans-

action resource definition. If it is enabled and the transaction initiates an appropriate SP-type command, a com-

mand security check is always made on the security profiles stored within the command security classes CCIC-

SCMD resp. VCICSCMD. The CMDSEC parameter can also be set in the SIT globally. When specifying CMD-

SEC=ALWAYS in the SIT the transaction resource definition CMDSEC is set for all CICS transactions to CMD-

SEC=YES. However, this is not recommended because “invoking a command security check for every CICS

command consumes extra overhead that reduces the performance of all your transactions.” ([RSG03], ch. 8)

Setting CMDSEC=ASIS in the SIT implies that the security check has to obey the CMDSEC option in the trans-

action resource definition.

It is noticed, that a user who wants to execute an SP-type command within the CEMT, CEBT, CEOT, CEST,

CECI transactions as same as within transactions having an enabled CMDSEC option on their transaction re-

source definition must have the permission to initiate the transaction given by the CICS Transaction Security (see

chapter 6.4.4 “The CICS Transaction Security” on page 189).

6.4.5.2 Securing predefined CICS resources subject to CICS Command Security

The CLIST COM1JEDI stored in CICS.COMMON.RACF secures all the predefined CICS resources accessible

by the SP-type commands listed in Table 16 (cf. Listing 10 on the next page; for a full listing see also Listing 57

on page 246). The script starts with the obligatory CLIST commands PROC and CONTROL (lines 1&70) as de-

scribed in chapter 6.4.4.2 “Using security profiles to protect CICS transactions” on page 190. With the SET com-

mands (line 74-78) there have been set variables for the:

• owner of the profiles: OWNER=SYS1

• group class to store the profiles in: CLASSNAME=VCICSCMD

• access authority the following user access lists require: ALLUSER_ACCESS_LIST,

CMDUPD_ACCESS_LIST, and CMDALT_ACCESS_LIST.

The first security profile ALLUSER is created with the RACF command RDEFINE and is stored to the group

class VCICSCMD using the variable CLASSNAME (line 87). The ADDMEM parameter lists the CICS resource

identifiers accessible with the READ authority (lines 88-97). Such a READ authority have got the user groups

PRAKT, GAST, ADMIN, and DIPLOM (line 100). Hence, all the CICS terminal users can at least execute the SP-

Securing CICS with RACF 199

type commands to read a CICS resource. The section ACCESS(READ) in Table 17, which spreads from page

201 to 204, lists the CICS resources that can be accessed by all CICS users using the SP-type commands COL-

LECT and INQUIRE. Only the predefined CICS resource identifier STATISTICS can be used as an option with

the command COLLECT. For all other specified resource identifiers the INQUIRE command is used.

The second security profile is called CMDUPD and makes resources accessible for an update process

(line 106, Listing 10). Using the SP-type commands SET, PERFORM, ENABLE, DISABLE, EXTRACT, and RE-

SYNC to access a CICS resource requires the UPDATE authority. On the ADDMEM parameter in line 107 are spe-

cified the resource identifiers subject to the UPDATE authority. Access to the specified resources have got only

the user groups ADMIN and DIPLOM (line 114). Most of the resources accessible with INQUIRE command can

also be accessed with the SET command (Table 17). The PERFORM command can be executed on seven pre-

defined CICS resource identifiers, whereas the SP-type commands DISABLE, ENABLE, EXTRACT, and RE-

 01 PROC 0
 ···
 70 CONTROL MAIN ASIS /* LIST CONLIST SYMLIST
 ···
 74 SET OWNER = SYS1
 75 SET CLASSNAME = VCICSCMD
 76 SET ALLUSER_ACCESS_LIST = PRAKT,GAST,ADMIN,DIPLOM
 77 SET CMDUPD_ACCESS_LIST = ADMIN,DIPLOM
 78 SET CMDALT_ACCESS_LIST = ADMIN,DIPLOM
 ···
 87 RDEFINE &classname ALLUSER UACC(NONE) +
 88 ADDMEM(AUTINSTMODEL,AUTOINSTALL,CFDTPOOL,CONNECTION,DB2CONN, +
 89 DB2ENTRY,DB2TRAN,DELETSHIPPED,DOCTEMPLATE,DSNAME,DUMPDS, +
 90 ENQMODEL,EXITPROGRAM,FILE,IRC,IRBATCH,JOURNALMODEL, +
 91 JOURNALNAME,JOURNALNUM,LINE,MODENAME,MONITOR,PARTNER, +
 92 PROCESSTYPE,PROFILE,PROGRAM,REQID,REQUESTMODEL,RRMS, +
 93 STATISTICS,STORAGE,STREAMNAME,SUBPOOL,SYSDUMPCODE,SYSTEM, +
 94 SYSTEM,TASK,TCLASS,TCPIP,TCPIPSERVICE,TDQUEUE,TERMINAL, +
 95 TRACEDEST,TRACEFLAG,TRACETYPE,TRANDUMPCODE,TRANSACTION, +
 96 TSMODEL,TSPOOL,TSQUEUE,TSQNAME,UOW,UOWDSNFAIL,UOWENQ,UOWLINK,+
 97 VTAM,WEB) +
 98 OWNER(&OWNER)
 99
100 PERMIT ALLUSER CLASS(&classname) ID(&ALLUSER_ACCESS_LIST)
 ···
106 RDEFINE &classname CMDUPD UACC(NONE) +
107 ADDMEM(AUTOINSTALL,DELETSHIPPED,DOCTEMPLATE,DSNAME,DUMP,DUMPDS, +
108 EXITPROGRAM,IRC,LINE,MODENAME,MONITOR,REQUESTMODEL,RESETTIME,+
109 SECURITY,SHUTDOWN,STATISTICS,SYSDUMPCODE,SYSTEM,TASK,TCPIP, +
110 TRACEDEST,TRACEFLAG,TRACETYPE,TRANDUMPCODE,TSQNAME,UOW, +
111 UOWLINK,VTAM,WEB)+
112 OWNER(&OWNER)
113
114 PERMIT CMDUPD CLASS(&classname) ID(&CMDUPD_ACCESS_LIST) ACCESS(UPDATE)
 ···
120 RDEFINE &classname CMDALT UACC(NONE) +
121 ADDMEM(AUTINSTMODEL,CONNECTION,DB2CONN,DB2ENTRY,DB2TRAN,ENQMODEL, +
122 FILE,JOURNALMODEL,LSRPOOL,MAPSET,PARTITIONSET,PARTNER, +
123 PROCESSTYPE,PROFILE,PROGRAM,SESSIONS,TCLASS,TCPIPSERVICE, +
124 TDQUEUE,TERMINAL,TRANSACTION,TSMODEL,TYPETERM) +
125 OWNER(&owner)
126
127 PERMIT CMDALT CLASS(&classname) ID(&CMDALT_ACCESS_LIST) ACCESS(ALTER)
 ···

Listing 10: Extract from the CLIST COM1JEDI stored in the data set CICS.COMMON.RACF

200
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

SYNC can only be executed within some CICS resources which are secured by the resource identifier EXIT-

PROGRAM.

Not all the resource identifiers accessible with the UPDATE authority in the Table 17 has been added to the

member list of the profile CMDUPD because they should also be accessible by the user groups ADMIN and

DIPLOM issuing the two SP-type commands CREATE and DISCARD. For executing these both commands on a

CICS resource they require an ALTER access. The profile which secures these resources is called CMDALT (line

120, Listing 10). The predefined CICS resources added to the security profile are listed within the ADDMEM para-

meter in lines 121-124. Issuing the RACF command PERMIT gives both user groups the ALTER authority

(line 127).

Usually, the resource identifiers specified on the EXEC CICS commands matches the resource identifiers spe-

cified within the CEMT transaction. However, in some cases there are exceptions. These exceptions have been

marked bold in Table 17.

Another exception is the SP-type command CREATE used with the CEMT transaction. This command does

not exist for the transaction. It implies a CEDA INSTALL for which the user must have an ALTER access to the

resource. Hence, all those users can install resources to the CICS region if they may execute the CEDA transac-

tion. That are on the JEDI OS/390-server the user groups PRAKT, DIPLOM, and ADMIN. All these users may

create any resource using the transaction CEDA until this resource has been protected by its associated resource

security mechanism. When the several security mechanisms for the resources have been enabled, for example the

Started Transaction Security, the CICS Program Security, or the Journal Log Security mechanisms, and no secur-

ity profile for the started transactions or the CICS logs has been created, the user may not create any resource us-

ing CEDA. For the CICS programs it has to be enabled the parameter XPPT in the CICS region's SIT, for the

CICS started transactions the parameter XPCT, and for CICS DB2-Entries the parameter XDB2. In case, that

there exists a security profile for the resource and the user has an ALTER access to the resource profile, the user

can create it. Therefore, the creation of a resource does not depend on the permission the user has to the SP-type

commands, but it depends on the permission to the additional resource security profiles. However, they cannot

delete resp. discard the resource from the CSD because this procedure can only be done within the CEMT trans-

action and its SP-type command DISCARD. For using this command the user needs an ALTER access to the re-

sources subject to the SP-type command DISCARD, a lower access level blocks the creation.

Hence, the creation of a resource is always permitted until an explicit resource profile has been defined using

the resource security classes as described in chapter 6.4.1 “Decision about useful and necessary security mechan-

ism” on page 185. For further descriptions on how to activate the additional security mechanisms and create the

security profiles refer to [RSG03]; begin at chapter 6 “Resource security”.

Securing CICS with RACF 201

Resource to protect EXEC CICS command CEMT command Remarks

ACCESS (READ)
STATISTICS COLLECT STATISTICS ----

AUTINSTMODEL INQUIRE AUTINSTMODEL INQUIRE AUTINSTMODEL
AUTOINSTALL INQUIRE AUTOINSTALL INQUIRE AUTOINSTALL
CFDTPOOL INQUIRE CFDTPOOL INQUIRE CFDTPOOL
CONNECTION INQUIRE CONNECTION INQUIRE CONNECTION
DB2CONN INQUIRE DB2CONN INQUIRE DB2CONN
DB2ENTRY INQUIRE DB2ENTRY INQUIRE DB2ENTRY
DB2TRAN INQUIRE DB2TRAN INQUIRE DB2TRAN
DELETSHIPPED INQUIRE DELETSHIPPED INQUIRE DELETSHIPPED
DOCTEMPLATE INQUIRE DOCTEMPLATE INQUIRE DOCTEMPLATE
DSNAME INQUIRE DSNAME INQUIRE DSNAME
DUMPDS INQUIRE DUMPDS INQUIRE DUMPDS
ENQMODEL INQUIRE ENQMODEL INQUIRE ENQMODEL
EXITPROGRAM INQUIRE EXITPROGRAM ----
FILE INQUIRE FILE INQUIRE FILE

IRBATCH
INQUIRE EXCI INQUIRE EXCI
INQUIRE IRBATCH INQUIRE IRBATCH

Both can be used

IRC INQUIRE IRC INQUIRE IRC
JOURNALMODEL INQUIRE JOURNALMODEL INQUIRE JMODEL Spelling!
JOURNALNUM INQUIRE JOURNALNAME INQUIRE JOURNALNAME Resource name!
LINE ---- INQUIRE LINE
MODENAME INQUIRE MODENAME INQUIRE MODENAME
MONITOR INQUIRE MONITOR INQUIRE MONITOR
PARTNER INQUIRE PARTNER INQUIRE PARTNER
PROCESSTYPE INQUIRE PROCESSTYPE INQUIRE PROCESSTYPE
PROFILE INQUIRE PROFILE INQUIRE PROFILE
PROGRAM INQUIRE PROGRAM INQUIRE PROGRAM
REQID INQUIRE REQID ----
REQUESTMODEL INQUIRE REQUESTMODEL INQUIRE REQUESTMODEL
RRMS INQUIRE RRMS INQUIRE RRMS
STATISTICS INQUIRE STATISTICS INQUIRE STATISTICS
STORAGE INQUIRE STORAGE ----
STREAMNAME INQUIRE STREAMNAME INQUIRE STREAMNAME
SUBPOOL INQUIRE SUBPOOL ----
SYSDUMPCODE INQUIRE SYSDUMPCODE INQUIRE SYDUMPCODE Spelling!

SYSTEM
---- INQUIRE DSAS

INQUIRE SYSTEM INQUIRE SYSTEM
These options require access
to the same resource

TASK
INQUIRE TASK INQUIRE TASK
INQUIRE TASK LIST ----

Both can be used

TCLASS
INQUIRE TCLASS INQUIRE TCLASS
INQUIRE TRANCLASS ----

Both can be used

TCPIP INQUIRE TCPIP INQUIRE TCPIP
TCPIPSERVICE INQUIRE TCPIPSERVICE INQUIRE TCPIPSERVICE

TDQUEUE
INQUIRE QUEUE INQUIRE QUEUE
INQUIRE TDQUEUE INQUIRE TDQUEUE

Both can be used

TERMINAL
INQUIRE NETNAME INQUIRE NETNAME
INQUIRE TERMINAL INQUIRE TERMINAL

These options require access
to the same resource

Table 17: The CICS resources accessible by the SP-type commands (continued on next page)

202
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Resource to protect EXEC CICS command CEMT command Remarks

TERMINAL
INQUIRE NETNAME INQUIRE NETNAME
INQUIRE TERMINAL INQUIRE TERMINAL

These options require access
to the same resource

TRACEDEST

---- INQUIRE AUXTRACE
---- INQUIRE GTFTRACE
---- INQUIRE INTTRACE

INQUIRE TRACEDEST ----

These options require access

to the same resource

TRACEFLAG INQUIRE TRACEFLAG ----
TRACETYPE INQUIRE TRACETYPE ----
TRANDUMPCODE INQUIRE TRANDUMPCODE INQUIRE TRDUMPCODE Spelling!
TRANSACTION INQUIRE TRANSACTION INQUIRE TRANSACTION
TSMODEL INQUIRE TSMODEL INQUIRE TSMODEL
TSPOOL INQUIRE TSPOOL INQUIRE TSPOOL

TSQUEUE
INQUIRE TSQNAME INQUIRE TSQNAME
INQUIRE TSQUEUE INQUIRE TSQUEUE

Both can be used

UOW INQUIRE UOW INQUIRE UOW
UOWDSNFAIL INQUIRE UOWDSNFAIL INQUIRE UOWDSNFAIL

UOWENQ
INQUIRE ENQ INQUIRE ENQ
INQUIRE UOWENQ INQUIRE UOWENQ

Both can be used

UOWLINK INQUIRE UOWLINK INQUIRE UOWLINK
VOLUME INQUIRE VOLUME ----
VTAM INQUIRE VTAM INQUIRE VTAM
WEB INQUIRE WEB INQUIRE WEB

ACCESS (UPDATE)

EXITPROGRAM

ENABLE PROGRAM ----
DISABLE PROGRAM ----
EXTRACT EXIT ----
RESYNC ENTRYNAME ----

All options require access to

the specified resource.

CONNECTION PERFORM ENDAFFINITY
NETNAME

PERFORM ENDAFFINITY
NETNAME

DELETSHIPPED PERFORM DELETSHIPPED PERFORM DELETSHIPPED

DUMP
PERFORM DUMP PERFORM DUMP
---- PERFORM SNAP

Both can be used

RESETTIME PERFORM RESETTIME PERFORM RESET

SECURITY PERFORM SECURITY
REBUILD

PERFORM SECURITY (RE-
BUILD)

REBUILD in the CEMT
transaction is the default - it
can be omitted!

SHUTDOWN PERFORM SHUTDOWN PERFORM SHUTDOWN

STATISTICS PERFORM STATISTICS
RECORD

PERFORM STATISTICS (RE-
CORD)

RECORD in the CEMT
transaction is the default - it
can be omitted!

AUTOINSTALL SET AUTOINSTALL SET AUTOINSTALL
CONNECTION SET CONNECTION SET CONNECTION
DB2CONN SET DB2CONN SET DB2CONN
DB2ENTRY SET DB2ENTRY SET DB2ENTRY
DB2TRAN SET DB2TRAN SET DB2TRAN
DELETSHIPPED SET DELETSHIPPED SET DELETSHIPPED
DSNAME SET DSNAME SET DSNAME
DUMPDS SET DUMPDS SET DUMPDS

Securing CICS with RACF 203

Table 17: The CICS resources accessible by the SP-type commands (continued on next page)

Resource to protect EXEC CICS command CEMT command Remarks
ENQMODEL SET ENQMODEL SET ENQMODEL
FILE SET FILE SET FILE
IRC SET IRC SET IRC
JOURNALNUM SET JOURNALNAME SET JOURNALNAME Spelling!
LINE ---- SET LINE
MODENAME SET MODENAME SET MODENAME
MONITOR SET MONITOR SET MONITOR
PROCESSTYPE SET PROCESSTYPE SET PROCESSTYPE
PROGRAM SET PROGRAM SET PROGRAM
STATISTICS SET STATISTICS SET STATISTICS
SYSDUMPCODE SET SYSDUMPCODE SET SYDUMPCODE Spelling!

SYSTEM
---- SET DSAS

SET SYSTEM SET SYSTEM
These options require access
to the same resource

TASK SET TASK SET TASK

TCLASS
SET TCLASS SET TCLASS
SET TRANCLASS ----

Both can be used

TCPIP SET TCPIP SET TCPIP
TCPIPSERVICE SET TCPIPSERVICE SET TCPIPSERVICE

TDQUEUE
SET QUEUE SET QUEUE
SET TDQUEUE SET TDQUEUE

Both can be used

TERMINAL
SET NETNAME SET NETNAME
SET TERMINAL SET TERMINAL

TRACEDEST

---- SET AUXTRACE
---- SET GTFTRACE
---- SET INTTRACE

SET TRACEDEST ----

These options require access

to the same resource

TRACEFLAG SET TRACEFLAG ----
TRACETYPE SET TRACETYPE ----
TRANDUMPCODE SET TRANDUMPCODE SET TRDUMPCODE
TRANSACTION SET TRANSACTION SET TRANSACTION

TSQUEUE
SET TSQUEUE SET TSQUEUE
SET TSQNAME SET TSQNAME

Both can be used

UOW SET UOW SET UOW
UOWLINK SET UOWLINK SET UOWLINK
VTAM SET VTAM SET VTAM
WEB SET WEB SET WEB

ACCESS (ALTER)
CONNECTION CREATE CONNECTION CREATE CONNECTION
DB2CONN CREATE DB2CONN CREATE DB2CONN
DB2ENTRY CREATE DB2ENTRY CREATE DB2ENTRY
DB2TRAN CREATE DB2TRAN CREATE DB2TRAN
DOCTEMPLATE CREATE DOCTEMPLATE CREATE DOCTEMPLATE
ENQMODEL CREATE ENQMODEL CREATE ENQMODEL
FILE CREATE FILE CREATE FILE
JOURNALMODEL CREATE JOURNALMODEL CREATE JOURNALMODEL
LSRPOOL CREATE LSRPOOL CREATE LSRPOOL
MAPSET CREATE MAPSET CREATE MAPSET

204
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Table 17: The CICS resources accessible by the SP-type commands (continued on next page)

Resource to protect EXEC CICS command CEMT command Remarks

PARTITIONSET CREATE PARTITIONSET CREATE PARTITIONSET
PARTNER CREATE PARTNER CREATE PARTNER
PROCESSTYPE CREATE PROCESSTYPE CREATE PROCESSTYPE
PROFILE CREATE PROFILE CREATE PROFILE
PROGRAM CREATE PROGRAM CREATE PROGRAM
REQUESTMODEL CREATE REQUESTMODEL CREATE REQUESTMODEL
TCPIPSERVICE CREATE TCPIPSERVICE CREATE TCPIPSERVICE
TDQUEUE CREATE TDQUEUE CREATE TDQUEUE
TERMINAL CREATE TERMINAL CREATE TERMINAL
TRANCLASS CREATE TRANCLASS CREATE TRANCLASS
TRANSACTION CREATE TRANSACTION CREATE TRANSACTION
TSMODEL CREATE TSMODEL CREATE TSMODEL
TYPETERM CREATE TYPETERM CREATE TYPETERM

AUTINSTMODEL DISCARD AUTINSTMODEL DISCARD AUTINSTMODEL
CONNECTION DISCARD CONNECTION DISCARD CONNECTION
DB2CONN DISCARD DB2CONN DISCARD DB2CONN
DB2ENTRY DISCARD DB2ENTRY DISCARD DB2ENTRY
DB2TRAN DISCARD DB2TRAN DISCARD DB2TRAN
DOCTEMPLATE DISCARD DOCTEMPLATE DISCARD DOCTEMPLATE
ENQMODEL DISCARD ENQMODEL DISCARD ENQMODEL
FILE DISCARD FILE DISCARD FILE
JOURNALMODEL DISCARD JOURNALMODEL DISCARD JMODEL Spelling!
JOURNALNUM DISCARD JOURNALNAME DISCARD JOURNALNAME Spelling!
PARTNER DISCARD PARTNER DISCARD PARTNER
PROCESSTYPE DISCARD PROCESSTYPE DISCARD PROCESSTYPE
PROFILE DISCARD PROFILE DISCARD PROFILE
PROGRAM DISCARD PROGRAM DISCARD PROGRAM
REQUESTMODEL DISCARD REQUESTMODEL DISCARD REQUESTMODEL
TCPIPSERVICE DISCARD TCPIPSERVICE DISCARD TCPIPSERVICE

TDQUEUE
DISCARD QUEUE DISCARD QUEUE
DISCARD TDQUEUE DISCARD TDQUEUE

Both can be used

TERMINAL DISCARD TERMINAL DISCARD TERMINAL
TRANCLASS DISCARD TRANCLASS DISCARD TCLASS Spelling!
TRANSACTION DISCARD TRANSACTION DISCARD TRANSACTION
TSMODEL DISCARD TSMODEL DISCARD TSMODEL

Table 17: The CICS resources accessible by the SP-type commands

(corrected version in contrast to [RSG03], ch. 8)

Securing CICS with RACF 205

6.5 Authorising access to the CICS region

As an additional security option the CICS region must also be protected against its assigned application identifi-

er. The access to the CICS region A06C001 is restricted by a security profile stored in the IBM-supplied RACF

general resource class APPL. This profile must have the same name as the application identifier specified within

the SIT-parameter APPLID. Each time the CICS region calls RACF to verify a sign-on, the CICS region's AP-

PLID is passed to RACF. The security manager checks whether such a profile exists, and if yes, it is checked

whether the user is permitted to access it. If the user may access the profile, RACF allows the sign-on to the

CICS region.

However, the application identifier must be firstly defined in the CICS region's SIT definition script C001

within the APPLID parameter (cf. Listing 51, page 245):

Script C001:

08 APPLID=A06C001, APPLICATION NAME OF THE CICS REGION

As next, the APPL general resource profile A06C001 has to be defined to the resource class APPL using the

RACF command RDEFINE (RDEF):

RDEFINE APPL CICS_region_appl_id NOTIFY(user_id) OWNER(owner_id) +

UACC(NONE)

Example: RDEFINE APPL A06C001 NOTIFY(TBUSSE) OWNER(IBMUSER) +

UACC(NONE)

Following users/groups need an access to the APPL general resource profile A06C001 – ADMIN, DIPLOM,

PRAKT, and GAST as groups and the user IDs STCCICS, C001DEF, PLTCICS, and additionally STCJGATE as

the user ID for the CICS Transaction Gateway. If the CRU and DCU have not been added to the access list of the

profile A06C001 it is impossible to start the CICS region. The RACF command PERMIT adds the users/groups

to the access list of the APPL general resource profile. The users/groups need only a READ access to the profile:

Example: PERMIT A06C001 Class(APPL) ID(ADMIN,DIPLOM,GAST,PRAKT, +

C001DEF,STCCICS,PLTCICS,STCJGATE) ACCESS(READ)

After the general resource profile has been added and the access list for it is created, the information of the

profile can be listed with the RACF command RLIST (RL):

RLIST class_name profile_name all

Example: RLIST APPL A06C001 all

Before the profile can be used it has to be activated if it was not done previously:

206
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

SETROPTS CLASSACT(APPL) or

SETROPTS CLASSACT(APPL) RACLIST(APPL)

When the profile A06C001 is saved to the main/virtual storage (already defined and activated), it is not neces-

sary to activate the class again, it should only be refreshed:

SETROPTS RACLIST(APPL) REFRESH

Securing CICS with RACF 207

6.6 Adjust the LOGIN terminal to pass capital letters to RACF

RACF recognises only upper case alphabetic characters. However, when a user wants to sign on to the CICS re-

gion, it could be possible that the data is passed to RACF as entered without converting the characters into upper

case. The result is, that RACF denies the access. User IDs and passwords specified in the CESN transaction are

only translated to upper case when the UCTRAN(YES) attribute is specified in the PROFILE resource definition

of the transaction CESN.

For converting the characters into upper case a new profile called AAACICST has been created for the sign on

transaction CESN. This profile has been copied from the original profile DFHCICST that CESN used by then. To

get the information which profile the transaction CESN uses the transaction definition is searched for the profile

name using following command:

CEDA DISP TRANS(CESN) GR(*)

Figure 78 on the next page lists the transaction definition CESN stored to the group DFHSIGN which is

opened using the command VIEW (shortcut: v). This panel is searched for the profile the transaction uses – DF-

HCICST (Figure 79, next page). Both – CESN as a CICS supplied transaction stored in the group DFHSIGN and

DFHCICST as a CICS supplied profile stored in the group DFHSTAND – cannot be modified until they have

been copied into a new group. CICS does not allow any modifying of resources beginning with the string DFH or

stored to groups beginning with that string. After the profile name is known, the transaction CESN as CESN and

the profile definition DFHCICST as AAACICST have been copied into a new CICS resource group, for example

TYPENEU (Figure 80 & Figure 81, both on page 209). If such a CICS resource group does not yet exist, CICS

creates it new by taking the letters from the parameter to(…).

When issuing CEDA DISPLAY GR(TYPENEU) the content of the new group TYPENEU is displayed (Fig-

ure 82,page 210). The profile AAACICST can be modified when the command ALTER (shortcut: a) is specified

behind the resource name. This opens the alter panel to set the UCTRAN attribute to YES (Figure 83, page 210).

Afterwards, this profile name has to be specified to the transaction definition of CESN on its parameter PRO-

FILE (Figure 84, page 211). Before the UCTRAN parameter is activated, both resource definitions need to be in-

stalled to the CSD using the CEDA INSTALL GROUP command. CICS now converts all lower cases characters

to upper case on the sign-on terminal.

208
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

 DISP TRANS(CESN) GR(*)
 ENTER COMMANDS
 NAME TYPE GROUP DATE TIME
 CESN TRANSACTION DFHSIGN v 99.232 12.12.27

 SYSID=C001 APPLID=A06C001
 RESULTS: 1 TO 1 OF 1 TIME: 17.54.29 DATE: 03.265
 PF 1 HELP 3 END 4 TOP 5 BOT 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 78: Search for the transaction CESN – CEDA TRANS(CESN) DISP GR(*)

 OBJECT CHARACTERISTICS CICS RELEASE = 0530
 CEDA View TRANSaction(CESN)
 TRANSaction : CESN
 Group : DFHSIGN
 DEscription :
 PROGram : DFHSNP
 TWasize : 00000 0-32767
 PROFile : DFHCICST
 PArtitionset :
 STAtus : Enabled Enabled | Disabled
 PRIMedsize : 00000 0-65520
 TASKDATALoc : Below Below | Any
 TASKDATAKey : Cics User | Cics
 STOrageclear : No No | Yes
 RUnaway : System System | 0 | 500-2700000
 SHutdown : Disabled Disabled | Enabled
 ISolate : Yes Yes | No
 Brexit :
 + REMOTE ATTRIBUTES

 SYSID=C001 APPLID=A06C001

 PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 79: Display the transaction CEDA using DISP TRANS(CESN) GR(DFHSIGN)

Securing CICS with RACF 209

 disp trans(CESN) gr(*)
 ENTER COMMANDS
 NAME TYPE GROUP DATE TIME
 CESN TRANSACTION DFHSIGN c as(CESN) to(TYPENEU) 99.232 12.12.27

 SYSID=C001 APPLID=A06C001
 RESULTS: 1 TO 1 OF 1 TIME: 17.58.41 DATE: 03.265
 PF 1 HELP 3 END 4 TOP 5 BOT 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 80: Copy the transaction definition to the new group TYPENEU

 disp profile(DFHCICST) gr(*)
 ENTER COMMANDS
 NAME TYPE GROUP DATE TIME
 DFHCICST PROFILE DFHSTAND c as(AAACICST) to(TYPENEU) 99.232 12.12.29

 SYSID=C001 APPLID=A06C001
 RESULTS: 1 TO 1 OF 1 TIME: 18.01.14 DATE: 03.265
 PF 1 HELP 3 END 4 TOP 5 BOT 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 81: Copy the profile definition to the new group TYPENEU as AAACICST

210
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

 disp gr(TYPENEU)
 ENTER COMMANDS
 NAME TYPE GROUP DATE TIME
 AAACICST PROFILE TYPENEU a 03.265 18.01.16
 CESN TRANSACTION TYPENEU 03.265 17.48.51

 SYSID=C001 APPLID=A06C001
 RESULTS: 1 TO 4 OF 4 TIME: 18.00.45 DATE: 03.065
 PF 1 HELP 3 END 4 TOP 5 BOT 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 82: Display the contents of the group TYPENEU

 OBJECT CHARACTERISTICS CICS RELEASE = 0530
 CEDA ALter PROFile(AAACICST)
 PROFile : AAACICST
 Group : TYPENEU
 DEscription : PROFILE FOR SIGN-ON SCREEN
 Scrnsize : Default Default | Alternate
 Uctran : Yes No | Yes
 MOdename :
 Facilitylike :
 PRIntercomp : No No | Yes
 JOURNALLING
 Journal : No No | 1-99
 MSGJrnl : No No | INPut | Output | INOut
 PROTECTION
 MSGInteg : No No | Yes
 Onewte : No No | Yes
 PROtect : No No | Yes
 Chaincontrol : No No | Yes
+ PROTOCOLS

 SYSID=C001 APPLID=A06C001

 PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 83: Modify UCTRAN from NO to YES

Securing CICS with RACF 211

 OVERTYPE TO MODIFY CICS RELEASE = 0530
 CEDA ALter TRANSaction(CESN)
 TRANSaction : CESN
 Group : TYPENEU
 DEscription ==> THE SIGN-ON TRANSACTION
 PROGram ==> DFHSNP
 TWasize ==> 00000 0-32767
 PROFile ==> AAACICST
 PArtitionset ==>
 STAtus ==> Enabled Enabled | Disabled
 PRIMedsize : 00000 0-65520
 TASKDATALoc ==> Below Below | Any
 TASKDATAKey ==> Cics User | Cics
 STOrageclear ==> No No | Yes
 RUnaway ==> System System | 0 | 500-2700000
 SHutdown ==> Disabled Disabled | Enabled
 ISolate ==> Yes Yes | No
 Brexit ==>
 + REMOTE ATTRIBUTES

 SYSID=C001 APPLID=A06C001

 PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 84: Modify the profile name to the new one

7 SUMMARY AND FURTHER WORK

7.1 Summary

In this master thesis we have built two operational on-line business applications called NACT and MQNACT.

Both represent a little clip of a customer account program how it could be used in a bank to create, read, update,

and delete a customer account and its information (MQNACT only supports reading an account record). Addi-

tionally, the account records can be browsed by NACT for the names of the customers. All these customer ac-

counts are saved to a database-like file on an S/390 architectural computer system. Like each application it con-

sists of a business logic and a presentation logic part. Stored on the OS/390-server the programs of the business

logic written in COBOL are accessed on-line using two different methods. This on-line accessing is handled by

IBM's OLTP system CICS which runs on the OS/390-server. Therefore, the business logic programs consist of

some special CICS COBOL commands. The first method uses the transaction monitor itself to display the cus-

tomer information. The results are displayed by a CICS presentation logic program, also written in COBOL, on

the CICS terminal screen using the 3270 interface. Within the second technique, presentation logic programs

written in JAVA access the customer accounts on the OS/390-server using IBM's middleware product MQSeries.

The results of this request can be displayed on each computer system that supports JAVA resp. has installed a

JVM, here, the WINDOWS2000 environment has been used.

Because the programs for the CICS application NACT are provided by a CD – pure and compiled – they have

been uploaded onto the OS/390-server using the FTP protocol. The text then describes both – the presentation

and the business logic of the CICS application. The CICS presentation logic consists of the programs NACT01

and NACT03. NACT01 is used to display the results on the CICS terminal screen, whereas NACT03 can be used

to print the customer information. However, the presentation logic not only consists of these two CICS COBOL

programs. An additional file, a map set called NACTSET, is needed to create the design of the CICS application

for the CICS terminal screen. This map set is written with BMS. When the required data is entered in the input

fields of NACT on a CICS terminal it is sent by NACT01 to the business logic programs where the request is pro-

cessed. As a result, an information appropriate to the request is sent back to NACT01 and is listed on the terminal

screen using the “map set mask”. NACT03 also uses the map set to send the response data to a printer connected

with the OS/390-server. The three programs of the business logic are distinguished into: NACT02 – the so-called

CRUD program, that creates, reads, updates, and deletes an account; NACT05 – the browse program to search ac-

counts by the customer's name. As part of the CICS business logic, the error handling program NACT04 takes up

an exceptional position. This program is always called in case of a sudden occurred problem whether it is initi-

214
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

ated by the presentation logic programs NACT01 or NACT03 or by the business logic programs NACT02 and

NACT05.

For exchanging the data between the CICS COBOL programs there are used different storage areas of

OS/390. The most important and interesting storage area that is used by the CICS COBOL programs is called

COMMAREA. This scratchpad facility transfers not only data between programs of one transaction but also

between programs of many transactions.

Instead using a database, there has been chosen to save all the customer information to a special OS/390 file

type. Such a VSAM KSDS is predefined and delivered within OS/390 and stores information using the key-se-

quenced method. The customer account number has been chosen as the key under which the information is to be

stored. The file that contains these customer account information has been called as the account file. From this

file there has been created a browse file which arrange the customer accounts by their names. Each time a cus-

tomer record in the account file is updated, a lock file is created to prevent the account file from concurrent up-

dates. The first time, the account file has been filled by predefined customer data, also published within the CD.

Before NACT can be used on the CICS terminal a few CICS resource definitions have to be set up. These

definitions have been added to the CSD and create entries for the five CICS COBOL programs, for the one map

set, for the three file objects, and, of course, for the two transactions; one starts the screen application, the other

the print procedure.

After the CICS application NACT has been installed and runs properly on the CICS terminal, a new applica-

tion called MQNACT has been created that runs outside a CICS terminal. It uses message and queuing to transfer

data between OS/390 and WINDOWS2000 resp. CICS and JVM. MQNACT also accesses the customer accounts

stored on the OS/390-server for a read process only. It consists of the CICS business logic originally created for

the CICS application NACT and of a presentation logic component created for the JVM. This JAVA application,

in turn, consists of a GUI logic that uses the SWING package and of the MQSeries communication logic that

sends the request data to a specified WINDOWS2000-client queue manager and gets the response data back from

it. The data is transferred to another QM residing on the MQSeries server on OS/390 called OS/390-server queue

manager. For this transport procedure some QM objects, for instance, message queues and message channels,

have to be created on the QMs. Each QM has got a transmission queue, a reply-to queue, a remote queue defini-

tion, and a dead letter queue. These queue stores the data until transmission by message channels. Since each QM

needs a channel sender to send data and an appropriate channel receiver, both have been created. Additionally,

there has been added a server connection for the communication between the JAVA application and MQSeries to

the WINDOWS2000-client queue manager. The JAVA application requests the CICS business logic program

NACT02 which accesses the customer records. For transferring the data from the OS/390-server queue manager

to the CICS COBOL program a specific connection, the MQSeries CICS Bridge, is needed and has been in-

stalled. For starting this bridge automatically each time CICS starts up, a script has been created, compiled, and

added to the CICS start up jobs.

Summary and Further Work 215

Within the last topic we have described how to secure the CICS region A06C001 using the ESM RACF. Each

time CICS calls RACF for a security decision it compares the entries in its database to give only a secured access

to the CICS region and its resources. CICS resources are subdivided into general resources and data sets. For

each of both, there exist special RACF mechanisms to secure the resources. They are classified into Data Set Pro-

tection, CICS Transaction Security, and CICS Command Security. Other mechanisms as the Terminal User Se-

curity and Surrogate User Security are RACF-supplied mechanisms. Each of these mechanisms uses RACF se-

curity profiles stored into special resource classes. The Terminal User Security mechanism controls whether a

user is defined to RACF resp. has an appropriate user profile stored to the RACF database. After the users, who

require an access to CICS and its resources, were identified, some required user IDs for the CICS region have

been created – the CRU, the DCU, and the PLTPIU. Because the CRU has to act as a surrogate user for the DCU

and PLTPIU, the Surrogate User Security mechanism has been used to define appropriate surrogate user profiles.

Before any user may access the CICS region an appropriate authority to the region's APPLID must be added to

its general resource class.

The Data Set Protection mechanism secures the CICS region data sets using data set security profiles stored

to the RACF database. As part of the CICS general resources the transactions and the SP-type commands are se-

cured by security mechanisms only available for CICS. The CICS Transaction Security secures the transactions

distinguished into three categories (CAT) – CAT1-, CAT2-, and CAT3-transactions. CAT1-transactions are

called as CICS internal transactions to which only the CRU requires an access. Transactions that should not be

executed by everybody are called CAT2-transactions, whereas CAT3-transaction are exempt from any security

check. For each of these transactions, IBM-supplied or user-installed, there have been defined the security pro-

files within CLISTs. The CLISTs CATxJEDI (x=1,2,3) hold the member and group profiles for the CATx-trans-

actions supplied by CICS. For defining the security profiles for the user-installed transactions there have been

created own CLISTs called MQSJEDI and USERJEDI. A CICS transaction can be executed when the user has a

minimum READ access, a higher access is not needed.

The CICS Command Security secures the SP-type commands that can only be executed within the special

CICS-supplied transaction CEMT, CEMT-depended transactions, or within CICS application programs that use

these SP-type commands on the EXEC CICS statement. With the SP-type commands only predefined CICS re-

sources can be accessed. It is only needed to define the required authority level to these CICS resources to get an

access to them. These CICS resources and their access permission by the SP-type commands are secured within

the CLIST COM1JEDI.

For managing the RACF database special commands are used. These RACF commands are distinguished into

commands used for user profiles, user group profiles, data set profiles and general resource profiles. Some in-

formation required for RACF is stored within parameters in the CICS region SIT. Into this table some new secur-

ity related entries for the region have been added, for example, the names of the DCU, and PLTPIU. The CICS

RACF security mechanisms are also activated by SIT-parameters as same as own defined class names for the se-

curity profiles can be set on the associated parameters. Last but not least, the CICS login terminal has been suited

216
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

properly to convert the characters entered on the sign on screen into upper case characters because RACF only

recognises them.

Furthermore, this master thesis is introduced by two chapters explaining some facts of the Operating Sys-

tem /390 and of the OLTP system CICS. There have been also given some facts about the MOM system MQSer-

ies.

7.2 Further Work

An interesting point for further work is to write the business logic in other programming languages as for ex-

ample in JAVA, or using object oriented languages as C++, C#, or Object COBOL. This could result in a com-

parision of the performance of these new created business logic programs with the existing ones. Instead using

the COMMAREA as a storage area for exchange data, the TWA could be used for programs executed within one

transaction. Only for the transmission between transactions the COMMAREA should then be used.

As another extension, the customer accounts could be stored onto a real database managed by a database sys-

tem, for example DB/2, to increase the information contents. Using this database system requires no more an ad-

ditional browse file, browsing can be done within this one file. Some more customer informations could also be

added to the database as same as using the bank application as a real one with adding money to an account, and

withdraw money from an account.

Since the IMS/DB system is also a common transaction system used in industries worldwide, the business ap-

plication could be implemented to use its transaction monitor. This implies also a comparison with the CICS

transaction monitor.

It could be also interesting to implement a real credit card banking as a new feature to the application. A cred-

it card double could be used on an ATM-like machine to demonstrate the hardware facilities.

The presentation logic could also be written in other languages, but a bit more interesting is to use other trans-

fer mechanisms to work with the customer accounts stored on the OS/390-server. For example, the CICS Trans-

action Gateway, or EJBeans could be used. Afterwards, a comparison between these methods could be created.

As seen, the generic profile ** in class TCICSTRN should not be used. It is better to use for each transaction

an own security profile or add it to an existing profile. Otherwise, all users have an access to all the transactions

not secured by security profiles. Furthermore, transactions created by students should always begins with the let-

ter P for a better security administration.

BIBLIOGRAPHY
[HAC99] Hoskins, Jim ; Coleman, George: Exploring IBM S/390 Computers. 6th Edition, Gulf Breeze :

Maximum Press, 1999. - ISBN 1-885068-30-1

[HAF01] Hoskins, Jim ; Frank, Bob: Exploring IBM ?server zSeries and S/390 Servers. 7th Edition, Gulf

Breeze : Maximum Press, 2001. - ISBN 1-885068-89-1

[HKS04] Herrmann, Paul ; Kebschull, Udo ; Spruth, Wilhelm G.: Einführung in z-OS und OS-390 :

Web-Services und Internet-Anwendungen für Mainframes. 2nd Edition, München ; Wien : Oldenbourg, 2004. -

ISBN 3-486-27393-0

[HOR00] Horswill, John: Designing & Programming CICS Applications. 1st Edition, Beijing,

Cambridge, Farnham, Köln, Paris, Sebastopol, Taipai, Tokyo : O'Reilly & Associates, Inc., 2000. - ISBN 1-

56592-676-5

[SPR77] Spruth, Wilhelm G.: Interaktive Systeme : Strukturen, Methoden, Stand d. Technik. Stuttgart,

Chicago, Palo Alto, Toronto, Henley-on-Thames, Sydney, Paris : SRA, Science Research Associates GmbH,

1977. - ISBN 3-921439-15-9

[YOU01] Young, Casey: Exploring IBM e-business Software : Become an Instant Insider on IBM's

Internet Business Tools. 1st Edition, Gulf Breeze : Maximum Press, 2001. - ISBN 1-885068-58-1

[FAL01] Falissard, Thierry: MVS... a long history : A history of IBM's most powerful and reliable

operating system. , 2002. URL: http://www.os390-mvs.freesurf.fr/mvshist.htm - last referenced to:

31.07.2004CD: pubs\lecpap\FAL01\mvshist.htm

[GUS01] Guski, Richard ; Dayka, John C. ; Distel, Linda N. ; Farrell, Walter B. ; Gdaniec, Karen A. ;

Kelly, Michael J. ; Nelson, Mark A. ; Overby, Linwood H. ; Robinson, Linwood G.: Security on z/OS:

Comprehensive, current, and flexible. IBM Corporation, 2001. URL:

http://www.research.ibm.com/journal/sj/403/guski.html - last referenced to: 9.2.2004CD:

pubs\lecpap\GUS01\guski.html

[HEN03] Henderson, Stuart C.: RACF Users' News # 61 : April, 2003 Newsletter. , 2003. URL:

http://www.stuhenderson.com/RUGNEW61.HTM - CD: pubs\lecpap\HEN03\RUGNEW61.HTM

[MOS03] Moseley, Jay: VSAM Tutorial. private, 2003. URL:

http://jaymoseley.com/hercules/vstutor/vstutor.htm - last referenced to: 5.2.2004CD:

pubs\lecpap\MOS03\vstutor.htm

[YEL01] Yelavich, Bob: A Brief History of CICS. , 2004. URL: http://www.yelavich.com/cicshist.htm -

last referenced to: 31.07.2004CD: pubs\lecpap\YEL02\cicshist.htm

218
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

[YEL02] Yelavich, Bob: The Evolution of CICS: CICS - State of the Art (1993). , 2003. URL:

http://www.yelavich.com/history/ev199203.htm - last referenced to: 31.07.2004CD:

pubs\lecpap\YEL03\ev199203.htm

[YEL03] Yelavich, Bob: The Evolution of CICS: Five Important Concepts (1968-2003). , 2003. URL:

http://www.yelavich.com/history/ev196801.htm - last referenced to: 31.07.2004CD:

pubs\lecpap\YEL01\ev196801.htm

[AMI00] IBM CORPORATION (Publ.): MQSeries : Application Messaging Interface. 5th Edition, 2000. -

IBM No. SC34-5604-04 CD: no pdf versionpubs\books\amtyak03.boo

[AMQ95] IBM CORPORATION (Publ.): MQSeries : An Introduction to Messaging and Queuing. 2nd

Edition, 1995. - IBM No. GC33-0805-01 CD: no pdf versionpubs\books\h0raa101.boo

[APG03] IBM CORPORATION (Publ.): CICS Application Programming Guide. 11th Edition, 2003. - IBM

No. SC33-1687-40 CD: no pdf versionpubs\books\dfhjap3b.boo

[APP90] IBM CORPORATION (Publ.): CICS Application Programming Primer. 1st Edition, 1990. - IBM

No. SC33-0674-01 CD: no pdf versionpubs\books\dfhzp104.boo

[APR03] IBM CORPORATION (Publ.): CICS Application Programming Reference. 12th Edition, 2003. -

IBM No. SC33-1688-40 CD: no pdf versionpubs\books\dfhjap4c.boo

[CIG00] IBM CORPORATION (Publ.): OS/390 : Security Server (RACF) : Installation Guide. 5th Edition,

2000. - IBM No. GC33-1681-35 CD: pubs\books\dfhjaa17.pdfpubs\books\dfhjaa17.boo

[CLI00] IBM CORPORATION (Publ.): MQSeries : Clients. 10th Edition, 2000. - IBM No. GC33-1632-09

CD: pubs\books\csqzaf05.pdfpubs\books\csqzaf05.boo

[CSB98] IBM CORPORATION (Publ.): OS/390 : Security Server (RACF) : Command Syntax Booklet 6th

Edition, 1998. - IBM No. SX23-0027-05 CD: pubs\books\ich1b105.pdfpubs\books\ich1b105.pdf

[CUH00] IBM CORPORATION (Publ.): CICS Transaction Server for OS/390 : CICS User's Handbook. 7th

Edition, 2000. - IBM No. SX33-6104-35 CD: no pdf versionpubs\books\dfhjag36.boo

[ES1011] IBM CORPORATION (Publ.): The Enterprise Server Academic Program : ES1011 - Introduction

to Enterprise Servers and Operating Systems. 2000. CD: h t t p : / / w w w -

306.ibm.com/software/info/university/

[ICM00] IBM CORPORATION (Publ.): MQSeries : Intercommunication. 4th Edition, 2000. - IBM No.

SC33-1872-03 CD: pubs\books\csqzae03.pdfpubs\books\csqzae03.boo

[IRG99] IBM CORPORATION (Publ.): OS/390 : Introduction and Release Guide : Release 7. 7th Edition,

1999. - IBM No. GC28-1725-06 CD: pubs\books\e0z1a120.pdfpubs\books\e0z1a120.boo

[MCR00] IBM CORPORATION (Publ.): MQSeries : MQSC Command Reference. 14th Edition, 2000. - IBM

No. SC33-1369-13 CD: no pdf versionpubs\books\csqzaj05.boo

[MQI94] IBM CORPORATION (Publ.): MQSeries : Message Queue Interface Technical Reference. 3rd

Edition, 1994. - IBM No. SC33-0850-02 CD: no pdf versionpubs\books\h0raa202.boo

[MSS99] IBM CORPORATION (Publ.): OS/390 : MVS Setting Up a Sysplex. 7th Edition, 1999. - IBM No.

GC28-1779-06 CD: pubs\books\iea1f110.pdfpubs\books\iea1f110.boo

Bibliography 219

[MUJ00] IBM CORPORATION (Publ.): MQSeries : Using Java(TM) 5th Edition, 2000. - IBM No. SC34-

5456-04 CD: no pdf versionpubs\books\csqzaw04.boo

[OBP96] IBM CORPORATION (Publ.): Introduction to the Open Blueprint: A Guide to Distributed

Computing. 3rd Edition, 1996. - IBM No. G326-0395-02 CD: no pdf versionpubs\books\id1a1000.boo

[QMC00] IBM CORPORATION (Publ.): MQSeries : Queue Manager Clusters. 2nd Edition, 2000. - IBM No.

SC34-5349-01 CD: pubs\books\csqzah01.pdfpubs\books\csqzah01.boo

[RAG98] IBM CORPORATION (Publ.): OS/390 : Security Server (RACF) : Auditor's Guide. 6th Edition,

1998. - IBM No. SC28-1916-05 CD: pubs\books\ich1a805.pdfpubs\books\ich1a805.boo

[RCR98] IBM CORPORATION (Publ.): OS/390 : Security Server (RACF) : Command Language Reference .

6th Edition, 1998. - IBM No. SC28-1919-05 CD: pubs\books\ich1a405.pdfpubs\books\ich1a405.boo

[RDG03] IBM CORPORATION (Publ.): CICS Transaction Server for OS/390 : CICS Resource Definition

Guide. 15th Edition, 2003. - IBM No. SC33-1684-44 CD: no pdf versionpubs\books\dfhjaa4f.boo

[RMI98] IBM CORPORATION (Publ.): OS/390 : Security Server (RACF) : Macros and Interfaces. 6th

Edition, 1998. - IBM No. SC28-1914-05 CD: pubs\books\ich1a305.pdfpubs\books\ich1a305.boo

[RSA98] IBM CORPORATION (Publ.): OS/390 : Security Server (RACF) : Security Administrator's Guide.

6th Edition, 1998. - IBM No. SC28-1915-05 CD: pubs\books\ich1a705.pdfpubs\books\ich1a705.boo

[RSG03] IBM CORPORATION (Publ.): CICS Transaction Server for OS/390 : CICS RACF Security Guide.

12th Edition, 2003. - IBM No. SC33-1701-40 CD: no pdf versionpubs\books\dfjat5b.boo

[RUG98] IBM CORPORATION (Publ.): OS/390 : Security Server (RACF) : General User's Guide. 6th

Edition, 1998. - IBM No. SC28-1917-05 CD: pubs\books\ich1a105.pdfpubs\books\ich1a105.boo

[SDG03] IBM CORPORATION (Publ.): CICS Transaction Server for OS/390 : CICS System Definition

Guide. 7th Edition, 2003. - IBM No. SC33-1682-44 CD: no pdf versionpubs\books\dfhjaa2g.boo

[SMQ99] IBM CORPORATION (Publ.): MQSeries for OS/390 : System Management Guide. 2nd Edition,

1999. - IBM No. SC34-5374-01 CD: no pdf versionpubs\books\csqrap01.boo

[TEC99] IBM CORPORATION (Publ.): OS/390 : TSO/E CLISTs. 3rd Edition, 1999. - IBM No. SC28-1973-

02 CD: pubs\books\ikj3b803.pdfpubs\books\ikj3b803.boo

[UDS00] IBM CORPORATION (Publ.): OS/390 : DFSMS: Using Data Sets. 2nd Edition, 2000. - IBM No.

SC26-7339-01 CD: pubs\books\dgt1d411.pdfpubs\books\dgt1d411.boo

APPENDICES

APPENDIX A
The CICS Business Application NACT

A.1 Defining an SDS template using ISPF/PDF

An SDS template can also be created on OS/390 using the ISPF/PDF. This template has also to be set to the

“fixed block” format with 80 blocks per record. One after another, all source files can be uploaded from the CD

into this template. After each upload step, the transferred data are received into their designated data sets as same

as described in chapter 4.2 “Uploading the files”.

After log on to TSO by entering a user ID with its associated password the CMAM appears (Figure 85). The

ISPF/PDF program is started by entering the shortcut P on the OPTION line. This opens the ISPF PRIMARY

OPTION MENU. From there, the option UTILITY (shortcut 3) opens the UTILITY SELECTION PANEL. The

DATA SET option (shortcut 2) opens the DATA SET UTILITY (DSU). The short form P.3.2 entered on the

option line of the CMAM leads directly to the DSU (Figure 85). After entering the DSU the SDS template is al-

located by entering TBUSSE.CICSADP.NEWSEQ in the field Data Set Name and typing an A on the command

line (Figure 86). The next screen ALLOCATE NEW DATA SET appears (Figure 87). An SDS is created, if the

Directory blocks-field is set to 0. The record size of the data set is set to 2 MB as Primary quantity with an ad-

ditional 1 megabyte as Secondary quantity. In the Record format-field FB is entered to fix the record length

and use the block format. The Record length is fixed as 80 and the Data set name type is left blank. After con-

firming these adjustments by pressing the enter key the message “Data set allocated” appears in the upper right

corner of the DSU screen. After that, the created template is ready to get data from the CD using FTP.

After a successful log on at the FTP client the command dir is executed. This displays a list of OS/390 data

sets containing the newly created SDS-template TBUSSE.CICSADP.NEWSEQ. The column LRECL reports that

the SDS has a fixed record length of 80 blocks (Figure 88). As next step, the important command bin is ex-

ecuted. By using this command binary source files are sent as binary files to OS/390. The files are transferred on

to OS/390 using the command put, for instance (Figure 89):

put cicsadp.loa cicsadp.newseq

The file is can be received into its associated data set.

224
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

 CUSTOMPAC MASTER APPLICATION MENU
 OPTION ===> P.3.2 SCROLL ===> PAGE

 IS ISMF - Interactive Storage Management Facility
 P PDF - ISPF/Program Development Facility
 ATC ATC - Application Testing Collection
 ART ARTT - Automated Regression Testing Tool
 DB2 DB2 - Perform DATABASE 2 interactive functions
 QMF QMF - QMF Query Management Facility
 C CPSM - CICSPlex/SM
 M MQ - MQSeries
 MA MQAPPS - MQSeries Utilities
 IP IPCS - Interactive Problem Control Facility
 OS SUPPORT - OS/390 ISPF System Support Options
 OU USER - OS/390 ISPF User Options
 SM SMP/E - SMP/E Dialogs
 SD SDSF - System Display and Search Facility
 R RACF - Resource Access Control Facility
 DI DITTO - Data Interfile Transfer, Testing and Operations
 HC HCD - Hardware Configuration Definition
 S SORT - DF/SORT Dialogs

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 85: CUSTOMPAC MASTER APPLICATION MENU on the JEDI OS/390-server

 Menu RefList Utilities Help
���

 Data Set Utility

 A Allocate new data set C Catalog data set
 R Rename entire data set U Uncatalog data set
 D Delete entire data set S Data set information (short)
 blank Data set information M Allocate new data set
 V VSAM Utilities

 ISPF Library:
 Project . . ________
 Group . . . ________
 Type ________

 Other Partitioned, Sequential or VSAM Data Set:
 Data Set Name . . . 'TBUSSE.CICSADP.NEWSEQ'________________________________
 Volume Serial . . . ______ (If not cataloged, required for option "C")

 Data Set Password . . (If password protected)

 Option ===> a __
 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 86: Data Set Utility screen in ISPF/PDF

Appendix A – The CICS Business Application NACT 225

 Menu RefList Utilities Help
���

 Allocate New Data Set
 More: +
 Data Set Name . . . : TBUSSE.CICSADP.NEWSEQ

 Management class . . . DEFAULT_ (Blank for default management class)
 Storage class PRIM90__ (Blank for default storage class)
 Volume serial SMS001 (Blank for system default volume) **
 Device type ________ (Generic unit or device address) **
 Data class ________ (Blank for default data class)
 Space units MEGABYTE__ (BLKS, TRKS, CYLS, KB, MB, BYTES
 or RECORDS)
 Average record unit _ (M, K, or U)
 Primary quantity . . 2____________ (In above units)
 Secondary quantity 1____________ (In above units)
 Directory blocks . . 0_____ (Zero for sequential data set) *
 Record format FB____
 Record length 80_____
 Block size 11440_
 Data set name type : ________ (LIBRARY, HFS, PDS, or blank) *

 Command ===> ___
 F1=Help F3=Exit F10=Actions F12=Cancel

Figure 87: “Allocate New Data Set” screen in ISPF/PDF

Figure 88: FTP session – Listing the own files on OS/390

226
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Figure 89: FTP-session – Copying one source file to OS/390

Appendix A – The CICS Business Application NACT 227

A.2 Listings referenced to in chapter 4

Listing 11: The physical map of the map set NACTSET

OS/390 – TBUSSE.CICSADP.COBSRCE(NACTSET)

CD – listings/chapter4/os390/cobol/tbusse/cicsadp/cobsrce/nactset

Listing 12: The symbolic description map of the map set NACTSET

OS/390 – TBUSSE.CICSADP.COBCOPY(NACTSET)

CD – listings/chapter4/os390/cobol/tbusse/cicsadp/cobcopy/nactset

Listing 13: The 3270 presentation logic of the NACT application – NACT01

OS/390 – TBUSSE.CICSADP.COBSRCE(NACT01)

CD – listings/chapter4/os390/cobol/tbusse/cicsadp/cobsrce/nact01

Listing 14: The CRUD business logic of the NACT application – NACT02

OS/390 – TBUSSE.CICSADP.COBSRCE(NACT02)

CD – listings/chapter4/os390/cobol/tbusse/cicsadp/cobsrce/nact02

Listing 15: The Browse business logic of the NACT application – NACT05

OS/390 – TBUSSE.CICSADP.COBSRCE(NACT05)

CD – listings/chapter4/os390/cobol/tbusse/cicsadp/cobsrce/nact05

Listing 16: The Error Handling business logic of the NACT application – NACT04

OS/390 – TBUSSE.CICSADP.COBSRCE(NACT04)

CD – listings/chapter4/os390/cobol/tbusse/cicsadp/cobsrce/nact04

228
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Listing 17: The COBOL copybook NACWCRUD

OS/390 – TBUSSE.CICSADP.COBCOPY(NACWCRUD)

CD – listings/chapter4/os390/cobol/tbusse/cicsadp/cobcopy/nacwcrud

Listing 18: The COBOL copybook NACCTREC

OS/390 – TBUSSE.CICSADP.COBCOPY(NACCTREC)

CD – listings/chapter4/os390/cobol/tbusse/cicsadp/cobcopy/nacctrec

Listing 19: The COBOL copybook NACCCRUD

OS/390 – TBUSSE.CICSADP.COBCOPY(NACCCRUD)

CD – listings/chapter4/os390/cobol/tbusse/cicsadp/cobcopy/nacccrud

Listing 20: Storing the data of the NACT application – Installing the account, locking, and name files on
the OS/390-server

OS/390 – TBUSSE.CICSADP.JCLLIB(VSAM)

CD – listings/chapter4/os390/cobol/tbusse/cicsadp/cobsrce/jcllib/vsam

Listing 21: The CICS resource definitions for the NACT application

OS/390 – TBUSSE.CICSADP.CSDDEFS(CICSCSD)

CD – listings/chapter4/cobol/tbusse/cicsadp/cobsrce/csddefs/cicscsd

Listing 22: The additional CICS SIT definition script C001 (besides COMMON and END)

OS/390 – CICS.COMMON.SYSIN(C001)

CD – listings/chapter4/scripts/cics/common/sysin/c001

Appendix A – The CICS Business Application NACT 229

Listing 23: The CICS startup script CICSC001

OS/390 – SYS1.PROCLIB(CICSC001)

CD – listings/chapter4/scripts/sys1/proclib/cicsc001

APPENDIX B
The MQSeries CICS Business Application MQNACT

B.1 Reaching the log MSGUSR of the CICS region

Entering sd.da on the command line of the CMAM opens the DA-Panel (Figure 90). This panel displays active

users in the sysplex. As next, the cursor has to be placed in the first column NP before the name of the started

task procedure CICSC001 and a question mark has to be entered (Figure 91). Pressing the enter key leads to the

next panel – the logs of the CICS region A06C001. Into the log MSGUSR the MQSeries CICS Bridge writes its

comments; to open the log, the character S has to be again entered into the column NP before the string MSGUSR

(Figure 92). The log opens at the first message, but the interesting message is anywhere in the log. To search for

messages about the MQSeries CICS Bridge queue the string f bridge or find bridge can be entered (Fig-

ure 93). Immediately, the result is presented (Figure 94).

 CUSTOMPAC MASTER APPLICATION MENU
 OPTION ===> sd.da SCROLL ===> PAGE

 IS ISMF - Interactive Storage Management Facility
 P PDF - ISPF/Program Development Facility
 ATC ATC - Application Testing Collection
 ART ARTT - Automated Regression Testing Tool
 DB2 DB2 - Perform DATABASE 2 interactive functions
 QMF QMF - QMF Query Management Facility
 C CPSM - CICSPlex/SM
 M MQ - MQSeries
 MA MQAPPS - MQSeries Utilities
 IP IPCS - Interactive Problem Control Facility
 OS SUPPORT - OS/390 ISPF System Support Options
 OU USER - OS/390 ISPF User Options
 SM SMP/E - SMP/E Dialogs
 SD SDSF - System Display and Search Facility
 R RACF - Resource Access Control Facility
 DI DITTO - Data Interfile Transfer, Testing and Operations
 HC HCD - Hardware Configuration Definition
 S SORT - DF/SORT Dialogs

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 90: Open the DA-Panel within SDSF

232
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

 Display Filter View Print Options Help

 SDSF DA SYS1 DAVI PAG 0 SIO 0 CPU 13 LINE 1-17 (68)
 NP JOBNAME STEPNAME PROCSTEP JOBID OWNER C POS DP REAL PAGING SIO
 MASTER STC09096 +MASTER+ NS FF 555 0.00 0.00
 ALLOCAS ALLOCAS NS FF 35 0.00 0.00
 ANTAS000 ANTAS000 IEFPROC NS F1 83 0.00 0.00
 ANTMAIN ANTMAIN IEFPROC NS FF 222 0.00 0.00
 APPC APPC APPC NS FE 108 0.00 0.00
 ASCH ASCH ASCH NS FE 69 0.00 0.00
 BPXOINIT BPXOINIT BPXOINIT LO FF 73 0.00 0.00
 CATALOG CATALOG IEFPROC NS FF 185 0.00 0.00
 ? CICSC001 CICSC001 CICS STC17287 STCCICS IN F7 1485 0.00 0.00
 CONSOLE CONSOLE NS FF 60 0.00 0.00
 DBA1DBM1 DBA1DBM1 IEFPROC STC09124 DBA1DBM1 NS FE 1262 0.00 0.00
 DBA1DIST DBA1DIST IEFPROC STC09131 DBA1DIST NS FE 129 0.00 0.00
 DBA1IRLM DBA1IRLM STC09123 DBA1IRLM NS FE 71 0.00 0.00
 DBA1MSTR DBA1MSTR IEFPROC STC09122 DBA1MSTR NS FE 139 0.00 0.00
 DBA1SPAS DBA1SPAS IEFPROC STC09133 DBA1SPAS NS F1 84 0.00 0.00
 DFS DFS GO STC09135 DFS NS F1 67 0.00 0.00
 DFSCM DFSCM GO STC09103 ++++++++ NS FE 62 0.00 0.00
 COMMAND INPUT ===> SCROLL ===> CSR
 F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 91: Placing a question mark in the column NP to display the logs

 Display Filter View Print Options Help

 SDSF JOB DATA SET DISPLAY - JOB CICSC001 (STC17287) LINE 1-12 (12)
 NP DDNAME STEPNAME PROCSTEP DSID OWNER C DEST REC-CNT PAGE
 JESMSGLG JES2 2 STCCICS K 364
 JESJCL JES2 3 STCCICS K 125
 JESYSMSG JES2 4 STCCICS K 462
 PLIMSG CICSC001 103 STCCICS K 0
 COUT CICSC001 104 STCCICS K 0
 CEEMSG CICSC001 105 STCCICS K 0
 CEEOUT CICSC001 106 STCCICS K 0
 DFHCXRF CICSC001 107 STCCICS K 40
 S MSGUSR CICSC001 111 STCCICS K 3,872
 ATGPRINT CICSC001 114 STCCICS K 0
 CAFF CICSC001 115 STCCICS K 0
 CRPO CICSC001 116 STCCICS K 0

 COMMAND INPUT ===> SCROLL ===> CSR
 F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 92: Placing the character ”S” in the column NP to display the MSGUSR log

Appendix B – The MQSeries CICS Business Application MQNACT 233

 Display Filter View Print Options Help

 SDSF OUTPUT DISPLAY CICSC001 STC17287 DSID 111 LINE 0 COLUMNS 02- 81
 COMMAND INPUT ===> f bridge SCROLL ===> CSR
********************************* TOP OF DATA **********************************
DFHTD0402 04/03/04 17:25:42 A06C001 STCCICS CSSY TDQUEUE entry for CSSL has bee
DFHTD0402 04/03/04 17:25:42 A06C001 STCCICS CSSY TDQUEUE entry for CSTL has bee
DFHTD0402 04/03/04 17:25:42 A06C001 STCCICS CSSY TDQUEUE entry for CSZL has bee
DFHTD0402 04/03/04 17:25:42 A06C001 STCCICS CSSY TDQUEUE entry for CSZX has bee
DFHTD0402 04/03/04 17:25:42 A06C001 STCCICS CSSY TDQUEUE entry for CWBO has bee
DFHAM4893 I 04/03/04 17:25:42 A06C001 Install for group DFHDCTG has completed su
DFHPG0101 04/03/04 17:25:43 A06C001 STCCICS CSSY PPT entry for DFHTPQ has been
DFHPG0101 04/03/04 17:25:43 A06C001 STCCICS CSSY PPT entry for DFHTPR has been
DFHPG0101 04/03/04 17:25:43 A06C001 STCCICS CSSY PPT entry for DFHTPS has been
DFHXM0101 04/03/04 17:25:43 A06C001 STCCICS CSSY TRANSACTION definition entry f
DFHXM0101 04/03/04 17:25:43 A06C001 STCCICS CSSY TRANSACTION definition entry f
DFHXM0101 04/03/04 17:25:43 A06C001 STCCICS CSSY TRANSACTION definition entry f
DFHAM4893 I 04/03/04 17:25:43 A06C001 Install for group DFHBMS has completed suc
DFHPG0101 04/03/04 17:25:43 A06C001 STCCICS CSSY PPT entry for DFHCWTO has been
DFHXM0101 04/03/04 17:25:43 A06C001 STCCICS CSSY TRANSACTION definition entry f
DFHAM4893 I 04/03/04 17:25:43 A06C001 Install for group DFHCONS has completed su
DFHFC0202 04/03/04 17:25:43 A06C001 STCCICS CSSY FCT entry for DFHDBFK has been
 F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 93: Searching for the MQSeries CICS Bridge message

 Display Filter View Print Options Help

 SDSF OUTPUT DISPLAY CICSC001 STC17287 DSID 111 LINE CHARS 'BRIDGE' FOUND
 COMMAND INPUT ===> SCROLL ===> CSR
CSQC700I CKBR 0000027 IBM MQSeries for OS/390 V2.1 - CICS bridge. Copyright(c) 1
DFHFC0200 04/03/04 17:26:32 A06C001 Non-RLS file EZACONFG has been allocated to
 DFHFCN.
CSQC702I CKBR 0000027 Monitor initialization complete
CSQC703I CKBR 0000027 Auth=LOCAL, WaitInterval=-1, Q=SYSTEM.CICS.BRIDGE.QUEUE
DFHFC0201 04/03/04 17:26:32 A06C001 Non-RLS file EZACONFG has been deallocated.
DFHZC5966 I 04/03/04 17:27:15 A06C001 INSTALL started for TERMINAL (CP03) (Mod
DFHZC6935 I 04/03/04 17:27:15 A06C001 Autoinstall for terminal CP03 with netname
 AAALU2E2 successful.
DFHZC3461 I 04/03/04 17:27:16 A06C001 CP03 CSNE Node SC0TCP03 session started.
DFHPG0209 04/03/04 17:27:16 A06C001 CP03 C001DEF CESN PPT entry for DFHSNLEM has
 DFHPGAMP.
DFHSN1105 04/03/04 17:27:20 A06C001 Signon at netname SC0TCP03 by user TBUSSE re
DFHSN1100 04/03/04 17:27:22 A06C001 Signon at netname SC0TCP03 by user TBUSSE in
DFHSN1200 04/03/04 17:34:40 A06C001 Signoff at netname SC0TCP03 by user TBUSSE i
 0 errors.
DFHZC3462 I 04/03/04 17:34:40 A06C001 CP03 CSNE Node SC0TCP03 session terminated
DFHZC5966 I 04/03/04 17:34:40 A06C001 DELETE started for TERMINAL (CP03) (Modu
 F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 94: The MQSeries CICS Bridge has been successfully started

234
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

B.2 Listings referenced to in chapter 5

Listing 24: The script IEFSSN00 for the OS/390 subsystem name table

OS/390 – SYS1.PARMLIB(IEFSSN00)

CD – listings/chapter5/os390/scripts/sys1/parmlib/iefssn00

Listing 25: The start script MQA1MSTR for the queue manager MQA1

OS/390 – SYS1.PROCLIB(MQA1MSTR)

CD – listings/chapter5/os390/scripts/sys1/proclib/mqa1mstr

Listing 26: Non-recoverable objects for the queue manager MQA1 defined within the script CSQ4INP1

OS/390 – MQM.MQA1.SCSQPROC(CSQ4INP1)

CD – listings/chapter5/os390/scripts/mqm/mqa1/scsqproc/csq4inp1

Listing 27: Must have system objects for the queue manager MQA1 defined within the Script CSQ4INSG

OS/390 – MQM.MQA1.SCSQPROC(CSQ4INSG)

CD – listings/chapter5/os390/scripts/mqm/mqa1/scsqproc/csq4insg

Listing 28: System objects for distributed queuing and clustering (not CICS) for the queue manager MQA1
defined within the script CSQ4INSX

OS/390 – MQM.MQA1.SCSQPROC(CSQ4INSX)

CD – listings/chapter5/os390/scripts/mqm/mqa1/scsqproc/csq4insx

Listing 29: The script CSQ4STRT starts the Channel Initiator and the Channel Listener

OS/390 – MQM.MQA1.SCSQPROC(CSQ4STRT)

CD – listings/chapter5/os390/scripts/mqm/mqa1/scsqproc/csq4strt

Appendix B – The MQSeries CICS Business Application MQNACT 235

Listing 30: CICS objects for the MQSeries CICS adapter defined within the script CSQ4B100

OS/390 – CICS.COMMON.CSDDEFS(CSQ4B100)

CD – listings/chapter5/os390/scripts/cics/common/csddefs/csq4b100

Listing 31: The script DFHCSD01 to update the CSD

OS/390 – CICS.COMMON.CSDDEFS(DHCSD01)

CD – listings/chapter5/os390/cics/common/csddefs/dfhcsd01

Listing 32: The script CSQ4INYG defines additional general objects for the queue manager MQA1

OS/390 – MQM.MQA1.SCSQPROC(CSQ4INYG)

CD – listings/chapter5/os390/scripts/mqm/mqa1/scsqproc/csq4inyg

Listing 33: The updated CICS SIT definition script C001 (besides COMMON and END)

OS/390 – CICS.COMMON.SYSIN(C001)

CD – listings/chapter5/os390/scripts/cics/common/sysin/c001

Listing 34: The script CSQ4CKBM defines the MQSeries CICS Bridge queue and its trigger process

OS/390 – MQM.MQA1.SCSQPROC(CSQ4CKBM)

CD – listings/chapter5/os390/scripts/mqm/mqa1/scsqproc/csq4ckbm

Listing 35: CICS objects for the MQSeries CICS Bridge defined within the script CSQ4CKBC

OS/390 – CICS.COMMON.CSDDEFS(CSQ4CKBC)

CD – listings/chapter5/os390/scripts/cics/common/csddefs/csq4ckbc

236
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Listing 36: The MQSeries CICS Bridge – The script STRTCKBR to start the bridge automatically during
CICS start up

OS/390 – CICS.COMMON.CICSSRC(STRTCKBR)

CD – listings/chapter5/os390/scripts/cics/common/cicssrc/strtckbr

Listing 37: The MQSeries CICS Bridge – The CICS COBOL compiling script DFHYITVL

OS/390 – CICSTS13.CICS.SDFHPROC(DFHYITVL)

CD – listings/chapter5/os390/scripts/cicsts13/cics/sdfhproc/dfhyitvl

Listing 38: The MQSeries CICS Bridge – The PLT for programs loaded during CICS startup

OS/390 – CICS.COMMON.TABSRC(PLTIT)

CD – listings/chapter5/os390/scripts/cics/common/tabsrc/pltit

Listing 39: The MQSeries CICS Bridge – The DFHAUPLE script that compiles PLT scripts

OS/390 – CICS.COMMON.TABSRC(DFHAUPLE)

CD – listings/chapter5/os390/scripts/cics/common/tabsrc/dfhauple

Listing 40: The MQSC file “mqadmvs.tst” defines the objects for the WINDOWS2000-client queue manager
TBUSSE.NACT

CD – listings/chapter5/windows/mqseries/mqadmvs.tst

Listing 41: The batch file loads the MQSC script “mqadmvs.txt”

CD – listings/chapter5/windows/mqseries/def.cmd

Appendix B – The MQSeries CICS Business Application MQNACT 237

Listing 42: The MQSeries communication logic of the JAVA application – MQCommunicator.java

CD – listings/chapter5/windows/java/MQCommunicator.java

Listing 43: The presentation logic of the JAVA application – MQClient.java

CD – listings/chapter5/windows/java/MQClient.java

APPENDIX C
Securing CICS with RACF

C.1 Restarting the CICS region

If a SIT should be rebuild the CICS region has to be restarted. There is no other way to create a new SIT for a

CICS region. The CICS region needs also to be restarted in a few more situations. CICS can be shut downed by

using the transaction CEMT within the command PERFORM SHUTDOWN that is typed on the CICS terminal:

CEMT PERForm SHUTdown

If an immediate shutdown is required the transaction command is:

CEMT PERForm SHUTdown Immediate

Before the CICS security was active these resp. every transaction could be executed by every user logged on to

CICS. Performing a CICS shutdown after activation of the CICS security is only allowed to users which have

permission to execute the transaction CEMT and the command SHUTDOWN. This message is displayed on the

CICS terminal screen during a shutdown of CICS, if no security is activate:

A06C001 CICS is being quiesced by user ID STCCICS in transaction CEMT at netname
SC0TCP02.

After activating CICS security this message shows ”... user ID TBUSSE ...” instead of ”... user ID STCCICS ...”.

Hence, CICS lists the user who initiated the shutdown.

The shutdown process of CICS can also be started from SDSF’s LOG- or DApanel by purging (P) the CICS

jobname in case of a normal shutdown or by cancelling (C) the jobname from the command line. Sometimes, if

the CICS terminal cannot be reached, the CICS region must be shut downed from SDSF. The appendant OS/390

commands are:

/P CICSC001

/C CICSC001

240
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

The restart of the CICS region can be performed by entering the OS/390 START command (S) together with the

region start script CICSC001 on the command line in the SDSF LOG- or DApanel:

/S CICSC001

It is essential to have the RACF system SPECIAL or OPERATIONS attribute to execute these commands.

C.2 Correction of a CICS system log failure after an OS/390-server
IPL and a CICS restart

After the JEDI OS/390-server has been shut downed and re-IPLed, a failure with the primary CICS system log

DFHLOG occurred. As the CICS system log initialisation has been started during the CICS region restart due to

the IPL, the primary CICS log stream called A06C001.DFHLOG stored to the VSAM KSDS CICS.A06C001.D-

FHLOG.DAVPLEX should be accessed by the procedure IEESYSAS. This procedure is stored in the data set

SYS1.PROCLIB. For the access the procedure needs an UPDATE authority but the job has not had the required

authority. The data set profile CICS.A06C001.** existed not yet at this time (see chapter 6.3.6, “The CICS region

data set protection”, page 178), only the generic data set profile CICS.**.

Due to this behaviour an error message has been written to the OS/390 system log (Listing 44, next page). As

listed in lines 03-06 of the Listing 44, the job IEESYSAS requires the UPDATE access to the generic data set pro-

file CICS.**. This could be specified with the RACF command PERMIT or ALTDSD:

Example 1: PERMIT 'CICS.**' ID(IEESYSAS) ACCESS(UPDATE)

Example 2: ALTDSD 'CICS.**' UACC(UPDATE)

Unfortunately, giving the job the required authority after the first impossible CICS region restart after an IPL

is a pointless venture. CICS has intermediately deleted the VSAM KSDS due to the access failure during the re-

gion initialisation. When the region is then restarted again, CICS tries to create a new VSAM KSDS for the

primary CICS system log using IEESYSAS, which is impossible, because IEESYSAS has only an UPDATE ac-

cess. It now requires an ALTER access to create the data set. This error stops the CICS region initialisation again

and shut downs the CICS region. It is waited until the VSAM KSDS for the log stream is created. However,

firstly it is checked, whether the log stream is still defined to the LOGR couple data set with the JCL-script

LISTLOG, or not (Listing 45, next page). In the first line of Listing 45 is specified the job name LILOG01 and

some job parameters. The program IXCMIAPU, the administrative data utility to display and update the LOGR

couple data set18, is defined in line 6. This program is stored in the data set SYS1.MIGLIB and therefore, it is set

on the parameter SYSLIB in the next line. The SYSIN parameter introduces the commands to display the CICS

system logs A06C001.DFHLOG and A06C001.DFHSPUNT (lines 9-11). DATA TYPE(LOGR) specifies that

18 For information about the LOGR couple data set and storing log streams to it refer to [MSS99].

Appendix C – Securing CICS with RACF 241

the data which follows is for the LOGR couple data set. REPORT(YES) writes a a complete report of the LOGR

policies to the output.

01 +DFHLG0103I A06C001 System log (DFHLOG) initialization has started.
02 IEF196I ICH408I JOB(IEESYSAS) STEP(IXGLOGR)
03 IEF196I CICS.A06C001.DFHLOG.DAVPLEX CL(DATASET) VOL(DAVS7A)
04 IEF196I INSUFFICIENT ACCESS AUTHORITY
05 IEF196I FROM CICS.** (G)
06 IEF196I ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)
07 ICH408I JOB(IEESYSAS) STEP(IXGLOGR) 028
08 CICS.A06C001.DFHLOG.DAVPLEX CL(DATASET) VOL(DAVS7A)
09 INSUFFICIENT ACCESS AUTHORITY
10 FROM CICS.** (G)
11 ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)
12 IEF196I IEC161I 040(056,006,IGG0CLFT)-002,IEESYSAS,IXGLOGR,SYS00002,,,
13 IEC161I 040(056,006,IGG0CLFT)-002,IEESYSAS,IXGLOGR,SYS00002,,,
14 IEF196I IEC161I CICS.A06C001.DFHLOG.DAVPLEX
15 IEC161I CICS.A06C001.DFHLOG.DAVPLEX
16 IEA794I SVC DUMP HAS CAPTURED: 038
17 DUMPID=001 REQUESTED BY JOB (IXGLOGR)
18 DUMP TITLE=COMPON=LOGGER,COMPID=5752SCLOG,ISSUER=IXGR1REC,MODUL
19 E=IXGA1MM ,ABEND=S00C9,REASON=00000009
20 IXG210E RECOVERY FOR LOGSTREAM A06C001.DFHLOG 039
21 IN STRUCTURE *NOT APPLICABLE* WAS NOT SUCCESSFUL.
22 DATA MAY BE LOST FOR THE CONNECTION ON SYSTEM DAVI DUE TO:
23 ERRORS ENCOUNTERED DURING STAGING DATASET PROCESSING.
24 DIAGNOSTIC INFORMATION: 00000008 00000008 0F010001 98286000
25 IXG231I IXGCONN REQUEST=CONNECT TO LOG STREAM A06C001.DFHLOG DID NOT 041
26 SUCCEED FOR JOB CICSC001. RETURN CODE: 00000008 REASON CODE:
27 00000812 DIAG1: 00000000 DIAG2: 00000000 DIAG3: 03070023 DIAG4:
28 00000000
29 +DFHLG0772 A06C001 042
30 An error has occurred during MVS logger operation IXGCONN CONNECT for
31 log stream A06C001.DFHLOG. MVS logger codes: X'00000008',
32 X'00000812'. Log stream attributes: SYSTEMLOG(YES), DASDONLY(NO),
33 STRUCTNAME(****************), RETPD(X'00000000'), AUTODELETE(NO).
34 +DFHME0116 A06C001 043
35 (Module:DFHMEME) CICS symptom string for message DFHLG0772 is
36 PIDS/565501800 LVLS/530 MS/DFHLG0772 RIDS/DFHL2HS2 PTFS/ESA530
37 VALU/H00000812
38 +DFHDU0205 A06C001 A SYSTEM DUMP FOR DUMPCODE: LG0772 , WAS
39 SUPPRESSED BY THE GLOBAL SYSTEM DUMP SUPPRESSION OPTION
40 +DFHLG0731 A06C001 A failure has occurred while opening the system log
41 (DFHLOG). CICS will be terminated.
 ···
53 IST804I CLOSE IN PROGRESS FOR A06C001 OPENED BY CICSC001
54 IST400I TERMINATION IN PROGRESS FOR APPLID A06C001

Listing 44: Error messages explain that the primary CICS system log cannot be accessed

01 //LILOG01 JOB ,'TBUSSE',MSGCLASS=H,MSGLEVEL=(1,1),CLASS=A,
02 // NOTIFY=&SYSUID,REGION=6M
03 //**************************
04 //* DISPLAY THE LOGSTREAMS *
05 //**************************
06 //STEP1 EXEC PGM=IXCMIAPU
07 //SYSLIB DD DSN=SYS1.MIGLIB,DISP=SHR
08 //SYSPRINT DD SYSOUT=*
09 //SYSIN DD *
10 DATA TYPE(LOGR) REPORT(YES)
11 LIST LOGSTREAM NAME(A06C001.DFH*) DETAIL(YES)
12 /*

Listing 45: The script LISTLOG displays information about the log stream and its definition

242
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

IXG005I LOGR POLICY PROCESSING LINE# 2
 LOGSTREAM NAME(A06C001.DFHLOG) STRUCTNAME() LS_DATACLAS()
 LS_MGMTCLAS() LS_STORCLAS() HLQ(CICS) MODEL(NO) LS_SIZE(0)
 STG_MGMTCLAS() STG_STORCLAS() STG_DATACLAS() STG_SIZE(3000)
 LOWOFFLOAD(60) HIGHOFFLOAD(95) STG_DUPLEX(YES) DUPLEXMODE(UNCOND)
 RMNAME() DESCRIPTION() RETPD(0) AUTODELETE(NO)
 DASDONLY(YES) DIAG(NO)
 MAXBUFSIZE(64000)

 LOG STREAM ATTRIBUTES:
 User Data:
 00
 00

 LOG STREAM CONNECTION INFO:
 SYSTEMS CONNECTED: 1

 SYSTEM STRUCTURE CON CONNECTION CONNECTION
 NAME VERSION ID VERSION STATE
 -------- ---------------- -- ---------- ----------
 DAVI 0000000000000000 00 00000000 N/A

 LOG STREAM DATA SET INFO:

 DATA SET NAMES IN USE: CICS.A06C001.DFHLOG.<SEQ#>

 Ext. <SEQ#> Lowest Blockid Highest GMT Highest Local Status
----- -------- ---------------- ----------------- -----------------

*00001 A0000000 0000000000000000 CURRENT

 NUMBER OF DATA SETS IN LOG STREAM: 1

 POSSIBLE ORPHANED LOG STREAM DATA SETS:

 NUMBER OF POSSIBLE ORPHANED LOG STREAM DATA SETS: 0

Listing 46: The output of the LIST LOGSTREAM request

LIST LOGSTREAM is the request to display LOGR policies specified within the NAME parameter. Detailed

information about the named log stream(s) data and definition provides DETAIL(YES). After the JCL script

LISTLOG has been submitted the output is written to the job's log (Listing 46).

After it has been confirmed that the log stream A06C001.DFHLOG is still existing in the LOGR couple data

set, it has been deleted to initialise it new to the LOGR couple data set. For the deletion a similar JCL-script as

for the log stream listing has been used. The job name has been changed to DELLOG1 and the LOGR request

parameter changes to DELETE LOGSTREAM. The required name is specified on the NAME parameter (Listing

47, next page).

Appendix C – Securing CICS with RACF 243

01 //DELLOG1 JOB ,'TBUSSE',MSGCLASS=H,MSGLEVEL=(1,1),CLASS=A,
02 // NOTIFY=&SYSUID,REGION=6M
03 //**************************
04 //* DISPLAY THE LOGSTREAMS *
05 //**************************
06 //STEP1 EXEC PGM=IXCMIAPU
07 //SYSLIB DD DSN=SYS1.MIGLIB,DISP=SHR
08 //SYSPRINT DD SYSOUT=*
09 //SYSIN DD *
10 DATA TYPE(LOGR) REPORT(YES)
11 DELETE LOGSTREAM NAME(A06C001.DFHLOG)
12 /*

Listing 47: The script DELCLOG deletes the log stream entry from the LOGR policy

01 //DEFCLOG JOB ,'TBUSSE',MSGCLASS=H,MSGLEVEL=(1,1),CLASS=A,
02 // NOTIFY=&SYSUID,REGION=6M
03 //**
04 //* DEFINE THE CICS LOGSTREAMS *
05 //* -------------------------- *
 •••
31 //STEP1 EXEC PGM=IXCMIAPU
32 //SYSLIB DD DSN=SYS1.MIGLIB,DISP=SHR
33 //SYSPRINT DD SYSOUT=*
33 //SYSIN DD *
34 DATA TYPE(LOGR) REPORT(YES)
35 DEFINE LOGSTREAM NAME(A06C001.DFHLOG)
36 DASDONLY(YES)
37 STG_SIZE(3000)
38 HLQ(CICS) MODEL(NO)
39 LOWOFFLOAD(60) HIGHOFFLOAD(95)
40 AUTODELETE(NO) RETPD(0)
41 MAXBUFSIZE(64000)
 •••
50 /*

Listing 48: The script DELCLOG deletes the log stream entry from the LOGR policy

When the log stream is deleted it can be new created to the LOGR couple facility. For this procedure the JCL-

script DEFCLOG is used (Listing 48). The log stream is created with the command DEFINE LOGSTREAM and

gets the name A06C001.DFHLOG using the parameter NAME. DASDONLY(YES) specifies that the log stream is

for DASD-only and not for a coupling facility19. STG_SIZE(3000) is the size, as a number of 4 K blocks, of

the staging data set for the log stream. HLQ(CICS) defines the high level qualifier which prefixes the name of

the log stream data set. If the HLQ attribute is omitted “the log stream will have a high level qualifier of IXGLO-

GR.” ([MSS99], chapter Appendix B) The both attributes LOWOFFLOAD and HIGHOFFLOAD specifies the

range in percentage where the MVS system logger starts and stops offloading data to the DASD log stream data

sets. MAXBUFSIZE sets the size of the largest block that can be written to the log stream. The MVS system log-

ger can automatically delete log data from the log stream using the attribute AUTODELETE after a retention peri-

od has been specified within RETPD. Both parameters must not be used for CICS system logs. Before the script

DEFCLOG is to be executed an ALTER permission is required to create the VSAM KSDS. It is recommended to

19 Coupling facility or DASD-only? Please refer to chapter 1.20.2.1 in [CIG00].

244
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

specify UACC(ALTER) for a generic data set profile called CICS.A06C001.** that secures the VSAM KSDSs

for the primary and secondary CICS system logs DFHLOG and DFHSHUNT on the CICS region A06C001. The

data set profile is created with the RACF command ADDSD (Example 1) and stored in the DATASET resource

class, which has then to be refreshed using the SETROPTS command (Example 1)

Example 1: ADDSD 'CICS.A06C001.**' UACC(UPDATE)

Example 2: SETROPTS GENERIC(DATASET) REFRESH

After the class DATASET has been refreshed the log stream can be created to the LOGR policy. Afterwards,

the universal access to the data set profile CICS.A06C001.** can/should be set to UPDATE.

If you specify REPORT(YES) (or accept the default for the report keyword) with a DATA TYPE of LOGR,

the requestor must have SAF read access to the MVSADMIN.LOGR resource to successfully obtain a report.

To define and delete log structures using IXCMIAPU, you need ALTER access to the LOGR resource profile

named MVSADMIN.LOGR in the FACILITY general resource class. For example, use the following RACF com-

mand:

PERMIT MVSADMIN.LOGR CLASS(FACILITY) ACCESS(ALTER) ID(your_userid)

To define, delete, and update log streams (including log stream models) that are defined in coupling facility

structures, you need:

• ALTER access to the appropriate log stream profile defined in the LOGSTRM general resource class

• UPDATE access to the coupling facility structure (IXLSTR) profile defined in the FACILITY general re-

source class (in this case, # profile names are prefixed with IXLSTR).

For example, if the log stream and structure resource profiles are defined to RACF with the following com-

mands:

RDEFINE LOGSTRM log_stream_profile UACC(NONE) [NOTIFY]

RDEFINE FACILITY IXLSTR.structure_name_a UACC(NONE) [NOTIFY]

use the following RACF commands to give your userid the required authorizations to these two profiles:

PERMIT log_stream_profile CLASS(LOGSTRM) ACCESS(ALTER) ID

(your_userid)

PERMIT IXLSTR.structure_name_a CLASS(FACILITY) ACCESS(UPDATE) ID

(your_userid)

If SAF is not available or if there is no CLASS(LOGSTRM) or CLASS(FACILITY) class defined for the

log stream or structure, no security checking is performed.

Appendix C – Securing CICS with RACF 245

C.3 Listings referenced to in chapter 6

Listing 49: The default CICS region's SIT script COMMON

OS/390 – CICS.COMMON.SYSIN(COMMON)

CD – listings/chapter6/os390/scripts/cics/common/sysin/common

Listing 50: The CICS region's 2nd SIT script C001 – temporary version

CD – listings/chapter6/os390/scripts/cics/common/sysin/c001t

Listing 51: The CICS region's 2nd SIT script C001 – final version

OS/390 – CICS.COMMON.SYSIN(C001)

CD – listings/chapter6/os390/scripts/cics/common/sysin/c001

Listing 52: The CLIST CAT1JEDI secures Category-1 transactions

OS/390 – CICS.COMMON.RACF(CAT1JEDI)

CD – listings/chapter6/os390/scripts/cics/common/racf/cat1jedi

Listing 53: The CLIST CAT2JEDI secures Category-2 transactions

OS/390 – CICS.COMMON.RACF(CAT2JEDI)

CD – listings/chapter6/os390/scripts/cics/common/racf/cat2jedi

246
Generation of a Java front end for a standalone CICS application accessed through MQSeries &
Securing CICS with RACF

Listing 54: The CLIST CAT3JEDI secures Category-3 transactions

OS/390 – CICS.COMMON.RACF(CAT3JEDI)

CD – listings/chapter6/os390/scripts/cics/common/racf/cat3jedi

Listing 55: The CLIST MQSJEDI secures MQSeries CICS transactions

OS/390 – CICS.COMMON.RACF(MQSJEDI)

CD – listings/chapter6/os390/scripts/cics/common/racf/mqsjedi

Listing 56: The CLIST USERJEDI secures CICS User-transactions

OS/390 – CICS.COMMON.RACF(USERJEDI)

CD – listings/chapter6/os390/scripts/cics/common/racf/userjedi

Listing 57: The CLIST COM1JEDI secures CICS Resources subject to SP-type commands

OS/390 – CICS.COMMON.RACF(COM1JEDI)

CD – listings/chapter6/os390/scripts/cics/common/racf/com1jedi

Statement:

I declare that this master thesis was composed by myself and that the work contained herein is my own ex-

cept where explicitly stated otherwise in the text. This work has not been submitted for any other degree

or professional qualification except as specified.

Erklärung:

Ich, Tobias Busse, versichere, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung

der angegebenen Quellen und Hilfsmittel angefertigt habe. Diese Arbeit wurde nicht für den Erhalt eines

anderen wissenschaftlichen Grad veröffentlicht außer dem angegebenen.

Place/Ort Date/Datum Signature/Unterschrift

(Tobias Busse)

